JP2001151509A - Spherical titanium oxide fine particle - Google Patents

Spherical titanium oxide fine particle

Info

Publication number
JP2001151509A
JP2001151509A JP32953199A JP32953199A JP2001151509A JP 2001151509 A JP2001151509 A JP 2001151509A JP 32953199 A JP32953199 A JP 32953199A JP 32953199 A JP32953199 A JP 32953199A JP 2001151509 A JP2001151509 A JP 2001151509A
Authority
JP
Japan
Prior art keywords
titanium oxide
oxide fine
fine particles
gas
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32953199A
Other languages
Japanese (ja)
Other versions
JP3993956B2 (en
Inventor
Wataru Kagohashi
亘 籠橋
Takashi Fujii
隆 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP32953199A priority Critical patent/JP3993956B2/en
Publication of JP2001151509A publication Critical patent/JP2001151509A/en
Application granted granted Critical
Publication of JP3993956B2 publication Critical patent/JP3993956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a spherical high purity titanium oxide fine particle having excellent dispersibility and usable generally for an electronic material, an ultraviolet shielding material or a photocatalyst. SOLUTION: The spherical titanium oxide fine particle is obtained by the vapor phase reaction of titanium tetrachloride and has D1/D2 of 1.0-1.25 when the average particle diameter measured by SEM photography is expressed by D1 and the average particle diameter determined by BET specific surface area is expressed by D2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れた分散性を有
し、電子材料、紫外線遮蔽材料あるいは光触媒等汎用的
に利用しうる球状かつ高純度の酸化チタン微粒子に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to spherical and high-purity titanium oxide fine particles which have excellent dispersibility and can be widely used for electronic materials, ultraviolet shielding materials or photocatalysts.

【0002】[0002]

【従来の技術】酸化チタン微粒子は、白色顔料として古
くから利用されており、近年はコンデンサ、サーミスタ
の構成材料またチタン酸バリウムの原料等電子材料に用
いられる焼結材料に広く利用されている。また、酸化チ
タンは可視光付近の波長領域において大きな屈折率を示
すため、可視光領域では殆ど光吸収は起こらない。この
ことから、最近化粧料、医薬あるいは塗料等の紫外線遮
蔽が要求されるような材料にも広く使用されている。さ
らに、酸化チタンにそのバンドギャップ以上のエネルギ
ーを持つ光を照射することによって酸化チタンが励起さ
れて、伝導帯に電子また価電帯に正孔が生じるが、この
電子による還元力また正孔による酸化力を利用した光触
媒反応の用途開発が盛んに行われている。この酸化チタ
ン光触媒の用途は非常に多岐に渡っており、水の分解に
よる水素の発生、排ガス処理、空気清浄、防臭、殺菌、
抗菌、水処理、照明機器等の汚れ防止等、数多くの用途
開発が行われている。
2. Description of the Related Art Titanium oxide fine particles have long been used as white pigments, and in recent years have been widely used as constituent materials for capacitors and thermistors and as sintering materials used for electronic materials such as barium titanate raw materials. Further, since titanium oxide has a large refractive index in a wavelength region near visible light, light absorption hardly occurs in the visible light region. For this reason, recently, it has been widely used for materials such as cosmetics, medicines, and paints which require ultraviolet shielding. Furthermore, by irradiating the titanium oxide with light having energy equal to or greater than its band gap, the titanium oxide is excited, and electrons are generated in the conduction band and holes are generated in the valence band. Applications for photocatalytic reactions utilizing oxidizing power are being actively developed. The applications of this titanium oxide photocatalyst are very diverse, including generation of hydrogen by decomposition of water, exhaust gas treatment, air purification, deodorization, sterilization,
Numerous applications have been developed, such as antibacterial, water treatment, and contamination prevention for lighting equipment.

【0003】このように酸化チタンの用途は多岐に渡る
が、顔料、塗料あるいは焼結材料などに酸化チタン微粒
子を利用する場合、水あるいは有機溶剤等に懸濁し分散
させて使用する場合が多く、その場合酸化チタン微粒子
の溶媒への分散性が問題となる。
As described above, titanium oxides are used in a wide variety of applications. When titanium oxide fine particles are used in pigments, paints, sintered materials, and the like, they are often used by suspending and dispersing them in water or an organic solvent. In that case, the dispersibility of the titanium oxide fine particles in the solvent becomes a problem.

【0004】特に電子材料用酸化チタンにおいて、例え
ば誘電体物質であるチタン酸バリウムは、酸化チタンと
炭酸バリウム等のバリウム化合物を原料として調製され
るが、この際、酸化チタンは溶媒中に懸濁し分散し、バ
リウム化合物と混合した後、焼結する。調製されるチタ
ン酸バリウムの粒度は、原料である酸化チタンの粒度に
主に依存するため、より微粒子のものを調製するために
は、より微粒子の原料である酸化チタンを用いなければ
ならず、近年の電子材料の超小型化に対応するため、1
μm 以下の超微粒子の酸化チタンが要求されている。し
かしながら、酸化チタンを微粒化するにともない、溶媒
への分散性が悪くなり、溶媒に懸濁した際、微粒子同士
の凝集が起こり、上記のようにチタン酸バリウムを調製
した際、微粒子の酸化チタンを用いたにも拘らず、逆に
粒径が大きくなってしまったり、さらに焼結した際、均
一に反応せず、生成物を分子レベルで見たときにチタン
とバリウムの分散が不均一であり、結果として電子材料
としての特性に悪影響を与えてしまう。
In particular, in titanium oxide for electronic materials, for example, barium titanate as a dielectric substance is prepared using titanium oxide and a barium compound such as barium carbonate as raw materials. At this time, the titanium oxide is suspended in a solvent. After being dispersed and mixed with a barium compound, it is sintered. Since the particle size of the prepared barium titanate mainly depends on the particle size of the raw material titanium oxide, in order to prepare finer particles, it is necessary to use the finer particle raw material titanium oxide, In order to respond to recent miniaturization of electronic materials, 1
Ultrafine titanium oxide particles of less than μm are required. However, as the titanium oxide becomes finer, the dispersibility in the solvent becomes worse, and when the titanium oxide is suspended in the solvent, agglomeration of the fine particles occurs. When barium titanate is prepared as described above, the fine titanium oxide Despite the use, the particle size increased conversely, and when sintered further, it did not react uniformly, and when the product was viewed at the molecular level, the dispersion of titanium and barium was uneven. As a result, the characteristics of the electronic material are adversely affected.

【0005】また、紫外線遮蔽材においては、酸化チタ
ン粒子の凝集により紫外線の遮蔽特性が悪くなるという
問題が生じる。
[0005] Further, in the ultraviolet shielding material, there is a problem that the agglutination of titanium oxide particles deteriorates the ultraviolet shielding characteristics.

【0006】従来酸化チタンの製法のうち気相酸化法と
呼ばれる方法として、四塩化チタンを気相中で酸素と接
触させ酸化させる気相酸化法、あるいは燃焼して水を生
成する水素ガス等の可燃性ガスと酸素を燃焼バーナーに
供給し火炎を形成し、この中に四塩化チタンを導入する
所謂火炎加水分解法などがある。例えば、ルチル化率が
高く、一次粒子の粒径が0.1μm 以下の酸化チタン微
粒子を製造しうる方法として、特開平6−340423
号公報には、四塩化チタン、水素及び酸素の混合ガスを
気相において燃焼させて四塩化チタンの加水分解により
酸化チタンを製造する火炎加水分解方法において、該混
合ガス中の四塩化チタン、水素及び酸素を特定のモル比
で反応させる方法が開示されている。
[0006] Among the conventional methods for producing titanium oxide, a method called a gas phase oxidation method is a gas phase oxidation method in which titanium tetrachloride is oxidized by contacting it with oxygen in a gas phase, or a hydrogen gas or the like which burns to produce water. There is a so-called flame hydrolysis method in which a combustible gas and oxygen are supplied to a combustion burner to form a flame, into which titanium tetrachloride is introduced. For example, JP-A-6-340423 discloses a method capable of producing titanium oxide fine particles having a high rutile ratio and a primary particle diameter of 0.1 μm or less.
In the flame hydrolysis method of producing titanium oxide by hydrolysis of titanium tetrachloride by burning a mixed gas of titanium tetrachloride, hydrogen and oxygen in the gas phase, the titanium tetrachloride, hydrogen And a method of reacting oxygen and oxygen in a specific molar ratio.

【0007】また、特開平8−217654号公報に
は、チタン化合物を火炎加水分解法において、水素含有
ガス中にチタン化合物を、二酸化チタン換算で50〜3
00g/m3供給し、300〜1500℃の温度で火炎加水
分解した平均粒径0.04〜0.15μm の結晶質の紫
外線遮蔽化粧料用酸化チタン微粒子が開示されている。
Japanese Patent Application Laid-Open No. Hei 8-217654 discloses that a titanium compound is incorporated into a hydrogen-containing gas by a flame hydrolysis method, wherein the titanium compound is contained in a hydrogen-containing gas in an amount of 50 to 3 in terms of titanium dioxide.
Disclosed are crystalline titanium oxide fine particles for UV shielding cosmetics having an average particle size of 0.04 to 0.15 µm, supplied at a rate of 300 g / m 3 and flame-hydrolyzed at a temperature of 300 to 1500 ° C.

【0008】一方、球状の形状を有する酸化チタンの製
法としては、一般的には、例えばチタンテトラアルコキ
シド等の有機チタン化合物を加水分解する方法、硫酸チ
タニル水溶液を加水分解させ、得られた含水酸化チタン
を焼成する方法などがある。例えば特開平5−1630
22号公報には、硫酸チタニルを170℃以上の温度
下、かつ、該温度の飽和蒸気圧以上の圧力下で加水分解
して含水二酸化チタンを得、次いで、該含水二酸化チタ
ンを400〜900℃の温度で焼成し球状アナタース型
二酸化チタンの製造方法が開示されている。さらに、特
開平8−333117号公報には、TiO2 に換算して
5.0〜100 g/lの硫酸チタニルとチタンに対するモ
ル比1.0〜3.0の過剰硫酸とを含む硫酸チタニル水
溶液に、この水溶液中の全硫酸根に対し等モル以上の尿
素を加えて、85℃以上、沸点以下に加熱し、析出した
メタチタン酸粒子を回収して650〜850℃で焼成す
ることを特徴とする、粒度が均一で比表面積の大きい多
孔質球状アナターゼ型酸化チタン粒子の製造方法が開示
されている。
On the other hand, as a method for producing titanium oxide having a spherical shape, generally, for example, a method of hydrolyzing an organic titanium compound such as titanium tetraalkoxide or a method of hydrolyzing an aqueous solution of titanyl sulfate to obtain an obtained hydrous titanium oxide There is a method of firing titanium. For example, JP-A-5-1630
No. 22 discloses that titanyl sulfate is hydrolyzed at a temperature of 170 ° C. or higher and at a pressure higher than the saturated vapor pressure at the temperature to obtain hydrous titanium dioxide, and then the hydrous titanium dioxide is heated to 400 to 900 ° C. And a method of producing spherical anatase-type titanium dioxide by firing at a temperature of 0.1 g / m. Further, JP-A-8-333117 discloses an aqueous solution of titanyl sulfate containing 5.0 to 100 g / l of titanyl sulfate in terms of TiO 2 and excess sulfuric acid in a molar ratio to titanium of 1.0 to 3.0. In addition, an equimolar or more urea is added to all the sulfate groups in the aqueous solution, heated to 85 ° C. or higher and the boiling point or lower, and the precipitated metatitanic acid particles are collected and fired at 650 to 850 ° C. A method for producing porous spherical anatase-type titanium oxide particles having a uniform particle size and a large specific surface area is disclosed.

【0009】さらに、分散性の問題を解決するために、
シリカ、アルミナのような元来分散性の高い疎水性物質
を、酸化チタンの粒子表面にコーティングすることが試
みられており、例えば特開平5−281726号公報で
は、アルミニウム塩基性塩水溶液を酸でpHを10.5
〜12.0に調節し、これに二酸化チタンスラリーを混
合し、次いでこれを酸にて中和し二酸化チタン粒子表面
に酸化アルミニウム水和物を均一に析出させる方法が開
示されている。
Further, in order to solve the problem of dispersibility,
Attempts have been made to coat a hydrophobic substance which is inherently highly dispersible, such as silica or alumina, on the surface of titanium oxide particles. For example, Japanese Patent Application Laid-Open No. 5-281726 discloses that an aqueous solution of an aluminum basic salt is acidified with an acid. pH 10.5
A method is disclosed in which the mixture is adjusted to 2.012.0, a titanium dioxide slurry is mixed with the mixture, and the mixture is neutralized with an acid to uniformly precipitate aluminum oxide hydrate on the surface of the titanium dioxide particles.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の気相酸化法あるいは火炎加水分解法等の四
塩化チタンの気相反応法で得られる酸化チタン粒子の形
状は不定形であり、粒子径に対して比表面積が大きいも
のであった。そのため、チタン酸バリウムのような電子
材料を調製するため溶媒に懸濁させた際、分散性が非常
に悪く、微粒子の酸化チタンを使用しても、逆に凝集し
てしまうという問題があった。
However, the shape of the titanium oxide particles obtained by the conventional gas phase oxidation method of titanium tetrachloride such as the above-mentioned gas phase oxidation method or flame hydrolysis method is irregular. The specific surface area was larger than the particle diameter. Therefore, when suspended in a solvent for preparing an electronic material such as barium titanate, the dispersibility is very poor, and even when fine titanium oxide particles are used, there is a problem that the particles are aggregated. .

【0011】また、球状の形状を有する酸化チタンの製
法として、チタンテトラアルコキシド等の有機チタン化
合物を加水分解する方法では、原料としてのチタンテト
ラアルコキシドが四塩化チタンから製造されるもので非
常に高価であり、結果として得られる酸化チタンのコス
トも高くなるという問題があった。硫酸チタニルを加水
分解して含水二酸化チタンを得、次いで焼成して酸化チ
タンを製造する方法は、液相で得られる含水二酸化チタ
ンを分離、乾燥してさらに焼成が必要で工程が非常に煩
雑であり、同様にコストアップになる。さらに硫酸チタ
ニルを原料に用いた場合、最終的に得られる酸化チタン
粒子中に硫酸根が残留し、焼結材料、紫外線遮蔽材料あ
るいは光触媒など特に電子材料に使用する場合、その特
性に悪影響を及ぼす。
In the method of producing titanium oxide having a spherical shape, a method of hydrolyzing an organic titanium compound such as titanium tetraalkoxide is very expensive since titanium tetraalkoxide as a raw material is produced from titanium tetrachloride. However, there is a problem that the cost of the resulting titanium oxide is also increased. The method of producing titanium oxide by hydrolyzing titanyl sulfate to obtain hydrous titanium dioxide and then calcining it is necessary to separate and dry the hydrous titanium dioxide obtained in the liquid phase, and to further bake it, which requires a very complicated process. Yes, it also increases costs. Furthermore, when titanyl sulfate is used as a raw material, a sulfate group remains in the titanium oxide particles finally obtained, which adversely affects the properties of the sintered material, ultraviolet shielding material or photocatalyst, especially when used for electronic materials. .

【0012】さらに酸化チタン粒子表面の異物質による
コーティングというような酸化チタン以外の成分を用い
るため、酸化チタン本来の特性が変化したり、特に電子
材料にはその特性に悪影響を及ぼすということで適用は
難しい。
Further, since components other than titanium oxide, such as coating of the surface of titanium oxide particles with a foreign substance, are used, the original characteristics of titanium oxide are changed, and in particular, the characteristics are adversely affected for electronic materials. Is difficult.

【0013】従って、本発明の目的は、分散性の優れ
た、球状でかつ高純度の酸化チタン微粒子でまた低コス
トのものを提供することにある。
Accordingly, an object of the present invention is to provide spherical and high-purity titanium oxide fine particles having excellent dispersibility and low cost.

【0014】[0014]

【課題を解決するための手段】かかる実情において、本
発明者は鋭意検討を行った結果、四塩化チタンの気相反
応法という、低コストで酸化チタンの製造が可能な方法
における酸化チタン微粒子について鋭意研究を重ねた結
果、優れた分散性を有し、球状でかつ高純度の電子材料
のような焼結材料、紫外線遮蔽材料あるいは光触媒など
に好適な酸化チタン微粒子を見出し、本発明を完成する
に至った。
Under such circumstances, the present inventors have conducted intensive studies and have found that titanium oxide fine particles in a method capable of producing titanium oxide at low cost, such as a gas phase reaction method of titanium tetrachloride. As a result of diligent research, they have found titanium oxide fine particles having excellent dispersibility, and suitable for a sintered material such as a spherical and high-purity electronic material, an ultraviolet shielding material, or a photocatalyst, and completed the present invention. Reached.

【0015】すなわち、本発明は、四塩化チタンの気相
反応で得られ、SEM写真より測定した平均粒径を
1 、BET比表面積より求めた平均粒径をD2 とした
ときのD 1 /D2 が1.0〜1.25であることを特徴
とする球状酸化チタン微粒子を提供するものである。
[0015] That is, the present invention relates to a gas phase of titanium tetrachloride.
The average particle size obtained from the reaction and measured from the SEM photograph is
D1, The average particle size determined from the BET specific surface area is DTwoMade
Time D 1/ DTwoIs 1.0 to 1.25
And spherical titanium oxide particles.

【0016】[0016]

【発明の実施の形態】以下、本発明をさらに詳しく説明
する。本発明の球状酸化チタン微粒子は、SEM写真よ
り測定した平均粒径をD1 、BET比表面積より求めた
平均粒径をD 2 としたときのD1 /D2 が、通常1.0
〜1.25、好ましくは1.0〜1.23、さらに好ま
しくは1.0〜1.20である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.
I do. The spherical titanium oxide fine particles of the present invention are
The average particle size measured is1, Determined from the BET specific surface area
Average particle size is D TwoD when1/ DTwoBut usually 1.0
~ 1.25, preferably 1.0 ~ 1.23, more preferably
Or 1.0 to 1.20.

【0017】上記の式においてBET比表面積より求め
た平均粒径D2 は、粒子を真球と仮定した場合の平均粒
径であり、D1 /D2 の値が1に近いほど粒子の形状が
真球状であることを表しており、さらに、粒子表面が平
滑で、粒子内部の細孔容積が小さいことを意味するもの
である。従って、本発明の酸化チタン微粒子は、従来の
気相法で得られたものよりも球状であり、表面が平滑で
さらに細孔容積が小さい。これによって、同じ粒径でも
比表面積が小さいので、粒子同士の凝集力が小さく、溶
媒に懸濁させた際の分散性に優れている。さらに、細孔
容積が小さいため、焼結した際、収縮が小さく焼結特性
にすぐれている。
The average particle diameter D 2 obtained from the BET specific surface area in the above equation is an average particle diameter assuming that the particles are true spheres. As the value of D 1 / D 2 approaches 1, the particle shape becomes larger. Indicates that the particle is a true sphere, and that the particle surface is smooth and the pore volume inside the particle is small. Therefore, the titanium oxide fine particles of the present invention are more spherical than those obtained by the conventional gas phase method, have a smooth surface, and have a smaller pore volume. Thereby, since the specific surface area is small even with the same particle size, the cohesive force between the particles is small, and the dispersibility when suspended in a solvent is excellent. Furthermore, since the pore volume is small, shrinkage upon sintering is small and the sintering characteristics are excellent.

【0018】なお、一般的に、気相法において反応後の
酸化チタン粒子表面あるいは粒子内部には、塩素及び塩
化水素の塩素分が付着あるいは吸着している。この酸化
チタン中の塩素分は、特に電子材料に使用する場合、そ
の特性に悪影響を与えるので、できる限り除去する必要
があり、通常酸化チタン微粒子が生成した後、スチーム
処理や加熱処理あるいはアルコール処理などによって、
この塩素分を除去している。従来の気相法による酸化チ
タンは、より微粒化すればするほど、粒子の比表面積が
大きくなり、その結果粒子に吸着する塩素分も多くな
り、許容しうるレベルまで塩素分を除去することは困難
であった。これに対し、本発明の球状酸化チタン微粒子
は、粒子表面が比較的平滑でかつ細孔容積が小さいた
め、従来の酸化チタン粒子に比べ、従来と同じ方法によ
っても容易に塩素分を除去することができ、結果として
より塩素分の少ない高純度の酸化チタン微粒子の製造が
可能となった。
Generally, on the surface or inside of the titanium oxide particles after the reaction in the gas phase method, chlorine and chlorine content of hydrogen chloride are attached or adsorbed. The chlorine content in the titanium oxide, particularly when used in electronic materials, has an adverse effect on its properties, so it is necessary to remove it as much as possible. Usually, after titanium oxide fine particles are formed, steam treatment, heat treatment or alcohol treatment is performed. Depending on
This chlorine is removed. In the case of titanium oxide produced by the conventional gas phase method, the finer the particles, the larger the specific surface area of the particles, and as a result, the greater the amount of chlorine adsorbed on the particles, and it is not possible to remove chlorine to an acceptable level. It was difficult. On the other hand, the spherical titanium oxide fine particles of the present invention have a relatively smooth particle surface and a small pore volume, so that chlorine can be easily removed by the same method as the conventional one, as compared with the conventional titanium oxide particles. As a result, high-purity titanium oxide fine particles with less chlorine content can be produced.

【0019】また本発明の球状酸化チタン微粒子は必ず
しも真球状である必要はなく、略球状であり、楕円ある
いは粒子表面に凹凸があってもよく、その円形度係数が
0.7〜1.0である。該円形度係数は、SEM写真の
画像解析により下記式(1)から求められるものであ
る。 円形度係数=4πL1 /(L2 2 (1) (式中、L1 は粒子の投影面積、L2 は粒子の投影の輪
郭長を示す。)
The spherical titanium oxide fine particles of the present invention need not necessarily be perfectly spherical, but may be substantially spherical, may be elliptical or have irregularities on the particle surface, and have a circularity coefficient of 0.7 to 1.0. It is. The circularity coefficient is determined from the following equation (1) by image analysis of a SEM photograph. Circularity coefficient = 4πL 1 / (L 2 ) 2 (1) (where L 1 represents the projected area of the particle, and L 2 represents the contour length of the projected particle).

【0020】本発明の球状酸化チタン微粒子の粒径、比
表面積などの粒子性状については、D1 /D2 及び円形
度係数が上記特定範囲内にあればよく、その用途により
異なり一概には特定できないが、平均粒径D1 は、好ま
しくは0.01〜5μm 、より好ましくは0.05〜2
μm 、さらに好ましくは0.1〜1μm であり、比表面
積は、好ましくは0.5〜100m2/g、より好ましくは
1〜50m2/g、さらに好ましくは2〜30m2/gである。
また、結晶型についても一概に特定はできず、その用途
により調整すればよいが、例えば焼結材料、顔料あるい
は紫外線遮蔽材料用ではルチル型のほうが好ましく、通
常ルチル化率は10〜100%であり、一方光触媒用と
してはアナターゼ型のほうが好ましい。
The particle properties such as the particle diameter and specific surface area of the spherical titanium oxide fine particles of the present invention may be such that D 1 / D 2 and the circularity coefficient are within the above-mentioned specific ranges. can not but the average particle diameter D 1 is preferably 0.01 to 5 [mu] m, more preferably 0.05 to 2
μm, more preferably 0.1 to 1 μm, and the specific surface area is preferably 0.5 to 100 m 2 / g, more preferably 1 to 50 m 2 / g, and still more preferably 2 to 30 m 2 / g.
In addition, the crystal type cannot be specified unconditionally, and may be adjusted according to the application. For example, a rutile type is preferable for a sintered material, a pigment or an ultraviolet shielding material, and the rutile ratio is usually 10 to 100%. On the other hand, an anatase type is preferable for photocatalysts.

【0021】さらに、本発明の酸化チタン微粒子は、不
純物として酸化チタン微粒子中に含まれるFe、Al 、
SiおよびNaがそれぞれ20ppm 未満であり、かつC
l が200ppm 未満である。望ましくは酸化チタン微粒
子に含まれるFe、Al 、SiおよびNaがそれぞれ1
0ppm 未満であり、Cl が100ppm 未満、さらに望ま
しくは50ppm 未満である。このように本発明の酸化チ
タン微粒子は、気相法によって製造されるので、液相法
で得られる酸化チタンのような不純物元素が混入また残
留することがなく、従来技術に見られるようなシリカあ
るいはアルミナのごとき疎水性物質を表面コーティング
するなどの他成分による処理を施しておらず、酸化チタ
ン以外の他成分を殆ど含有していない高純度の酸化チタ
ン微粒子であるので、電子材料、紫外線遮蔽材料あるい
は光触媒に利用した際、酸化チタン本来の特性が変化せ
ず優れた効果を得ることができる。
Further, the titanium oxide fine particles of the present invention contain Fe, Al,
Si and Na are each less than 20 ppm, and C
l is less than 200 ppm. Desirably, each of Fe, Al, Si and Na contained in the titanium oxide fine particles is 1
It is less than 0 ppm and Cl is less than 100 ppm, more preferably less than 50 ppm. As described above, since the titanium oxide fine particles of the present invention are produced by a gas phase method, they do not contain or remain impurity elements such as titanium oxide obtained by a liquid phase method, and silica as in the prior art is used. Alternatively, it is a high-purity titanium oxide fine particle that has not been treated with other components such as surface coating of a hydrophobic substance such as alumina and contains almost no other components other than titanium oxide. When used as a material or a photocatalyst, excellent effects can be obtained without changing the original properties of titanium oxide.

【0022】本発明の球状酸化チタン微粒子は、四塩化
チタンの気相反応で得られるものであるが、四塩化チタ
ンを気相中で酸素と接触させ酸化させる気相酸化法、あ
るいは燃焼して水を生成する水素ガス等の可燃性ガスと
酸素を燃焼バーナーに供給し火炎を形成し、この中に四
塩化チタンを導入する火炎加水分解法などの方法により
製造できる。本発明の酸化チタン微粒子は球状である
が、このような球状の粒子を気相酸化反応で形成するた
めには、酸化チタン粒子が形成される反応温度をより高
くし粒子生成反応をより速く行う必要がある。そのため
本発明では、四塩化チタンを酸素あるいは水(水蒸気)
と接触し酸化反応させる際、水素あるいはプロパンなど
を添加することが好ましい。好ましい原料成分の組み合
わせとしては、1)四塩化チタン、酸素及び水素、2)
四塩化チタン、酸素、水素及び水であり、これらの成分
を接触させ気相反応させる。
The spherical titanium oxide fine particles of the present invention are obtained by a gas phase reaction of titanium tetrachloride. A flammable gas such as hydrogen gas or the like that generates water and oxygen are supplied to a combustion burner to form a flame, and the flame can be produced by a method such as a flame hydrolysis method in which titanium tetrachloride is introduced. Although the titanium oxide fine particles of the present invention are spherical, in order to form such spherical particles by a gas phase oxidation reaction, the reaction temperature at which the titanium oxide particles are formed is increased, and the particle generation reaction is performed more quickly. There is a need. Therefore, in the present invention, titanium tetrachloride is converted to oxygen or water (steam).
It is preferable to add hydrogen, propane, or the like during the oxidation reaction by contacting with hydrogen. Preferred combinations of raw material components include 1) titanium tetrachloride, oxygen and hydrogen, 2)
These are titanium tetrachloride, oxygen, hydrogen, and water, and these components are brought into contact to cause a gas phase reaction.

【0023】上記各成分を接触し反応させる際、上記各
成分の反応部への供給量比は、各供給ガスが標準状態で
あると仮定したとき、四塩化チタンガス1l に対し、酸
素が1〜30l 、好ましくは2〜20l 、特に好ましく
は4〜10l であり、水素が0.1〜10l 、好ましく
は0.2〜5l 、特に好ましくは0.3〜1.0l であ
り、水蒸気が0.05〜1.0l 、好ましくは0.1〜
0.5l である。
When the above-mentioned components are brought into contact with each other and reacted, the supply ratio of the above-mentioned components to the reaction section is as follows, assuming that each supply gas is in a standard state, and that 1 liter of titanium tetrachloride gas corresponds to 1 liter of oxygen. From 30 to 30, preferably from 2 to 20 l, particularly preferably from 4 to 10 l, from 0.1 to 10 l, preferably from 0.2 to 5 l, particularly preferably from 0.3 to 1.0 l of hydrogen and from 0 to 10 l of steam. 0.05 to 1.0 l, preferably 0.1 to 1.0 l
0.5 l.

【0024】上記各原料ガスの供給量は、反応スケール
あるいは各ガスを供給するノズル径等により異なるので
適宜設定するが、反応部での各ガス、特に四塩化チタン
ガスの供給速度は乱流域になるように設定することが望
ましい。
The supply amount of each raw material gas varies depending on the reaction scale, the diameter of the nozzle for supplying each gas, and the like, and is appropriately set. It is desirable to set so that

【0025】また、前記四塩化チタンの気相酸化反応に
おいて、反応部で生成する酸化チタン微粒子の濃度が高
いと、粒子同士の衝突により粒子が成長し凝集してしま
い、また形状も不定形となってしまう。従って、反応部
で生成する酸化チタン微粒子の反応部の容積に対する濃
度はできるだけ低くし、従来の気相反応法における反応
条件に比べより稀薄状態で反応することが好ましい。そ
のために供給する上記の各成分をアルゴンや窒素のごと
き不活性ガスで希釈し反応部に供給し反応させる。特に
反応部、具体的には四塩化チタンと酸素が反応し酸化チ
タンが生成する火炎、における四塩化チタンガス濃度や
反応部における各成分の分圧は重要であり、これらの成
分が稀薄になるように供給する。このときの四塩化チタ
ンガスの濃度は、反応部に供給される全ガス量のうち通
常20容量%以下であることが望ましく、特に望ましく
は3〜16容量%である。また、反応部に供給される全
ガス量のうち、酸素は、80容量%以下、好ましくは4
0〜70容量%であり、水素は、20容量%以下、好ま
しくは3〜10容量%である。さらに、これらのガス成
分を希釈する窒素ガス等の不活性ガス成分の反応部に供
給される全ガス量における濃度(分圧)は、通常0〜5
0容量%、好ましくは10〜30容量%である。
In the gas phase oxidation reaction of titanium tetrachloride, if the concentration of titanium oxide fine particles generated in the reaction section is high, the particles grow and agglomerate due to collision of the particles, and the shape becomes irregular. turn into. Therefore, it is preferable that the concentration of the titanium oxide fine particles generated in the reaction section relative to the volume of the reaction section is as low as possible, and the reaction is performed in a more dilute state than the reaction conditions in the conventional gas phase reaction method. For this purpose, each of the above components to be supplied is diluted with an inert gas such as argon or nitrogen, supplied to a reaction section, and reacted. In particular, the titanium tetrachloride gas concentration and the partial pressure of each component in the reaction section are important in the reaction section, specifically in a flame in which titanium tetrachloride reacts with oxygen to generate titanium oxide, and these components are diluted. Supply as follows. At this time, the concentration of the titanium tetrachloride gas is usually preferably 20% by volume or less, more preferably 3 to 16% by volume, of the total gas amount supplied to the reaction section. In the total gas amount supplied to the reaction section, oxygen is 80% by volume or less, preferably 4% by volume.
0 to 70% by volume, and hydrogen is 20% by volume or less, preferably 3 to 10% by volume. Further, the concentration (partial pressure) of the inert gas component such as nitrogen gas for diluting these gas components in the total gas amount supplied to the reaction section is usually 0 to 5%.
It is 0% by volume, preferably 10 to 30% by volume.

【0026】上記各成分のうち特に四塩化チタンガスお
よび酸素は窒素等の不活性ガスで希釈し反応部に供給す
ることが望ましく、その希釈率は、四塩化チタンは、標
準状態であると仮定したとき四塩化チタンガス1l に対
し、不活性ガス0.1〜10l 、好ましくは0.3〜1
l である。また酸素の希釈率は、標準状態であると仮定
したとき酸素ガス1l に対し、不活性ガス0.1〜10
l 、好ましくは0.3〜1l である。
It is desirable that titanium tetrachloride gas and oxygen among the above components are diluted with an inert gas such as nitrogen and supplied to the reaction section. The dilution ratio is based on the assumption that titanium tetrachloride is in a standard state. Then, 0.1 to 10 liters of inert gas, preferably 0.3 to 1 liters per 1 liter of titanium tetrachloride gas is used.
l. Further, the dilution ratio of oxygen is as follows.
l, preferably from 0.3 to 1 l.

【0027】上記のように各成分を反応させ酸化チタン
微粒子を生成させるが、反応部において生成した酸化チ
タン微粒子は、反応温度による粒子同士の凝集を防ぐた
め、冷却することが望ましい。通常、反応部の後工程に
冷却工程を設けることにより、生成酸化チタン微粒子を
冷却する。具体的には反応部のあとに冷却ジャケットを
具備した冷却部を設ける。また、この冷却部では不十分
な場合、空気または窒素等の不活性ガスを冷却ガスとし
て、反応部(火炎)のあとに挿入し、生成した酸化チタ
ン微粒子を急冷することが望ましい。このとき挿入する
空気あるいは窒素等の冷却ガスは、標準状態であると仮
定したとき、供給する四塩化チタンガス1l に対して、
1l 以上、好ましくは3l 以上、特に好ましくは5l 以
上である。
As described above, titanium oxide fine particles are produced by reacting the respective components, and the titanium oxide fine particles produced in the reaction section are preferably cooled in order to prevent aggregation of the particles due to the reaction temperature. Usually, the produced titanium oxide fine particles are cooled by providing a cooling step after the reaction section. Specifically, a cooling section having a cooling jacket is provided after the reaction section. If the cooling section is not sufficient, it is desirable to insert the air or an inert gas such as nitrogen as a cooling gas after the reaction section (flame) to rapidly cool the generated titanium oxide fine particles. The cooling gas such as air or nitrogen inserted at this time is assumed to be in a standard state.
It is at least 1 l, preferably at least 3 l, particularly preferably at least 5 l.

【0028】以下本発明の球状酸化チタン微粒子を製造
する具体的なプロセスの一例を示す。先ず、液状の四塩
化チタンを予め加熱し、気化させ、必要に応じて窒素ガ
スで希釈し反応炉に導入する。このとき水素ガスを四塩
化チタンと予め混合するかあるいは四塩化チタンとは別
に水素ガスを同時に反応炉に導入する。四塩化チタンの
導入と同時に、酸素ガス及び/又は水蒸気を必要に応じ
て窒素ガスで希釈して反応炉に導入し、酸化反応を行う
が反応温度は通常500〜1200℃、好ましくは80
0〜1100℃である。本発明の球状酸化チタン微粒子
を得るためにはこのように比較的高温で酸化反応を行う
ことが望ましい。
An example of a specific process for producing the spherical titanium oxide fine particles of the present invention will be described below. First, liquid titanium tetrachloride is heated in advance, vaporized, diluted with nitrogen gas as required, and introduced into a reaction furnace. At this time, hydrogen gas is preliminarily mixed with titanium tetrachloride, or hydrogen gas is simultaneously introduced into the reactor separately from titanium tetrachloride. Simultaneously with the introduction of titanium tetrachloride, oxygen gas and / or steam is diluted with nitrogen gas, if necessary, and introduced into a reaction furnace to perform an oxidation reaction. The reaction temperature is usually 500 to 1200 ° C., preferably 80 ° C.
0 to 1100 ° C. In order to obtain the spherical titanium oxide fine particles of the present invention, it is desirable to carry out the oxidation reaction at such a relatively high temperature.

【0029】上記の酸化反応により酸化チタン微粒子を
生成させ、その後該酸化チタン微粒子を冷却する。通常
冷却ジャケットを具備した冷却槽等が用いられ、同時に
空気あるいは窒素ガス等の不活性ガスを生成酸化チタン
微粒子と接触させ急冷する。
The titanium oxide fine particles are generated by the above oxidation reaction, and then the titanium oxide fine particles are cooled. Usually, a cooling tank equipped with a cooling jacket or the like is used, and at the same time, an inert gas such as air or nitrogen gas is brought into contact with the generated titanium oxide fine particles and rapidly cooled.

【0030】その後生成した酸化チタン微粒子を捕集
し、酸化チタン微粒子中に残留する塩素ガスを、真空加
熱、空気あるいは窒素ガス雰囲気中での加熱あるいはス
チーム処理等の加熱処理あるいはアルコールとの接触処
理により除去し、本発明の球状度酸化チタン微粒子を得
ることができる。
Thereafter, the generated titanium oxide fine particles are collected, and the chlorine gas remaining in the titanium oxide fine particles is subjected to heat treatment such as vacuum heating, heating in an air or nitrogen gas atmosphere, steam treatment, or contact treatment with alcohol. To obtain titanium oxide fine particles having a spherical degree of the present invention.

【0031】本発明の球状酸化チタン微粒子は、焼結材
料、顔料、紫外線遮蔽材料あるいは光触媒など 溶媒に
分散して使用するあらゆる用途に利用可能であり、特に
コンデンサなどの電子材料用として有効である。
The spherical titanium oxide fine particles of the present invention can be used for all applications in which they are dispersed in a solvent such as a sintering material, a pigment, an ultraviolet shielding material or a photocatalyst, and are particularly effective for electronic materials such as capacitors. .

【0032】[0032]

【実施例】以下、本発明を実施例および比較例によりさ
らに具体的に説明する。なお、これは単に例示であっ
て、本発明を制限するものではない。
The present invention will be more specifically described below with reference to examples and comparative examples. Note that this is merely an example and does not limit the present invention.

【0033】本明細書において、酸化チタン微粒子の平
均粒径(SEM径)、円形度係数、比表面積および不純
物は以下の方法により測定した。 1)平均粒径D1 :電子顕微鏡(SEM)により微粒子
を観察し、そのSEM画像を画像解析装置(東洋紡
(株)製 画像解析システム Image Analyzer V10)に
取り込み、画像を円と仮定し面積より換算した円相当径
を測定した(解析粒子数:約200個。) 2)円形度係数:上記SEM画像より東洋紡績(株)製
画像解析装置 V10型により測定した。 3)BET比表面積:BET法により測定した。 4)平均粒径D2 :BET比表面積及び酸化チタンの真
比重から平均粒径を算出した。 5)不純物の定量:酸化チタン中のFe,Al ,Siお
よびNa成分:原子吸光法により測定した。酸化チタン
中のCl 成分:吸光光度法により測定した。
In the present specification, the average particle diameter (SEM diameter), circularity coefficient, specific surface area and impurities of titanium oxide fine particles were measured by the following methods. 1) Average particle diameter D 1 : Fine particles are observed by an electron microscope (SEM), the SEM image is taken into an image analyzer (Image Analyzer V10, manufactured by Toyobo Co., Ltd.), and the image is assumed to be a circle. The converted circle equivalent diameter was measured (number of analyzed particles: about 200). 2) Circularity coefficient: Measured from the above SEM image using an image analyzer V10 manufactured by Toyobo Co., Ltd. 3) BET specific surface area: measured by the BET method. 4) Average particle size D 2 : The average particle size was calculated from the BET specific surface area and the true specific gravity of titanium oxide. 5) Quantification of impurities: Fe, Al, Si and Na components in titanium oxide: Measured by atomic absorption method. Cl component in titanium oxide: measured by an absorption spectrophotometry.

【0034】実施例1 四塩化チタンを気相中で酸素及び水素と接触させ酸化さ
せる気相法により酸化チタン微粒子を調製した。まず、
内径400mmの多重管バーナーを上部に具備した気相反
応管において、多重管バーナーに、約800℃に予熱し
気化させた四塩化チタン及び水素ガスの混合ガスを供給
し、一方別の供給ノズルより800℃に予熱した酸素ガ
スを供給し、気相反応管内で約1000℃にて酸化反応
させ、酸化チタン微粒子を生成させた。このとき四塩化
チタンは60l/分、水素ガスは40l/分、酸素ガスは3
80l/分でそれぞれ供給した。その後、気相反応管の底
部から空気を400l/分で挿入し、生成した酸化チタン
微粒子を冷却した。その後、得られた酸化チタン微粒子
窒素雰囲気中で350℃〜400℃で2時間加熱処理し
た。このようにして得られた球状酸化チタン微粒子の平
均粒径D1 、円形度係数、比表面積、平均粒径D2 、D
1 /D2 及び不純物の含量を表1に示す。
Example 1 Titanium oxide fine particles were prepared by a gas phase method in which titanium tetrachloride was contacted with oxygen and hydrogen in a gas phase and oxidized. First,
In a gas-phase reaction tube equipped with a multi-tube burner having an inner diameter of 400 mm, a mixed gas of titanium tetrachloride and hydrogen gas preheated and vaporized to about 800 ° C. is supplied to the multi-tube burner, and from another supply nozzle Oxygen gas preheated to 800 ° C. was supplied and oxidized at about 1000 ° C. in a gas phase reaction tube to generate titanium oxide fine particles. At this time, titanium tetrachloride was 60 l / min, hydrogen gas was 40 l / min, and oxygen gas was 3 l / min.
Each was fed at 80 l / min. Thereafter, air was inserted at a rate of 400 l / min from the bottom of the gas phase reaction tube to cool the generated titanium oxide fine particles. Thereafter, heat treatment was performed at 350 ° C. to 400 ° C. for 2 hours in a nitrogen atmosphere of the obtained titanium oxide fine particles. The average particle size D 1 , circularity coefficient, specific surface area, average particle size D 2 , D
Table 1 shows 1 / D 2 and the content of impurities.

【0035】実施例2 まず、内径400mmの多重管バーナーを上部に具備した
気相反応管において、多重管バーナーに、約800℃に
予熱し気化させた四塩化チタン、水素ガス及び窒素ガス
の混合ガスを供給し、一方別の供給ノズルより800℃
に予熱した酸素ガス及び窒素ガスの混合ガスを供給し、
気相反応管内で約1000℃にて酸化反応させ、酸化チ
タン微粒子を生成させた。このとき四塩化チタン混合ガ
スは、四塩化チタン60l/分、水素ガス40l/分、窒素
ガス20l/分、酸素380l/分と窒素ガス120l/分と
からなる酸素混合ガス500l/分をそれぞれ供給した。
その後、気相反応管の底部から冷却ガスとして空気を4
00l/分で挿入し、生成した酸化チタン微粒子を冷却し
た。その後、得られた酸化チタン微粒子窒素雰囲気中で
350℃〜400℃で2時間加熱処理した。このように
して得られた球状酸化チタン微粒子の平均粒径D1 、円
形度係数、比表面積、平均粒径D2 、D1 /D2 及び不
純物の含量を表1に示す。
Example 2 First, in a gas-phase reaction tube equipped with a multi-tube burner having an inner diameter of 400 mm at the top, a mixture of titanium tetrachloride, hydrogen gas, and nitrogen gas preheated and vaporized to about 800 ° C. in the multi-tube burner. Supply gas, while 800 ° C from another supply nozzle
Supply a pre-heated mixed gas of oxygen gas and nitrogen gas to
An oxidation reaction was performed at about 1000 ° C. in a gas-phase reaction tube to generate titanium oxide fine particles. At this time, the titanium tetrachloride mixed gas is supplied at a rate of 60 l / min of titanium tetrachloride, 40 l / min of hydrogen gas, 20 l / min of nitrogen gas, 500 l / min of an oxygen mixed gas composed of 380 l / min of oxygen and 120 l / min of nitrogen gas, respectively. did.
After that, air was supplied as cooling gas from the bottom of the gas-phase reaction tube.
At a rate of 00 l / min, the generated titanium oxide fine particles were cooled. Thereafter, heat treatment was performed at 350 ° C. to 400 ° C. for 2 hours in a nitrogen atmosphere of the obtained titanium oxide fine particles. Table 1 shows the average particle diameter D 1 , the circularity coefficient, the specific surface area, the average particle diameters D 2 , D 1 / D 2, and the content of impurities of the spherical titanium oxide fine particles thus obtained.

【0036】実施例3 冷却ガスとして空気を500l/分で挿入した以外は、実
施例2と同様にして酸化チタン微粒子を調製した。得ら
れた球状酸化チタン微粒子の平均粒径D1 、円形度係
数、比表面積、平均粒径D2 、D1 /D2 及び不純物の
含量を表1に示す。また、得られた球状酸化チタン微粒
子のSEM写真を図1に示す。
Example 3 Titanium oxide fine particles were prepared in the same manner as in Example 2 except that air was inserted at 500 l / min as a cooling gas. Table 1 shows the average particle diameter D 1 , circularity coefficient, specific surface area, average particle diameter D 2 , D 1 / D 2 and the content of impurities of the obtained spherical titanium oxide fine particles. FIG. 1 shows an SEM photograph of the obtained spherical titanium oxide fine particles.

【0037】実施例4 冷却ガスとして空気を800l/分で挿入した以外は、実
施例2と同様にして酸化チタン微粒子を調製した。得ら
れた球状酸化チタン微粒子の平均粒径D1 、円形度係
数、比表面積、平均粒径D2 、D1 /D2 及び不純物の
含量を表1に示す。
Example 4 Titanium oxide fine particles were prepared in the same manner as in Example 2 except that air was inserted at 800 l / min as a cooling gas. Table 1 shows the average particle diameter D 1 , circularity coefficient, specific surface area, average particle diameter D 2 , D 1 / D 2 and the content of impurities of the obtained spherical titanium oxide fine particles.

【0038】実施例5 酸素混合ガス500l/分に代えて、酸素ガス240l/分
と窒素ガス120l/分とからなる酸素混合ガス360l/
分を用いた以外は、実施例4と同様にして酸化チタン微
粒子を調製した。得られた球状酸化チタン微粒子の平均
粒径D1 、円形度係数、比表面積、平均粒径D2 、D1
/D2 及び不純物の含量を表1に示す。
Embodiment 5 Instead of 500 l / min of oxygen mixed gas, 360 l / oxygen mixed gas consisting of 240 l / min of oxygen gas and 120 l / min of nitrogen gas was used.
The titanium oxide fine particles were prepared in the same manner as in Example 4 except that the amount of titanium oxide was used. The average particle diameter D 1 , circularity coefficient, specific surface area, average particle diameters D 2 , D 1 of the obtained spherical titanium oxide fine particles
Table 1 shows / D 2 and the content of impurities.

【0039】実施例6 四塩化チタンの供給量を100l/分とし四塩化チタンを
窒素ガスで希釈しなかった以外は実施例4と同様にして
酸化チタン微粒子を調製した。得られた球状酸化チタン
微粒子の平均粒径D1 、円形度係数、比表面積、平均粒
径D2 、D1 /D2 及び不純物の含量を表1に示す。
Example 6 Titanium oxide fine particles were prepared in the same manner as in Example 4 except that the supply amount of titanium tetrachloride was 100 l / min and the titanium tetrachloride was not diluted with nitrogen gas. Table 1 shows the average particle diameter D 1 , circularity coefficient, specific surface area, average particle diameter D 2 , D 1 / D 2 and the content of impurities of the obtained spherical titanium oxide fine particles.

【0040】比較例1 水素ガスを使用しなかった以外は実施例2と同様にして
酸化チタン微粒子を調製した。得られた酸化チタン微粒
子の平均粒径D1 、円形度係数、比表面積、平均粒径D
2 、D1 /D2 及び不純物の含量を表1に示す。また、
得られた酸化チタン微粒子のSEM写真を図2に示す。
Comparative Example 1 Titanium oxide fine particles were prepared in the same manner as in Example 2 except that no hydrogen gas was used. Average particle diameter D 1 , circularity coefficient, specific surface area, average particle diameter D of the obtained titanium oxide fine particles
Table 1 shows the contents of D 2 , D 1 / D 2 and impurities. Also,
FIG. 2 shows an SEM photograph of the obtained titanium oxide fine particles.

【0041】比較例2 まず、内径400mmの多重管バーナーを上部に具備した
気相反応管において、多重管バーナーに、約800℃に
予熱し気化させた四塩化チタンガスを供給し、一方別の
供給ノズルより800℃に予熱した酸素ガス及び水蒸気
を供給し、気相反応管内で約1000℃にて酸化反応さ
せ、酸化チタン微粒子を生成させた。このとき四塩化チ
タンは200l/分、酸素ガスは380l/分、水蒸気は1
70l/分でそれぞれ供給した。その後、気相反応管の底
部から空気を100l/分で挿入し、生成した酸化チタン
微粒子を冷却した。その後、得られた酸化チタン微粒子
窒素雰囲気中で350℃〜400℃で2時間加熱処理し
た。このようにして得られた酸化チタン微粒子の平均粒
径D1 、円形度係数、比表面積、平均粒径D2 、D1
2 及び不純物の含量を表1に示す。
Comparative Example 2 First, in a gas-phase reaction tube equipped with a multi-tube burner having an inner diameter of 400 mm at the top, titanium tetrachloride gas preheated to about 800 ° C. and vaporized was supplied to the multi-tube burner. Oxygen gas and water vapor preheated to 800 ° C. were supplied from a supply nozzle, and an oxidation reaction was performed at about 1000 ° C. in a gas phase reaction tube to generate titanium oxide fine particles. At this time, titanium tetrachloride was 200 l / min, oxygen gas was 380 l / min, and water vapor was 1 l / min.
Each was fed at 70 l / min. Thereafter, air was inserted at a rate of 100 l / min from the bottom of the gas phase reaction tube to cool the generated titanium oxide fine particles. Thereafter, heat treatment was performed at 350 ° C. to 400 ° C. for 2 hours in a nitrogen atmosphere of the obtained titanium oxide fine particles. The average particle diameter D 1 , circularity coefficient, specific surface area, average particle diameter D 2 , D 1 / D of the titanium oxide fine particles thus obtained are described.
The content of D 2 and impurities shown in Table 1.

【0042】[0042]

【表1】 ※表中「10>」は含量が10ppm 未満であることを示す。[Table 1] * "10>" in the table indicates that the content is less than 10 ppm.

【0043】[0043]

【発明の効果】以上説明したように、本発明の酸化チタ
ン微粒子は、従来の気相法による酸化チタンとは異なり
SEM写真より測定した平均粒径をD1 、BET比表面
積より求めた平均粒径をD2 としたときのD1 /D2
1.0〜1.25である、形状が球状で、かつ不純物成
分の少ない高純度の酸化チタン微粒子であり、電子材料
や光触媒としての用途に有効である。
As described above, the titanium oxide fine particles of the present invention are different from the titanium oxide produced by the conventional gas phase method in that the average particle diameter measured from SEM photographs is D 1 , and the average particle diameter determined from the BET specific surface area. High-purity titanium oxide fine particles having a spherical shape and a small amount of impurity components with a ratio of D 1 / D 2 of 1.0 to 1.25 when the diameter is D 2 , and is used as an electronic material or a photocatalyst. It is effective for

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例3で調製された酸化チタン微粒子のSE
M写真である。
FIG. 1 shows SE of titanium oxide fine particles prepared in Example 3.
It is an M photograph.

【図2】比較例1で調製された酸化チタン微粒子のSE
M写真である。
FIG. 2 shows SE of titanium oxide fine particles prepared in Comparative Example 1.
It is an M photograph.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 四塩化チタンの気相反応で得られ、SE
M写真より測定した平均粒径をD1 、BET比表面積よ
り求めた平均粒径をD2 としたときのD1 /D2 が1.
0〜1.25であることを特徴とする球状酸化チタン微
粒子。
1. A method comprising the steps of:
D 1 / D 2 is 1 when the average particle size of the average particle diameter measured from M photographs obtained from D 1, BET specific surface area was D 2.
0 to 1.25, spherical titanium oxide fine particles.
【請求項2】 下記(1)式で表される円形度係数が
0.7〜1.0であることを特徴とする請求項1記載の
球状酸化チタン微粒子。 円形度係数=4πL1 /(L2 2 (1) (式中、L1 は粒子の投影面積、L2 は粒子の投影の輪
郭長を示す。)
2. The spherical titanium oxide fine particles according to claim 1, wherein a circularity coefficient represented by the following formula (1) is 0.7 to 1.0. Circularity coefficient = 4πL 1 / (L 2 ) 2 (1) (where L 1 represents the projected area of the particle, and L 2 represents the contour length of the projected particle).
【請求項3】 平均粒径D1 が0.01〜5μm である
ことを特徴とする請求項1又は2記載の球状酸化チタン
微粒子。
3. The spherical titanium oxide fine particles according to claim 1, wherein the average particle diameter D 1 is 0.01 to 5 μm.
【請求項4】 前記酸化チタン微粒子に含まれるFe、
Al、SiおよびNaがそれぞれ20ppm 未満でありか
つClが200ppm 未満であることを特徴とする請求項
1〜3のいずれか1項記載の球状酸化チタン微粒子。
4. Fe contained in the titanium oxide fine particles,
The spherical titanium oxide fine particles according to any one of claims 1 to 3, wherein Al, Si and Na are each less than 20 ppm and Cl is less than 200 ppm.
【請求項5】 前記四塩化チタンの気相反応において、
水素を添加して製造されたことを特徴とする請求項1〜
4のいずれか1項記載の球状酸化チタン微粒子。
5. In the gas phase reaction of the titanium tetrachloride,
2. The method according to claim 1, wherein the compound is produced by adding hydrogen.
5. The spherical titanium oxide fine particles according to any one of 4.
【請求項6】 前記四塩化チタンの気相反応において、
反応部における四塩化チタンガス濃度が20容量%以下
の条件で製造されたことを特徴とする請求項1〜5のい
ずれか1項記載の球状酸化チタン微粒子。
6. In the gas phase reaction of the titanium tetrachloride,
The spherical titanium oxide fine particles according to any one of claims 1 to 5, wherein the titanium tetrachloride gas concentration in the reaction section is manufactured under a condition of 20% by volume or less.
JP32953199A 1999-11-19 1999-11-19 Method for producing spherical titanium oxide fine particles Expired - Lifetime JP3993956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32953199A JP3993956B2 (en) 1999-11-19 1999-11-19 Method for producing spherical titanium oxide fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32953199A JP3993956B2 (en) 1999-11-19 1999-11-19 Method for producing spherical titanium oxide fine particles

Publications (2)

Publication Number Publication Date
JP2001151509A true JP2001151509A (en) 2001-06-05
JP3993956B2 JP3993956B2 (en) 2007-10-17

Family

ID=18222418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32953199A Expired - Lifetime JP3993956B2 (en) 1999-11-19 1999-11-19 Method for producing spherical titanium oxide fine particles

Country Status (1)

Country Link
JP (1) JP3993956B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316821A (en) * 2001-04-12 2002-10-31 Nippon Aerosil Co Ltd Titanium dioxide containing chlorine in low content and method for producing the same
JP2003252627A (en) * 2002-02-27 2003-09-10 Toshiba Corp Method of manufacturing particle and manufacturing device for the same
WO2003078327A1 (en) * 2002-03-20 2003-09-25 Showa Denko K. K. High purity titanium oxide and production process thereof
WO2005033009A1 (en) * 2003-10-01 2005-04-14 Toho Titanium Co., Ltd Titanium dioxide powder and method for production thereof
JP2006312572A (en) * 2005-05-09 2006-11-16 Nippon Chem Ind Co Ltd Granular titanium oxide, its manufacturing method and optical glass
JP2007112689A (en) * 2005-10-24 2007-05-10 Tdk Corp Method of manufacturing dielectronic powder, composite electronic component, and method of manufacturing the same
CN1318308C (en) * 2002-03-06 2007-05-30 昭和电工株式会社 Ultrafine particulate titanium oxide with low chlorine and low rutile content, and production process thereof
JP2007314418A (en) * 2002-03-06 2007-12-06 Showa Denko Kk Low halogen-low rutile type ultrafine-grained titanium oxide and production method thereof
JP2009196889A (en) * 2009-06-08 2009-09-03 Fujikura Ltd Titanium oxide particle
JP2017019698A (en) * 2015-07-13 2017-01-26 株式会社トクヤマ Spherical titanium oxide powder and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6243649B2 (en) * 2013-07-30 2017-12-06 昭和電工株式会社 Titanium oxide particles and method for producing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316821A (en) * 2001-04-12 2002-10-31 Nippon Aerosil Co Ltd Titanium dioxide containing chlorine in low content and method for producing the same
JP2003252627A (en) * 2002-02-27 2003-09-10 Toshiba Corp Method of manufacturing particle and manufacturing device for the same
CN1318308C (en) * 2002-03-06 2007-05-30 昭和电工株式会社 Ultrafine particulate titanium oxide with low chlorine and low rutile content, and production process thereof
JP2007314418A (en) * 2002-03-06 2007-12-06 Showa Denko Kk Low halogen-low rutile type ultrafine-grained titanium oxide and production method thereof
US7591991B2 (en) 2002-03-06 2009-09-22 Showa Denko K.K. Ultrafine particulate titanium oxide with low chlorine and low rutile content, and production process thereof
WO2003078327A1 (en) * 2002-03-20 2003-09-25 Showa Denko K. K. High purity titanium oxide and production process thereof
WO2005033009A1 (en) * 2003-10-01 2005-04-14 Toho Titanium Co., Ltd Titanium dioxide powder and method for production thereof
JP2006312572A (en) * 2005-05-09 2006-11-16 Nippon Chem Ind Co Ltd Granular titanium oxide, its manufacturing method and optical glass
JP2007112689A (en) * 2005-10-24 2007-05-10 Tdk Corp Method of manufacturing dielectronic powder, composite electronic component, and method of manufacturing the same
JP2009196889A (en) * 2009-06-08 2009-09-03 Fujikura Ltd Titanium oxide particle
JP2017019698A (en) * 2015-07-13 2017-01-26 株式会社トクヤマ Spherical titanium oxide powder and method for producing the same

Also Published As

Publication number Publication date
JP3993956B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
Chan et al. Effects of calcination on the microstructures and photocatalytic properties of nanosized titanium dioxide powders prepared by vapor hydrolysis
EP1042408B1 (en) PROCESS FOR PRODUCING COATED TiO2 PIGMENT USING COOXIDATION TO PROVIDE HYDROUS OXIDE COATINGS
Akhtar et al. Competition between TiCl4 hydrolysis and oxidation and its effect on product TiO2 powder
JP3993956B2 (en) Method for producing spherical titanium oxide fine particles
JP4739187B2 (en) Anatase type titanium oxide powder and method for producing the same
JP4445972B2 (en) Titanium dioxide powder produced by flame hydrolysis
CA2385695C (en) Particulate titanium oxide and production process therefor
JP5553601B2 (en) Method for producing titanium oxide powder
AU2003304660B2 (en) Synthesis of ultrafine rutile phase titanium dioxide particles at low temperature
JP4234298B2 (en) Method for producing titanium oxide fine particles
JP3787254B2 (en) Method for producing titanium oxide fine particles
JPS60186418A (en) Production of ultrafine particle of titanium oxide
JP4177920B2 (en) Method for producing high-purity titanium oxide powder
WO2005033009A1 (en) Titanium dioxide powder and method for production thereof
US20050214200A1 (en) Synthesis of ultrafine rutile phase titanium dioxide particles
JP4979174B2 (en) Method for producing titanium oxide-containing particulate oxide composite
JP4530238B2 (en) Method for producing titanium oxide powder containing anatase-type titanium oxide single crystal
JP2001220141A (en) Titanium oxide dispersion
JP2001287996A (en) Anatase-type titanium oxide single crystal
JP4313535B2 (en) Fine particle titanium oxide composite, method for producing the composite, and composite composition
JPH11349328A (en) Titanium dioxide powder for photocatalyst
US7449166B2 (en) Particulate titanium oxide and production process therefor
JPS61201604A (en) Preparation of spherical superfine particle of metal oxide
TWI522318B (en) Titanium oxide particles and methods for producing the same
JP4812213B2 (en) Fine particulate titanium oxide and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070730

R150 Certificate of patent or registration of utility model

Ref document number: 3993956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term