JP3724298B2 - Cold-rolled steel sheet excellent in composite formability and manufacturing method thereof - Google Patents

Cold-rolled steel sheet excellent in composite formability and manufacturing method thereof Download PDF

Info

Publication number
JP3724298B2
JP3724298B2 JP33501999A JP33501999A JP3724298B2 JP 3724298 B2 JP3724298 B2 JP 3724298B2 JP 33501999 A JP33501999 A JP 33501999A JP 33501999 A JP33501999 A JP 33501999A JP 3724298 B2 JP3724298 B2 JP 3724298B2
Authority
JP
Japan
Prior art keywords
less
value
cold
steel sheet
formability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33501999A
Other languages
Japanese (ja)
Other versions
JP2001152286A (en
Inventor
毅 藤田
俊明 占部
学 田野
弘二 松林
賢一 三塚
勝己 中島
浩平 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP33501999A priority Critical patent/JP3724298B2/en
Publication of JP2001152286A publication Critical patent/JP2001152286A/en
Application granted granted Critical
Publication of JP3724298B2 publication Critical patent/JP3724298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【発明の属する技術分野】
本発明は、フード、ドア、フェンダ、サイドパネル等の自動車パネルに用いられる鋼板に関し、特に、絞り成形や張出し成形等の複合成形において優れた成形性を有する冷延鋼板およびその製造方法に関する。
0002
【従来の技術】
最近、自動車ボディ用鋼板に対しては、部品の一体成形化による部品点数の削減およびプレス工程の省略化の両方を満足させる極めて高いプレス成形性が要求されるようになってきている。特に、フロントフェンダやサイドパネルのように複雑な形状の部品を一体成形する場合には、絞り成形のみならず、絞り成形性と張出し成形性との複合成形性が重要となる。
0003
プレス成形性を向上させるために鋼板のr値や伸びを高める技術は、従来より多数提案されている。例えば、特開平5−279797号公報には、極低炭素鋼板にNb、Tiを添加し、平均r値を2.8以上、10〜20%の加工硬化指数(n値)を0.26以上とすることが提案されている。
0004
また、特公平7−062209号公報には、極低炭素鋼板にNb,Tiを添加し、鋼板の圧延方向と45°方向の引張り強さを28.5〜31.0kgf/mm(279.3〜303.8MPa)とし、圧延方向と45°方向のr値を1.90以上とする技術が提案されている。
0005
【発明が解決しようとする課題】
しかしながら、フロントフェンダやサイドパネルのように複雑な形状を有する複合成形部品では、上記のようなr値や伸びを高める技術が必ずしも効果的でなく、プレスワレが頻発することがある。
0006
例えば、上記特開平5−279797号公報に開示された技術は、深絞り成形および高歪み域(10〜20%)の張出し成形に対しては有効であるが、低歪み域(10%以下)における歪み伝播が十分でない場合には、プレス時のパンチ底近傍での歪み発生量が小さくなるとともに、パンチ側壁部で過大な歪みが発生してワレが生じてしまう。
0007
また、上記特公平7−062209号公報に開示された技術は対象とする部品がホイルハウスインナーであり、このような部品を複合成形する場合に成形性を支配するのは絞りビード部および深い絞り成形部である。そのため、張出し部主体のワレに対しては必ずしも有効ではない。また、このプレス成形性は、ダイス肩R部における鋼板流入量の制御により決まるため、しわ押さえ力の調整が困難となり、成形可能領域が得られない場合がある。なお、このような成形様式では、流入の代わりにひずみ伝播を利用することで成形性を向上するとともに成形条件を緩和することもできるが十分ではない。
0008
本発明は、以上の点に鑑みてなされたものであって、フード、ドア、フェンダ、サイドパネルといった自動車パネル等に要求される絞り、張出し等の複合成形における耐破断性に優れる冷延鋼板およびその製造方法を提供することを目的とする。
0009
【課題を解決するための手段】
本発明者らは、鋼板をフェンダやサイドパネル等に複合成形する際の成形性について詳細に検討を行った結果、絞りや張出し等の複合成形性に対しては、r値を向上させることとともに、特に、プレス成形時における成形体側壁部のパンチやダイ肩近傍といった破断危険部における歪みの集中を回避することが有効であり、そのためには低歪み域でのn値を適正化し、側壁部の平面歪み領域での歪み伝播やパンチ底部における低歪み域での塑性流動(歪み伝播)を促進することが効果的であることを見出した。
【0010】
本発明は、上記の知見に基づいて完成されたものであり、以下の(1)〜(4)を提供する。
(1) 質量%で、C:0.0020%以下、Si:0.05%以下、Mn:0.05〜0.35%、P:0.025%以下、S:0.015%以下、sol.Al:0.01〜0.06%、N:0.0020%以下、Nb:0.010〜0.040%、Ti:0.003〜0.035%を含有し、残部Feおよび不可避不純物からなり、かつ、(12Nb)/(93C)+(12Ti)/(48C):1.3〜5.2(ただし、Ti=Ti−(48/14)N−(48/32)Sであり、Ti≦0の場合にはTi=0とし、Nb、Ti、Ti、C、N、Sは質量%)であり、さらに、下記(1)式、(2)式を満足することを特徴とする複合成形性に優れた冷延鋼板。
13.9≦r+50.0(n) ……(1)
2.6≦r+2.0(n) ……(2)
ただし、r:面内平均r値、
n:1〜10%の引張り歪み域での平均加工硬化指数n値
【0011】
(2) 質量%で、C:0.0020%以下、Si:0.05%以下、Mn:0.05〜0.35%、P:0.025%以下、S:0.015%以下、sol.Al:0.01〜0.06%、N:0.0020%以下、Nb:0.010〜0.040%、Ti:0.003〜0.035%を含有し、残部Feおよび不可避不純物からなり、かつ、C+N:0.0030%以下、(12Nb)/(93C)+(12Ti)/(48C):2.2〜4.5(ただし、Ti=Ti−(48/14)N−(48/32)Sであり、Ti≦0の場合にはTi=0とし、Nb、Ti、Ti、C、N、Sは質量%)であり、さらに、下記(1)式、(2)式を満足することを特徴とする複合成形性に優れた冷延鋼板。
13.9≦r+50.0(n) ……(1)
2.6≦r+2.0(n) ……(2)
ただし、r:面内平均r値、
n:1〜10%の引張り歪み域での平均加工硬化指数n値
【0012】
(3) 上記(1)または(2)において、質量%で、V:0.04%以下、Zr:0.04%以下、B:0.0008%以下の1種または2種以上をさらに含有することを特徴とする複合成形性に優れた冷延鋼板。
【0013】
(4) 上記(1)から(3)のいずれかの冷延鋼板を製造するにあたり、鋼スラブに熱間圧延を施した後、ランナウトテーブルにおいて中間温度が720℃以下になるまで冷却してから、560〜660℃で巻き取り、その後、圧延率70〜85%で冷間圧延を行い、780〜880℃の焼鈍温度で連続焼鈍することを特徴とする複合成形性に優れた冷延鋼板の製造方法。
0014
【発明の実施の形態】
以下、本発明について、成分組成、引張特性、製造条件に分けて具体的に説明する。
1.成分組成
本発明における鋼板は、質量%で、C:0.0020%以下、Si:0.05%以下、Mn:0.05〜0.35%、P:0.025%以下、S:0.015%以下、sol.Al:0.01〜0.06%、N:0.0020%以下、Nb:0.010〜0.040%、Ti:0.003〜0.035%を含有し、残部実質的にFeからなり、かつ、(12Nb)/(93C)+(12Ti)/(48C):1.3〜5.2(ただし、Ti=Ti−(48/14)N−(48/32)Sであり、Ti≦0の場合にはTi=0とし、Nb、Ti、Ti、C、N、Sは質量%)を満足する。また、好ましくは、上記組成を有し、かつ、C+N:0.0030%以下、(12Nb)/(93C)+(12Ti)/(48C):2.2〜4.5を満足する。その限定理由は、以下のとおりである。
0015
C:0.0020%以下
Cは、低歪み域(1〜10%)でのn値に影響をおよぼす元素であり、固溶状態では転位と相互作用をおよぼしn値を低下させ、NbCの状態では極めて微細な場合にn値を低下させる。このようなn値の低下は0.0020%を超えると生じるため、n値を向上させる観点からC含有量を0.0020%以下とする。
0016
Si:0.05%以下
Siは冷延鋼板の場合、0.05%を超えて過剰に添加されると化成処理性が劣化し、溶融亜鉛めっきの場合はめっき密着性が劣化する。また、延性を高く維持するためには0.05%以下とする必要がある。このため、Si含有量を0.05%以下とする。
0017
Mn:0.05〜0.35%
Mnは、鋼中のSをMnSとして析出させ、スラブの熱間割れを防止する元素である。本発明においては、TiによりSを固定しているので、Mn含有量は一般鋼より低くても問題はないが、0.05%未満では溶銑予備処理コストが上昇する。一方、Mn含有量が0.35%を超えると固溶強化により降伏強度が上昇し、n値が低下する。したがって、Mn含有量を0.05〜0.35%とする。
0018
P:0.025%以下
Pは、粒界脆化元素であり、その含有量は低く抑えるべきであるが、P含有量を低減するには脱Pコストがかかる。一方、Pは、Mnと同様に固溶強化元素であり、0.025%を超える添加では降伏強度が上昇するため、n値が低下する。以上の点を考慮して、P含有量を0.025%以下とする。
0019
S:0.015%以下
Sは不可避的不純物として鋼中に存在する。S含有量が増えると延性が劣化するとともに、TiSを形成するため、後述する有効Ti量(Ti)が減少する。そのため、S含有量を0.015%以下とする。
0020
sol.Al:0.01〜0.06%
sol.Alは、NをAlNとして固定するが、本発明においてはTiを添加してNをTiNとして固定するため、通常の場合に比較してAl添加量を低減することができる。本発明では、Al脱酸することでTiの酸化を抑制して有効Ti量を確保するとともに、表面欠陥の発生を抑制するため、sol.Al含有量を0.01〜0.06%とする。
0021
N:0.0020%以下
Nは、Cと同様に低歪み域(1〜10%)のn値に影響をおよぼす元素であり、固溶状態では転位と相互作用をおよぼしn値を低下させ、TiNの状態では極めて微細な場合にn値を低下させる。このようなn値の低下は0.0020%を超えると生じるため、n値を向上させる観点からN含有量を0.0020%以下とする。
0022
Nb:0.010〜0.040%
Nbは、固溶Cを固定し、n値、r値を向上させるため、重要な元素である。しかし、Nb含有量が0.010%未満では、十分にCを固定することができず、優れた複合成形性の鋼板が得られない。一方、0.040%を超えると固溶Nbが増大し、n値が低下する。このため、Nb含有量を0.010〜0.040%とする。
0023
Ti:0.003〜0.035%
Tiは、固溶Nを固定し、n値、r値を向上させるため、重要な元素である。しかし、Ti含有量が0.003%未満では十分にNを固定することができず、優れた複合成形性の鋼板が得られない。一方、0.035%を超えるとTiCの析出が顕著となり、NbCの形成が抑制されるため、粗大TiCと微細NbCが析出して析出物サイズが不均一となり、高いn値が安定して得られない。このため、Ti含有量は0.003〜0.035%とする。
0024
(12Nb)/(93C)+(12Ti)/(48C):1.3〜5.2
Tiは、Ti=Ti−(48/14)N−(48/32)S(ただし、Ti≦0の場合にはTi=0とし、Nb、Ti、Ti、C、N、Sは質量%である)で表される値であり、(12Nb)/(93C)+(12Ti)/(48C)は、n値を向上させるために重要な成分バランスである。上記の通り、NbはCを固定し、TiはCおよびNを固定する元素であるが、鋼中のCに対して十分な量のNbおよびTiを添加することによって、炭・窒化物を粗大化し、n値を安定して向上することができる。図1は、Nb:0.005〜0.05%、Ti:〜0.04%を含有する鋼について、上記(12Nb)/(93C)+(12Ti)/(48C)の値が低歪み域(1〜10%)におけるn値におよぼす影響を調べた結果である。図1より、(12Nb)/(93C)+(12Ti)/(48C)の値を1.3以上とすれば0.24以上の高いn値が得られ、特に2.2〜4.5の範囲とすれば0.26以上の極めて高いn値が得られていることが分かる。一方、5.2を超えると固溶Nbの影響が顕著となり、n値が著しく低下する。このため、(12Nb)/(93C)+(12Ti)/(48C)の値は1.3〜5.2の範囲とし、より好ましい値を2.2〜4.5とする。
0025
C+N:0.0030%以下
C、Nは、固溶状態において転位と相互作用を及ぼしn値を低下させるため、本発明においてはNb、Tiにより析出物として固定するが、この析出物の量もn値に影響を及ぼす。図2は、C:0.0030%以下、N:0.0030%以下を含有し、(12Nb)/(93C)+(12Ti)/(48C)が2.2〜4.5の範囲にある鋼について、C+Nが低歪み域(1〜10%)におけるn値に及ぼす影響を調査した結果である。図2より、C+Nが0.0040%以下の領域ではn値が高くなっており、特にC+Nが0.0030%以下の領域において最も高いn値が得られていることが分かる。したがって、(12Nb)/(93C)+(12Ti)/(48C)が2.2〜4.5の場合に、C+Nが0.0030%であることが好ましい。
0026
なお、本発明においては、上記以外の成分元素として、Cを固定するためにV,Zrを0.04%以下、Nを固定するためにBを0.0008%以下の範囲で、1種または2種以上を添加してもよい。
0027
2.引張特性
本発明の鋼板は、下記(1)式、(2)式を満足する引張特性を有している。
13.9≦r+50.0(n) ……(1)
2.6≦r+2.0(n) ……(2)
ただし、r:面内平均r値、n:1〜10%の引張り歪み域での平均加工硬化指数n値である。
0028
ここで、面内平均r値は、以下のようにして算出される。
[面内平均r値]=([r0]+2[r45]+[r90])/4
ただし、[r0]:鋼板圧延方向でのr値、[r45]:鋼板圧延方向に対し45°方向でのr値、[r90]:鋼板圧延方向に対し90°方向でのr値である。
0029
また、平均加工硬化指数n値は、以下のようにして算出される。
[平均加工硬化指数n値]=([n0]+2[n45]+[n90])/4
ただし、[n0]:鋼板圧延方向でのn値、[n45]:鋼板圧延方向に対し45°方向でのn値、[n90]:鋼板圧延方向に対し90°方向でのn値である。
0030
なお、上記(1)式は絞り性、(2)式は張出し性に関するを評価するもので、これらの式のr値、n値は、JIS5号引張試験で得られる値である。このときのr値、n値は、表面処理鋼板の場合はめっき剥離後の母材の特性値である。
0031
また、n値の歪み範囲は、従来の高歪み域(10〜20%)ではなく、1〜10%の低歪み域である。これは、フロントフェンダやサイドパネル等の実部品の実態を詳細に調査した結果から知見したものである。図3は、図4に示す実部品スケールのフロントフェンダモデル成形品の破断危険部位近傍の相当歪み分布の一例を示す。図3に示すように破断危険部位は側壁部となっているが、パンチ底接触部に発生する歪みは0.10以下となっている。
0032
図5は横軸にn値をとり、縦軸にr値をとって、絞り性および張出し性に与えるこれらの影響を示すものである。図5より、上記(1)式を満足する引張特性の場合、JSC270Fよりも優れた絞り成形性(LDR)が得られ、上記(2)式を満足する引張特性の場合、パンチ側壁部に相当する平面歪み領域においてJSC270Fよりも高いハット成形高さが得られることがわかる。本発明鋼は、上記(1)式と上記(2)式を満足する引張特性を有しており、絞り成形性と張り出し成形性に優れているので、絞り成形や張出し成形等の複合成形によってフロントフェンダやサイドパネル等を一体成形しても、プレスワレが生じることはない。
0033
なお、絞り成形性については50mm径の円筒成形時の限界絞り値(LDR)で評価し、張出し成形性については、実パネル成形をシミュレートして、図6に示すハット型成形試験により評価した。
【0034】
3.製造条件
本発明においては、上記鋼板を製造するにあたり、上記組成の鋼スラブに熱間圧延を施した後、ランナウトテーブル(ホットランテーブル)において中間温度が720℃以下になるまで冷却(ランナウトテーブル冷却:スプレー方式またはラミナ方式)してから、560〜660℃で巻き取り、その後、圧延率70〜85%で冷間圧延を行い、780〜880℃の焼鈍温度で連続焼鈍する。
0035
中間温度:720℃以下
中間温度は、r値、n値に影響を及ぼす重要な条件である。高いr値を得るには熱延板フェライト粒の微細化と炭・窒化物(析出物)の粗大化が有効であり、高いn値を得るには析出物を均一に粗大化することが重要である。フェライト粒の微細化には仕上圧延後の急冷が必要であり、NbとTiの複合添加においては、中間温度が720℃以下となるように冷却することで、高いr値を得ることができる。一方、析出物の粗大化には(12Nb)/(93C)+(12Ti)/(48C)を高めることが大きく寄与するが、仕上熱延後の巻取りまでの冷却段階でのNbCの析出において、適切に析出を制御しない場合、析出物のサイズ分布が不均一となり、高いn値を安定して得ることができない。すなわち、巻取りまでの冷却段階での析出を抑制し、巻取り後に均一に析出および粗大化させる。図7は、(12Nb)/(93C)+(12Ti)/(48C)=3.0の鋼について、中間温度が低歪み域(1〜10%)のn値におよぼす影響を調査した結果である。図7より、中間温度が720℃以下で安定して高いn値が得られることが確認される。
0036
巻取温度:560〜660℃
熱延の際の巻取り工程においては、析出物が粗大化され、鋼板のr値およびn値が向上する。しかし、巻取温度が560℃未満では析出物が十分に粗大化しないため、r値およびn値の向上効果が得られない。一方、660℃を超える場合、結晶粒が粗大となり優れたr値が得られない。このため、巻取温度は560〜660℃とする。
0037
冷間圧延時の圧延率:70〜85%
冷間圧延時の圧延率(冷圧率)はr値とn値に影響をおよぼし、冷圧率が70%未満の場合、優れたr値が得られず、一方、85%を超えるような高い冷圧率の場合、結晶粒が微細となり優れたn値が得られない。このため、冷圧率は70〜85%とする。
0038
焼鈍温度:780〜880℃
連続焼鈍における焼鈍温度はr値とn値に影響をおよぼし、焼鈍温度が780℃未満の場合、r値、n値ともに十分な値が得られない。一方、880℃を超えるような場合、異常粒成長を生じて材質劣化を招くおそれがある。このため、焼鈍温度は780〜880℃の範囲とする。
0039
本発明鋼板は、スラブの熱間圧延、酸洗、冷間圧延、焼鈍などの一連の工程を経て製造され、必要に応じてめっき処理がなされる。熱延プロセスは、スラブ加熱後に圧延する方法、連続鋳造後に短時間の加熱を施してから圧延する方法、あるいは連続鋳造後に加熱工程を省略して直ちに圧延する方法のいずれでもよい。これらいずれの場合でも、優れた表面性状を付与するためには一次スケールのみならず熱間圧延時に生成する二次スケールについても十分に除去することが好ましい。なお、熱間圧延中においては、バーヒータにより加熱を行ってもよい。また、熱延仕上温度は材質確保のためAr点以上とする。
0040
本発明の冷延鋼板は、焼鈍後、その表面に電気めっきまたは亜鉛系めっきを施して亜鉛系めっき鋼板として使用することもでき、この場合にもパネル加工後に所望の表面品質と成形性を得ることができる。亜鉛系めっきとしては、純亜鉛めっき、合金化めっき(亜鉛めっき後に合金加熱処理して得られた亜鉛めっき)、亜鉛−Ni合金めっき等があげられる。また、めっき後に有機皮膜処理を施した鋼板においても同様の性能を付与することができる。
0041
【実施例】
[実施例1]
表1に示す鋼板No.1〜8の鋼(数字は質量%)を溶製後、連続鋳造によりスラブとし、1250℃に加熱後、仕上温度880〜910℃、中間温度680℃、巻取温度640℃で板厚3.2mmの熱延板とした後、板厚0.80mmまで冷間圧延し、その後連続焼鈍(焼鈍温度:850℃)・溶融亜鉛めっきを実施した。連続焼鈍・溶融亜鉛めっきでは、焼鈍後460℃で溶融亜鉛めっき処理を行い、直ちにインライン合金化処理炉で500℃でめっき層の合金化処理を行なった。連続焼鈍・溶融亜鉛めっき後、圧下率0.7%の調質圧延を行なった。表2に、これらの鋼板のめっき剥離後の機械的特性、複合成形性の評価結果を示す。また、表2にr+2.0(n)およびr+50.0(n)の値も併せて示す。複合成形性の評価は、限界絞り比(LDR)とハット成形高さ(H)を求めて行なった。なお、表1中Rは、(12Nb)/(93C)+(12Ti)/(48C)を示す。
0042
【表1】

Figure 0003724298
0043
【表2】
Figure 0003724298
0044
これらの表に示すように、本発明の成分組成を有し、かつ、(12Nb)/(93C)+(12Ti)/(48C)、r+50.0(n)およびr+2.0(n)の値を本発明の範囲とすることによって、複合成形性の優れた冷延鋼板を得ることができることが確認された。また、C+Nが0.0030%以下の場合(鋼番4)の場合に、特に複合成形性に優れていることが確認された。
0045
一方、比較鋼は、複合成形性が従来材レベルであるか、あるいはそれよりも劣っており、特に、(12Nb)/(93C)+(12Ti)/(48C)の値(R値)が本発明範囲外となった場合にはn値が低くなり、優れたハット成形高さ(H)が得られない。また、r+50.0(n)やr+2.0(n)の値が本発明範囲外となった場合には、それぞれハット成形高さ(H)や限界絞り比(LDR)が低くなり、優れた複合成形性が得られない。
0046
[実施例2]
表1に示す鋼番1,4の鋼を溶製後、連続鋳造によりスラブとし、1250℃に加熱後、仕上温度880〜910℃、中間温度660〜760℃、巻取温度500〜700℃で板厚2.4〜6.0mmの熱延板とした後、圧延率67〜87%で冷間圧延し、板厚0.80mmとした。その後、焼鈍温度750〜900℃において連続焼鈍あるいは連続焼鈍・溶融亜鉛めっきを実施した。連続焼鈍・溶融亜鉛めっきでは、焼鈍後460℃で溶融亜鉛めっき処理を行い、直ちにインライン合金化処理炉で500℃でめっき層の合金化処理を行なった。連続焼鈍・溶融亜鉛めっき後、圧下率0.7%の調質圧延を行なった。表3にこれらの鋼板のめっき剥離後の機械的特性、複合成形性の評価結果を示す。複合成形性の評価は、限界絞り比(LDR)とハット成形高さ(H)を求めて行なった。
0047
【表3】
Figure 0003724298
0048
表3に示すように、本発明の製造条件を満足し、かつ、(12Nb)/(93C)+(12Ti)/(48C)、r+50.0(n)およびr+2.0(n)の値を本発明の範囲とすることによって、複合成形性の優れた冷延鋼板を得ることができることが確認された。また、C+Nが0.0030%以下の鋼番4においては、特に複合成形性に優れていることが確認された。
0049
一方、本発明の製造条件を満足しない比較鋼は、複合成形性が従来材レベルあるいはそれよりも劣っており、特に、中間温度が高い、あるいは巻取温度が低い、冷延率が高い、焼鈍温度が低い場合には、n値が低くなり、優れたハット成形高さの鋼板を得ることができない。また、r+50.0(n)やr+2.0(n)の値が本発明範囲外となった場合には、それぞれハット成形高さ(H)や限界絞り比(LDR)が低くなり、優れた複合成形性が得られない。
0050
【発明の効果】
以上説明したように、本発明によれば、低歪み域での歪み伝播に影響をおよぼすC,N,Nb,Tiおよびr値、n値、熱延条件、冷延率、焼鈍条件を適切に制御することにより、絞り成形性と張出し成形性からなる複合成形性に優れ、プレスワレを生じることなくフロントフェンダやサイドパネル等の複雑な形状に複合成形することが可能な冷延鋼板を得ることができ、産業上極めて有意義である。
【図面の簡単な説明】
【図1】 (12Nb)/(93C)+(12Ti)/(48C)とn値との関係を示すグラフ。
【図2】 C:0.0030%以下、N:0.0030%以下を含有し、(12Nb)/(93C)+(12Ti)/(48C)が2.2〜4.5の範囲にある鋼について、C+Nが低歪み域(1〜10%)におけるn値に及ぼす影響を調査した結果を示すグラフ。
【図3】 図4に示した実部品スケールのフロントフェンダモデル成形品の破断危険部位近傍の相当歪み分布の一例を示すグラフ。
【図4】 フロントフェンダモデル成形品と、その破断危険部位を示す概略図。
【図5】 n値およびr値と、絞り成形性および張出し成形性との関係を示すグラフ。
【図6】 ハット型成形試験の概略図。
【図7】 (12Nb)/(93C)+(12Ti)/(48C)=3.0の鋼について、中間温度が低歪み域(1〜10%)のn値におよぼす影響を調査した結果を示すグラフ。BACKGROUND OF THE INVENTION
The present invention relates to a steel plate used for automobile panels such as hoods, doors, fenders, side panels, and more particularly to a cold-rolled steel plate having excellent formability in composite forming such as draw forming and stretch forming, and a method for manufacturing the same.
[ 0002 ]
[Prior art]
Recently, steel sheets for automobile bodies have been required to have extremely high press formability that satisfies both the reduction of the number of parts by integrating the parts and the omission of the pressing process. In particular, when a complicatedly shaped part such as a front fender or a side panel is integrally formed, not only draw forming but also composite formability of draw formability and stretch formability becomes important.
[ 0003 ]
Many techniques for increasing the r value and elongation of a steel sheet in order to improve press formability have been proposed. For example, in Japanese Patent Application Laid-Open No. 5-279797, Nb and Ti are added to an extremely low carbon steel sheet, the average r value is 2.8 or more, and the work hardening index (n value) of 10 to 20% is 0.26 or more. Has been proposed.
[ 0004 ]
In Japanese Patent Publication No. 7-062209, Nb and Ti are added to an extremely low carbon steel plate, and the tensile strength in the rolling direction and 45 ° direction of the steel plate is 28.5 to 31.0 kgf / mm 2 (279. 3 to 303.8 MPa), and a technique for setting the r value in the rolling direction and the 45 ° direction to 1.90 or more has been proposed.
[ 0005 ]
[Problems to be solved by the invention]
However, in a composite molded part having a complicated shape such as a front fender or a side panel, the technology for increasing the r value and the elongation as described above is not always effective, and press cracking may occur frequently.
[ 0006 ]
For example, the technique disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 5-279797 is effective for deep drawing and stretch forming in a high strain region (10 to 20%), but a low strain region (10% or less). When the propagation of strain is insufficient, the amount of strain generated in the vicinity of the punch bottom during pressing is reduced, and excessive strain is generated at the side wall of the punch, resulting in cracking.
[ 0007 ]
Further, in the technology disclosed in the above Japanese Patent Publication No. 7-062209, the target part is a wheel house inner, and when such a part is composite-molded, it is the squeeze bead portion and the deep squeeze that dominates the formability. It is a molding part. Therefore, it is not necessarily effective for cracks mainly made of the overhang portion. In addition, since this press formability is determined by controlling the amount of steel sheet inflow at the die shoulder R portion, it is difficult to adjust the wrinkle holding force, and the formable region may not be obtained. In such a molding mode, it is possible to improve moldability and relax molding conditions by using strain propagation instead of inflow, but it is not sufficient.
[ 0008 ]
The present invention has been made in view of the above points, and is a cold-rolled steel sheet excellent in fracture resistance in composite molding such as drawing and overhanging required for automobile panels such as hoods, doors, fenders, side panels, and the like. It aims at providing the manufacturing method.
[ 0009 ]
[Means for Solving the Problems]
The inventors of the present invention have studied in detail the formability when compositely forming a steel sheet into a fender, a side panel, etc. As a result of improving the r value for composite formability such as drawing and overhanging. In particular, it is effective to avoid concentration of distortion in a fracture risk part such as a punch or die shoulder near the side wall of the molded product during press molding. For this purpose, the n value in the low strain region is optimized and the side wall It has been found that it is effective to promote strain propagation in the plane strain region and plastic flow (strain propagation) in the low strain region at the bottom of the punch.
[0010]
The present invention has been completed based on the above findings, and provides the following (1) to (4).
(1) By mass%, C: 0.0020% or less, Si: 0.05% or less, Mn: 0.05 to 0.35%, P: 0.025% or less, S: 0.015% or less, sol. Al: 0.01 to 0.06%, N: 0.0020% or less, Nb: 0.010 to 0.040%, Ti: 0.003 to 0.035%, and the remainder from Fe and inevitable impurities And (12Nb) / (93C) + (12Ti * ) / (48C): 1.3 to 5.2 (where Ti * = Ti− (48/14) N− (48/32) S Yes, when Ti * ≦ 0, Ti * = 0, Nb, Ti * , Ti, C, N, and S are mass%), and further satisfy the following formulas (1) and (2) A cold-rolled steel sheet with excellent composite formability.
13.9 ≦ r + 50.0 (n) (1)
2.6 ≦ r + 2.0 (n) (2)
Where r: in-plane average r value,
n: Average work hardening index n value in a tensile strain range of 1 to 10%.
(2) By mass%, C: 0.0020% or less, Si: 0.05% or less, Mn: 0.05 to 0.35%, P: 0.025% or less, S: 0.015% or less, sol. Al: 0.01 to 0.06%, N: 0.0020% or less, Nb: 0.010 to 0.040%, Ti: 0.003 to 0.035%, and the remainder from Fe and inevitable impurities And C + N: 0.0030% or less, (12Nb) / (93C) + (12Ti * ) / (48C): 2.2 to 4.5 (where Ti * = Ti− (48/14) N -(48/32) S, when Ti * ≦ 0, Ti * = 0, Nb, Ti * , Ti, C, N, and S are mass%), and the following formula (1) A cold-rolled steel sheet excellent in composite formability characterized by satisfying the formula (2).
13.9 ≦ r + 50.0 (n) (1)
2.6 ≦ r + 2.0 (n) (2)
Where r: in-plane average r value,
n: Average work hardening index n value in a tensile strain range of 1 to 10%.
(3) In the above (1) or (2), by mass%, V: 0.04% or less, Zr: 0.04% or less, B: 0.0008% or less A cold-rolled steel sheet excellent in composite formability characterized by
[0013]
(4) In producing one of the cold-rolled steel sheet of (1) to (3), after performing hot rolling steel slab, was cooled to an intermediate temperature is 720 ° C. or less in the runout table A cold-rolled steel sheet excellent in composite formability, which is rolled up at 560 to 660 ° C., then cold-rolled at a rolling rate of 70 to 85% and continuously annealed at an annealing temperature of 780 to 880 ° C. Production method.
[ 0014 ]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described by dividing it into component compositions, tensile properties, and production conditions.
1. Component Composition The steel sheet in the present invention is in mass %, C: 0.0020% or less, Si: 0.05% or less, Mn: 0.05 to 0.35%, P: 0.025% or less, S: 0 .015% or less, sol. Al: 0.01 to 0.06%, N: 0.0020% or less, Nb: 0.010 to 0.040%, Ti: 0.003 to 0.035% , the remainder substantially from Fe And (12Nb) / (93C) + (12Ti * ) / (48C): 1.3 to 5.2 (where Ti * = Ti− (48/14) N− (48/32) S Yes, when Ti * ≦ 0, Ti * = 0, and Nb, Ti * , Ti, C, N, and S are mass %). Further, preferably, it has the above composition and satisfies C + N: 0.0030% or less and (12Nb) / (93C) + (12Ti * ) / (48C): 2.2 to 4.5. The reason for limitation is as follows.
[ 0015 ]
C: 0.0020% or less C is an element that affects the n value in the low strain region (1 to 10%), and in the solid solution state, it interacts with dislocations to lower the n value, thereby reducing the NbC state. In this case, the n value is lowered in the case of extremely fine patterns. Since such a decrease in n value exceeds 0.0020%, the C content is set to 0.0020% or less from the viewpoint of improving the n value.
[ 0016 ]
Si: 0.05% or less In the case of a cold-rolled steel sheet, Si is excessively added in excess of 0.05%, and chemical conversion property deteriorates. In the case of hot dip galvanizing, plating adhesion deteriorates. Moreover, in order to maintain high ductility, it is necessary to make it 0.05% or less. For this reason, Si content shall be 0.05% or less.
[ 0017 ]
Mn: 0.05 to 0.35%
Mn is an element that precipitates S in steel as MnS and prevents hot cracking of the slab. In the present invention, since S is fixed by Ti, there is no problem even if the Mn content is lower than that of general steel, but if it is less than 0.05%, the hot metal preliminary treatment cost increases. On the other hand, if the Mn content exceeds 0.35%, the yield strength increases due to solid solution strengthening, and the n value decreases. Therefore, the Mn content is set to 0.05 to 0.35%.
[ 0018 ]
P: 0.025% or less P is a grain boundary embrittlement element, and its content should be kept low. However, reducing the P content requires de-P cost. On the other hand, P is a solid solution strengthening element like Mn, and if added over 0.025%, the yield strength increases, so the n value decreases. Considering the above points, the P content is set to 0.025% or less.
[ 0019 ]
S: 0.015% or less S is present in steel as an inevitable impurity. When the S content increases, ductility deteriorates and TiS is formed, so that an effective Ti amount (Ti * ) described later decreases. Therefore, the S content is 0.015% or less.
[ 0020 ]
sol. Al: 0.01 to 0.06%
sol. Al fixes N as AlN, but in the present invention, Ti is added and N is fixed as TiN. Therefore, the amount of Al added can be reduced as compared with a normal case. In the present invention, by deoxidizing Al, the oxidation of Ti is suppressed to ensure an effective amount of Ti, and the occurrence of surface defects is suppressed. Al content shall be 0.01-0.06%.
[ 0021 ]
N: 0.0020% or less N is an element that affects the n value in the low strain region (1 to 10%) as in C. In the solid solution state, N affects the dislocation and decreases the n value. In the TiN state, the n value is lowered when it is extremely fine. Since such a decrease in the n value exceeds 0.0020%, the N content is set to 0.0020% or less from the viewpoint of improving the n value.
[ 0022 ]
Nb: 0.010 to 0.040%
Nb is an important element for fixing solute C and improving the n value and the r value. However, if the Nb content is less than 0.010%, C cannot be sufficiently fixed, and a steel sheet having excellent composite formability cannot be obtained. On the other hand, when it exceeds 0.040%, the solid solution Nb increases and the n value decreases. For this reason, Nb content shall be 0.010-0.040%.
[ 0023 ]
Ti: 0.003 to 0.035%
Ti is an important element for fixing solute N and improving the n value and the r value. However, if the Ti content is less than 0.003%, N cannot be sufficiently fixed, and a steel sheet having excellent composite formability cannot be obtained. On the other hand, if it exceeds 0.035%, TiC precipitation becomes remarkable and NbC formation is suppressed, so that coarse TiC and fine NbC are precipitated and the precipitate size becomes nonuniform, and a high n value is stably obtained. I can't. For this reason, Ti content is made into 0.003 to 0.035%.
[ 0024 ]
(12Nb) / (93C) + (12Ti * ) / (48C): 1.3-5.2
Ti * is Ti * = Ti− (48/14) N− (48/32) S (where Ti * = 0 when Ti * ≦ 0, Nb, Ti * , Ti, C, N, S is a mass %), and (12Nb) / (93C) + (12Ti * ) / (48C) is an important component balance in order to improve the n value. As described above, Nb fixes C, and Ti is an element that fixes C and N. By adding a sufficient amount of Nb and Ti to C in the steel, the carbon / nitride is coarsened. And the n value can be stably improved. FIG. 1 shows that the above (12Nb) / (93C) + (12Ti * ) / (48C) value is low strain for steel containing Nb: 0.005 to 0.05% and Ti: to 0.04%. It is the result of investigating the influence on the n value in the region (1 to 10%). From FIG. 1, when the value of (12Nb) / (93C) + (12Ti * ) / (48C) is set to 1.3 or more, a high n value of 0.24 or more can be obtained. It can be seen that an extremely high n value of 0.26 or more is obtained in the above range. On the other hand, when it exceeds 5.2, the effect of the solid solution Nb becomes remarkable, and the n value is remarkably lowered. For this reason, the value of (12Nb) / (93C) + (12Ti * ) / (48C) is set to a range of 1.3 to 5.2, and a more preferable value is set to 2.2 to 4.5.
[ 0025 ]
C + N: 0.0030% or less C and N are fixed as precipitates by Nb and Ti in the present invention because they interact with dislocations and lower the n value in the solid solution state. n value is affected. FIG. 2 contains C: 0.0030% or less, N: 0.0030% or less, and (12Nb) / (93C) + (12Ti * ) / (48C) is in the range of 2.2 to 4.5. It is the result of investigating the influence which C + N has on the n value in a low strain region (1 to 10%) for a certain steel. FIG. 2 shows that the n value is high in the region where C + N is 0.0040% or less, and in particular, the highest n value is obtained in the region where C + N is 0.0030% or less. Therefore, when (12Nb) / (93C) + (12Ti * ) / (48C) is 2.2 to 4.5, it is preferable that C + N is 0.0030%.
[ 0026 ]
In the present invention, as component elements other than the above, V and Zr are 0.04% or less for fixing C, and B is 0.0008% or less for fixing N, Two or more kinds may be added.
[ 0027 ]
2. Tensile properties The steel sheet of the present invention has tensile properties satisfying the following formulas (1) and (2).
13.9 ≦ r + 50.0 (n) (1)
2.6 ≦ r + 2.0 (n) (2)
However, r is an in-plane average r value, and n is an average work hardening index n value in a tensile strain region of 1 to 10%.
[ 0028 ]
Here, the in-plane average r value is calculated as follows.
[In-plane average r value] = ([r0] +2 [r45] + [r90]) / 4
However, [r0]: r value in the steel plate rolling direction, [r45]: r value in the 45 ° direction with respect to the steel plate rolling direction, and [r90]: r value in the 90 ° direction with respect to the steel plate rolling direction.
[ 0029 ]
The average work hardening index n value is calculated as follows.
[Average work hardening index n value] = ([n0] +2 [n45] + [n90]) / 4
However, [n0]: n value in the steel plate rolling direction, [n45]: n value in the 45 ° direction with respect to the steel plate rolling direction, and [n90]: n value in the 90 ° direction with respect to the steel plate rolling direction.
[ 0030 ]
The above formula (1) evaluates the drawability, and the formula (2) evaluates the stretchability. The r value and n value of these formulas are values obtained by the JIS No. 5 tensile test. In this case, the r value and the n value are characteristic values of the base material after plating peeling in the case of a surface-treated steel sheet.
[ 0031 ]
Further, the strain range of the n value is not a conventional high strain region (10 to 20%) but a low strain region of 1 to 10%. This is based on the results of detailed investigations of actual parts such as front fenders and side panels. FIG. 3 shows an example of the equivalent strain distribution in the vicinity of the risk of fracture of the actual part scale front fender model molded article shown in FIG. As shown in FIG. 3, the risk of breakage is a side wall portion, but the strain generated at the punch bottom contact portion is 0.10 or less.
[ 0032 ]
FIG. 5 shows these influences on the drawability and the overhang property, with the n value on the horizontal axis and the r value on the vertical axis. FIG. 5 shows that drawability (LDR) superior to JSC270F is obtained in the case of tensile properties satisfying the above formula (1), and corresponds to the punch side wall portion in the case of tensile properties satisfying the above formula (2). It can be seen that a hat forming height higher than that of JSC270F can be obtained in the plane strain region. The steel according to the present invention has tensile properties satisfying the above formulas (1) and (2) and is excellent in drawability and stretchability. Even if the front fender, the side panel, etc. are integrally formed, press cracking does not occur.
[ 0033 ]
The drawability was evaluated by a limit drawing value (LDR) at the time of forming a 50 mm diameter cylinder, and the stretch formability was evaluated by simulating actual panel forming and evaluated by a hat mold forming test shown in FIG. .
[0034]
3. In the manufacturing conditions present invention, in manufacturing the steel sheet, was subjected to hot rolling steel slab having the above composition, cooling the runout table (hot run table) to an intermediate temperature is 720 ° C. or less (runout table cooling: After spraying at 560 to 660 ° C., cold rolling is performed at a rolling rate of 70 to 85%, and continuous annealing is performed at an annealing temperature of 780 to 880 ° C.
[ 0035 ]
Intermediate temperature: 720 ° C. or less The intermediate temperature is an important condition that affects the r value and the n value. In order to obtain a high r value, refinement of hot-rolled sheet ferrite grains and coarsening of charcoal / nitrides (precipitates) are effective. To obtain a high n value, it is important to uniformly coarsen the precipitates. It is. Rapid refining after finish rolling is required for refinement of ferrite grains, and in the combined addition of Nb and Ti, a high r value can be obtained by cooling so that the intermediate temperature is 720 ° C. or lower. On the other hand, increasing the (12Nb) / (93C) + (12Ti * ) / (48C) greatly contributes to the coarsening of the precipitate, but the precipitation of NbC in the cooling stage until the winding after finish hot rolling . However, if the precipitation is not properly controlled, the size distribution of the precipitate becomes non-uniform, and a high n value cannot be obtained stably. That is, precipitation at the cooling stage until winding is suppressed, and precipitation and coarsening are uniformly performed after winding. FIG. 7 shows the results of investigating the influence of intermediate temperature on the n value in the low strain region (1 to 10%) for steel of (12Nb) / (93C) + (12Ti * ) / (48C) = 3.0. It is. From FIG. 7, it is confirmed that a high n value is stably obtained at an intermediate temperature of 720 ° C. or lower.
[ 0036 ]
Winding temperature: 560-660 ° C
In the winding process during hot rolling, precipitates are coarsened, and the r value and n value of the steel sheet are improved. However, when the coiling temperature is less than 560 ° C., the precipitates are not sufficiently coarsened, so that the effect of improving the r value and the n value cannot be obtained. On the other hand, when it exceeds 660 ° C., the crystal grains are coarse and an excellent r value cannot be obtained. For this reason, winding temperature shall be 560-660 degreeC.
[ 0037 ]
Rolling ratio during cold rolling: 70 to 85%
The rolling ratio (cold pressure ratio) during the cold rolling affects the r value and the n value, and when the cold pressure ratio is less than 70%, an excellent r value cannot be obtained, whereas it exceeds 85%. In the case of a high cold pressure ratio, the crystal grains become fine and an excellent n value cannot be obtained. For this reason, the cold pressure ratio is set to 70 to 85%.
[ 0038 ]
Annealing temperature: 780-880 ° C
The annealing temperature in the continuous annealing affects the r value and the n value, and when the annealing temperature is less than 780 ° C., sufficient values for both the r value and the n value cannot be obtained. On the other hand, when it exceeds 880 degreeC, there exists a possibility of producing abnormal grain growth and causing material deterioration. For this reason, annealing temperature shall be the range of 780-880 degreeC.
[ 0039 ]
The steel sheet of the present invention is manufactured through a series of steps such as hot rolling, pickling, cold rolling, and annealing of a slab, and is subjected to plating treatment as necessary. The hot rolling process may be any of a method of rolling after slab heating, a method of rolling after a short period of heating after continuous casting, or a method of rolling immediately after omitting the heating step after continuous casting. In any of these cases, it is preferable to sufficiently remove not only the primary scale but also the secondary scale generated during hot rolling in order to impart excellent surface properties. In addition, you may heat with a bar heater during hot rolling. In addition, the hot rolling finishing temperature is set at 3 points or more for Ar to secure the material.
[ 0040 ]
The cold-rolled steel sheet according to the present invention can be used as a zinc-plated steel sheet by subjecting its surface to electroplating or zinc-based plating after annealing, and also in this case, the desired surface quality and formability are obtained after panel processing. be able to. Examples of the zinc-based plating include pure zinc plating, alloying plating (zinc plating obtained by alloy heat treatment after zinc plating), zinc-Ni alloy plating, and the like. Moreover, the same performance can be provided also in the steel plate which performed the organic film process after plating.
[ 0041 ]
【Example】
[Example 1]
Steel plate No. 1 shown in Table 1. After melting 1-8 steel (numbers are% by mass) , slab by continuous casting, heated to 1250 ° C, finished temperature 880-910 ° C, intermediate temperature 680 ° C, coiling temperature 640 ° C, plate thickness 3. After forming a 2 mm hot-rolled sheet, it was cold-rolled to a thickness of 0.80 mm and then subjected to continuous annealing (annealing temperature: 850 ° C.) and hot dip galvanization. In continuous annealing and hot dip galvanizing, hot dip galvanizing treatment was performed at 460 ° C. after annealing, and the alloying treatment of the plating layer was immediately performed at 500 ° C. in an in-line alloying treatment furnace. After continuous annealing and hot dip galvanization, temper rolling with a rolling reduction of 0.7% was performed. Table 2 shows the evaluation results of the mechanical properties and composite formability after plating peeling of these steel plates. Table 2 also shows the values of r + 2.0 (n) and r + 50.0 (n). The composite moldability was evaluated by obtaining a limit drawing ratio (LDR) and a hat molding height (H). In Table 1, R represents (12Nb) / (93C) + (12Ti * ) / (48C).
[ 0042 ]
[Table 1]
Figure 0003724298
[ 0043 ]
[Table 2]
Figure 0003724298
[ 0044 ]
As shown in these tables, it has the component composition of the present invention and (12Nb) / (93C) + (12Ti * ) / (48C), r + 50.0 (n) and r + 2.0 (n) It was confirmed that a cold-rolled steel sheet having excellent composite formability can be obtained by setting the value within the range of the present invention. Moreover, when C + N was 0.0030% or less (steel number 4), it was confirmed that the composite formability was particularly excellent.
[ 0045 ]
On the other hand, the comparative steel has the composite formability at the level of the conventional material or inferior to that, and in particular, the value (R value) of (12Nb) / (93C) + (12Ti * ) / (48C). When it is out of the range of the present invention, the n value becomes low and an excellent hat molding height (H) cannot be obtained. In addition, when the values of r + 50.0 (n) and r + 2.0 (n) are out of the range of the present invention, the hat molding height (H) and the limit drawing ratio (LDR) are reduced, respectively. Composite moldability cannot be obtained.
[ 0046 ]
[Example 2]
After melting steel Nos. 1 and 4 shown in Table 1, it was made into a slab by continuous casting, heated to 1250 ° C, finished temperature 880-910 ° C, intermediate temperature 660-760 ° C, coiling temperature 500-700 ° C After forming a hot rolled sheet having a sheet thickness of 2.4 to 6.0 mm, it was cold-rolled at a rolling rate of 67 to 87% to obtain a sheet thickness of 0.80 mm. Then, continuous annealing or continuous annealing / hot dip galvanization was performed at an annealing temperature of 750 to 900 ° C. In continuous annealing and hot dip galvanizing, hot dip galvanizing treatment was performed at 460 ° C. after annealing, and the alloying treatment of the plating layer was immediately performed at 500 ° C. in an in-line alloying treatment furnace. After continuous annealing and hot dip galvanization, temper rolling with a rolling reduction of 0.7% was performed. Table 3 shows the evaluation results of the mechanical properties and composite formability of these steel sheets after plating peeling. The composite moldability was evaluated by obtaining a limit drawing ratio (LDR) and a hat molding height (H).
[ 0047 ]
[Table 3]
Figure 0003724298
[ 0048 ]
As shown in Table 3, the production conditions of the present invention were satisfied, and the values of (12Nb) / (93C) + (12Ti * ) / (48C), r + 50.0 (n) and r + 2.0 (n) It was confirmed that a cold-rolled steel sheet having excellent composite formability can be obtained by making the range of the present invention. Further, it was confirmed that Steel No. 4 having C + N of 0.0030% or less is particularly excellent in composite formability.
[ 0049 ]
On the other hand, the comparative steel that does not satisfy the production conditions of the present invention has a composite formability that is at or lower than that of the conventional material, in particular, a high intermediate temperature, a low coiling temperature, a high cold rolling rate, or an annealing. When temperature is low, n value becomes low and the steel plate of the outstanding hat formation height cannot be obtained. In addition, when the values of r + 50.0 (n) and r + 2.0 (n) are out of the range of the present invention, the hat molding height (H) and the limit drawing ratio (LDR) are reduced, respectively. Composite moldability cannot be obtained.
[ 0050 ]
【The invention's effect】
As described above, according to the present invention, C, N, Nb, Ti and r value, n value, hot rolling condition, cold rolling rate, and annealing condition that affect the strain propagation in the low strain region are appropriately set. By controlling, it is possible to obtain a cold-rolled steel sheet that has excellent composite formability consisting of draw formability and stretch formability, and can be formed into complex shapes such as front fenders and side panels without causing press cracks. It is very meaningful in industry.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between (12Nb) / (93C) + (12Ti * ) / (48C) and an n value.
FIG. 2 contains C: 0.0030% or less, N: 0.0030% or less, and (12Nb) / (93C) + (12Ti * ) / (48C) is in the range of 2.2 to 4.5. The graph which shows the result of having investigated the influence which C + N has on n value in a low strain area (1-10%) about a certain steel.
3 is a graph showing an example of an equivalent strain distribution in the vicinity of a risk of fracture of the actual part scale front fender model molded article shown in FIG. 4;
FIG. 4 is a schematic view showing a molded product of a front fender and a risk of breakage thereof.
FIG. 5 is a graph showing a relationship between an n value and an r value, and drawability and stretch formability.
FIG. 6 is a schematic diagram of a hat mold forming test.
FIG. 7 shows the results of investigating the influence of intermediate temperature on the n value in the low strain region (1 to 10%) for steel with (12Nb) / (93C) + (12Ti * ) / (48C) = 3.0. Graph showing.

Claims (4)

質量%で、C:0.0020%以下、Si:0.05%以下、Mn:0.05〜0.35%、P:0.025%以下、S:0.015%以下、sol.Al:0.01〜0.06%、N:0.0020%以下、Nb:0.010〜0.040%、Ti:0.003〜0.035%を含有し、残部Feおよび不可避不純物からなり、かつ、(12Nb)/(93C)+(12Ti)/(48C):1.3〜5.2(ただし、Ti=Ti−(48/14)N−(48/32)Sであり、Ti≦0の場合にはTi=0とし、Nb、Ti、Ti、C、N、Sは質量%)であり、さらに、下記(1)式、(2)式を満足することを特徴とする複合成形性に優れた冷延鋼板。
13.9≦r+50.0(n) ……(1)
2.6≦r+2.0(n) ……(2)
ただし、r:面内平均r値、
n:1〜10%の引張り歪み域での平均加工硬化指数n値
In mass%, C: 0.0020% or less, Si: 0.05% or less, Mn: 0.05 to 0.35%, P: 0.025% or less, S: 0.015% or less, sol. Al: 0.01 to 0.06%, N: 0.0020% or less, Nb: 0.010 to 0.040%, Ti: 0.003 to 0.035%, and the remainder from Fe and inevitable impurities And (12Nb) / (93C) + (12Ti * ) / (48C): 1.3 to 5.2 (where Ti * = Ti− (48/14) N− (48/32) S Yes, when Ti * ≦ 0, Ti * = 0, Nb, Ti * , Ti, C, N, and S are mass%), and further satisfy the following formulas (1) and (2) A cold-rolled steel sheet with excellent composite formability.
13.9 ≦ r + 50.0 (n) (1)
2.6 ≦ r + 2.0 (n) (2)
Where r: in-plane average r value,
n: Average work hardening index n value in a tensile strain range of 1 to 10%
質量%で、C:0.0020%以下、Si:0.05%以下、Mn:0.05〜0.35%、P:0.025%以下、S:0.015%以下、sol.Al:0.01〜0.06%、N:0.0020%以下、Nb:0.010〜0.040%、Ti:0.003〜0.035%を含有し、残部Feおよび不可避不純物からなり、かつ、C+N:0.0030%以下、(12Nb)/(93C)+(12Ti)/(48C):2.2〜4.5(ただし、Ti=Ti−(48/14)N−(48/32)Sであり、Ti≦0の場合にはTi=0とし、Nb、Ti、Ti、C、N、Sは質量%)であり、さらに、下記(1)式、(2)式を満足することを特徴とする複合成形性に優れた冷延鋼板。
13.9≦r+50.0(n) ……(1)
2.6≦r+2.0(n) ……(2)
ただし、r:面内平均r値、
n:1〜10%の引張り歪み域での平均加工硬化指数n値
In mass%, C: 0.0020% or less, Si: 0.05% or less, Mn: 0.05 to 0.35%, P: 0.025% or less, S: 0.015% or less, sol. Al: 0.01 to 0.06%, N: 0.0020% or less, Nb: 0.010 to 0.040%, Ti: 0.003 to 0.035%, and the remainder from Fe and inevitable impurities And C + N: 0.0030% or less, (12Nb) / (93C) + (12Ti * ) / (48C): 2.2 to 4.5 (where Ti * = Ti− (48/14) N -(48/32) S, when Ti * ≦ 0, Ti * = 0, Nb, Ti * , Ti, C, N, and S are mass%), and the following formula (1) A cold-rolled steel sheet excellent in composite formability characterized by satisfying the formula (2).
13.9 ≦ r + 50.0 (n) (1)
2.6 ≦ r + 2.0 (n) (2)
Where r: in-plane average r value,
n: Average work hardening index n value in a tensile strain range of 1 to 10%
質量%で、V:0.04%以下、Zr:0.04%以下、B:0.0008%以下の1種または2種以上をさらに含有することを特徴とする請求項1または請求項2に記載の複合成形性に優れた冷延鋼板。  3. The composition further comprises one or more of V: 0.04% or less, Zr: 0.04% or less, and B: 0.0008% or less in mass%. Cold-rolled steel sheet with excellent composite formability as described in 1. 請求項1から請求項3のいずれかの冷延鋼板を製造するにあたり、鋼スラブに熱間圧延を施した後、ランナウトテーブルにおいて中間温度が720℃以下になるまで冷却してから、560〜660℃で巻き取り、その後、圧延率70〜85%で冷間圧延を行い、780〜880℃の焼鈍温度で連続焼鈍することを特徴とする複合成形性に優れた冷延鋼板の製造方法。  In producing the cold-rolled steel sheet according to any one of claims 1 to 3, after hot rolling the steel slab, the runout table is cooled to an intermediate temperature of 720 ° C or lower, and then 560-660. A method for producing a cold-rolled steel sheet excellent in composite formability, wherein the steel sheet is wound at a temperature of C and then cold-rolled at a rolling rate of 70 to 85% and continuously annealed at an annealing temperature of 780 to 880C.
JP33501999A 1999-11-25 1999-11-25 Cold-rolled steel sheet excellent in composite formability and manufacturing method thereof Expired - Fee Related JP3724298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33501999A JP3724298B2 (en) 1999-11-25 1999-11-25 Cold-rolled steel sheet excellent in composite formability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33501999A JP3724298B2 (en) 1999-11-25 1999-11-25 Cold-rolled steel sheet excellent in composite formability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001152286A JP2001152286A (en) 2001-06-05
JP3724298B2 true JP3724298B2 (en) 2005-12-07

Family

ID=18283844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33501999A Expired - Fee Related JP3724298B2 (en) 1999-11-25 1999-11-25 Cold-rolled steel sheet excellent in composite formability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3724298B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050045303A1 (en) * 2003-08-29 2005-03-03 Jfe Steel Corporation, A Corporation Of Japan Method for producing ultra low carbon steel slab
JP5011953B2 (en) * 2006-10-26 2012-08-29 住友金属工業株式会社 Alloyed hot-dip galvanized steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP2001152286A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
KR101402365B1 (en) Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing same
JP4725366B2 (en) Cold-rolled steel sheet, hot-dip galvanized steel sheet, and production method thereof
JP5408314B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same
JP4337764B2 (en) High-strength cold-rolled steel sheet, hot-dip galvanized steel sheet, and production method thereof
JP3610883B2 (en) Method for producing high-tensile steel sheet with excellent bendability
JP6606905B2 (en) Alloyed hot-dip galvanized steel sheet for outer panel of automobile and manufacturing method thereof
TW201313915A (en) High-strength galvanized steel sheet with excellent deep-drawability and method for manufacturing the same
JP4177478B2 (en) Cold-rolled steel sheet, hot-dip galvanized steel sheet excellent in formability, panel shape, and dent resistance, and methods for producing them
JP4687260B2 (en) Manufacturing method of deep drawing high tensile cold-rolled steel sheet with excellent surface properties
JP3528716B2 (en) High-strength cold-rolled steel sheet, high-strength galvanized steel sheet excellent in surface properties and press formability, and manufacturing method thereof
JPH07300623A (en) Production of sheet steel for working excellent in baking hardenability and aging resistance
JP4177477B2 (en) Manufacturing method of cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent room temperature aging resistance and panel characteristics
JP4214664B2 (en) Sheet steel for press forming and manufacturing method thereof
JP4367205B2 (en) Strain aging treatment method for steel sheet and method for producing high-strength structural member
JP3724298B2 (en) Cold-rolled steel sheet excellent in composite formability and manufacturing method thereof
JP6606906B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JPS5937333B2 (en) Manufacturing method of alloyed hot-dip galvanized steel sheet
JP3724297B2 (en) Cold-rolled steel sheet excellent in composite formability and manufacturing method thereof
JP3812248B2 (en) High-strength cold-rolled steel sheet with excellent surface properties and press formability and method for producing the same
JP2671726B2 (en) Manufacturing method of cold rolled steel sheet for ultra deep drawing
JP3508654B2 (en) High-strength cold-rolled steel sheet for press forming excellent in material uniformity in coil and method for producing the same
JPH04346625A (en) Manufacture of baking hardening type cold rolled steel sheet excellent in aging resistance and press formability
JP3528717B2 (en) High-strength cold-rolled steel sheet excellent in surface distortion resistance and press formability and method for producing the same
JP4186665B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP3546299B2 (en) Manufacturing method of cold rolled steel sheet with small material fluctuation

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

R150 Certificate of patent or registration of utility model

Ref document number: 3724298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees