JP2001152286A - Cold rolled steel sheet excellent in composite formability and producing method therefor - Google Patents

Cold rolled steel sheet excellent in composite formability and producing method therefor

Info

Publication number
JP2001152286A
JP2001152286A JP33501999A JP33501999A JP2001152286A JP 2001152286 A JP2001152286 A JP 2001152286A JP 33501999 A JP33501999 A JP 33501999A JP 33501999 A JP33501999 A JP 33501999A JP 2001152286 A JP2001152286 A JP 2001152286A
Authority
JP
Japan
Prior art keywords
value
less
steel sheet
formability
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33501999A
Other languages
Japanese (ja)
Other versions
JP3724298B2 (en
Inventor
Takeshi Fujita
毅 藤田
Toshiaki Urabe
俊明 占部
Manabu Tano
学 田野
Koji Matsubayashi
弘二 松林
Kenichi Mitsuzuka
賢一 三塚
Katsumi Nakajima
勝己 中島
Kohei Hasegawa
浩平 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP33501999A priority Critical patent/JP3724298B2/en
Publication of JP2001152286A publication Critical patent/JP2001152286A/en
Application granted granted Critical
Publication of JP3724298B2 publication Critical patent/JP3724298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a cold rolled steel sheet excellent in breaking resistance in composite forming such as drawing and bulging required for automotive panels such as hoods, doors, fenders and side panels and to provide a method for producing the same. SOLUTION: This cold rolled steel sheet excellent in composite formability has a composition containing, by weight, <=0.0020% C, <=0.05% Si, 0.05 to 0.35% Mn, <=0.025% P, <=0.015% S, 0.01 to 0.06% sol.Alm, <=0.0020% N, 0.010 to 0.040% Nb and 0.003 to 0.035% Ti and also satisfying (12Nb)/(93C)+(12Ti*)/(48C): 1.3 to 5.2 [where Ti*=Ti-(48/14)N-(48/32)S, in the case of Ti*<=0, Ti*=0, and Nb, Ti*, Ti, C, N and S denote weight %] and moreover satisfies the following inequalities (1) and (2): 13.9<=r+50.0(n)...(1), and 2.6<=r+2.0(n)...(2), where r: the average (r) value in the plane, and n: the average tensile strain hardening exponent (n) value in the tensile strain region of 1 to 10%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、フード、ドア、フ
ェンダ、サイドパネル等の自動車パネルに用いられる鋼
板に関し、特に、絞り成形や張出し成形等の複合成形に
おいて優れた成形性を有する冷延鋼板およびその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel sheet used for automobile panels such as hoods, doors, fenders and side panels, and more particularly to a cold-rolled steel sheet having excellent formability in composite forming such as draw forming and stretch forming. And its manufacturing method.

【0001】[0001]

【従来の技術】最近、自動車ボディ用鋼板に対しては、
部品の一体成形化による部品点数の削減およびプレス工
程の省略化の両方を満足させる極めて高いプレス成形性
が要求されるようになってきている。特に、フロントフ
ェンダやサイドパネルのように複雑な形状の部品を一体
成形する場合には、絞り成形のみならず、絞り成形性と
張出し成形性との複合成形性が重要となる。
2. Description of the Related Art Recently, for steel sheets for automobile bodies,
Extremely high press formability that satisfies both the reduction of the number of parts by the integral molding of parts and the elimination of the pressing step has been required. In particular, when integrally forming a component having a complicated shape such as a front fender or a side panel, not only the draw forming but also the composite formability of the draw formability and the overhang formability is important.

【0002】プレス成形性を向上させるために鋼板のr
値や伸びを高める技術は、従来より多数提案されてい
る。例えば、特開平5−279797号公報には、極低
炭素鋼板にNb、Tiを添加し、平均r値を2.8以
上、10〜20%の加工硬化指数(n値)を0.26以
上とすることが提案されている。
[0002] In order to improve press formability, r
Many techniques for increasing the value and elongation have been proposed. For example, in Japanese Patent Application Laid-Open No. 5-279797, Nb and Ti are added to an ultra-low carbon steel sheet, the average r value is 2.8 or more, and the work hardening index (n value) of 10 to 20% is 0.26 or more. It has been proposed that

【0003】また、特公平7−062209号公報に
は、極低炭素鋼板にNb,Tiを添加し、鋼板の圧延方
向と45°方向の引張り強さを28.5〜31.0kg
f/mm (279.3〜303.8MPa)とし、圧延
方向と45°方向のr値を1.90以上とする技術が提
案されている。
[0003] Also, Japanese Patent Publication No. Hei 7-062209 discloses
Is to add Nb and Ti to ultra-low carbon steel sheet,
28.5-31.0kg tensile strength in the direction of 45 °
f / mm 2(279.3-303.8 MPa) and rolling
The technology to make the r value in the direction and 45 ° direction more than 1.90 is proposed.
Is being planned.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、フロン
トフェンダやサイドパネルのように複雑な形状を有する
複合成形部品では、上記のようなr値や伸びを高める技
術が必ずしも効果的でなく、プレスワレが頻発すること
がある。
However, in a composite molded part having a complicated shape such as a front fender or a side panel, the technique for increasing the r value or elongation as described above is not always effective, and frequent press cracking occurs. May be.

【0005】例えば、上記特開平5−279797号公
報に開示された技術は、深絞り成形および高歪み域(1
0〜20%)の張出し成形に対しては有効であるが、低
歪み域(10%以下)における歪み伝播が十分でない場
合には、プレス時のパンチ底近傍での歪み発生量が小さ
くなるとともに、パンチ側壁部で過大な歪みが発生して
ワレが生じてしまう。
[0005] For example, the technique disclosed in the above-mentioned Japanese Patent Application Laid-Open No. Hei 5-279797 is based on deep drawing and a high strain range (1).
(0 to 20%), but is effective for strain forming in a low strain region (10% or less). As a result, excessive distortion occurs in the side wall of the punch, causing cracks.

【0006】また、上記特公平7−062209号公報
に開示された技術は対象とする部品がホイルハウスイン
ナーであり、このような部品を複合成形する場合に成形
性を支配するのは絞りビード部および深い絞り成形部で
ある。そのため、張出し部主体のワレに対しては必ずし
も有効ではない。また、このプレス成形性は、ダイス肩
R部における鋼板流入量の制御により決まるため、しわ
押さえ力の調整が困難となり、成形可能領域が得られな
い場合がある。なお、このような成形様式では、流入の
代わりにひずみ伝播を利用することで成形性を向上する
とともに成形条件を緩和することもできるが十分ではな
い。
In the technique disclosed in Japanese Patent Publication No. 7-062209, the target component is a wheel house inner, and when such a component is formed by composite molding, the formability is governed by the draw bead portion. And a deep drawn part. Therefore, it is not always effective for cracks mainly composed of overhang portions. In addition, since the press formability is determined by controlling the flow rate of the steel sheet into the die shoulder R, it is difficult to adjust the wrinkle pressing force, and a formable region may not be obtained. In addition, in such a molding mode, it is possible to improve the moldability and relax the molding conditions by using the strain propagation instead of the inflow, but it is not sufficient.

【0007】本発明は、以上の点に鑑みてなされたもの
であって、フード、ドア、フェンダ、サイドパネルとい
った自動車パネル等に要求される絞り、張出し等の複合
成形における耐破断性に優れる冷延鋼板およびその製造
方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has been made in view of the above-mentioned requirements for cold forming, which is excellent in rupture resistance in composite molding such as squeezing and overhang required for automobile panels such as hoods, doors, fenders and side panels. An object of the present invention is to provide a rolled steel sheet and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】本発明者らは、鋼板をフ
ェンダやサイドパネル等に複合成形する際の成形性につ
いて詳細に検討を行った結果、絞りや張出し等の複合成
形性に対しては、r値を向上させることとともに、特
に、プレス成形時における成形体側壁部のパンチやダイ
肩近傍といった破断危険部における歪みの集中を回避す
ることが有効であり、そのためには低歪み域でのn値を
適正化し、側壁部の平面歪み領域での歪み伝播やパンチ
底部における低歪み域での塑性流動(歪み伝播)を促進
することが効果的であることを見出した。
Means for Solving the Problems The present inventors have studied in detail the formability when forming a steel sheet into a composite material such as a fender or a side panel, and as a result, have found that the composite formability such as drawing and overhanging can be reduced. In addition to improving the r value, it is effective to avoid concentration of strain in a risk of fracture, such as in the vicinity of a punch or die shoulder on the side wall of the formed body during press forming. It has been found that it is effective to optimize the n value of and to promote the strain propagation in the plane strain region of the side wall portion and the plastic flow (strain propagation) in the low strain region at the bottom of the punch.

【0009】本発明は、上記の知見に基づいて完成され
たものであり、以下の(1)〜(3)を提供する。 (1) 重量%で、C:0.0020%以下、Si:
0.05%以下、Mn:0.05〜0.35%、P:
0.025%以下、S:0.015%以下、sol.A
l:0.01〜0.06%、N:0.0020%以下、
Nb:0.010〜0.040%、Ti:0.003〜
0.035%を含有し、かつ、(12Nb)/(93
C)+(12Ti)/(48C):1.3〜5.2
(ただし、Ti=Ti−(48/14)N−(48/
32)Sであり、Ti≦0の場合にはTi=0と
し、Nb、Ti、Ti、C、N、Sは重量%)であ
り、さらに、下記(1)式、(2)式を満足することを
特徴とする複合成形性に優れた冷延鋼板。 13.9≦r+50.0(n) ……(1) 2.6≦r+2.0(n) ……(2) ただし、r:面内平均r値、 n:1〜10%の引張り歪み域での平均加工硬化指数n
The present invention has been completed based on the above findings and provides the following (1) to (3). (1) By weight%, C: 0.0020% or less, Si:
0.05% or less, Mn: 0.05 to 0.35%, P:
0.025% or less, S: 0.015% or less, sol. A
l: 0.01 to 0.06%, N: 0.0020% or less,
Nb: 0.010 to 0.040%, Ti: 0.003 to
0.035%, and (12Nb) / (93
C) + (12Ti * ) / (48C): 1.3 to 5.2
(However, Ti * = Ti− (48/14) N− (48 /
32) S, and in the case of Ti * ≦ 0 is set to Ti * = 0, Nb, Ti *, Ti, C, N, S is the wt%), further, the following equation (1), (2) A cold-rolled steel sheet excellent in composite formability characterized by satisfying the formula. 13.9 ≦ r + 50.0 (n) (1) 2.6 ≦ r + 2.0 (n) (2) where r: average in-plane r value, n: tensile strain range of 10% to 10% Work hardening index n
value

【0010】(2) 重量%で、C:0.0020%以
下、Si:0.05%以下、Mn:0.05〜0.35
%、P:0.025%以下、S:0.015%以下、s
ol.Al:0.01〜0.06%、N:0.0020
%以下、Nb:0.010〜0.040%、Ti:0.
003〜0.035%を含有し、かつ、C+N:0.0
030%以下、(12Nb)/(93C)+(12Ti
)/(48C):2.2〜4.5(ただし、Ti
Ti−(48/14)N−(48/32)Sであり、T
≦0の場合にはTi=0とし、Nb、Ti、T
i、C、N、Sは重量%)であり、さらに、下記(1)
式、(2)式を満足することを特徴とする複合成形性に
優れた冷延鋼板。 13.9≦r+50.0(n) ……(1) 2.6≦r+2.0(n) ……(2) ただし、r:面内平均r値、 n:1〜10%の引張り歪み域での平均加工硬化指数n
(2) C: 0.0020% or less, Si: 0.05% or less, Mn: 0.05 to 0.35% by weight
%, P: 0.025% or less, S: 0.015% or less, s
ol. Al: 0.01 to 0.06%, N: 0.0020
%, Nb: 0.010 to 0.040%, Ti: 0.
003-0.035%, and C + N: 0.0
030% or less, (12Nb) / (93C) + (12Ti
* ) / (48C): 2.2 to 4.5 (however, Ti * =
Ti- (48/14) N- (48/32) S, T
When i * ≦ 0, Ti * = 0, and Nb, Ti * , T
i, C, N and S are% by weight), and the following (1)
A cold-rolled steel sheet excellent in composite formability, which satisfies the formula (2). 13.9 ≦ r + 50.0 (n) (1) 2.6 ≦ r + 2.0 (n) (2) where r: average in-plane r value, n: tensile strain range of 10% to 10% Work hardening index n
value

【0011】(3) 前記(1)または(2)の冷延鋼
板を製造するにあたり、鋼スラブに熱間圧延を施した
後、ランナウトテーブル冷却により720℃以下の温度
まで冷却してから、560〜660℃で巻き取り、その
後、圧延率70〜85%で冷間圧延を行い、780〜8
80℃の焼鈍温度で連続焼鈍することを特徴とする複合
成形性に優れた冷延鋼板の製造方法。
(3) In producing the cold-rolled steel sheet of the above (1) or (2), the steel slab is subjected to hot rolling, then cooled to a temperature of 720 ° C. or less by a run-out table cooling, and then 560 650 ° C., and then cold-rolled at a rolling ratio of 70 to 85%,
A method for producing a cold-rolled steel sheet having excellent composite formability, comprising continuously annealing at an annealing temperature of 80 ° C.

【0012】[0012]

【発明の実施の形態】以下、本発明について、成分組
成、引張特性、製造条件に分けて具体的に説明する。
1.成分組成 本発明における鋼板は、重量%で、C:0.0020%
以下、Si:0.05%以下、Mn:0.05〜0.3
5%、P:0.025%以下、S:0.015%以下、
sol.Al:0.01〜0.06%、N:0.002
0%以下、Nb:0.010〜0.040%、Ti:
0.003〜0.035%の組成を有し、かつ、(12
Nb)/(93C)+(12Ti)/(48C):
1.3〜5.2(ただし、Ti=Ti−(48/1
4)N−(48/32)Sであり、Ti ≦0の場合に
はTi=0とし、Nb、Ti、Ti、C、N、Sは
重量%)を満足する。また、好ましくは、上記組成を有
し、かつ、C+N:0.0030%以下、(12Nb)
/(93C)+(12Ti)/(48C):2.2〜
4.5を満足する。その限定理由は、以下のとおりであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention
Specific description will be given separately for the composition, tensile properties, and manufacturing conditions.
1. Ingredient composition The steel sheet in the present invention is, by weight%, C: 0.0020%.
Hereinafter, Si: 0.05% or less, Mn: 0.05 to 0.3
5%, P: 0.025% or less, S: 0.015% or less,
sol. Al: 0.01 to 0.06%, N: 0.002
0% or less, Nb: 0.010 to 0.040%, Ti:
It has a composition of 0.003 to 0.035%, and (12
Nb) / (93C) + (12Ti*) / (48C):
1.3 to 5.2 (however, Ti*= Ti- (48/1
4) N- (48/32) S, Ti *If ≦ 0
Is Ti*= 0, Nb, Ti*, Ti, C, N, S
% By weight). Preferably, the composition has the above composition.
And C + N: 0.0030% or less, (12Nb)
/ (93C) + (12Ti*) / (48C): 2.2-
4.5 is satisfied. The reasons for the limitation are as follows.
You.

【0013】C:0.0020%以下 Cは、低歪み域(1〜10%)でのn値に影響をおよぼ
す元素であり、固溶状態では転位と相互作用をおよぼし
n値を低下させ、NbCの状態では極めて微細な場合に
n値を低下させる。このようなn値の低下は0.002
0%を超えると生じるため、n値を向上させる観点から
C含有量を0.0020%以下とする。
C: not more than 0.0020% C is an element that affects the n value in a low strain region (1 to 10%), and in a solid solution state, interacts with dislocation to reduce the n value. In the state of NbC, the n value is reduced in the case of extremely fine particles. Such a decrease in n value is 0.002
When the content exceeds 0%, the C content is set to 0.0020% or less from the viewpoint of improving the n value.

【0014】Si:0.05%以下 Siは冷延鋼板の場合、0.05%を超えて過剰に添加
されると化成処理性が劣化し、溶融亜鉛めっきの場合は
めっき密着性が劣化する。また、延性を高く維持するた
めには0.05%以下とする必要がある。このため、S
i含有量を0.05%以下とする。
Si: 0.05% or less In the case of a cold-rolled steel sheet, if the Si content exceeds 0.05%, the chemical conversion property deteriorates, and in the case of hot-dip galvanizing, the plating adhesion deteriorates. . Further, in order to maintain high ductility, the content needs to be 0.05% or less. Therefore, S
The i content is set to 0.05% or less.

【0015】Mn:0.05〜0.35% Mnは、鋼中のSをMnSとして析出させ、スラブの熱
間割れを防止する元素である。本発明においては、Ti
によりSを固定しているので、Mn含有量は一般鋼より
低くても問題はないが、0.05%未満では溶銑予備処
理コストが上昇する。一方、Mn含有量が0.35%を
超えると固溶強化により降伏強度が上昇し、n値が低下
する。したがって、Mn含有量を0.05〜0.35%
とする。
Mn: 0.05-0.35% Mn is an element that precipitates S in steel as MnS and prevents hot cracking of the slab. In the present invention, Ti
, The Mn content is lower than that of general steel. There is no problem, but if it is less than 0.05%, the cost of hot metal pretreatment increases. On the other hand, if the Mn content exceeds 0.35%, the yield strength increases due to solid solution strengthening, and the n value decreases. Therefore, the Mn content is reduced to 0.05 to 0.35%.
And

【0016】P:0.025%以下 Pは、粒界脆化元素であり、その含有量は低く抑えるべ
きであるが、P含有量を低減するには脱Pコストがかか
る。一方、Pは、Mnと同様に固溶強化元素であり、
0.025%を超える添加では降伏強度が上昇するた
め、n値が低下する。以上の点を考慮して、P含有量を
0.025%以下とする。
P: 0.025% or less P is a grain boundary embrittlement element, and its content should be kept low. However, reducing the P content requires a cost of removing P. On the other hand, P is a solid solution strengthening element like Mn,
If the content exceeds 0.025%, the yield strength increases, and the n value decreases. In consideration of the above points, the P content is set to 0.025% or less.

【0017】S:0.015%以下 Sは不可避的不純物として鋼中に存在する。S含有量が
増えると延性が劣化するとともに、TiSを形成するた
め、後述する有効Ti量(Ti)が減少する。そのた
め、S含有量を0.015%以下とする。
S: 0.015% or less S exists in steel as an unavoidable impurity. When the S content increases, ductility deteriorates and TiS is formed, so that the effective Ti amount (Ti * ) described below decreases. Therefore, the S content is set to 0.015% or less.

【0018】sol.Al:0.01〜0.06% sol.Alは、NをAlNとして固定するが、本発明
においてはTiを添加してNをTiNとして固定するた
め、通常の場合に比較してAl添加量を低減することが
できる。本発明では、Al脱酸することでTiの酸化を
抑制して有効Ti量を確保するとともに、表面欠陥の発
生を抑制するため、sol.Al含有量を0.01〜
0.06%とする。
Sol. Al: 0.01 to 0.06% sol. Although Al fixes N as AlN, in the present invention, Ti is added to fix N as TiN, so that the amount of Al added can be reduced as compared with a normal case. In the present invention, in order to suppress the oxidation of Ti by deoxidizing Al to secure an effective Ti amount and to suppress the occurrence of surface defects, sol. Al content of 0.01 to
0.06%.

【0019】N:0.0020%以下 Nは、Cと同様に低歪み域(1〜10%)のn値に影響
をおよぼす元素であり、固溶状態では転位と相互作用を
およぼしn値を低下させ、TiNの状態では極めて微細
な場合にn値を低下させる。このようなn値の低下は
0.0020%を超えると生じるため、n値を向上させ
る観点からN含有量を0.0020%以下とする。
N: 0.0020% or less N is an element that affects the n value in the low strain region (1 to 10%), like C, and in a solid solution state, it interacts with dislocations to reduce the n value. In the case of TiN, the n value is reduced in the case of extremely fine particles. Since such a decrease in the n value occurs when it exceeds 0.0020%, the N content is set to 0.0020% or less from the viewpoint of improving the n value.

【0020】Nb:0.010〜0.040% Nbは、固溶Cを固定し、n値、r値を向上させるた
め、重要な元素である。しかし、Nb含有量が0.01
0%未満では、十分にCを固定することができず、優れ
た複合成形性の鋼板が得られない。一方、0.040%
を超えると固溶Nbが増大し、n値が低下する。このた
め、Nb含有量を0.010〜0.040%とする。
Nb: 0.010-0.040% Nb is an important element for fixing solid solution C and improving the n value and the r value. However, when the Nb content is 0.01
If it is less than 0%, C cannot be fixed sufficiently, and a steel sheet having excellent composite formability cannot be obtained. On the other hand, 0.040%
When n exceeds n, the solid solution Nb increases and the n value decreases. Therefore, the Nb content is set to 0.010 to 0.040%.

【0021】Ti:0.003〜0.035% Tiは、固溶Nを固定し、n値、r値を向上させるた
め、重要な元素である。しかし、Ti含有量が0.00
3%未満では十分にNを固定することができず、優れた
複合成形性の鋼板が得られない。一方、0.035%を
超えるとTiCの析出が顕著となり、NbCの形成が抑
制されるため、粗大TiCと微細NbCが析出して析出
物サイズが不均一となり、高いn値が安定して得られな
い。このため、Ti含有量は0.003〜0.035%
とする。
Ti: 0.003 to 0.035% Ti is an important element for fixing solid solution N and improving the n value and the r value. However, when the Ti content is 0.00
If it is less than 3%, N cannot be fixed sufficiently, and a steel sheet having excellent composite formability cannot be obtained. On the other hand, if it exceeds 0.035%, the precipitation of TiC becomes remarkable and the formation of NbC is suppressed, so that coarse TiC and fine NbC are precipitated, the precipitate size becomes uneven, and a high n value is stably obtained. I can't. Therefore, the Ti content is 0.003 to 0.035%.
And

【0022】(12Nb)/(93C)+(12T
)/(48C):1.3〜5.2 Tiは、Ti=Ti−(48/14)N−(48/
32)S(ただし、Ti≦0の場合にはTi=0と
し、Nb、Ti、Ti、C、N、Sは重量%である)
で表される値であり、(12Nb)/(93C)+(1
2Ti)/(48C)は、n値を向上させるために重
要な成分バランスである。上記の通り、NbはCを固定
し、TiはCおよびNを固定する元素であるが、鋼中の
Cに対して十分な量のNbおよびTiを添加することに
よって、炭・窒化物を粗大化し、n値を安定して向上す
ることができる。図1は、Nb:0.005〜0.05
%、Ti:〜0.04%を含有する鋼について、上記
(12Nb)/(93C)+(12Ti)/(48
C)の値が低歪み域(1〜10%)におけるn値におよ
ぼす影響を調べた結果である。図1より、(12Nb)
/(93C)+(12Ti)/(48C)の値を1.
3以上とすれば0.24以上の高いn値が得られ、特に
2.2〜4.5の範囲とすれば0.26以上の極めて高
いn値が得られていることが分かる。一方、5.2を超
えると固溶Nbの影響が顕著となり、n値が著しく低下
する。このため、(12Nb)/(93C)+(12T
)/(48C)の値は1.3〜5.2の範囲とし、
より好ましい値を2.2〜4.5とする。
(12Nb) / (93C) + (12T
i * ) / (48C): 1.3 to 5.2 Ti * is Ti * = Ti− (48/14) N− (48 /
32) S (However, when Ti * ≦ 0, Ti * = 0, and Nb, Ti * , Ti, C, N, and S are% by weight)
Where (12Nb) / (93C) + (1
2Ti * ) / (48C) is an important component balance for improving the n value. As described above, Nb fixes C and Ti is an element fixing C and N. However, by adding a sufficient amount of Nb and Ti to C in steel, the carbon / nitride is coarsened. And n value can be stably improved. FIG. 1 shows Nb: 0.005 to 0.05.
%, About the steel containing Ti: 0.04%, (12Nb) / (93C) + (12Ti * ) / (48
It is a result of examining the effect of the value of C) on the n value in a low distortion region (1 to 10%). From FIG. 1, (12Nb)
/ (93C) + (12Ti * ) / (48C)
It can be seen that a high n value of 0.24 or more is obtained when the value is 3 or more, and an extremely high n value of 0.26 or more is obtained particularly when the value is in the range of 2.2 to 4.5. On the other hand, if it exceeds 5.2, the effect of solid-solution Nb becomes remarkable, and the n value is significantly reduced. Therefore, (12Nb) / (93C) + (12T
i * ) / (48C) is in the range of 1.3 to 5.2,
More preferred values are 2.2 to 4.5.

【0023】C+N:0.0030%以下 C、Nは、固溶状態において転位と相互作用を及ぼしn
値を低下させるため、本発明においてはNb、Tiによ
り析出物として固定するが、この析出物の量もn値に影
響を及ぼす。図2は、C:0.0030%以下、N:
0.0030%以下を含有し、(12Nb)/(93
C)+(12Ti)/(48C)が2.2〜4.5の
範囲にある鋼について、C+Nが低歪み域(1〜10
%)におけるn値に及ぼす影響を調査した結果である。
図2より、C+Nが0.0040%以下の領域ではn値
が高くなっており、特にC+Nが0.0030%以下の
領域において最も高いn値が得られていることが分か
る。したがって、(12Nb)/(93C)+(12T
)/(48C)が2.2〜4.5の場合に、C+N
が0.0030%であることが好ましい。
C + N: 0.0030% or less C and N interact with dislocations in a solid solution state, and n
In order to decrease the value, in the present invention, it is fixed as a precipitate by Nb and Ti, but the amount of the precipitate also affects the n value. FIG. 2 shows C: 0.0030% or less, N:
0.0012% or less, (12Nb) / (93%
C) + (12Ti * ) / (48C) is in a range of 2.2 to 4.5, and C + N is in a low strain range (1 to 10).
%) Is the result of investigating the effect on the n value in (%).
FIG. 2 shows that the n value is high in the region where C + N is 0.0040% or less, and that the highest n value is obtained particularly in the region where C + N is 0.0030% or less. Therefore, (12Nb) / (93C) + (12T
When i * ) / (48C) is 2.2 to 4.5, C + N
Is preferably 0.0030%.

【0024】なお、本発明においては、上記以外の成分
元素として、Cを固定するためにV,Zrを0.04%
以下、Nを固定するためにBを0.0008%以下の範
囲で、1種または2種以上を添加してもよい。
In the present invention, as a component element other than the above, V and Zr are set to 0.04% in order to fix C.
Hereinafter, in order to fix N, one or more of B may be added in a range of 0.0008% or less.

【0025】2.引張特性 本発明の鋼板は、下記(1)式、(2)式を満足する引
張特性を有している。 13.9≦r+50.0(n) ……(1) 2.6≦r+2.0(n) ……(2) ただし、r:面内平均r値、n:1〜10%の引張り歪
み域での平均加工硬化指数n値である。
2. Tensile properties The steel sheet of the present invention has tensile properties satisfying the following equations (1) and (2). 13.9 ≦ r + 50.0 (n) (1) 2.6 ≦ r + 2.0 (n) (2) where r: average in-plane r value, n: tensile strain range of 10% to 10% Is the average work hardening index n value.

【0026】ここで、面内平均r値は、以下のようにし
て算出される。 [面内平均r値]=([r0]+2[r45]+[r9
0])/4 ただし、[r0]:鋼板圧延方向でのr値、[r4
5]:鋼板圧延方向に対し45°方向でのr値、[r9
0]:鋼板圧延方向に対し90°方向でのr値である。
Here, the in-plane average r value is calculated as follows. [In-plane average r value] = ([r0] +2 [r45] + [r9
0]) / 4 where [r0]: r value in the steel sheet rolling direction, [r4]
5]: r value in the direction of 45 ° with respect to the rolling direction of the steel sheet, [r9
0]: r value in the direction of 90 ° with respect to the rolling direction of the steel sheet.

【0027】また、平均加工硬化指数n値は、以下のよ
うにして算出される。 [平均加工硬化指数n値]=([n0]+2[n45]
+[n90])/4 ただし、[n0]:鋼板圧延方向でのn値、[n4
5]:鋼板圧延方向に対し45°方向でのn値、[n9
0]:鋼板圧延方向に対し90°方向でのn値である。
The average work hardening index n is calculated as follows. [Average work hardening index n value] = ([n0] +2 [n45]
+ [N90]) / 4 where [n0]: n value in the steel sheet rolling direction, [n4
5]: n value in the direction of 45 ° with respect to the rolling direction of the steel sheet, [n9
0]: n value in the direction of 90 ° with respect to the rolling direction of the steel sheet.

【0028】なお、上記(1)式は絞り性、(2)式は
張出し性に関するを評価するもので、これらの式のr
値、n値は、JIS5号引張試験で得られる値である。
このときのr値、n値は、表面処理鋼板の場合はめっき
剥離後の母材の特性値である。
The above equation (1) evaluates the drawability and the equation (2) evaluates the overhang property.
The value and the n value are values obtained by a JIS No. 5 tensile test.
At this time, the r value and the n value are characteristic values of the base material after the plating is stripped in the case of the surface-treated steel sheet.

【0029】また、n値の歪み範囲は、従来の高歪み域
(10〜20%)ではなく、1〜10%の低歪み域であ
る。これは、フロントフェンダやサイドパネル等の実部
品の実態を詳細に調査した結果から知見したものであ
る。図3は、図4に示す実部品スケールのフロントフェ
ンダモデル成形品の破断危険部位近傍の相当歪み分布の
一例を示す。図3に示すように破断危険部位は側壁部と
なっているが、パンチ底接触部に発生する歪みは0.1
0以下となっている。
The distortion range of the n value is not a conventional high distortion region (10 to 20%) but a low distortion region of 1 to 10%. This is based on the results of a detailed survey of actual components such as front fenders and side panels. FIG. 3 shows an example of an equivalent strain distribution in the vicinity of a danger of fracture of the front part fender model molded product of the actual part scale shown in FIG. As shown in FIG. 3, the fracture danger site is the side wall portion, but the distortion generated at the punch bottom contact portion is 0.1%.
0 or less.

【0030】図5は横軸にn値をとり、縦軸にr値をと
って、絞り性および張出し性に与えるこれらの影響を示
すものである。図5より、上記(1)式を満足する引張
特性の場合、JSC270Fよりも優れた絞り成形性
(LDR)が得られ、上記(2)式を満足する引張特性
の場合、パンチ側壁部に相当する平面歪み領域において
JSC270Fよりも高いハット成形高さが得られるこ
とがわかる。本発明鋼は、上記(1)式と上記(2)式
を満足する引張特性を有しており、絞り成形性と張り出
し成形性に優れているので、絞り成形や張出し成形等の
複合成形によってフロントフェンダやサイドパネル等を
一体成形しても、プレスワレが生じることはない。
FIG. 5 shows the influence of the n value on the horizontal axis and the r value on the vertical axis for the drawability and the overhanging property. From FIG. 5, it can be seen that in the case of the tensile properties satisfying the above equation (1), draw formability (LDR) superior to JSC270F is obtained, and in the case of the tensile properties satisfying the above equation (2), it corresponds to the punch side wall portion. It can be seen that a hat forming height higher than that of JSC270F can be obtained in the plane strain region. The steel of the present invention has tensile properties satisfying the above-mentioned formulas (1) and (2), and is excellent in draw formability and stretch formability. Even if the front fender, the side panel, and the like are integrally formed, press cracking does not occur.

【0031】なお、絞り成形性については50mm径の円
筒成形時の限界絞り値(LDR)で評価し、張出し成形
性については、実パネル成形をシミュレートして、図6
に示すハット型成形試験により評価した。
Note that the draw formability was evaluated by the limit draw value (LDR) when forming a cylinder having a diameter of 50 mm, and the stretch formability was obtained by simulating actual panel forming.
Was evaluated by a hat-shaped molding test shown in FIG.

【0032】3.製造条件 本発明においては、上記鋼板を製造するにあたり、上記
組成の鋼スラブに熱間圧延を施した後、ランナウトテー
ブル冷却により720℃以下の中間温度まで冷却してか
ら、560〜660℃で巻き取り、その後、圧延率70
〜85%で冷間圧延を行い、780〜880℃の焼鈍温
度で連続焼鈍する。
3. Production Conditions In the present invention, in producing the steel sheet, after subjecting the steel slab having the above composition to hot rolling, the steel slab is cooled to an intermediate temperature of 720 ° C. or less by runout table cooling, and then wound at 560 to 660 ° C. And then rolled to 70
Cold rolling is performed at 8585% and continuous annealing is performed at an annealing temperature of 780 to 880 ° C.

【0033】中間温度:720℃以下 中間温度は、r値、n値に影響を及ぼす重要な条件であ
る。高いr値を得るには熱延板フェライト粒の微細化と
炭・窒化物(析出物)の粗大化が有効であり、高いn値
を得るには析出物を均一に粗大化することが重要であ
る。フェライト粒の微細化には仕上圧延後の急冷が必要
であり、NbとTiの複合添加においては、中間温度が
720℃以下となるように冷却することで、高いr値を
得ることができる。一方、析出物の粗大化には(12N
b)/(93C)+(12Ti)/(48C)を高め
ることが大きく寄与するが、仕上熱延後の巻取りまでの
冷却段階でのNbCの析出において、適切に析出を制御
しない場合、析出物のサイズ分布が不均一となり、高い
n値を安定して得ることができない。すなわち、巻取り
までの冷却段階での析出を抑制し、巻取り後に均一に析
出および粗大化させる。図7は、(12Nb)/(93
C)+(12Ti)/(48C)=3.0の鋼につい
て、中間温度が低歪み域(1〜10%)のn値におよぼ
す影響を調査した結果である。図7より、中間温度が7
20℃以下で安定して高いn値が得られることが確認さ
れる。
Intermediate temperature: 720 ° C. or less The intermediate temperature is an important condition that affects the r value and the n value. In order to obtain a high r-value, it is effective to refine the ferrite grains in the hot-rolled sheet and coarsen the carbon / nitride (precipitate), and to obtain a high n-value, it is important to uniformly coarsen the precipitate. It is. Rapid cooling after finish rolling is necessary for refining ferrite grains, and in the case of adding Nb and Ti in combination, a high r value can be obtained by cooling so that the intermediate temperature is 720 ° C. or lower. On the other hand, (12N
Although b) / (93C) + (12Ti * ) / (48C) greatly contributes, when precipitation is not appropriately controlled in precipitation of NbC in a cooling stage until winding after finishing hot rolling, The size distribution of the precipitate becomes uneven, and a high n value cannot be obtained stably. That is, precipitation in the cooling stage before winding is suppressed, and uniform precipitation and coarsening are performed after winding. FIG. 7 shows (12Nb) / (93
C) + (12Ti * ) / (48C) = 3.0 It is the result of investigating the influence of the intermediate temperature on the n value in the low strain region (1 to 10%) for the steel of 3.0. According to FIG. 7, the intermediate temperature is 7
It is confirmed that a high n value is stably obtained at 20 ° C. or lower.

【0034】巻取温度:560〜660℃ 熱延の際の巻取り工程においては、析出物が粗大化さ
れ、鋼板のr値およびn値が向上する。しかし、巻取温
度が560℃未満では析出物が十分に粗大化しないた
め、r値およびn値の向上効果が得られない。一方、6
60℃を超える場合、結晶粒が粗大となり優れたr値が
得られない。このため、巻取温度は560〜660℃と
する。
Winding temperature: 560 to 660 ° C. In the winding step at the time of hot rolling, precipitates are coarsened and the r value and the n value of the steel sheet are improved. However, if the winding temperature is lower than 560 ° C., the precipitates are not sufficiently coarsened, so that the effect of improving the r value and the n value cannot be obtained. On the other hand, 6
If the temperature exceeds 60 ° C., the crystal grains become coarse, and an excellent r value cannot be obtained. For this reason, the winding temperature is set to 560 to 660 ° C.

【0035】冷間圧延時の圧延率:70〜85% 冷間圧延時の圧延率(冷圧率)はr値とn値に影響をお
よぼし、冷圧率が70%未満の場合、優れたr値が得ら
れず、一方、85%を超えるような高い冷圧率の場合、
結晶粒が微細となり優れたn値が得られない。このた
め、冷圧率は70〜85%とする。
Rolling ratio during cold rolling: 70-85% The rolling ratio (cold rolling ratio) during cold rolling affects the r value and the n value, and is excellent when the cold rolling ratio is less than 70%. In the case where the r value is not obtained, while the high cooling pressure ratio exceeds 85%,
The crystal grains become fine and an excellent n value cannot be obtained. For this reason, the cold pressure ratio is set to 70 to 85%.

【0036】焼鈍温度:780〜880℃ 連続焼鈍における焼鈍温度はr値とn値に影響をおよぼ
し、焼鈍温度が780℃未満の場合、r値、n値ともに
十分な値が得られない。一方、880℃を超えるような
場合、異常粒成長を生じて材質劣化を招くおそれがあ
る。このため、焼鈍温度は780〜880℃の範囲とす
る。
Annealing temperature: 780-880 ° C. The annealing temperature in continuous annealing affects the r value and the n value. When the annealing temperature is lower than 780 ° C., both r value and n value cannot be obtained sufficiently. On the other hand, when the temperature exceeds 880 ° C., abnormal grain growth may occur to cause deterioration of the material. For this reason, the annealing temperature is in the range of 780 to 880 ° C.

【0037】本発明鋼板は、スラブの熱間圧延、酸洗、
冷間圧延、焼鈍などの一連の工程を経て製造され、必要
に応じてめっき処理がなされる。熱延プロセスは、スラ
ブ加熱後に圧延する方法、連続鋳造後に短時間の加熱を
施してから圧延する方法、あるいは連続鋳造後に加熱工
程を省略して直ちに圧延する方法のいずれでもよい。こ
れらいずれの場合でも、優れた表面性状を付与するため
には一次スケールのみならず熱間圧延時に生成する二次
スケールについても十分に除去することが好ましい。な
お、熱間圧延中においては、バーヒータにより加熱を行
ってもよい。また、熱延仕上温度は材質確保のためAr
点以上とする。
The steel sheet of the present invention is obtained by hot rolling a slab, pickling,
It is manufactured through a series of steps such as cold rolling and annealing, and is subjected to plating if necessary. The hot rolling process may be any of a method of rolling after heating the slab, a method of performing rolling for a short time after continuous casting, and a method of immediately rolling without the heating step after continuous casting. In any of these cases, in order to impart excellent surface properties, it is preferable to sufficiently remove not only the primary scale but also the secondary scale generated during hot rolling. During the hot rolling, heating may be performed by a bar heater. The hot rolling finish temperature is set to Ar
3 points or more.

【0038】本発明の冷延鋼板は、焼鈍後、その表面に
電気めっきまたは亜鉛系めっきを施して亜鉛系めっき鋼
板として使用することもでき、この場合にもパネル加工
後に所望の表面品質と成形性を得ることができる。亜鉛
系めっきとしては、純亜鉛めっき、合金化めっき(亜鉛
めっき後に合金加熱処理して得られた亜鉛めっき)、亜
鉛−Ni合金めっき等があげられる。また、めっき後に
有機皮膜処理を施した鋼板においても同様の性能を付与
することができる。
The cold-rolled steel sheet of the present invention may be subjected to electroplating or zinc-based plating after annealing to be used as a zinc-based plated steel sheet. Sex can be obtained. Examples of the zinc-based plating include pure zinc plating, alloy plating (zinc plating obtained by subjecting an alloy to heat treatment after zinc plating), and zinc-Ni alloy plating. The same performance can be imparted to a steel sheet subjected to an organic film treatment after plating.

【0039】[0039]

【実施例】[実施例1]表1に示す鋼板No.1〜8の
鋼を溶製後、連続鋳造によりスラブとし、1250℃に
加熱後、仕上温度880〜910℃、中間温度680
℃、巻取温度640℃で板厚3.2mmの熱延板とした
後、板厚0.80mmまで冷間圧延し、その後連続焼鈍
(焼鈍温度:850℃)・溶融亜鉛めっきを実施した。
連続焼鈍・溶融亜鉛めっきでは、焼鈍後460℃で溶融
亜鉛めっき処理を行い、直ちにインライン合金化処理炉
で500℃でめっき層の合金化処理を行なった。連続焼
鈍・溶融亜鉛めっき後、圧下率0.7%の調質圧延を行
なった。表2に、これらの鋼板のめっき剥離後の機械的
特性、複合成形性の評価結果を示す。また、表2にr+
2.0(n)およびr+50.0(n)の値も併せて示
す。複合成形性の評価は、限界絞り比(LDR)とハッ
ト成形高さ(H)を求めて行なった。なお、表1中R
は、(12Nb)/(93C)+(12Ti)/(4
8C)を示す。
[Example 1] The steel sheet No. shown in Table 1 was used. After smelting steel Nos. 1 to 8, it was made into a slab by continuous casting, heated to 1250 ° C, and finished at a temperature of 880 to 910 ° C and an intermediate temperature of 680.
After forming a hot-rolled sheet having a thickness of 3.2 mm at a temperature of 640 ° C. and a winding temperature of 640 ° C., the sheet was cold-rolled to a thickness of 0.80 mm, and then subjected to continuous annealing (annealing temperature: 850 ° C.) and hot-dip galvanizing.
In the continuous annealing / hot-dip galvanizing, hot-dip galvanizing was performed at 460 ° C. after annealing, and immediately, alloying of the plated layer was performed at 500 ° C. in an in-line alloying furnace. After continuous annealing and hot-dip galvanizing, temper rolling at a reduction of 0.7% was performed. Table 2 shows the evaluation results of the mechanical properties and the composite formability of these steel sheets after plating peeling. Table 2 shows that r +
The values of 2.0 (n) and r + 50.0 (n) are also shown. The evaluation of the composite formability was performed by obtaining a limit drawing ratio (LDR) and a hat forming height (H). In Table 1, R
Is (12Nb) / (93C) + (12Ti * ) / (4
8C).

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】これらの表に示すように、本発明の成分組
成を有し、かつ、(12Nb)/(93C)+(12T
)/(48C)、r+50.0(n)およびr+
2.0(n)の値を本発明の範囲とすることによって、
複合成形性の優れた冷延鋼板を得ることができることが
確認された。また、C+Nが0.0030%以下の場合
(鋼番4)の場合に、特に複合成形性に優れていること
が確認された。
As shown in these tables, it has the component composition of the present invention and (12Nb) / (93C) + (12T
i * ) / (48C), r + 50.0 (n) and r +
By setting the value of 2.0 (n) within the scope of the present invention,
It was confirmed that a cold-rolled steel sheet having excellent composite formability could be obtained. It was also confirmed that when C + N was 0.0030% or less (Steel No. 4), the composite moldability was particularly excellent.

【0043】一方、比較鋼は、複合成形性が従来材レベ
ルであるか、あるいはそれよりも劣っており、特に、
(12Nb)/(93C)+(12Ti)/(48
C)の値(R値)が本発明範囲外となった場合にはn値
が低くなり、優れたハット成形高さ(H)が得られな
い。また、r+50.0(n)やr+2.0(n)の値
が本発明範囲外となった場合には、それぞれハット成形
高さ(H)や限界絞り比(LDR)が低くなり、優れた
複合成形性が得られない。
On the other hand, the comparative steel has a composite formability that is equal to or lower than that of the conventional material.
(12Nb) / (93C) + (12Ti * ) / (48
When the value (R value) of C) is out of the range of the present invention, the n value becomes low and an excellent hat forming height (H) cannot be obtained. Further, when the values of r + 50.0 (n) and r + 2.0 (n) are out of the range of the present invention, the hat forming height (H) and the limit drawing ratio (LDR) are lowered, respectively. Composite moldability cannot be obtained.

【0044】[実施例2]表1に示す鋼番1,4の鋼を
溶製後、連続鋳造によりスラブとし、1250℃に加熱
後、仕上温度880〜910℃、中間温度660〜76
0℃、巻取温度500〜700℃で板厚2.4〜6.0
mmの熱延板とした後、圧延率67〜87%で冷間圧延
し、板厚0.80mmとした。その後、焼鈍温度750〜
900℃において連続焼鈍あるいは連続焼鈍・溶融亜鉛
めっきを実施した。連続焼鈍・溶融亜鉛めっきでは、焼
鈍後460℃で溶融亜鉛めっき処理を行い、直ちにイン
ライン合金化処理炉で500℃でめっき層の合金化処理
を行なった。連続焼鈍・溶融亜鉛めっき後、圧下率0.
7%の調質圧延を行なった。表3にこれらの鋼板のめっ
き剥離後の機械的特性、複合成形性の評価結果を示す。
複合成形性の評価は、限界絞り比(LDR)とハット成
形高さ(H)を求めて行なった。
Example 2 After smelting steels Nos. 1 and 4 shown in Table 1, forming a slab by continuous casting, heating to 1250 ° C., finishing temperature 880-910 ° C., intermediate temperature 660-76.
0 ° C, coiling temperature 500-700 ° C, thickness 2.4-6.0
After a hot-rolled sheet having a thickness of 0.8 mm, the sheet was cold-rolled at a rolling reduction of 67 to 87% to a sheet thickness of 0.80 mm. Then, annealing temperature 750-
Continuous annealing or continuous annealing / galvanizing was performed at 900 ° C. In the continuous annealing / hot-dip galvanizing, hot-dip galvanizing was performed at 460 ° C. after annealing, and immediately, alloying of the plated layer was performed at 500 ° C. in an in-line alloying furnace. After continuous annealing and hot-dip galvanizing, the rolling reduction is 0.
A temper rolling of 7% was performed. Table 3 shows the evaluation results of the mechanical properties and the composite formability of these steel sheets after plating peeling.
The evaluation of the composite formability was performed by obtaining a limit drawing ratio (LDR) and a hat forming height (H).

【0045】[0045]

【表3】 [Table 3]

【0046】表3に示すように、本発明の製造条件を満
足し、かつ、(12Nb)/(93C)+(12T
)/(48C)、r+50.0(n)およびr+
2.0(n)の値を本発明の範囲とすることによって、
複合成形性の優れた冷延鋼板を得ることができることが
確認された。また、C+Nが0.0030%以下の鋼番
4においては、特に複合成形性に優れていることが確認
された。
As shown in Table 3, the production conditions of the present invention are satisfied and (12Nb) / (93C) + (12T
i * ) / (48C), r + 50.0 (n) and r +
By setting the value of 2.0 (n) within the scope of the present invention,
It was confirmed that a cold-rolled steel sheet having excellent composite formability could be obtained. In addition, it was confirmed that Steel No. 4 having C + N of 0.0030% or less was particularly excellent in composite moldability.

【0047】一方、本発明の製造条件を満足しない比較
鋼は、複合成形性が従来材レベルあるいはそれよりも劣
っており、特に、中間温度が高い、あるいは巻取温度が
低い、冷延率が高い、焼鈍温度が低い場合には、n値が
低くなり、優れたハット成形高さの鋼板を得ることがで
きない。また、r+50.0(n)やr+2.0(n)
の値が本発明範囲外となった場合には、それぞれハット
成形高さ(H)や限界絞り比(LDR)が低くなり、優
れた複合成形性が得られない。
On the other hand, the comparative steel which does not satisfy the production conditions of the present invention has a composite formability that is equal to or lower than that of the conventional material, and particularly has a high intermediate temperature, a low winding temperature, and a low cold rolling ratio. If the annealing temperature is high and the annealing temperature is low, the n value becomes low, and a steel sheet having an excellent hat forming height cannot be obtained. Also, r + 50.0 (n) and r + 2.0 (n)
Is out of the range of the present invention, the hat forming height (H) and the limit drawing ratio (LDR) become low, and excellent composite moldability cannot be obtained.

【0048】[0048]

【発明の効果】以上説明したように、本発明によれば、
低歪み域での歪み伝播に影響をおよぼすC,N,Nb,
Tiおよびr値、n値、熱延条件、冷延率、焼鈍条件を
適切に制御することにより、絞り成形性と張出し成形性
からなる複合成形性に優れ、プレスワレを生じることな
くフロントフェンダやサイドパネル等の複雑な形状に複
合成形することが可能な冷延鋼板を得ることができ、産
業上極めて有意義である。
As described above, according to the present invention,
C, N, Nb, which affect the propagation of strain in the low strain region
By appropriately controlling Ti and r values, n values, hot rolling conditions, cold rolling rates, and annealing conditions, the composite formability consisting of draw formability and stretch formability is excellent, and front fenders and sides can be formed without causing press cracking. It is possible to obtain a cold-rolled steel sheet that can be composite-formed into a complicated shape such as a panel, which is industrially extremely significant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(12Nb)/(93C)+(12Ti)/
(48C)とn値との関係を示すグラフ。
FIG. 1: (12Nb) / (93C) + (12Ti * ) /
The graph which shows the relationship between (48C) and n value.

【図2】C:0.0030%以下、N:0.0030%
以下を含有し、(12Nb)/(93C)+(12Ti
)/(48C)が2.2〜4.5の範囲にある鋼につ
いて、C+Nが低歪み域(1〜10%)におけるn値に
及ぼす影響を調査した結果を示すグラフ。
FIG. 2 C: 0.0030% or less, N: 0.0030%
Containing the following, (12Nb) / (93C) + (12Ti
The graph which shows the result which investigated the influence which C + N gives to n value in a low distortion area | region (1-10%) about the steel which * ) / (48C) was in the range of 2.2-4.5.

【図3】図4に示した実部品スケールのフロントフェン
ダモデル成形品の破断危険部位近傍の相当歪み分布の一
例を示すグラフ。
FIG. 3 is a graph showing an example of an equivalent strain distribution in the vicinity of a fracture danger site of the front fender model molded product of the actual part scale shown in FIG. 4;

【図4】フロントフェンダモデル成形品と、その破断危
険部位を示す概略図。
FIG. 4 is a schematic diagram showing a front fender model molded product and its fracture danger site.

【図5】n値およびr値と、絞り成形性および張出し成
形性との関係を示すグラフ。
FIG. 5 is a graph showing a relationship between an n value and an r value, draw formability and stretch formability.

【図6】ハット型成形試験の概略図。FIG. 6 is a schematic diagram of a hat molding test.

【図7】(12Nb)/(93C)+(12Ti)/
(48C)=3.0の鋼について、中間温度が低歪み域
(1〜10%)のn値におよぼす影響を調査した結果を
示すグラフ。
FIG. 7: (12Nb) / (93C) + (12Ti * ) /
The graph which shows the result of having investigated the influence which the intermediate temperature gives to the n value of a low distortion area | region (1-10%) about the steel of (48C) = 3.0.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田野 学 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 松林 弘二 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 三塚 賢一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 中島 勝己 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 長谷川 浩平 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K037 EA01 EA04 EA15 EA18 EA19 EA23 EA25 EA27 EA31 EB01 FE02 FE03 FG03 FH01 FJ05 FJ06  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Manabu Tano 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Koji Matsubayashi 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Sun (72) Inventor Kenichi Mitsuka 1-1-2 Marunouchi, Chiyoda-ku, Tokyo, Japan In-house Steel Pipe Co., Ltd. (72) Katsumi Nakajima 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Co., Ltd. (72) Inventor Kohei Hasegawa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. F-term (reference) 4K037 EA01 EA04 EA15 EA18 EA19 EA23 EA25 EA27 EA31 EB01 FE02 FE03 FG03 FH01 FJ05 FJ06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.0020%以下、S
i:0.05%以下、Mn:0.05〜0.35%、
P:0.025%以下、S:0.015%以下、so
l.Al:0.01〜0.06%、N:0.0020%
以下、Nb:0.010〜0.040%、Ti:0.0
03〜0.035%を含有し、かつ、(12Nb)/
(93C)+(12Ti)/(48C):1.3〜
5.2(ただし、Ti=Ti−(48/14)N−
(48/32)Sであり、Ti≦0の場合にはTi
=0とし、Nb、Ti、Ti、C、N、Sは重量%)
であり、さらに、下記(1)式、(2)式を満足するこ
とを特徴とする複合成形性に優れた冷延鋼板。 13.9≦r+50.0(n) ……(1) 2.6≦r+2.0(n) ……(2) ただし、r:面内平均r値、 n:1〜10%の引張り歪み域での平均加工硬化指数n
C .: 0.0020% or less by weight, C:
i: 0.05% or less, Mn: 0.05 to 0.35%,
P: 0.025% or less, S: 0.015% or less, so
l. Al: 0.01 to 0.06%, N: 0.0020%
Hereinafter, Nb: 0.010 to 0.040%, Ti: 0.0
03-0.035%, and (12Nb) /
(93C) + (12Ti * ) / (48C): 1.3 to
5.2 (However, Ti * = Ti- (48/14) N-
(48/32) S, and when Ti * ≦ 0, Ti *
= 0, Nb, Ti * , Ti, C, N, and S are% by weight.)
And a cold-rolled steel sheet excellent in composite formability, characterized by satisfying the following expressions (1) and (2). 13.9 ≦ r + 50.0 (n) (1) 2.6 ≦ r + 2.0 (n) (2) where r: average in-plane r value, n: tensile strain range of 10% to 10% Work hardening index n
value
【請求項2】 重量%で、C:0.0020%以下、S
i:0.05%以下、Mn:0.05〜0.35%、
P:0.025%以下、S:0.015%以下、so
l.Al:0.01〜0.06%、N:0.0020%
以下、Nb:0.010〜0.040%、Ti:0.0
03〜0.035%を含有し、かつ、C+N:0.00
30%以下、(12Nb)/(93C)+(12T
)/(48C):2.2〜4.5(ただし、Ti
=Ti−(48/14)N−(48/32)Sであり、
Ti≦0の場合にはTi=0とし、Nb、Ti
Ti、C、N、Sは重量%)であり、さらに、下記
(1)式、(2)式を満足することを特徴とする複合成
形性に優れた冷延鋼板。 13.9≦r+50.0(n) ……(1) 2.6≦r+2.0(n) ……(2) ただし、r:面内平均r値、 n:1〜10%の引張り歪み域での平均加工硬化指数n
2. In% by weight, C: 0.0020% or less, S
i: 0.05% or less, Mn: 0.05 to 0.35%,
P: 0.025% or less, S: 0.015% or less, so
l. Al: 0.01 to 0.06%, N: 0.0020%
Hereinafter, Nb: 0.010 to 0.040%, Ti: 0.0
03-0.035%, and C + N: 0.00
30% or less, (12Nb) / (93C) + (12T
i * ) / (48C): 2.2 to 4.5 (however, Ti *
= Ti- (48/14) N- (48/32) S,
When Ti * ≦ 0, it is assumed that Ti * = 0, and Nb, Ti * ,
A cold-rolled steel sheet having excellent composite formability, characterized by satisfying the following formulas (1) and (2). 13.9 ≦ r + 50.0 (n) (1) 2.6 ≦ r + 2.0 (n) (2) where r: average in-plane r value, n: tensile strain range of 10% to 10% Work hardening index n
value
【請求項3】 請求項1または請求項2の冷延鋼板を製
造するにあたり、鋼スラブに熱間圧延を施した後、ラン
ナウトテーブル冷却により720℃以下の温度まで冷却
してから、560〜660℃で巻き取り、その後、圧延
率70〜85%で冷間圧延を行い、780〜880℃の
焼鈍温度で連続焼鈍することを特徴とする複合成形性に
優れた冷延鋼板の製造方法。 【0001】
3. In producing the cold-rolled steel sheet according to claim 1 or 2, after subjecting the steel slab to hot rolling, the steel slab is cooled to a temperature of 720 ° C. or lower by a run-out table cooling, and then 560 to 660. A method for producing a cold-rolled steel sheet excellent in composite formability, comprising: winding at a rolling rate of 70 to 85%, followed by cold rolling at a rolling rate of 70 to 85%, and continuous annealing at an annealing temperature of 780 to 880 ° C. [0001]
JP33501999A 1999-11-25 1999-11-25 Cold-rolled steel sheet excellent in composite formability and manufacturing method thereof Expired - Fee Related JP3724298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33501999A JP3724298B2 (en) 1999-11-25 1999-11-25 Cold-rolled steel sheet excellent in composite formability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33501999A JP3724298B2 (en) 1999-11-25 1999-11-25 Cold-rolled steel sheet excellent in composite formability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001152286A true JP2001152286A (en) 2001-06-05
JP3724298B2 JP3724298B2 (en) 2005-12-07

Family

ID=18283844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33501999A Expired - Fee Related JP3724298B2 (en) 1999-11-25 1999-11-25 Cold-rolled steel sheet excellent in composite formability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3724298B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1510272A1 (en) * 2003-08-29 2005-03-02 JFE Steel Corporation Method for producing ultra low carbon steel slab
JP2008106321A (en) * 2006-10-26 2008-05-08 Sumitomo Metal Ind Ltd Galvannealed steel sheet and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1510272A1 (en) * 2003-08-29 2005-03-02 JFE Steel Corporation Method for producing ultra low carbon steel slab
CN1299855C (en) * 2003-08-29 2007-02-14 杰富意钢铁株式会社 Method for producing ultra low carbon steel slab
JP2008106321A (en) * 2006-10-26 2008-05-08 Sumitomo Metal Ind Ltd Galvannealed steel sheet and its manufacturing method

Also Published As

Publication number Publication date
JP3724298B2 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
JP5290245B2 (en) Composite structure steel plate and method of manufacturing the same
JP4725366B2 (en) Cold-rolled steel sheet, hot-dip galvanized steel sheet, and production method thereof
JPS60174852A (en) Cold rolled steel sheet having composite structure and superior deep drawability
JP2001335890A (en) High tensile steel sheet excellent in bendability, and its production method
EP0064552B1 (en) Thin steel plate for draw working excellent in bake-hardening properties and process for manufacturing same
CN114807737B (en) Hot dip galvanized steel and manufacturing method thereof
JP4687260B2 (en) Manufacturing method of deep drawing high tensile cold-rolled steel sheet with excellent surface properties
JP3528716B2 (en) High-strength cold-rolled steel sheet, high-strength galvanized steel sheet excellent in surface properties and press formability, and manufacturing method thereof
CN112410676B (en) Hot-rolled low-carbon steel and production method thereof
JP2800541B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet for deep drawing
JP3719025B2 (en) Cold-rolled steel sheet for deep drawing with excellent fatigue resistance
JPH06306531A (en) Cold rolled steel sheet for machining excellent in baking hardenability and surface treated steel sheet
JP3812248B2 (en) High-strength cold-rolled steel sheet with excellent surface properties and press formability and method for producing the same
JP2001152286A (en) Cold rolled steel sheet excellent in composite formability and producing method therefor
JPH04272143A (en) Manufacture of cold rolled steel sheet for deep drawing excellent in dent resistance
JP2671726B2 (en) Manufacturing method of cold rolled steel sheet for ultra deep drawing
JP3724297B2 (en) Cold-rolled steel sheet excellent in composite formability and manufacturing method thereof
JP3508654B2 (en) High-strength cold-rolled steel sheet for press forming excellent in material uniformity in coil and method for producing the same
JP3204101B2 (en) Deep drawing steel sheet and method for producing the same
JP3528717B2 (en) High-strength cold-rolled steel sheet excellent in surface distortion resistance and press formability and method for producing the same
EP4249619A1 (en) Plated steel sheet having excellent strength, formability and surface quality, and manufacturing method therefor
JPH05230543A (en) Production of high strength cold rolled steel sheet excellent in baking hardenability and deep drawability
JP2001115213A (en) Producing method of rolled steel sheet for deep drawing having excellent press-formability and little variation of press-formability in coil
JPH0673494A (en) Steel sheet for working excellent in dent resistance and its production
JP3534022B2 (en) High-strength cold-rolled steel sheet, high-strength galvanized steel sheet excellent in surface distortion resistance and press formability, and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

R150 Certificate of patent or registration of utility model

Ref document number: 3724298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees