JP2001150178A - Method and device for reducing residual welding stress - Google Patents
Method and device for reducing residual welding stressInfo
- Publication number
- JP2001150178A JP2001150178A JP33675099A JP33675099A JP2001150178A JP 2001150178 A JP2001150178 A JP 2001150178A JP 33675099 A JP33675099 A JP 33675099A JP 33675099 A JP33675099 A JP 33675099A JP 2001150178 A JP2001150178 A JP 2001150178A
- Authority
- JP
- Japan
- Prior art keywords
- hollow body
- arc
- residual stress
- pipe
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Butt Welding And Welding Of Specific Article (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は各種配管や炉内機器
の溶接部近傍を応力腐食割れから防止する残留応力低減
方法とその装置に係り、特に配管や炉内機器溶接部近傍
内面側の引き張り残留応力を圧縮側に低減・改善する溶
接残留応力低減方法とその装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for reducing residual stress in a pipe or a furnace in the vicinity of a welded part of a furnace equipment from stress corrosion cracking. The present invention relates to a method and an apparatus for reducing welding residual stress for reducing and improving tensile residual stress to a compression side.
【0002】[0002]
【従来の技術】例えば原子力発電プラントにおいて、オ
ーステナイト系ステンレス鋼やニッケル基金合金等で構
成された配管や炉内機器等の管状容器は、内面側に高温
純水と接触する配管や機器の表面側に降伏応力を越える
引っ張り残留応力が発生し、応力腐食割れを起こす可能
性がある。即ち、より具体的に説明するに、配管等の管
又は管状容器の突周溶接部近傍の内面では周方向、軸方
向ともに引張り残留応力状態となっており、この内面の
引張り残留応力の存在は、応力腐食割れ性能の低下等を
招く。このため引張り残留応力を低減ないし圧縮状態に
することが望まれている。2. Description of the Related Art In a nuclear power plant, for example, a pipe made of austenitic stainless steel or a nickel base alloy, or a tubular container such as a furnace equipment is provided on the inner surface side with the pipe or equipment surface which comes into contact with high-temperature pure water. , A tensile residual stress exceeding the yield stress is generated, and stress corrosion cracking may occur. That is, to explain more specifically, on the inner surface near the protruding welded portion of a pipe such as a pipe or a tubular container, there is a tensile residual stress state in both the circumferential direction and the axial direction, and the existence of tensile residual stress on the inner surface is This leads to a reduction in stress corrosion cracking performance. For this reason, it is desired that the tensile residual stress is reduced or brought into a compressed state.
【0003】このため、従来より種々の残留応力低減方
法が提起されている。先ず図5に示す従来技術は水冷溶
接法と呼ばれるもので、配管21の溶接継手21aの内
面側に冷却水22を流しながら溶接を行い、配管21の
板厚方向に温度勾配を発生させ、溶接後の引張り残留応
力を低減する方法で、1層目23は水中溶接を行った
後、2層目若しくは3層目以降24に水冷溶接を行うあ
る。しかしながらかかる従来技術によれば、管内面側で
通水する必要があるため、適用に制限がり、特に現地施
行においては適用困難な場合が多い。For this reason, various methods for reducing residual stress have been proposed. First, the prior art shown in FIG. 5 is called a water-cooled welding method, in which welding is performed while flowing cooling water 22 on the inner surface side of a welding joint 21 a of a pipe 21 to generate a temperature gradient in the thickness direction of the pipe 21, and welding is performed. In a method of reducing the residual tensile stress, the first layer 23 is subjected to underwater welding, and then the second or third layer 24 is subjected to water cooling welding. However, according to such a conventional technique, since it is necessary to flow water on the inner surface side of the pipe, the application is limited, and it is often difficult to apply the method particularly in the field.
【0004】図6に示す従来技術は高周波誘導加熱方法
と呼ばれるもので、配管31の溶接部32対象部位の板
厚方向に所定の温度差が生じるように、配管31内面を
水冷しながら外面側を高周波誘導加熱コイル33を利用
して誘導加熱で昇温した後、加熱を停止し、配管31板
厚方向がほぼ均一な室温程度の温度となるまで内面の水
冷を続ける結果、配管内面の引張り残留応力を低減する
方法である。[0006] The prior art shown in FIG. 6 is called a high-frequency induction heating method, in which the inner surface of the pipe 31 is water-cooled so that a predetermined temperature difference occurs in the thickness direction of the target portion of the welded portion 32 of the pipe 31. Is heated by induction heating using the high-frequency induction heating coil 33, the heating is stopped, and the inner surface of the pipe 31 is continuously cooled with water until the temperature in the plate thickness direction becomes substantially uniform, thereby pulling the inner surface of the pipe. This is a method for reducing residual stress.
【0005】かかる従来技術においても管内面を水冷す
る必要があり、適用に制限があるのみならず、装置が大
規模になり現地施行が困難である。又高周波誘導加熱
は、配管全周にわたる加熱方式であり、急速に行うため
には誘導加熱容量が大きくなり、また、全周にわたって
の均一化は困難である。[0005] In such prior art as well, it is necessary to water-cool the inner surface of the pipe, which not only limits the application but also makes the apparatus large-scale and difficult to implement locally. In addition, high-frequency induction heating is a heating method over the entire circumference of a pipe. If it is performed rapidly, the induction heating capacity becomes large, and uniformization over the entire circumference is difficult.
【0006】[0006]
【発明が解決しようとする課題】本発明は、かかる従来
技術の課題に鑑み、配管若しくは管状容器等の中空体の
溶接部近傍の残留応力を低減するために、配管全周にわ
たる加熱を簡単な装置構成で均一且つ急速に行う事の出
来る残留応力低減方法とその装置を提供することを目的
とする。SUMMARY OF THE INVENTION In view of the above-mentioned problems in the prior art, the present invention provides a simple method of heating the entire circumference of a pipe in order to reduce residual stress in the vicinity of a welded portion of a hollow body such as a pipe or a tubular container. It is an object of the present invention to provide a method for reducing residual stress which can be performed uniformly and rapidly with a device configuration, and a device therefor.
【0007】[0007]
【課題を解決するための手段】本発明はかかる課題を解
決するために、配管若しくは管状容器等の中空体の溶接
部の残留応力低減方法において、磁界とアーク電流とに
より中空体周方向に発生する運動エネルギを利用して、
中空体の環状溶接部近傍と対面配置したアークを高速回
転させ、前記環状溶接部近傍を一側から加熱して、中空
体内面若しくは外面側の引張り残留応力を低減するのに
必要な温度差を前記中空体内外周面間に発生させたこと
を事を特徴とする。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a method for reducing the residual stress in a welded portion of a hollow body such as a pipe or a tubular container. Using the kinetic energy
High-speed rotation of the arc placed facing the vicinity of the annular weld of the hollow body and heating the vicinity of the annular weld from one side to reduce the temperature difference required to reduce the residual tensile stress on the inner or outer surface of the hollow body. It is characterized in that it is generated between the outer peripheral surfaces of the hollow body.
【0008】請求項2記載の発明は、前記した請求項1
記載の発明を効果的に達成するための装置に関する発明
で、中空体の環状溶接部近傍と対面配置したアーク発生
手段と、該アーク発生手段と中空体溶接部近傍間に発生
させたアーク電流と中空体軸方向に発生する磁力線によ
り中空体周方向に運動エネルギを発生させる手段とを具
えたことを事を特徴とする。[0008] The second aspect of the present invention is the first aspect.
An invention relating to an apparatus for effectively achieving the described invention, wherein an arc generating means arranged in a face-to-face relationship with an annular welded portion of a hollow body, and an arc current generated between the arc generating means and a hollow body welded portion. Means for generating kinetic energy in the circumferential direction of the hollow body by lines of magnetic force generated in the axial direction of the hollow body.
【0009】そして好ましくは、前記アーク発生手段が
中空体と同心状に周回するリング体若しくは円板で構成
され、前記運動エネルギー発生手段が、前記アーク発生
手段の軸方向両側に配置したリング状コイルであり、該
コイルにコイル電流を流して中空体軸方向に磁場を形成
し、一方前記アーク発生手段と中空体間に直流電源を印
加させて構成される。Preferably, the arc generating means comprises a ring or a disk concentrically rotating with the hollow body, and the kinetic energy generating means is a ring-shaped coil disposed on both axial sides of the arc generating means. And a coil current is passed through the coil to form a magnetic field in the axial direction of the hollow body, and a DC power supply is applied between the arc generating means and the hollow body.
【0010】即ち、より具体的には、中空体内面側の引
張り残留応力を低減させる場合は、中空体外周側にリン
グ円状のアーク発生リングを配置し、該リングを挟むよ
うにして磁場形成用の一対のリングコイルを配置してア
ークが円周方向に高速回転しながら環状溶接部外周側を
均一に急速加熱させれば良く、又中空体外面側の引張り
残留応力を低減させる場合は、中空体内周側に円板状の
アーク発生板を配置し、該発生板を挟むようにして磁場
形成用の一対のリングコイルを配置してアークが円周方
向に高速回転しながら環状溶接部内周側を均一に急速加
熱させれば良い。More specifically, in order to reduce the residual tensile stress on the inner surface of the hollow body, a ring-shaped arc generating ring is arranged on the outer peripheral side of the hollow body, and the ring is sandwiched between the arc generating rings for forming a magnetic field. A pair of ring coils may be arranged and the outer periphery of the annular weld may be rapidly and uniformly heated while the arc rotates in the circumferential direction at a high speed. In order to reduce the residual tensile stress on the outer surface of the hollow body, the hollow body may be used. A circular arc generating plate is arranged on the circumferential side, and a pair of ring coils for forming a magnetic field are arranged so as to sandwich the generating plate, and the arc rotates at high speed in the circumferential direction, so that the inner peripheral side of the annular welded portion is uniform. What is necessary is just to heat rapidly.
【0011】本発明によれば、コイル磁場とアーク電流
により、中空体周方向にアーク駆動力(回転力)が働き、
そして該アークによる加熱エネルギーは極めて大きく且
つ高速に周回するために、例えば中空体内面側の引張り
残留応力を低減させる場合は、溶接部が溶融することな
く管外面側が急速に加熱され、中空体内面側の引張り残
留応力を低減するのに必要な温度差を前記中空体内外周
面間に発生させる事が出来る。According to the present invention, an arc driving force (rotational force) acts in the circumferential direction of the hollow body by the coil magnetic field and the arc current,
Since the heating energy by the arc is extremely large and circulates at a high speed, for example, when reducing the tensile residual stress on the inner surface of the hollow body, the outer surface of the tube is rapidly heated without melting the welded portion, and the inner surface of the hollow body is heated. The temperature difference required to reduce the residual tensile stress on the side can be generated between the outer peripheral surfaces of the hollow body.
【0012】これにより前記中空体内外周面間の板厚内
で固有ひずみを再分布させ、内面側の引張り残留応力を
低減させることが可能となり、配管内面側溶接部近傍の
引張り残留応力の低下により、耐腐食割れ性、耐疲労
性、耐脆性、破壊性等の溶接部の改善が期待できる。This makes it possible to redistribute the intrinsic strain within the thickness between the outer peripheral surfaces of the hollow body and to reduce the residual tensile stress on the inner surface, and to reduce the residual tensile stress in the vicinity of the welded portion on the inner surface of the pipe. It can be expected to improve the welded portion in terms of corrosion cracking resistance, fatigue resistance, brittleness resistance, fracture resistance, and the like.
【0013】[0013]
【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
る構成部品の寸法、形状、その相対配置などは特に特定
的な記載がない限り、この発明の範囲をそれのみに限定
する趣旨ではなく単なる説明例に過ぎない。図1は本発
明の実施形態にかかる配管の残留応力低減装置で、特に
内面側の引張り残留応力を低減させる装置に関する。1
はステンレス材からなる配管で、その中央部に突き合わ
せ溶接にて環状に溶接部1aが形成されている。3はア
ーク発生用のリング状電極で、前記配管1側の環状溶接
部1a近傍と対面して囲撓する如く、該配管1外周側に
配管1と同心状に配設するとともに、内周側をナイフエ
ッジ状に薄肉化して、配管1側に向けアークが飛びやす
い形状にしている。又前記リング状電極3と配管1間に
は直流電源4が接続され、環状溶接部1a近傍とリング
状電極3との間にアーク5を発生(アーク5は一点で発
生)可能に構成している。2、2は、前記リング状電極
3を挟むように配置した磁場形成用の一対のリングコイ
ルで、該コイル2、2に円周方向に同一方向にコイル電
流を流して中空体軸方向に磁場を形成可能に構成してい
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to an embodiment shown in the drawings. However, unless otherwise specified, dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the invention, but are merely illustrative examples. FIG. 1 shows an apparatus for reducing residual stress in piping according to an embodiment of the present invention, and particularly relates to an apparatus for reducing tensile residual stress on the inner surface side. 1
Is a pipe made of stainless steel, and has an annular welded portion 1a formed at the center by butt welding. Reference numeral 3 denotes a ring-shaped electrode for arc generation, which is disposed concentrically with the pipe 1 on the outer peripheral side of the pipe 1 so as to face and bend in the vicinity of the annular welded portion 1a on the side of the pipe 1 and on the inner peripheral side. Is thinned like a knife edge so that the arc can easily fly toward the pipe 1. A DC power supply 4 is connected between the ring-shaped electrode 3 and the pipe 1 so that an arc 5 can be generated between the vicinity of the annular welded portion 1a and the ring-shaped electrode 3 (the arc 5 is generated at one point). I have. Reference numerals 2 and 2 denote a pair of ring coils for forming a magnetic field arranged so as to sandwich the ring-shaped electrode 3. Can be formed.
【0014】かかる構成によれば前記磁場発生用コイル
2、2にコイル電流を流した状態でリング状電極3に直
流電源4を印加させることにより、前記一対のコイル
2、2間に中空体軸方向に磁場が形成され、一方環状溶
接部1aとリング状電極3との間にアーク5が発生(ア
ーク5は一点で発生)するとともに、前記アーク電流が
環状溶接部1a側に流れる事により、ファラデーの法則
により、前記アーク5に円周方向に運動エネルギーが発
生し、リング状電極3により発生したアーク磁場発生用
コイル2、2のコイル電流の流れに沿って円周状に高速
回転され、これにより環状溶接部1aが均一加熱され
る。According to such a configuration, a DC power supply 4 is applied to the ring-shaped electrode 3 in a state where a coil current is applied to the magnetic field generating coils 2, 2, whereby a hollow body shaft is provided between the pair of coils 2, 2. A magnetic field is formed in the direction, while an arc 5 is generated between the annular weld 1a and the ring-shaped electrode 3 (the arc 5 is generated at one point), and the arc current flows to the annular weld 1a side. According to Faraday's law, kinetic energy is generated in the arc 5 in the circumferential direction, and the arc 5 is rotated at high speed circumferentially along the flow of the coil current of the arc magnetic field generating coils 2 and 2 generated by the ring-shaped electrode 3. Thereby, the annular welded portion 1a is uniformly heated.
【0015】尚、リング状電極3の配設位置は、残留応
力を低減しようとする部分であれば、特に限定されず溶
接部1a近傍であればよい。即ち本実施形態はリング状
電極3と配管1との間にアーク5を発生し、同時にコイ
ル2、2にもコイル電流を流して磁場を作り、アーク5
を電磁力で配管周方向に高速回転させる。高速回転させ
たアーク5で管周方向に均一かつ急速な加熱を行い、管
の板厚方向に所定の温度差ΔTを発生させる。残留応力
低減のために必要な温度差ΔTは下の(1)式より求め
られる値以上とする。 ΔT≧{4Vy(1−γ)}/E・α (1) ただしVy:降状応力、E:ヤング率、α:線膨張係
数、γ:ポアソン比。The location of the ring electrode 3 is not particularly limited as long as the residual stress is to be reduced, and may be in the vicinity of the welded portion 1a. That is, in the present embodiment, an arc 5 is generated between the ring-shaped electrode 3 and the pipe 1, and at the same time, a coil current is applied to the coils 2 and 2 to create a magnetic field.
Is rotated at high speed in the circumferential direction of the pipe by electromagnetic force. Uniform and rapid heating is performed in the circumferential direction of the tube by the arc 5 rotated at a high speed to generate a predetermined temperature difference ΔT in the thickness direction of the tube. The temperature difference ΔT necessary for reducing the residual stress is equal to or more than the value obtained from the following equation (1). ΔT ≧ {4Vy (1-γ)} / E · α (1) where Vy: yield stress, E: Young's modulus, α: linear expansion coefficient, γ: Poisson's ratio.
【0016】次にかかる実施形態に基づく実施例を説明
する。供試材料として、外径60mm、肉厚8,7mm
のSUS316溶接配管1を用いた。又リング状電極3
の材料としてタングステンを用い、配管溶接部1a外表
面との距離を1〜2mmに設定した。リング状電極3の
上下両側に配した磁場形成用コイル2、2には線径1,
2mmの導線を用い、巻き数をそれぞれ210ターンと
した。SUS316管の降状応力を205N/mm程度
として前記(1)式より残留応力低減に必要な管内外の
温度差ΔTを200°C以上と計算した。Next, an example based on such an embodiment will be described. As test material, outer diameter 60mm, wall thickness 8.7mm
SUS316 welding pipe 1 was used. Ring-shaped electrode 3
Was used as a material for the above, and the distance from the outer surface of the pipe welded portion 1a was set to 1 to 2 mm. The magnetic field forming coils 2 and 2 arranged on the upper and lower sides of the ring-shaped electrode 3 have a wire diameter of 1,
A 2 mm conducting wire was used and the number of turns was 210 turns each. Assuming that the yield stress of the SUS316 pipe was about 205 N / mm, the temperature difference ΔT between the inside and outside of the pipe required for reducing the residual stress was calculated to be 200 ° C. or more from the equation (1).
【0017】又供試溶接配管1の溶接部1a内外面で温
度差200°C以上となるよう、コイル電流20A以
上、アーク電流50〜100Aの条件で、溶接ビード中
央を外表面側から加熱した。この条件で加熱した場合、
管内外面における温度履歴を図2に示す。これより、加
熱開始後約40秒程度で200°C以上の温度差が生じ
たことが理解できる。The center of the weld bead was heated from the outer surface side under the conditions of a coil current of 20 A or more and an arc current of 50 to 100 A so that the temperature difference between the inner and outer surfaces of the welded portion 1a of the test welding pipe 1 became 200 ° C. or more. . When heated under these conditions,
FIG. 2 shows the temperature history on the inner and outer surfaces of the tube. From this, it can be understood that a temperature difference of 200 ° C. or more occurred about 40 seconds after the start of heating.
【0018】即ち、コイル2、2の磁界でアーク5を高
速回転させ、配管溶接部1aを外表面側から均一かつ急
速に加熱する本法より、内面側の引張り残留応力を低減
するのに必要な温度差を発生することができた。本実施
形態により加熱処理を施した後の溶接部1a近傍の残留
応力測定結果を図3(A)、未処理配管溶接部1aの残留
応力測定結果を図3(B)に示す。図3(A)、(B)を比較
すると(B)の溶接部1aから10mmの範囲で最高30
Kgf/mm2程度の引張り残留応力が、(A)では10
Kgf/mm2以下に低減していることがわかる。That is, the arc 5 is rotated at a high speed by the magnetic field of the coils 2 and 2 and the pipe welding portion 1a is uniformly and rapidly heated from the outer surface side. Temperature difference could be generated. FIG. 3A shows the result of measuring the residual stress in the vicinity of the welded portion 1a after the heat treatment according to the present embodiment, and FIG. 3B shows the result of measuring the residual stress of the untreated pipe welded portion 1a. 3 (A) and 3 (B), a maximum of 30 mm within a range of 10 mm from the welded portion 1a of FIG. 3 (B).
The tensile residual stress of about Kgf / mm 2 is 10 A in FIG.
It can be seen that it has been reduced to Kgf / mm 2 or less.
【0019】本実施形態によれば配管1内面側溶接部1
aの引張り残留応力の低下により、耐腐食割れ性、耐疲
労性、耐脆性破壊性等の改善が期待できる。即ち、図4
に示すように、実施形態によれば、磁気によりアーク5
を駆動回転させながら加熱する事により、配管1外面側
を急速に加熱し、板厚内で固有ひずみを再分布させ、内
面側の引張り残留応力を低減させることが可能となる。According to the present embodiment, the welded portion 1 on the inner surface of the pipe 1 is provided.
By reducing the tensile residual stress a, improvement in corrosion cracking resistance, fatigue resistance, brittle fracture resistance and the like can be expected. That is, FIG.
According to the embodiment, as shown in FIG.
By heating while rotating, the outer surface of the pipe 1 is rapidly heated, the intrinsic strain is redistributed within the plate thickness, and the tensile residual stress on the inner surface can be reduced.
【0020】図7は本発明の実施形態にかかる配管1の
残留応力低減装置で、特に配管1外面側の引張り残留応
力を低減させる装置に関する。本実施例においては、中
空体外面側の引張り残留応力を低減させるために、配管
1内周側に薄肉円板状のアーク発生電極3を配置し、該
発生電極3を挟むようにして磁場形成用の一対の磁場発
生用のリングコイル2、2を近傍配置する。FIG. 7 shows an apparatus for reducing residual stress in a pipe 1 according to an embodiment of the present invention, and particularly relates to an apparatus for reducing the residual tensile stress on the outer surface side of the pipe 1. In the present embodiment, in order to reduce the tensile residual stress on the outer surface side of the hollow body, a thin disk-shaped arc generating electrode 3 is arranged on the inner peripheral side of the pipe 1, and the arc generating electrode 3 for forming a magnetic field is sandwiched by the generating electrode 3. A pair of ring coils 2, 2 for generating a magnetic field are arranged in the vicinity.
【0021】かかる実施例においても円板状電極3と配
管1の間にアーク5を電磁力で管周方向に高速回転させ
るとともに、該高速回転させたアーク5で管周方向に均
一かつ急速な加熱を行い管の板厚方向に所定の温度差Δ
Tを発生させる。尚、一般配管1において熱を与えた反
対側に引張り残留応力が発生する。従って本実施形態で
は、内側から溶接あるいは肉盛り等にて配管1外周側に
引張り残留応力が発生した場合の適用例である。In this embodiment as well, the arc 5 is rotated at a high speed in the circumferential direction of the tube between the disk-shaped electrode 3 and the pipe 1 by electromagnetic force, and the arc 5 rotated at a high speed is uniform and rapid in the circumferential direction of the tube. Heating is performed and a predetermined temperature difference Δ
Generate T. Note that a tensile residual stress is generated on the side of the general pipe 1 on which heat is applied. Therefore, the present embodiment is an application example in a case where a tensile residual stress is generated on the outer peripheral side of the pipe 1 by welding or overlaying from the inside.
【0022】このようなケースは内面からしか溶接等で
きない状況での配管1(例:二重構成で内骨の場合と
か、外周側に他の装置が存在する場合)及び外周側に腐
食環境下におかれる配管1の場合が考えられる。かかる
実施形態においての実施例の供試材料として内径102
mm、肉厚6,0mmの304ステンレス金同溶接配管
1を用いた。円板状電極3の材料としてタングステンを
用い、配管溶接部1a内表面との距離を1〜2mmとな
るように間隔を調整した。In such a case, the piping 1 can be welded only from the inner surface (for example, in the case of the inner bone in a double configuration, or when other devices are present on the outer peripheral side) and in the corrosive environment on the outer peripheral side. In this case, the case of the pipe 1 to be placed is considered. In this embodiment, the inner diameter 102
A 304 stainless steel gold welding pipe 1 having a thickness of 6.0 mm and a thickness of 6.0 mm was used. Tungsten was used as the material of the disc-shaped electrode 3, and the distance was adjusted so that the distance from the inner surface of the pipe welded portion 1a was 1 to 2 mm.
【0023】そして円板状電極3の両側に位置する一対
の磁場発生用コイル2、2には線径1,2mmの銅線を
用い、巻き数はそれぞれ210ターンとした。供試溶接
配管1の溶接部1a内外面で、残留応力低減に必要な温
度差ΔTを生じるようコイル電流20A以上、アーク電
流50〜150Aの条件で溶接ビード中央を内表面側か
ら加熱したところ、前記実施例と同様な効果を得ること
が出来た。A copper wire having a wire diameter of 1 mm was used for a pair of magnetic field generating coils 2 and 2 located on both sides of the disk-shaped electrode 3, and the number of turns was 210 turns. On the inner and outer surfaces of the welded portion 1a of the test welding pipe 1, the center of the weld bead was heated from the inner surface side under the conditions of a coil current of 20A or more and an arc current of 50 to 150A so as to generate a temperature difference ΔT required for residual stress reduction. The same effect as in the above embodiment was obtained.
【0024】[0024]
【発明の効果】以上記載のごとく本発明によれば、コイ
ル2、2の磁界でアーク5を高速回転させ、配管溶接部
1aを内表面側から均一かつ急速に加熱する本法によ
り、配管1外面側の引張り残留応力を低減するのに必要
な温度差を発生することができた。配管1外面側溶接部
1aの引張り残留応力の低減により、配管1外周側の耐
腐食割れ性、耐疲労性、耐脆性破戒性等の改善が期待で
きる。As described above, according to the present invention, the arc 5 is rotated at a high speed by the magnetic field of the coils 2 and 2 to uniformly and rapidly heat the pipe weld 1a from the inner surface side. The temperature difference required to reduce the tensile residual stress on the outer surface could be generated. By reducing the tensile residual stress of the welded portion 1a on the outer surface side of the pipe 1, improvement in corrosion cracking resistance, fatigue resistance, brittle breakage resistance and the like on the outer peripheral side of the pipe 1 can be expected.
【図1】 本発明の実施形態にかかる配管の残留応力低
減装置で、特に内面側の引張り残留応力を低減させる装
置の構成図である。FIG. 1 is a configuration diagram of a pipe residual stress reducing device according to an embodiment of the present invention, particularly, a device that reduces tensile residual stress on an inner surface side.
【図2】 本発明によるアーク加熱による管内外面の温
度履歴を示すグラフ図である。FIG. 2 is a graph showing a temperature history of the inner and outer surfaces of the tube by arc heating according to the present invention.
【図3】 (A)は本発明による加熱処理後の溶接部残留
応力分布図、(B)は未処理配管の溶接部残留応力分布図
である。3A is a distribution diagram of a residual stress in a weld after the heat treatment according to the present invention, and FIG. 3B is a distribution map of a residual stress in a weld of an untreated pipe.
【図4】 磁気によりアークを駆動回転させながら加熱
した場合の、配管内外面間の温度分布、板厚内での固有
ひずみ分布、引張り残留応力分布の加熱過程と冷却過程
を示す。FIG. 4 shows a heating process and a cooling process of the temperature distribution between the inner and outer surfaces of the pipe, the intrinsic strain distribution within the plate thickness, and the tensile residual stress distribution when the arc is heated while being driven to rotate by magnetism.
【図5】 水冷溶接法と呼ばれる従来の残留応力低減装
置を示す概略図である。FIG. 5 is a schematic view showing a conventional residual stress reducing device called a water-cooled welding method.
【図6】 高周波誘導加熱方法と呼ばれる従来の残留応
力低減装置を示す概略図である。FIG. 6 is a schematic view showing a conventional residual stress reducing device called a high-frequency induction heating method.
【図7】 本発明の実施形態にかかる配管の残留応力低
減装置で配管外面側の引張り残留応力低減のための装置
構成図である。FIG. 7 is an apparatus configuration diagram for reducing a tensile residual stress on the outer surface side of the pipe in the pipe residual stress reducing apparatus according to the embodiment of the present invention.
1 配管 1a 環状溶接部 2 磁場形成用の一対のリングコイル 3 発生用のリング状若しくは円板状電極 4 直流電源 5 アーク DESCRIPTION OF SYMBOLS 1 Piping 1a Annular weld part 2 A pair of ring coils for forming a magnetic field 3 Ring-shaped or disk-shaped electrode for generation 4 DC power supply 5 Arc
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C21D 9/50 102 C21D 9/50 102A G21D 1/00 B23K 101:04 // B23K 101:04 G21D 1/00 X (72)発明者 櫛本 章司 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 豊田 真彦 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 名倉 保身 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 Fターム(参考) 4E081 YS01 YX20 4K042 AA24 DB01 DB03 DF02 EA03Continuation of the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) C21D 9/50 102 C21D 9/50 102A G21D 1/00 B23K 101: 04 // B23K 101: 04 G21D 1/00 X ( 72) Inventor Shoji Kushimoto 2-1-1 Shinama, Arai-machi, Takasago City, Hyogo Prefecture Inside the Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Masahiko 2-1-1 Shinama, Arai-machi, Takasago City, Hyogo Prefecture Takasago Mitsubishi Heavy Industries, Ltd. Inside the research institute (72) Inventor Hozumi Nakura 2-1-1, Shinhama, Arai-machi, Takasago-shi, Hyogo F-term in the Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (reference) 4E081 YS01 YX20 4K042 AA24 DB01 DB03 DF02 EA03
Claims (3)
接部の残留応力低減方法において、 磁界とアーク電流とにより中空体周方向に発生する運動
エネルギを利用して、中空体の環状溶接部近傍と対面配
置したアークを高速回転させ、前記環状溶接部近傍を一
側から加熱して、中空体内面若しくは外面側の引張り残
留応力を低減するのに必要な温度差を前記中空体内外周
面間に発生させたことを事を特徴とする溶接残留応力の
低減方法In a method for reducing residual stress in a welded portion of a hollow body such as a pipe or a tubular container, a kinetic energy generated in a circumferential direction of the hollow body by a magnetic field and an arc current is used to make a vicinity of an annular welded portion of the hollow body. High-speed rotation of the arc disposed facing the surface, heating the vicinity of the annular weld from one side, the temperature difference required to reduce the tensile residual stress on the inner surface of the hollow body or the outer surface side between the outer peripheral surface of the hollow body. Method of reducing welding residual stress characterized by having generated
部近傍の残留応力低減方法において、 中空体の環状溶接部近傍と対面配置したアーク発生手段
と、該アーク発生手段と中空体溶接部近傍間に発生させ
たアーク電流と中空体軸方向に発生する磁力線により中
空体周方向に運動エネルギを発生させる手段とを具えた
ことを事を特徴とする溶接残留応力の低減装置。2. A method for reducing a residual stress in the vicinity of a welded portion of a hollow body such as a pipe or a tubular container, comprising: an arc generating means arranged near the annular welded portion of the hollow body and facing the welded portion of the arc generating means and the hollow body. Means for generating kinetic energy in the circumferential direction of the hollow body by means of the arc current generated between the magnetic field lines and the magnetic force lines generated in the axial direction of the hollow body.
周回するリング体若しくは円板であり、前記運動エネル
ギー発生手段が、前記アーク発生手段の軸方向両側に配
置したリング状コイルであり、該コイルにコイル電流を
流して中空体軸方向に磁場を形成し、一方前記アーク発
生手段と中空体間に直流電源を印加させた事を特徴とす
る請求項1記載の溶接残留応力の低減装置。3. The arc generating means is a ring or a disk concentrically circling with the hollow body, and the kinetic energy generating means is a ring-shaped coil arranged on both axial sides of the arc generating means. 2. A welding residual stress reducing apparatus according to claim 1, wherein a coil current is passed through said coil to form a magnetic field in the axial direction of the hollow body, and a DC power is applied between said arc generating means and said hollow body. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33675099A JP3746651B2 (en) | 1999-11-26 | 1999-11-26 | Method and apparatus for reducing welding residual stress |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33675099A JP3746651B2 (en) | 1999-11-26 | 1999-11-26 | Method and apparatus for reducing welding residual stress |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001150178A true JP2001150178A (en) | 2001-06-05 |
JP3746651B2 JP3746651B2 (en) | 2006-02-15 |
Family
ID=18302380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33675099A Expired - Fee Related JP3746651B2 (en) | 1999-11-26 | 1999-11-26 | Method and apparatus for reducing welding residual stress |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3746651B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007116805A1 (en) | 2006-04-05 | 2007-10-18 | Mitsubishi Heavy Industries, Ltd. | Method of improving residual stress in tube body and device for improving residual stress |
WO2008084855A1 (en) | 2007-01-12 | 2008-07-17 | Mitsubishi Heavy Industries, Ltd. | Residual stress improving method of pipeline |
WO2008136068A1 (en) | 2007-04-20 | 2008-11-13 | Mitsubishi Heavy Industries, Ltd. | Method and device for improving residual stress in pipe body |
US7485828B2 (en) | 2004-07-29 | 2009-02-03 | Mitsubishi Heavy Industries, Ltd. | Residual stress improving apparatus for piping technical field |
US7565812B2 (en) | 2005-05-31 | 2009-07-28 | Hitachi-Ge Nuclear Energy, Ltd. | Method for improving residual stress in pipe and apparatus |
US8044323B2 (en) | 2004-07-29 | 2011-10-25 | Mitsubishi Heavy Industries, Ltd. | Apparatus for improving residual stress of piping technical field |
CN106884086A (en) * | 2017-02-17 | 2017-06-23 | 燕山大学 | The device and technique of a kind of bilateral flame heating removal submerged arc pipe weld residual stress |
CN110343816A (en) * | 2019-07-12 | 2019-10-18 | 武汉理工大学 | A method of using electricity, magnetic and electromagnetic coupling pulse modifier metal parts |
WO2021073558A1 (en) * | 2019-10-18 | 2021-04-22 | 中国电建集团山东电力建设第一工程有限公司 | Device for heating pipe to be welded, and welding device and method |
CN112935256A (en) * | 2021-01-26 | 2021-06-11 | 四川大学 | Method for modifying non-ferromagnetic powder sintered metal parts based on pulsed magnetic field |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102925660A (en) * | 2012-11-19 | 2013-02-13 | 武汉理工大学 | Method and device for improving formability of tailor-welded steel plate |
CN106544493B (en) * | 2016-10-19 | 2018-04-20 | 中国神华能源股份有限公司 | The heat treatment method of attachment weld between the hand hole pipe and end cap of pipeline |
-
1999
- 1999-11-26 JP JP33675099A patent/JP3746651B2/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8044323B2 (en) | 2004-07-29 | 2011-10-25 | Mitsubishi Heavy Industries, Ltd. | Apparatus for improving residual stress of piping technical field |
US7485828B2 (en) | 2004-07-29 | 2009-02-03 | Mitsubishi Heavy Industries, Ltd. | Residual stress improving apparatus for piping technical field |
US7565812B2 (en) | 2005-05-31 | 2009-07-28 | Hitachi-Ge Nuclear Energy, Ltd. | Method for improving residual stress in pipe and apparatus |
US7866166B2 (en) | 2005-05-31 | 2011-01-11 | Hitachi-Ge Nuclear Energy, Ltd. | Method for improving residual stress in pipe and apparatus |
WO2007116805A1 (en) | 2006-04-05 | 2007-10-18 | Mitsubishi Heavy Industries, Ltd. | Method of improving residual stress in tube body and device for improving residual stress |
WO2008084855A1 (en) | 2007-01-12 | 2008-07-17 | Mitsubishi Heavy Industries, Ltd. | Residual stress improving method of pipeline |
US8637784B2 (en) | 2007-01-12 | 2014-01-28 | Mitsubishi Heavy Industries, Ltd. | Method for improving residual stress in tubular body |
WO2008136068A1 (en) | 2007-04-20 | 2008-11-13 | Mitsubishi Heavy Industries, Ltd. | Method and device for improving residual stress in pipe body |
US8362393B2 (en) | 2007-04-20 | 2013-01-29 | Mitsubishi Heavy Industries, Ltd. | Method for improving residual stress in tubular body and apparatus for improving residual stress in tubular body |
CN106884086A (en) * | 2017-02-17 | 2017-06-23 | 燕山大学 | The device and technique of a kind of bilateral flame heating removal submerged arc pipe weld residual stress |
CN110343816A (en) * | 2019-07-12 | 2019-10-18 | 武汉理工大学 | A method of using electricity, magnetic and electromagnetic coupling pulse modifier metal parts |
WO2021073558A1 (en) * | 2019-10-18 | 2021-04-22 | 中国电建集团山东电力建设第一工程有限公司 | Device for heating pipe to be welded, and welding device and method |
CN112935256A (en) * | 2021-01-26 | 2021-06-11 | 四川大学 | Method for modifying non-ferromagnetic powder sintered metal parts based on pulsed magnetic field |
Also Published As
Publication number | Publication date |
---|---|
JP3746651B2 (en) | 2006-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001150178A (en) | Method and device for reducing residual welding stress | |
Xiong et al. | Diffusion bonding of nickel-based superalloy GH4099 with pure nickel interlayer | |
Dong et al. | Effect of post-weld heat treatment on properties of friction welded joint between TC4 titanium alloy and 40Cr steel rods | |
CN109609747A (en) | A kind of homogenization technique of coiled tubing | |
Sunilkumar et al. | Microstructure and mechanical properties relationship of friction stir-and A-GTA-welded 9Cr-1Mo to 2.25 Cr-1Mo steel | |
Dodo et al. | Effect of post-weld heat treatment on the microstructure and mechanical properties of arc welded medium carbon steel | |
Sharma et al. | Diffusion bonding of pre-friction treated structural steel with reversion of deformation induced grains | |
Shushan et al. | The environment assisted cracking of diffusion bonded stainless to carbon steel joints in an aqueous chloride solution | |
Guo et al. | Microstructural characterization and mechanical behavior of Cr25Ni35NbM alloy dissimilar weld joint for application in a hydrogen reformer furnace | |
Mostaan et al. | Micro laser welding of AISI 430 ferritic stainless steel: mechanical properties, magnetic characterization and texture evolution | |
Chaturvedi et al. | Welding of low carbon steel tubes using magnetically impelled arc butt welding: Experimental investigation and characterization | |
Boumerzoug et al. | Texture of rotary-friction-welded from dissimilar medium carbon steels | |
JP2003253337A (en) | Process and apparatus for regenerating creep deteriorated part | |
JP6434729B2 (en) | Ni-based alloy tube manufacturing method, Ni-based alloy high-frequency heated bending tube manufacturing method, Ni-based alloy welded tube manufacturing method, and boiler steam tube manufacturing method | |
JPH0724938B2 (en) | High temperature and high pressure steam turbine and welding method | |
CN115786682A (en) | Heat treatment method for double-phase stainless steel weld joint | |
CN110722307B (en) | Welding tool and welding method for martensite heat-resistant steel gland | |
Pan et al. | Microstructural features of dissimilar MMC/AISI 304 stainless steel friction joints | |
JPS58210123A (en) | Heat treatment of clad steel pipe | |
JP6012192B2 (en) | Bending method for superalloy members | |
JP2628227B2 (en) | Damper for superconducting rotor | |
Mansouri et al. | Vickers Hardness Test of Steel Pipes Welded by High Frequency Induction | |
JPS5852428A (en) | Heat treatment for improving stress of shaft | |
Strizhakov et al. | Vacuum Thermal Magnetic-Pulse Welding of Cathode Assemblies | |
Olson et al. | Joining III: Diffusion Bonding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050208 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050411 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051028 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051124 |
|
LAPS | Cancellation because of no payment of annual fees |