JP2001147198A - Sample surface deposit inspection system, sample surface deposit inspection method, sample surface deposit elimination system, sample surface deposit sticking system and sample surface deposit disposal system - Google Patents

Sample surface deposit inspection system, sample surface deposit inspection method, sample surface deposit elimination system, sample surface deposit sticking system and sample surface deposit disposal system

Info

Publication number
JP2001147198A
JP2001147198A JP33208199A JP33208199A JP2001147198A JP 2001147198 A JP2001147198 A JP 2001147198A JP 33208199 A JP33208199 A JP 33208199A JP 33208199 A JP33208199 A JP 33208199A JP 2001147198 A JP2001147198 A JP 2001147198A
Authority
JP
Japan
Prior art keywords
sample
sample surface
deposit
surface deposit
radiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33208199A
Other languages
Japanese (ja)
Inventor
Akira Kawai
晃 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP33208199A priority Critical patent/JP2001147198A/en
Publication of JP2001147198A publication Critical patent/JP2001147198A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sample surface deposit inspection system, a deposit elimination system and a deposit sticking system capable of easily detecting deposit even on a rugged sample surface and efficiently eliminating static electric charge to eliminate the deposit from a base. SOLUTION: An ultraviolet light source 12 irradiates ultraviolet rays from every angle including the surface and back face of a solid or liquid sample. An optical system 13 converges the ultraviolet rays directly or through a lens or the like to irradiate the sample. An optical mechanism 13 has a measuring mechanism for recording the in-plane distributed image of fluorescent intensity radiated from the sample surface after the irradiation of ultraviolet rays, by an image pickup apparatus or the like, and a magnifying mechanism for the detection of the radiated fluorescence from the local part of the sample surface through a microscope, and guides the radiated fluorescence into a spectroscope 11. A moving mechanism can move these sample stage and observation system precisely in a wide range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、テープ、シリコン
基板、食品用シート、および医薬品などの固体表面への
付着物の検出と除去と固着、および、液体中のバクテリ
アや微粒子などの付着物検出および除去技術に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the detection, removal and fixation of deposits on solid surfaces such as tapes, silicon substrates, food sheets and pharmaceuticals, and the detection of deposits such as bacteria and fine particles in liquids. And removal technology.

【0002】[0002]

【従来の技術】従来の付着物検査技術としては、図1に
あるように、顕微鏡を用いて固体および液体などの試料
表面の付着物を直接観察する方法と、あるいは図2のよ
うに試料表面(基板)に対して斜め方向から光を照射さ
せて基板上の付着物(微粒子)で散乱される散乱光を検
出することで微粒子の位置と大きさを検査する方法があ
った。前述の顕微鏡観察による試料表面映像と散乱光観
察による観察像とは図1および図2にあるようにコント
ラスト(濃淡)が逆になる。これらの従来の場合は、試
料表面に凹凸が多く存在する場合には、付着物の映像お
よび散乱光が試料表面の凹凸像に埋もれてしまうために
付着物の観察および検出が不可能であった。また、付着
物の材質の同定は原理的に不可能であった。
2. Description of the Related Art As a conventional technique for inspecting deposits, there is a method of directly observing deposits such as solids and liquids on a sample surface using a microscope as shown in FIG. There has been a method of inspecting the position and size of fine particles by irradiating light to the (substrate) from an oblique direction and detecting scattered light scattered by the attached matter (fine particles) on the substrate. As shown in FIGS. 1 and 2, the contrast (shade) of the sample surface image obtained by the above-described microscope observation and the image obtained by the scattered light observation are reversed. In these conventional cases, if there are many irregularities on the sample surface, it is impossible to observe and detect the attached matter because the image of the attached matter and the scattered light are buried in the irregularity image on the sample surface. . In addition, it was impossible in principle to identify the material of the deposit.

【0003】一方、従来の付着物除去方法として、図3
に示すように、放電型イオン発生器などで発生させたイ
オンを試料表面に吹き付けて除電効果を利用する方式が
ある。しかし、この場合は、イオンとの反応により試料
表面にダメージを与えることと、過剰なイオンとの反応
により試料表面がさらに帯電してしまい、それが原因で
さらに微粒子等が付着しやすくなるという問題があっ
た。
On the other hand, as a conventional method for removing extraneous matter, FIG.
As shown in (1), there is a method in which ions generated by a discharge-type ion generator or the like are sprayed on the surface of a sample to utilize a static elimination effect. However, in this case, there is a problem that the sample surface is damaged by the reaction with the ions, and the sample surface is further charged by the reaction with the excessive ions, which causes fine particles and the like to adhere more easily. was there.

【0004】また、固体表面の付着物をさらに強固に付
着させる固着技術はなかった。
[0004] Further, there is no fixing technique for more firmly attaching the deposits on the solid surface.

【0005】[0005]

【発明が解決しようとする課題】このように従来の付着
物検出技術においては、図4にあるように、試料表面に
凹凸が存在している場合には、従来技術である顕微鏡を
用いた観察法および光散乱法では、凹凸像と微粒子像と
が重なってしまったり、試料表面の凹凸部における乱反
射と付着物からの散乱光とが混ざってしまうことで互い
に区別ができず付着物の検出ができないという問題があ
った。また、試料表面の付着物、および溶液中の微粒子
などの材質を同定することはできなかった。
As described above, in the conventional attached matter detection technique, as shown in FIG. 4, when there is unevenness on the sample surface, observation using a conventional microscope is performed. In the method and the light scattering method, the concavo-convex image and the fine particle image are overlapped, or the irregular reflection on the concavo-convex part of the sample surface and the scattered light from the adhering substance are mixed, so that it is not possible to distinguish them from each other and the adhering substance can be detected. There was a problem that it was not possible. Further, it was not possible to identify materials such as deposits on the sample surface and fine particles in the solution.

【0006】本発明は、このような問題を解決し、たと
え表面に凹凸を有する試料であっても、その表面の付着
物を容易に検出することが可能となり、また、その付着
物の材質の同定が可能となる画期的な付着物の検査シス
テム,検査方法を提供することを目的としている。
The present invention solves such a problem, and even if the sample has irregularities on the surface, it is possible to easily detect the attached matter on the surface, and the material of the attached matter can be easily detected. It is an object of the present invention to provide a revolutionary inspection system and an inspection method for adhering substances that enable identification.

【0007】また、一方、従来の付着物除去技術におい
ては、図5にあるように、従来のイオン発生器を用いた
イオン吹き付け方式では、前述のように帯電電荷の中和
が完了した後で、さらに吹き付けイオンにより帯電が再
び生じてしまい除電の効果が得られず、逆に帯電によっ
て多くの付着物を新たに付着させてしまう問題があっ
た。
On the other hand, in the conventional deposit removing technique, as shown in FIG. 5, in the conventional ion spraying method using an ion generator, after the neutralization of the charged charge is completed as described above. Further, there is a problem in that the charged ions are again generated by the sprayed ions, so that the effect of static elimination cannot be obtained.

【0008】また、従来では付着物を剥離しないように
するための固着技術はなかった。
Conventionally, there has been no fixing technique for preventing adhered substances from peeling off.

【0009】本発明は、このような問題を解決し、画期
的な付着物除去システム等を提供することを目的として
いる。
An object of the present invention is to solve such a problem and to provide an epoch-making deposit removing system and the like.

【0010】[0010]

【課題を解決するための手段】添付図面を参照して本発
明の要旨を説明する。
The gist of the present invention will be described with reference to the accompanying drawings.

【0011】紫外線を固体および液体などの裏面を含む
試料表面にあらゆる角度から照射するための紫外線光源
を有し、紫外線を直接あるいはレンズ等によって集束さ
せて試料に照射させる光学系を有し、紫外線照射後に試
料表面から輻射された蛍光強度の面内分布像を撮像手段
で記録する測定機構と、輻射された蛍光を顕微鏡を通し
て試料表面の局所的な場所から検出するための拡大機構
を有し、輻射された蛍光光を分光器に導入する光学機構
を備えており、これらの試料ステージ又は観察システム
を精密にかつ広範囲に移動できる移動機構を備えたこと
を特徴とする試料表面の付着物検査システムに係るもの
である。
An ultraviolet light source for irradiating the sample surface including the back surface of a solid or a liquid with ultraviolet light from any angle; and an optical system for irradiating the sample with the ultraviolet light directly or by focusing it by a lens or the like; A measuring mechanism for recording the in-plane distribution image of the intensity of the fluorescent light radiated from the sample surface after the irradiation by the imaging means, and a magnifying mechanism for detecting the radiated fluorescent light from a local place on the sample surface through a microscope, An inspection system for adhering matter on a sample surface, comprising: an optical mechanism for introducing the emitted fluorescent light into the spectroscope; and a moving mechanism capable of moving the sample stage or the observation system precisely and over a wide range. It is related to.

【0012】また、前記請求項1記載の付着物検査シス
テムを用いて、固体表面あるいは凹凸形状を有する固体
および液体などの裏面を含む試料表面へ紫外線を照射
し、試料表面の凹凸形状は輻射される蛍光像には現れず
輻射強度が一定で均一な蛍光像となることを利用し、試
料本体と試料表面の付着物から輻射される蛍光強度の差
をコントラストとして検出することで、試料表面におけ
る付着物の吸着場所および大きさを検出し、これらを二
次元分布として画像に表示することを特徴とする試料表
面の付着物検査方法に係るものである。
[0012] In addition, using the attached matter inspection system according to the first aspect, the sample surface including the solid surface or the back surface of the solid or liquid having the uneven shape is irradiated with ultraviolet rays, and the uneven shape of the sample surface is radiated. By taking advantage of the fact that the fluorescence intensity does not appear in the sample and the emission intensity is constant and uniform, the difference in the intensity of the fluorescence emitted from the sample body and the attached matter on the sample surface is detected as a contrast, and the difference on the sample surface is detected. The present invention relates to a method for inspecting an adhering substance on a sample surface, which detects an adsorbing substance adsorbing place and a size thereof and displays them as an image in two-dimensional distribution.

【0013】また、前記請求項1記載の試料表面の付着
物検査システムを用いて、付着物あるいは試料表面およ
び局所領域から輻射された蛍光の波長のスペクトル分布
を分光器を用いて解析することにより、その付着物およ
び試料の材質の同定を同時に行うことを特徴とする試料
表面の付着物検査方法に係るものである。
In addition, the spectral distribution of the wavelength of the fluorescent light radiated from the attached matter or the sample surface and the local area is analyzed by using a spectroscope by using the sample surface attached matter inspection system according to the first aspect of the present invention. The present invention also relates to a method for inspecting an adhering substance on a sample surface, wherein the adhering substance and the material of the sample are simultaneously identified.

【0014】また、飽和水蒸気などの液滴のミストが充
満した密閉空間に試料を一定時間暴露できるミスト中和
機構を有し、この液滴ミストにより試料表面の帯電電荷
を中和して残存電荷を無くした後に、ガスを試料表面に
吹き付けることあるいは密閉空間を減圧させる乾燥除去
機構を備えることで、試料表面の乾燥および付着物の除
去を行うことを特徴とする試料表面の付着物除去システ
ムに係るものである。
A mist neutralizing mechanism for exposing the sample to a closed space filled with mist of droplets such as saturated water vapor for a certain period of time is provided. After removing the sample, the sample surface is dried and the adhering matter is removed by spraying a gas onto the sample surface or by providing a drying and removing mechanism to decompress the enclosed space. It is related.

【0015】また、固体試料の表面の付着物を微細探針
により押し付ける、あるいは熱や紫外線などのエネルギ
ーを与えて固体表面に固着させて剥離しないようにする
ことを特徴とする試料表面の付着物固着システムに係る
ものである。
[0015] In addition, the deposit on the surface of the solid sample is pressed by a fine probe, or is fixed to the solid surface by applying energy such as heat or ultraviolet light so as not to peel off. It relates to an anchoring system.

【0016】また、ベルトコンベヤーやアーム等の試料
搬送機構を備え、請求項1記載の試料表面の付着物検査
システムと請求項4記載の試料表面の付着物除去システ
ム又は請求項5記載の付着物固着システムに試料を搬送
し順次処理する、あるいは、単独にそれぞれの処理のみ
を実施するように構成したことを特徴とする試料表面の
付着物処理システムに係るものである。
The present invention further comprises a sample transport mechanism such as a belt conveyor or an arm, wherein the system for inspecting an attached substance on the sample surface according to claim 1 and the system for removing an attached substance on the sample surface according to claim 4 or the attached substance according to claim 5. The present invention relates to a system for treating a substance adhering to a sample surface, wherein the sample is transported to a fixing system and sequentially processed, or only the respective processes are individually performed.

【0017】[0017]

【発明の実施の形態】好適と考える本発明の実施の形態
(発明をどのように実施するか)を、図面に基づいてそ
の作用効果を示して簡単に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention (how to implement the invention) will be briefly described with reference to the drawings, showing the operational effects thereof.

【0018】本発明の付着物検出技術においては、例え
ば図6にあるように、凹凸形状を有する固体試料(固体
基板)の裏面を含む試料表面に紫外線を照射した場合、
試料から蛍光が輻射されることを利用する。この輻射さ
れる蛍光強度は材質に強く依存している。たとえば、固
体基板のほうが付着物よりも蛍光強度が高い場合は、図
6にあるように光強度差として付着分布が映像化でき
る。付着物の蛍光強度が高い場合は、コントラスト(濃
淡)が逆になる。この蛍光の輻射は、試料および付着物
の凹凸形状には影響されずに試料表面から同じ強度で均
一に輻射される。よって、凹凸を有する固体基板上であ
っても、付着物の存在を明確に検出することが可能にな
る。
In the attached matter detection technique of the present invention, as shown in FIG. 6, for example, when a sample surface including a back surface of a solid sample (solid substrate) having an uneven shape is irradiated with ultraviolet rays,
Utilizing the fact that fluorescence is emitted from the sample. The emitted fluorescence intensity strongly depends on the material. For example, when the fluorescence intensity of the solid substrate is higher than that of the attached matter, the adhesion distribution can be visualized as a light intensity difference as shown in FIG. When the fluorescence intensity of the attached matter is high, the contrast (shade) is reversed. This fluorescence radiation is uniformly radiated from the sample surface at the same intensity without being affected by the uneven shape of the sample and the attached matter. Therefore, even on a solid substrate having irregularities, it is possible to clearly detect the presence of the attached matter.

【0019】本発明の付着物除去技術においては、図7
にあるように、水蒸気ミストが試料表面に存在する帯電
表面に接触した場合、その電荷を中和させることで除電
を行うことができる。この場合、帯電電荷を全て中和し
た後は、単に水蒸気ミストが試料表面に付着するだけで
ある。よって、従来技術のように新たな帯電および微粒
子の再付着を引き起こすことがなくなる。この試料表面
に付着した水蒸気ミストは、ガス吹き付けや容器を減圧
することにより効果的に乾燥させることができる。ま
た、このとき、ガスの吹き付けあるいは減圧時の気流に
よって試料表面から付着物を除去することができる。
In the technique for removing deposits according to the present invention, FIG.
As described in (2), when the water vapor mist comes into contact with the charged surface present on the sample surface, the charge can be neutralized to eliminate the charge. In this case, after all the charged charges are neutralized, the water vapor mist simply adheres to the sample surface. Therefore, unlike the related art, new charging and redeposition of fine particles are not caused. The water vapor mist adhering to the sample surface can be effectively dried by blowing gas or reducing the pressure of the container. At this time, it is possible to remove extraneous matter from the sample surface by blowing gas or airflow at the time of pressure reduction.

【0020】本発明の付着物固着システムにおいては、
微細探針を用いて付着物に荷重を加えて基板との付着力
を高める、あるいは熱及び紫外線を照射して付着物との
付着力を増して剥離しないように固着させることができ
る。
In the deposit fixing system of the present invention,
Using a fine probe, a load can be applied to the deposit to increase the adhesion to the substrate, or heat and ultraviolet rays can be applied to increase the adhesion to the deposit so that the deposit is not peeled off.

【0021】また、図9のように、これらの付着物検出
と付着物除去又は(及び)及び付着物固着が単独あるい
は一括してシーケンス処理できるシステムを提供するこ
ともできる。
Further, as shown in FIG. 9, it is also possible to provide a system capable of performing the sequence processing of the detection of the deposits and the removal of the deposits and / or the fixation of the deposits singly or collectively.

【0022】[0022]

【実施例】本発明の具体的な実施例について図面に基づ
いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described with reference to the drawings.

【0023】本発明の付着物検出システムとしては、図
6にあるように、波長がたとえば200〜400nmの
範囲の紫外線を発生させる水銀ランプ等を紫外線光源と
して用いる。また、発生した紫外線はレンズを組み合わ
せた光学系により集光あるいは平行光にすることがで
き、紫外線の光強度を自由に制御できる。また、拡大機
構として顕微鏡を用いて、試料表面および付着物を拡大
できるため、付着物および試料表面の局所部分のみを観
察することが可能である。試料を設置するステージには
三次元方向に移動する移動機構が備わっている。試料お
よび付着物から輻射された蛍光はCCDカメラ等により
観察され映像として記録される。これらの画像を解析す
ることにより、試料表面の付着物の数および大きさおよ
び分布等を自動的に計算し、表示することができる。ま
た、輻射された蛍光をレンズ光学系により分光器へ導入
させている。微粒子検出原理としては、蛍光強度および
その波長スペクトルは、その試料および付着物の材質に
大きく依存して変化する。よって、固体試料表面に材質
の異なる付着物が存在した場合、その材質の違いによっ
て蛍光強度に差が生じるために、コントラストの差とし
て付着物の付着場所および大きさを検出することができ
る。また、前述のレンズ光学系を用いて、付着物などを
拡大して、付着物だけからの蛍光を分光器に導入する。
そして波長スペクトルの分光解析を行う。蛍光の波長ス
ペクトルは、蛍光を輻射した物質の化学構造および構成
元素の情報を豊富に含んでいる。これにより、付着物の
材質の同定、あるいは試料の材質および変質の解析など
が可能になる。
As shown in FIG. 6, a mercury lamp or the like that generates ultraviolet light having a wavelength in the range of, for example, 200 to 400 nm is used as the ultraviolet light source in the attached matter detection system of the present invention. The generated ultraviolet light can be condensed or converted into parallel light by an optical system having a combination of lenses, and the light intensity of the ultraviolet light can be freely controlled. Further, since the sample surface and the attached matter can be enlarged by using a microscope as an enlargement mechanism, it is possible to observe only the attached matter and a local portion of the sample surface. The stage on which the sample is placed has a moving mechanism that moves in a three-dimensional direction. The fluorescence emitted from the sample and the attached matter is observed by a CCD camera or the like and recorded as an image. By analyzing these images, the number, size, distribution, and the like of the deposits on the sample surface can be automatically calculated and displayed. Further, the emitted fluorescent light is introduced into the spectroscope by a lens optical system. As a principle of detecting fine particles, the fluorescence intensity and its wavelength spectrum change greatly depending on the material of the sample and the attached matter. Therefore, if there is an attached matter of a different material on the surface of the solid sample, a difference in the fluorescence intensity occurs due to the difference in the material, so that the attached place and size of the attached matter can be detected as a difference in contrast. Also, using the above-described lens optical system, the attached matter is enlarged, and the fluorescence from only the attached matter is introduced into the spectroscope.
Then, spectral analysis of the wavelength spectrum is performed. The wavelength spectrum of fluorescence contains a wealth of information on the chemical structure and constituent elements of the substance that has emitted the fluorescence. This makes it possible to identify the material of the attached matter or to analyze the material and alteration of the sample.

【0024】また、ウイルスやバクテリアや細菌などが
付着している場合でも、光源として紫外線を用いている
ため、これらの細菌等の検出と同時に死滅及び殺菌する
ことも可能になる。
Further, even when viruses, bacteria, bacteria, and the like are attached, ultraviolet rays are used as a light source, so that these bacteria can be killed and sterilized simultaneously with the detection.

【0025】本発明の微粒子除去システムおよび方法と
しては、図7にあるように、湿度および真空度の制御可
能なチャンバーの中に、たとえば超音波振動法で作製し
た水蒸気ミストを導入する。このチャンバー内に試料を
設置し、水蒸気ミストにある一定時間暴露させることで
試料表面に蓄積している帯電電荷を中和し除電を行う。
ついで、試料表面に過剰に付着した水蒸気ミストを除去
し乾燥させるために、チャンバー内を真空ポンプを用い
て乾燥させる。あるいは、乾燥空気などのガスをチャン
バー内に導入し、直接乾燥させても同様の効果が得られ
る。液体ミストは水蒸気でなくても、他の溶液でも同様
な効果が得られる。また、試料の乾燥と同時に、試料表
面の付着物をガスの吹き付けおよび真空排気時の気流に
より、試料表面から除去することができる。
As shown in FIG. 7, as a system and method for removing fine particles of the present invention, a steam mist produced by, for example, an ultrasonic vibration method is introduced into a chamber in which the humidity and the degree of vacuum can be controlled. A sample is placed in this chamber, and the sample is exposed to a steam mist for a certain period of time, thereby neutralizing the charge accumulated on the sample surface and eliminating the charge.
Next, the inside of the chamber is dried using a vacuum pump in order to remove and dry the steam mist excessively attached to the sample surface. Alternatively, the same effect can be obtained by introducing a gas such as dry air into the chamber and drying it directly. Even if the liquid mist is not water vapor, the same effect can be obtained with another solution. At the same time as drying the sample, the deposits on the surface of the sample can be removed from the surface of the sample by blowing gas and airflow during evacuation.

【0026】また、図8にあるように本発明の付着物固
着システムにおいては、先端曲率の小さい探針を用いて
付着物を試料表面に荷重を加えて押し付けることで付着
力を更に増加させて固着させることができる。また、そ
の後、加熱や紫外線照射などを行うことによって、付着
物を更に強固に試料表面に固着させることができる。
Further, as shown in FIG. 8, in the attached matter fixing system of the present invention, the attached force is further increased by applying a load to the sample surface and pressing the attached matter using a probe having a small tip curvature. Can be fixed. Thereafter, the adhered substance can be more firmly fixed to the sample surface by performing heating, ultraviolet irradiation, or the like.

【0027】また、図9にあるように、これらの付着物
検査システムと付着物除去システム及び付着物固着シス
テムを組み合わせて一つのシステムとすることも効果的
である。付着物の検査、あるいは付着物の除去及び付着
物の固着のプロセスを繰り返し行いながら、最終的に付
着物検査において試料表面に付着物が無いことを確認す
る。
As shown in FIG. 9, it is also effective to combine these adhering matter inspection system, adhering matter removing system and adhering matter fixing system into one system. While repeating the process of inspecting the attached matter or removing and attaching the attached matter, it is finally confirmed in the attached matter inspection that there is no attached matter on the sample surface.

【0028】本発明の付着物検査システムにおいては、
図10にあるように、超短パルス紫外線レーザーなどを
照射して、試料より発生される蛍光の減衰特性を測定し
ても同様の効果が得られる。
In the deposit inspection system of the present invention,
As shown in FIG. 10, the same effect can be obtained by irradiating an ultrashort pulse ultraviolet laser or the like and measuring the attenuation characteristic of the fluorescence generated from the sample.

【0029】本発明付着物除去システムにおいては、図
11にあるように、チャンバーの前後に予備室を設けて
おいて、この予備室によって本チャンバーと環境との遮
断を行うとともに、処理能力の向上を図る。また、図1
2のように、ベルトコンベヤーやロボットアームを用い
て、付着物検査システムや付着物除去システムへ試料を
連続的に導入しても高いスループットを得ることができ
る。また、図13のように、付着物検査システムで得ら
れた付着物の情報は、二次元マップおよび統計ヒストグ
ラムによって表示し、使用者に明確に分かるようにす
る。
In the deposit removing system of the present invention, as shown in FIG. 11, spare chambers are provided before and after the chamber to shut off the chamber from the environment and improve the processing capacity. Plan. FIG.
As in 2, even if a sample is continuously introduced into a deposit inspection system or a deposit removal system using a belt conveyor or a robot arm, high throughput can be obtained. In addition, as shown in FIG. 13, the information on the deposit obtained by the deposit inspection system is displayed by a two-dimensional map and a statistical histogram so that the user can clearly understand the information.

【0030】[0030]

【発明の効果】本発明は上述のように構成したから、た
とえ表面に凹凸を有する試料(固体基板)であっても、
その表面の付着物を検出することが容易に行え、例え
ば、その付着物の材質の同定も可能となる画期的な付着
物の検査システム,検査方法を提供できる。
According to the present invention, as described above, even if the sample (solid substrate) has an uneven surface,
It is possible to easily detect an attached matter on the surface, and for example, it is possible to provide an epoch-making attached matter inspection system and an inspection method capable of identifying the material of the attached matter.

【0031】また、請求項2記載の発明においては、試
料表面における付着物の吸着場所および大きさを検出
し、これらを二次元分布として画像に表示することがで
き、一層秀れた試料表面の付着物検査方法となる。
According to the second aspect of the present invention, the location and size of the adhering matter on the sample surface can be detected, and these can be displayed on the image as a two-dimensional distribution. It becomes an attached matter inspection method.

【0032】また、請求項3記載の発明においては、付
着物および試料の材質の同定を同時に行うことができ、
一層秀れた試料表面の付着物検査方法となる。
According to the third aspect of the present invention, it is possible to simultaneously identify the material of the deposit and the material of the sample,
It is a more excellent method for inspecting deposits on the sample surface.

【0033】また、請求項4記載の発明においては、従
来の単なるイオン吹き付け方式ではイオンにより帯電が
再び生じてしまい除電の効果が得られず、逆に帯電によ
って多くの付着物を新たに付着させてしまうが本発明に
おいてはこのような問題はなく、ガスの吹き付けあるい
は減圧時の気流によって試料表面から付着物を容易に除
去することができる画期的な試料表面の付着物除去シス
テムとなる。
Further, in the invention according to the fourth aspect, in the conventional mere ion spraying method, the charge is generated again by the ions, so that the effect of the charge elimination cannot be obtained. However, in the present invention, there is no such a problem, and an epoch-making adhering matter removing system on the sample surface which can easily remove the adhering matter from the sample surface by blowing gas or airflow at the time of decompression is provided.

【0034】また、請求項5記載の発明においては、従
来では付着物を試料表面から剥離させないようにする技
術はなかったが、微細探針を用いて付着物に荷重を加え
たり、その後に加熱及び紫外線照射などによって試料表
面との付着力を増加させて固着させることができる画期
的な付着物固着システムとなる。
Further, in the invention according to the fifth aspect, there was no conventional technique for preventing the adhered substance from peeling off from the surface of the sample. However, a load is applied to the adhered substance using a fine probe, and thereafter, heating is performed. In addition, an epoch-making adhering matter fixing system capable of increasing and adhering the adhering force to the sample surface by ultraviolet irradiation or the like is provided.

【0035】また、請求項6記載の発明においては、例
えば、付着物の検査、あるいは付着物の除去及び付着物
の固着のプロセスを繰り返し行いながら、最終的に付着
物検査において試料表面に付着物が無いことを確認する
ことなども容易に可能となり、付着物検出と付着物除去
や固着が単独あるいは一括してシーケンス処理できる画
期的な試料表面の付着物処理システムとなる。
According to the sixth aspect of the present invention, for example, while the process of inspecting the deposits or removing and depositing the deposits is repeatedly performed, the deposits are finally inspected on the sample surface in the deposit inspection. It is also possible to easily confirm that there is no debris, etc., and an epoch-making deposit surface treatment system for the sample surface capable of performing the sequence processing of the debris detection and the debris removal or fixation singly or collectively.

【図面の簡単な説明】[Brief description of the drawings]

【図1】顕微鏡を用いた従来の付着物観察方法を示す説
明図である。
FIG. 1 is an explanatory view showing a conventional method for observing a deposit using a microscope.

【図2】光散乱法を用いた従来の付着物観察方法を示す
説明図である。
FIG. 2 is an explanatory diagram showing a conventional method for observing an attached matter using a light scattering method.

【図3】イオン発生器を用いた従来の除電方法を示す説
明図である。
FIG. 3 is an explanatory view showing a conventional static elimination method using an ion generator.

【図4】凹凸基板上に付着した付着物を示す説明図であ
る。
FIG. 4 is an explanatory view showing an adhered substance adhered on an uneven substrate.

【図5】固体試料上に帯電を伴いながら付着している付
着物を示す説明図である。
FIG. 5 is an explanatory diagram showing an adhered substance which is attached to a solid sample while being charged.

【図6】本発明による付着物検査システムの実施例を示
す説明図である。
FIG. 6 is an explanatory view showing an embodiment of the attached matter inspection system according to the present invention.

【図7】本発明による付着物除去システムの実施例を示
す説明図である。
FIG. 7 is an explanatory view showing an embodiment of a deposit removing system according to the present invention.

【図8】本発明による付着物固着システムの実施例を示
す説明図である。
FIG. 8 is an explanatory view showing an embodiment of a deposit fixing system according to the present invention.

【図9】本発明のよる付着物検査システムと付着物除去
システムと付着物固着システムとを組み合わせた一括処
理システムの実施例を示す説明図である。
FIG. 9 is an explanatory diagram showing an embodiment of a batch processing system in which an attached matter inspection system, an attached matter removing system, and an attached matter fixing system according to the present invention are combined.

【図10】本発明による超短パルス紫外線レーザーを用
いた付着物検査システムの実施例を示す説明図である。
FIG. 10 is an explanatory view showing an embodiment of a deposit inspection system using an ultrashort pulse ultraviolet laser according to the present invention.

【図11】本発明による予備室を設けたシステムの実施
例を示す説明図である。
FIG. 11 is an explanatory diagram showing an embodiment of a system provided with a spare room according to the present invention.

【図12】本発明によるベルトコンベヤーやロボットア
ームを備えたシステムの実施例を示す説明図である。
FIG. 12 is an explanatory diagram showing an embodiment of a system including a belt conveyor and a robot arm according to the present invention.

【図13】本発明による付着物分布を二次元マップおよ
び統計ヒストグラムに表示する手法を示す説明図であ
る。
FIG. 13 is an explanatory diagram showing a method for displaying the attached matter distribution on a two-dimensional map and a statistical histogram according to the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 紫外線を固体および液体などの裏面を含
む試料表面にあらゆる角度から照射するための紫外線光
源を有し、紫外線を直接あるいはレンズ等によって集束
させて試料に照射させる光学系を有し、紫外線照射後に
試料表面から輻射された蛍光強度の面内分布像を撮像手
段で記録する測定機構と、輻射された蛍光を顕微鏡を通
して試料表面の局所的な場所から検出するための拡大機
構を有し、輻射された蛍光光を分光器に導入する光学機
構を備えており、これらの試料ステージ又は観察システ
ムを精密にかつ広範囲に移動できる移動機構を備えたこ
とを特徴とする試料表面の付着物検査システム。
1. An ultraviolet light source for irradiating ultraviolet light to the surface of a sample including a back surface of a solid or a liquid from all angles, and an optical system for irradiating the sample with ultraviolet light directly or by focusing by a lens or the like. It has a measurement mechanism that records the in-plane distribution image of the fluorescence intensity radiated from the sample surface after ultraviolet irradiation by the imaging means, and an enlargement mechanism that detects the radiated fluorescence from a local location on the sample surface through a microscope. And an optical mechanism for introducing the radiated fluorescent light into the spectroscope, and a moving mechanism capable of moving the sample stage or the observation system precisely and over a wide range. Inspection system.
【請求項2】 前記請求項1記載の付着物検査システム
を用いて、固体表面あるいは凹凸形状を有する固体およ
び液体などの裏面を含む試料表面へ紫外線を照射し、試
料表面の凹凸形状は輻射される蛍光像には現れず輻射強
度が一定で均一な蛍光像となることを利用し、試料本体
と試料表面の付着物から輻射される蛍光強度の差をコン
トラストとして検出することで、試料表面における付着
物の吸着場所および大きさを検出し、これらを二次元分
布として画像に表示することを特徴とする試料表面の付
着物検査方法。
2. A sample surface including a solid surface or a sample surface including a back surface of a solid or a liquid having an uneven shape is irradiated with ultraviolet light by using the attached matter inspection system according to claim 1, and the uneven shape of the sample surface is radiated. By taking advantage of the fact that the fluorescence intensity does not appear in the sample and the emission intensity is constant and uniform, the difference in the intensity of the fluorescence emitted from the sample body and the attached matter on the sample surface is detected as a contrast, and the difference on the sample surface is detected. A method for inspecting an adhering substance on a sample surface, comprising: detecting an adsorbing position and a size of the adhering substance; and displaying the adsorbed substance and a two-dimensional distribution on an image.
【請求項3】 前記請求項1記載の試料表面の付着物検
査システムを用いて、付着物あるいは試料表面および局
所領域から輻射された蛍光の波長のスペクトル分布を分
光器を用いて解析することにより、その付着物および試
料の材質の同定を同時に行うことを特徴とする試料表面
の付着物検査方法。
3. The spectral distribution of the wavelength of the fluorescent light radiated from the attached matter or the surface of the sample and a local region is analyzed using a spectroscope using the system for inspecting the attached matter on the sample surface according to claim 1. A method for inspecting the surface of a sample, wherein the surface of the sample and the material of the sample are simultaneously identified.
【請求項4】 飽和水蒸気などの液滴のミストが充満し
た密閉空間に試料を一定時間暴露できるミスト中和機構
を有し、この液滴ミストにより試料表面の帯電電荷を中
和して残存電荷を無くした後に、ガスを試料表面に吹き
付けることあるいは密閉空間を減圧させる乾燥除去機構
を備えることで、試料表面の乾燥および付着物の除去を
行うことを特徴とする試料表面の付着物除去システム。
4. A mist neutralizing mechanism capable of exposing a sample to a closed space filled with mist of droplets such as saturated steam for a certain period of time. An adhering matter removal system for a sample surface, comprising: drying a sample surface and removing an adhering matter by spraying a gas onto the sample surface or decompressing a closed space after removing the gas.
【請求項5】 固体試料の表面の付着物を微細探針によ
り押し付ける、あるいは熱や紫外線などのエネルギーを
与えて固体表面に固着させて剥離しないようにすること
を特徴とする試料表面の付着物固着システム。
5. A deposit on the surface of a sample, wherein the deposit on the surface of the solid sample is pressed by a fine probe or is fixed to the surface of the solid by applying energy such as heat or ultraviolet rays so as not to peel off. Fastening system.
【請求項6】 ベルトコンベヤーやアーム等の試料搬送
機構を備え、請求項1記載の試料表面の付着物検査シス
テムと請求項4記載の試料表面の付着物除去システム又
は請求項5記載の付着物固着システムに試料を搬送し順
次処理する、あるいは、単独にそれぞれの処理のみを実
施するように構成したことを特徴とする試料表面の付着
物処理システム。
6. A sample surface deposit inspection system according to claim 1, comprising a sample transport mechanism such as a belt conveyor or an arm, and a sample surface deposit removal system according to claim 4, or a deposit according to claim 5. A system for treating deposits on the surface of a sample, wherein the sample is transported to a fixing system and sequentially processed, or only the respective processes are individually performed.
JP33208199A 1999-11-22 1999-11-22 Sample surface deposit inspection system, sample surface deposit inspection method, sample surface deposit elimination system, sample surface deposit sticking system and sample surface deposit disposal system Pending JP2001147198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33208199A JP2001147198A (en) 1999-11-22 1999-11-22 Sample surface deposit inspection system, sample surface deposit inspection method, sample surface deposit elimination system, sample surface deposit sticking system and sample surface deposit disposal system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33208199A JP2001147198A (en) 1999-11-22 1999-11-22 Sample surface deposit inspection system, sample surface deposit inspection method, sample surface deposit elimination system, sample surface deposit sticking system and sample surface deposit disposal system

Publications (1)

Publication Number Publication Date
JP2001147198A true JP2001147198A (en) 2001-05-29

Family

ID=18250945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33208199A Pending JP2001147198A (en) 1999-11-22 1999-11-22 Sample surface deposit inspection system, sample surface deposit inspection method, sample surface deposit elimination system, sample surface deposit sticking system and sample surface deposit disposal system

Country Status (1)

Country Link
JP (1) JP2001147198A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100476413C (en) * 2003-11-21 2009-04-08 中国印钞造币总公司 Device and method used for detecting flake material fluorescent image printing quality
JP2013057683A (en) * 2007-10-04 2013-03-28 Hitachi High-Technologies Corp Sample placement apparatus
CN111487246A (en) * 2020-04-20 2020-08-04 中国农业科学院烟草研究所 Tobacco bacterial wilt test paper strip batch quality detection device
CN115015206A (en) * 2022-07-15 2022-09-06 合肥工业大学 Glass surface cleanliness detection device and detection method based on ultraviolet fluorescence method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100476413C (en) * 2003-11-21 2009-04-08 中国印钞造币总公司 Device and method used for detecting flake material fluorescent image printing quality
JP2013057683A (en) * 2007-10-04 2013-03-28 Hitachi High-Technologies Corp Sample placement apparatus
CN111487246A (en) * 2020-04-20 2020-08-04 中国农业科学院烟草研究所 Tobacco bacterial wilt test paper strip batch quality detection device
CN115015206A (en) * 2022-07-15 2022-09-06 合肥工业大学 Glass surface cleanliness detection device and detection method based on ultraviolet fluorescence method
CN115015206B (en) * 2022-07-15 2022-11-11 合肥工业大学 Glass surface cleanliness detection device and detection method based on ultraviolet fluorescence method

Similar Documents

Publication Publication Date Title
EP1455379A3 (en) Apparatus and method for examining specimen with a charged particle beam
JP2005164451A5 (en)
JP2003075374A (en) Fluorescent x-ray analysis system, and program used therefor
JPH05340885A (en) Particle inspecting method
TWI833904B (en) A method for determining a characteristic of particles in a fluid sample and/or for determining a contamination characteristic of the fluid sample
JP2008245593A (en) Identification and evaluation method of microorganism
JP2001147198A (en) Sample surface deposit inspection system, sample surface deposit inspection method, sample surface deposit elimination system, sample surface deposit sticking system and sample surface deposit disposal system
JPH10288670A (en) Non-contact surface contamination inspection method and surface treatment method and device
JP3758577B2 (en) Device for collecting suspended particulate matter in the atmosphere and measuring method for collected suspended particulate matter
JPH09203703A (en) Measuring method and device for particle shape, etc.
JP6515843B2 (en) Inspection apparatus and inspection method for surface adhesion
JPH10335399A (en) Device and method for processing sample
JP6769011B2 (en) Substrate surface treatment equipment and method for treating substrate surface
JP2022527633A (en) Equipment for operating quality control on industrial production lines, corresponding methods and computer program products
JP2015026022A (en) Substrate for observing raman scattering light
Al Jedani et al. A de-waxing methodology for scanning probe microscopy
JP3031053B2 (en) Cleaning ability evaluation method
JP3187759B2 (en) Organic contamination detection / removal device, organic contamination detection / removal method, and chemical contamination detection / removal device and chemical contamination detection / removal method
JP2000267106A (en) Treatment of liquid crystal display substrate and treating device for using the same
JPH03156947A (en) Method and apparatus for inspection
JP3272293B2 (en) Non-contact surface contamination inspection apparatus and method
JP2002243594A (en) Sampling jig and infrared spectrometric method using it
JP3194495B2 (en) Container contamination monitoring device
JPH05240797A (en) Surface inspecting device
JP2000338056A (en) Non-destructive inspection apparatus of thin object