JP2017161437A - Device and method for checking for surface deposits - Google Patents

Device and method for checking for surface deposits Download PDF

Info

Publication number
JP2017161437A
JP2017161437A JP2016047904A JP2016047904A JP2017161437A JP 2017161437 A JP2017161437 A JP 2017161437A JP 2016047904 A JP2016047904 A JP 2016047904A JP 2016047904 A JP2016047904 A JP 2016047904A JP 2017161437 A JP2017161437 A JP 2017161437A
Authority
JP
Japan
Prior art keywords
covering member
measurement target
potential
measured
target surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016047904A
Other languages
Japanese (ja)
Other versions
JP6515843B2 (en
Inventor
博倫 江口
Hiromichi Eguchi
博倫 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2016047904A priority Critical patent/JP6515843B2/en
Publication of JP2017161437A publication Critical patent/JP2017161437A/en
Application granted granted Critical
Publication of JP6515843B2 publication Critical patent/JP6515843B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inspection device and method, which allow accurately checking for particles and other surface deposits.SOLUTION: A surface deposit inspection device comprises; a cup-shaped covering member 21 having an opening 211 whose edge is brought into contact with a surface 11 under measurement to cover the surface under measurement; electric potential measurement means 22 for measuring electric potential of the surface under measurement; neutralizing means 23 configured to impart neutralizing energy on the surface under measurement to bring the electric potential measured by the electric potential measurement means to zero or close to zero; agitation means 24 for agitating the air inside the covering member; suction means 25 for sucking the air inside the covering member; and inspection means 26 configured to check for particles contained in the air sucked by the suction means.SELECTED DRAWING: Figure 1

Description

本発明は、物体の表面に付着したパーティクルその他の汚染物質を検査するための表面付着物の検査装置及び検査方法に関するものである。   The present invention relates to an inspection apparatus and inspection method for surface deposits for inspecting particles and other contaminants adhered to the surface of an object.

半導体ウェーハの表面、液晶ガラス、有機EL、磁気ディスク、ICチップ若しくは半導体装置又はこれらを製造・検査するための機器の表面に付着したパーティクルを捕捉し、パーティクルの発生源を解析する表面汚染測定器が知られている。たとえば、特許文献1には、測定対象物の近傍からの空気を吸引する吸引手段と、吸引した空気中のパーティクルの量や成分等を測定する測定部と、測定対象物の表面へ流体を吐出する吐出手段と、測定対象物の表面に近接配置されるサンプリング部材であって、当該サンプリング部材の周囲に可撓性部材で構成された遮蔽部材が設けられたことを特徴とする表面汚染測定器が開示されている。   A surface contamination measuring instrument that captures particles attached to the surface of a semiconductor wafer, liquid crystal glass, organic EL, magnetic disk, IC chip, semiconductor device, or a device for manufacturing / inspecting these, and analyzes the source of the particle It has been known. For example, Patent Document 1 discloses a suction unit that sucks air from the vicinity of a measurement target, a measurement unit that measures the amount and components of particles in the sucked air, and a fluid discharged to the surface of the measurement target. A surface contamination measuring instrument, characterized in that a sampling member disposed close to the surface of a measurement object, and a shielding member made of a flexible member is provided around the sampling member Is disclosed.

特開2000−321180号公報JP 2000-321180 A

上記特許文献1に記載の表面汚染測定器では、測定対象物の表面へ流体を吐出するとともに測定対象物の近傍からの空気を吸引することで、吸引した空気中のパーティクルの量や成分等を測定する構成とされている。しかしながら、測定対象物が帯電しているとパーティクルが静電気によって強く吸着されるため、流体を吐出したとしても全てのパーティクルが捕捉される訳ではない。このため、パーティクルの測定精度が高いとは言えなかった。   In the surface contamination measuring instrument described in Patent Document 1, fluid is discharged onto the surface of the measurement object and air from the vicinity of the measurement object is sucked to thereby determine the amount and components of the particles in the sucked air. It is configured to measure. However, if the measurement object is charged, the particles are strongly adsorbed by static electricity, so that even if the fluid is discharged, not all particles are captured. For this reason, it cannot be said that the measurement accuracy of particles is high.

本発明が解決しようとする課題は、パーティクルその他の表面付着物を正確に検査できる検査装置及び検査方法を提供することである。   The problem to be solved by the present invention is to provide an inspection apparatus and an inspection method capable of accurately inspecting particles and other surface deposits.

本発明は、カップ状の被覆部材の開口部の端縁を測定対象面に接触させ、前記測定対象面を被覆し、前記測定対象面の電位を測定し、測定された電位をゼロにする又はゼロに近づける除電エネルギを付与し、前記被覆部材の内部の空気を吸引し、吸引した空気中のパーティクルを検査することによって、上記課題を解決する。   In the present invention, the edge of the opening of the cup-shaped covering member is brought into contact with the measurement target surface, the measurement target surface is covered, the potential of the measurement target surface is measured, and the measured potential is zeroed or The problem is solved by applying static elimination energy that approaches zero, sucking air inside the covering member, and inspecting particles in the sucked air.

本発明によれば、測定対象面の電位を測定し、測定された電位をゼロにする又はゼロに近づける電位を付与することで測定対象面の電位が打ち消されるので、静電気によるパーティクルの吸着を解消することができる。その結果、パーティクルその他の表面付着物を正確に検査することができる。   According to the present invention, the potential of the surface to be measured is canceled by measuring the potential of the surface to be measured and applying the potential to make the measured potential zero or close to zero, thereby eliminating the adsorption of particles due to static electricity. can do. As a result, particles and other surface deposits can be accurately inspected.

本発明に係る表面付着物の検査装置の一実施の形態を示すブロック図である。It is a block diagram which shows one Embodiment of the inspection apparatus of the surface deposit | attachment which concerns on this invention. 図1の被覆部材21の矢印II方向から見た底面図である。It is the bottom view seen from the direction of arrow II of covering member 21 of FIG. 図1のコントローラが実行する検査処理の一例を示すフローチャートである。It is a flowchart which shows an example of the test | inspection process which the controller of FIG. 1 performs. 測定対象面の表面電位とパーティクルカウンタにて測定されたパーティクル数の関係を示すグラフである。It is a graph which shows the relationship between the surface potential of a measurement object surface, and the number of particles measured with the particle counter.

以下、本発明の一実施の形態を図面に基づいて説明する。本実施形態の表面付着物の検査装置2は、たとえば半導体ウェーハを取り扱うクリーンルーム内の壁面、床面、天井面、処理装置の面、基台の面、半導体ウェーハを収容する容器等々、半導体ウェーハの周囲の環境に存在するパーティクルの数量や成分などを分析するために用いられる。こうした面(以下、測定対象物1の測定対象面11ともいう)は、作業者の手(通常樹脂やゴム製手袋をはめている)や他の物体と接触・摩擦・剥離・衝突することで帯電する。特に温度が20〜25℃、湿度が50%以下といったクリーンルームにおいては高温多湿環境に比べて帯電し易い。こうした測定対象物が帯電していると、従来のパーティクルカウンタを用いて測定しても、パーティクルが測定対象面に静電気によって強く吸着されるため、全てのパーティクルを測定できず、測定値が実際の値より小さくなる。図4は、測定対象面の表面電位とパーティクルカウンタにて測定された単位面積あたりの平均パーティクル数の関係を示すグラフである。横軸は表面電位を示し、最左端の値xに対し、10倍(10x)から1000倍(1000x)の帯電電位になった場合について、計測されたパーティクル数を縦軸に示している。また3つの各線は、異なる測定対象物1の測定結果を示している。同図に示すとおり、いずれの測定対象物1においても、電位xの際のパーティクル数に対し、表面電位が大きくなるほど測定されるパーティクル数が小さくなることが理解される。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The surface deposit inspection apparatus 2 according to the present embodiment includes, for example, a wall surface, a floor surface, a ceiling surface, a processing apparatus surface, a base surface, a container for housing a semiconductor wafer, etc. Used to analyze the quantity and composition of particles present in the surrounding environment. Such a surface (hereinafter, also referred to as a measurement target surface 11 of the measurement target 1) comes into contact, friction, separation, or collision with an operator's hand (usually wearing resin or rubber gloves) or other objects. Charges up. In particular, in a clean room where the temperature is 20 to 25 ° C. and the humidity is 50% or less, it is easier to be charged than in a high temperature and high humidity environment. If such a measurement object is charged, even if it is measured using a conventional particle counter, the particles are strongly adsorbed to the measurement object surface by static electricity, so that all particles cannot be measured, and the measured values are Smaller than the value. FIG. 4 is a graph showing the relationship between the surface potential of the measurement target surface and the average number of particles per unit area measured by the particle counter. The horizontal axis represents the surface potential, and the vertical axis represents the number of particles measured when the charging potential is 10 times (10x) to 1000 times (1000x) of the leftmost value x. Each of the three lines indicates the measurement result of a different measurement object 1. As shown in the figure, it is understood that in any measurement object 1, the number of particles to be measured becomes smaller as the surface potential becomes larger than the number of particles at the potential x.

このため、本実施形態の表面付着物の検査装置2は、図1に示すように、開口部211の端縁が測定対象面11に接し、測定対象面11を被覆するカップ状の被覆部材21と、測定対象面11の電位を測定する表面電位計22と、表面電位計22により測定された電位をゼロにする又はゼロに近づける電位を測定対象面11に付与する除電器23と、被覆部材21の内部の空気を撹拌する給気ポンプ24等と、被覆部材21の内部の空気を吸引する吸引ポンプ25等と、吸引ポンプ25により吸引した空気中のパーティクルを検査するパーティクルカウンタ26と、を備える。そして、図3に示すように、カップ状の被覆部材21の開口部211の端縁を測定対象面11に接触させて測定対象面11を被覆し(ステップST1)、測定対象面11の電位を測定し(ステップST2)、測定された電位をゼロにする又はゼロに近づける除電エネルギを測定対象面11に付与し(ステップST13)、被覆部材21の内部の空気を撹拌し(ステップST9)、被覆部材21の内部の空気を吸引し(ステップST10)、吸引した空気中のパーティクルを検査する(ステップST11)。   For this reason, as shown in FIG. 1, the surface deposit inspection apparatus 2 according to the present embodiment has a cup-shaped covering member 21 that covers the measurement target surface 11 with the edge of the opening 211 in contact with the measurement target surface 11. A surface potential meter 22 that measures the potential of the measurement target surface 11, a static eliminator 23 that applies to the measurement target surface 11 a potential that makes the potential measured by the surface potential meter 22 zero or close to zero, and a covering member An air supply pump 24 and the like for stirring the air inside 21, a suction pump 25 and the like for sucking air inside the covering member 21, and a particle counter 26 for inspecting particles in the air sucked by the suction pump 25. Prepare. And as shown in FIG. 3, the edge of the opening part 211 of the cup-shaped coating | coated member 21 is made to contact the measurement object surface 11, and the measurement object surface 11 is coat | covered (step ST1), and the electric potential of the measurement object surface 11 is set. Measurement (step ST2), neutralizing energy that makes the measured potential zero or close to zero is applied to the measurement target surface 11 (step ST13), and the air inside the covering member 21 is stirred (step ST9). Air inside the member 21 is sucked (step ST10), and particles in the sucked air are inspected (step ST11).

被覆部材21は、一端に開口部211を有するカップ状をなし、金属、セラミック又は樹脂などの剛体により構成されている。後述する除電器23として軟X線装置を用いる場合に、金属製であれば1mm以上、樹脂製であれば2mm以上の板厚であることが、軟X線の遮蔽機能の点で好ましい。被覆部材21の横断面は、円形又は矩形のいずれであってもよい。被覆部材21の開口部211の他端には、ヘッド212が設けられ、その両側に表面電位計22と除電器23が設けられている。なお、被覆部材21の開口部211を測定対象面11の形状に追従させるために、被覆部材21の開口部211に柔軟性を有する部材を装着してもよい。   The covering member 21 has a cup shape having an opening 211 at one end, and is configured by a rigid body such as metal, ceramic, or resin. When a soft X-ray apparatus is used as the static eliminator 23 to be described later, a plate thickness of 1 mm or more if made of metal and 2 mm or more if made of resin is preferable from the viewpoint of a soft X-ray shielding function. The cross section of the covering member 21 may be either circular or rectangular. A head 212 is provided at the other end of the opening 211 of the covering member 21, and a surface potential meter 22 and a static eliminator 23 are provided on both sides thereof. In order to make the opening 211 of the covering member 21 follow the shape of the measurement target surface 11, a flexible member may be attached to the opening 211 of the covering member 21.

ヘッド212には給気配管242と、吸引配管252が接続されている。本実施形態の被覆部材21では、ヘッド212が被覆部材21の上端に固定されているので、ヘッド212から測定対象面11までの距離が常に一定になる。したがって、測定対象面11における給気と吸引のバランスが一定となるため、捕集バラツキによるパーティクルの測定誤差を小さくすることができるという利点がある。   An air supply pipe 242 and a suction pipe 252 are connected to the head 212. In the covering member 21 of the present embodiment, since the head 212 is fixed to the upper end of the covering member 21, the distance from the head 212 to the measurement target surface 11 is always constant. Therefore, since the balance between air supply and suction on the measurement target surface 11 is constant, there is an advantage that the particle measurement error due to the collection variation can be reduced.

表面電位計22は、いわゆる非接触型電位形であり、開口部211で被覆された測定対象面11の表面電位を測定し、そのデータをコントローラ28へ出力する(具体的には、コントローラ28が所定タイミングで表面電位計22の測定データを読み出す)。   The surface potential meter 22 is a so-called non-contact potential type, measures the surface potential of the measurement target surface 11 covered with the opening 211, and outputs the data to the controller 28 (specifically, the controller 28 The measurement data of the surface electrometer 22 is read at a predetermined timing).

除電器23は、測定対象面11の電位をゼロにする除電エネルギ又はゼロに近づける除電エネルギを当該測定対象面に付与するものである。特に好ましくは、測定対象面11の表面電位の絶対値を0〜1kVにする。除電器23としては、コロナ放電を利用したイオナイザ、軟X線の照射又は紫外線の照射を例示することができる。コロナ放電により被覆部材21の内部の空気をイオン化するイオナイザを除電器23として用いる場合には、図1に示すように被覆部材21にイオナイザからなる除電器23を固定する他、これに代えて、後述する給気配管242にイオナイザからなる除電器を設け、給気ポンプ24から被覆部材21の内部へ供給される空気をイオン化してもよい。またこの場合に、コロナ放電に代えて軟X線により給気をイオン化してもよい。   The static eliminator 23 applies, to the measurement target surface, static elimination energy that makes the potential of the measurement target surface 11 zero, or static elimination energy that approaches zero. Particularly preferably, the absolute value of the surface potential of the measurement target surface 11 is set to 0 to 1 kV. Examples of the static eliminator 23 include ionizers using corona discharge, soft X-ray irradiation, and ultraviolet irradiation. When an ionizer that ionizes the air inside the covering member 21 by corona discharge is used as the static eliminator 23, in addition to fixing the static eliminator 23 made of an ionizer to the covering member 21, as shown in FIG. A static eliminator made of an ionizer may be provided in an air supply pipe 242 to be described later, and the air supplied from the air supply pump 24 to the inside of the covering member 21 may be ionized. In this case, the supply air may be ionized by soft X-rays instead of corona discharge.

測定対象物1が常圧下での空気中や酸素雰囲気中にある場合には、除電器23として、波長1nm以下、エネルギが約0.1〜5KeVの軟X線を照射する軟X線照射装置を用いることが好ましい。軟X線を照射すると、空気分子が光子吸収により光イオン化され、さらに電離した電子は高エネルギを有するため、中性の原子・分子との衝突によりこれらを電離させ、これが芋づる式に連続して生じる電子雪崩現象によって大量のイオン対が生成する。軟X線照射装置を除電器23として用いると、完全なオゾンフリー(オゾンの発生がない)でイオンのみが効率よく生成するという利点がある。   When the measurement object 1 is in air or an oxygen atmosphere under normal pressure, a soft X-ray irradiation device that irradiates soft X-rays having a wavelength of 1 nm or less and energy of about 0.1 to 5 KeV as the static eliminator 23. Is preferably used. When soft X-rays are irradiated, air molecules are photoionized by photon absorption, and further, the ionized electrons have high energy, so they are ionized by collisions with neutral atoms and molecules. A large number of ion pairs are generated by the avalanche phenomenon. When a soft X-ray irradiation apparatus is used as the static eliminator 23, there is an advantage that only ions are efficiently generated with complete ozone free (no generation of ozone).

これに対して、測定対象物1が窒素ガスやアルゴンガスなどの不活性ガス雰囲気及び減圧下にある場合には、除電器23として、波長10〜400nm、すなわち可視光線より短波長で軟X線より長波長の紫外線を照射する紫外線照射装置を用いることが好ましい。特に減圧雰囲気における紫外線照射による除電性能は、真空状態に近づくほど飛躍的に高くなる。   On the other hand, when the measurement object 1 is in an inert gas atmosphere such as nitrogen gas or argon gas and under reduced pressure, the static eliminator 23 has a wavelength of 10 to 400 nm, that is, a soft X-ray with a wavelength shorter than visible light. It is preferable to use an ultraviolet irradiation device that irradiates ultraviolet rays having a longer wavelength. In particular, the charge removal performance by ultraviolet irradiation in a reduced-pressure atmosphere increases dramatically as the vacuum state is approached.

除電器23として軟X線照射装置又は紫外線照射装置を用いる場合には、安全性を考慮して、図1に示すように、被覆部材21の開口部211と測定対象物1との接触面の近傍の外部に、接触面から漏洩する軟X線量を検出するX線測定器又は紫外線を検出する紫外線測定器27を設け、その測定結果をコントローラに出力することが望ましい。そして、これらX線測定器又は紫外線測定器27により軟X線又は紫外線の漏洩が検出されたら軟X線又は紫外線の照射を停止するとともに、漏洩の旨を喚起する措置を講じることが望ましい。   In the case of using a soft X-ray irradiation device or an ultraviolet irradiation device as the static eliminator 23, in consideration of safety, as shown in FIG. 1, the contact surface between the opening 211 of the covering member 21 and the measurement object 1 is shown. It is desirable that an X-ray measuring device for detecting a soft X-ray dose leaking from the contact surface or an ultraviolet ray measuring device 27 for detecting ultraviolet rays is provided outside the vicinity, and the measurement result is output to the controller. Then, when the leakage of soft X-rays or ultraviolet rays is detected by these X-ray measuring devices or ultraviolet ray measuring devices 27, it is desirable to stop the irradiation of soft X-rays or ultraviolet rays and take measures to urge the leakage.

上述した表面電位計22によって測定対象面11の電位が所定閾値より高い場合には、除電器23を用いて測定対象面11に、イオン化空気、軟X線又は紫外線などの除電エネルギを付与する。このとき、被覆部材21の開口部211と測定対象面11とで囲まれた内部空間の空気を撹拌し、除電された測定対象面11に付着していたパーティクルを浮遊させるために、被覆部材21の内部に給気する。給気手段としては、給気ポンプ24と、一端が給気ポンプ24に接続され、他端がヘッド212のエア吹出孔243に接続された給気配管242と、給気配管242の途中に設けられて給気内に混入したパーティクルを除去する除塵フィルタ241と、を備える。本実施形態の被覆部材21においては、図2に示すようにヘッド212の外周に等配で4つのエア吹出孔243が設けられている。この給気手段により、給気ポンプ24で吸引された空気は、除塵フィルタ241で除塵されたのち、給気配管242を介して4つのエア吹出孔243から被覆部材21の内部へ吹き出し、この空気によって被覆部材21の内部が撹拌されることになる。   When the potential of the measurement target surface 11 is higher than the predetermined threshold by the surface potential meter 22 described above, static elimination energy such as ionized air, soft X-rays, or ultraviolet rays is applied to the measurement target surface 11 using the static eliminator 23. At this time, in order to stir the air in the internal space surrounded by the opening 211 of the covering member 21 and the measurement target surface 11 and to float particles adhering to the measured measurement target surface 11, the covering member 21 is suspended. Air is supplied to the inside. As the air supply means, an air supply pump 24, an air supply pipe 242 having one end connected to the air supply pump 24 and the other end connected to the air blowing hole 243 of the head 212, and an air supply pipe 242 are provided in the middle. And a dust removal filter 241 for removing particles mixed in the supply air. In the covering member 21 of the present embodiment, as shown in FIG. 2, four air blowing holes 243 are provided on the outer periphery of the head 212 at equal intervals. The air sucked by the air supply pump 24 by this air supply means is dust-removed by the dust removal filter 241, and then blown out from the four air blowing holes 243 to the inside of the covering member 21 via the air supply pipe 242. Thus, the inside of the covering member 21 is agitated.

一方、除電及び撹拌されることでパーティクルを含んだ被覆部材21の内部の空気はパーティクルカウンタ26へ導かれる。このための吸引手段として、吸引ポンプ25と、一端が吸引ポンプ25に接続され、他端がヘッド212のエア吸引孔253に接続された吸引配管252と、吸引配管252の途中に設けられて吸引空気に混入したパーティクルを光散乱方式で計測するパーティクルカウンタ26と、同じく吸引配管252の途中に設けられて吸引空気に混入したパーティクルを捕集するパーティクル捕集器251と、を備える。この吸引手段により、被覆部材21の内部の空気は、吸引配管252によりパーティクルカウンタ26に導かれたのち、パーティクル捕集器251を通過し、吸引ポンプ25から排気される。なお、パーティクルカウンタ26は、吸引空気に混入したパーティクルの数量を粒径サイズごとに計測するが、パーティクル捕集器251で捕集されたパーティクルは分析装置などに供され、成分等を分析することでパーティクルの発生源などの特定に利用される。   On the other hand, the air inside the covering member 21 containing particles by being neutralized and stirred is guided to the particle counter 26. As suction means for this purpose, suction pump 25, suction pipe 252 having one end connected to suction pump 25 and the other end connected to air suction hole 253 of head 212, and suction pipe 252 are provided in the middle of suction pipe 252. A particle counter 26 that measures particles mixed in the air by a light scattering method, and a particle collector 251 that is provided in the middle of the suction pipe 252 and collects particles mixed in the suction air are provided. By this suction means, the air inside the covering member 21 is guided to the particle counter 26 by the suction pipe 252, passes through the particle collector 251, and is exhausted from the suction pump 25. The particle counter 26 measures the number of particles mixed in the suction air for each particle size, but the particles collected by the particle collector 251 are supplied to an analysis device or the like to analyze components and the like. It is used to specify the source of particles.

コントローラ28は、除電器23のON/OFF、給気ポンプ24のON/OFF、吸引ポンプ25のON/OFF及びパーティクルカウンタ26のON/OFFを制御する。また、表面電位計22の測定データを読み出し、除電器23による除電エネルギ量(たとえば除電エネルギの付与時間)を制御する。さらに、X線測定器又は紫外線測定器27の測定データを読み出し、軟X線又は紫外線の漏洩を検出した場合には除電器23の作動を停止するとともに作業者などに漏洩の旨を喚起する。   The controller 28 controls ON / OFF of the static eliminator 23, ON / OFF of the air supply pump 24, ON / OFF of the suction pump 25, and ON / OFF of the particle counter 26. Further, the measurement data of the surface potential meter 22 is read, and the amount of static electricity removed by the static eliminator 23 (for example, the application time of static electricity) is controlled. Further, when the measurement data of the X-ray measuring device or the ultraviolet measuring device 27 is read and leakage of soft X-rays or ultraviolet rays is detected, the operation of the static eliminator 23 is stopped and the operator is informed of the leakage.

なお、図1に示す実施形態では、給気ポンプ24と吸引ポンプ25を別々に設け、給気系と吸引系とを互いに独立させたが、給気ポンプ24と吸引ポンプ25を一つの循環ポンプで構成し、給気系と吸引系とを接続して循環系としてもよい。   In the embodiment shown in FIG. 1, the air supply pump 24 and the suction pump 25 are provided separately, and the air supply system and the suction system are independent from each other. It is good also as a circulation system by connecting an air supply system and a suction system.

次に、本実施形態の検査装置2の使用方法について説明する。図3は、主としてコントローラ28が実行する検査処理の一例を示すフローチャートである。まずステップST1において、被覆部材21を測定対象物1の測定対象面11にセットする。このとき、被覆部材21の開口部211の端縁が測定対象面11に接するように、特に軟X線照射装置又は紫外線照射装置を除電器23として用いる場合は好ましくは密着するようにセットする。被覆部材21の開口部211を測定対象面11に接触させ、測定対象面11を被覆したら、ステップST2において、コントローラ28は、表面電位計22の測定データを読み出し、測定対象面11の表面電位を把握する。   Next, the usage method of the inspection apparatus 2 of this embodiment is demonstrated. FIG. 3 is a flowchart mainly showing an example of the inspection process executed by the controller 28. First, in step ST <b> 1, the covering member 21 is set on the measurement target surface 11 of the measurement target 1. At this time, particularly when a soft X-ray irradiating device or an ultraviolet irradiating device is used as the static eliminator 23 so that the edge of the opening 211 of the covering member 21 is in contact with the measurement target surface 11, it is preferably set so as to be in close contact. After the opening 211 of the covering member 21 is brought into contact with the measurement target surface 11 and the measurement target surface 11 is covered, in step ST2, the controller 28 reads the measurement data of the surface potential meter 22, and calculates the surface potential of the measurement target surface 11. To grasp.

ステップST3において、セットして初回(1回目)のルーチンか否かを判断し、初回のルーチンである場合はステップST4へ進み、当該ステップST4にて測定対象面11が所定値Vより高い値で帯電しているかどうか判断する。所定値Vより高い値で帯電していなければステップST9へ進む。所定値Vより高い値で帯電している場合は、ステップST5へ進み、当該ステップST5において予め定められた短時間の軟X線または紫外線の照射を行ったのちステップST6へ進む。ステップST3において、初回のルーチンに限ってステップST4→ST5→ST6の処理を実行するのは、被覆部材21が測定対象物1の測定対象面11に適切にセットされたか否かを確認するためである。 In step ST3, the set and it is determined whether routine initial (first) and, if a routine for the first time the process proceeds to step ST4, the object surface 11 in the step ST4 is higher than the predetermined value V 0 values To determine if it is charged. If not charged at a higher value than the predetermined value V 0 the process proceeds to step ST9. If it is charged at a value higher than the predetermined value V 0 , the process proceeds to step ST5, and after performing soft X-ray or ultraviolet irradiation for a short time predetermined in step ST5, the process proceeds to step ST6. In step ST 3, the process of steps ST 4 → ST 5 → ST 6 is executed only in the first routine in order to confirm whether or not the covering member 21 is properly set on the measurement target surface 11 of the measurement target 1. is there.

なお、ステップST3においてセットしてから2回目以降のルーチンである場合は、ステップST4及びST5に代えて、ステップST13→ST6へ進む。そして、ステップST13においては、コントローラ28は、測定された電位に応じた除電エネルギを除電器23から測定対象面11へ付与するために除電器23を制御する。ここで、測定された電位に応じた除電エネルギとは、たとえば測定された測定対象面11の電位の絶対値が1kVを超える場合は、越えた数値に相関した時間だけ除電器23をONする。なお、たとえば測定された測定対象面11の電位の絶対値が1kV以下の場合の除電エネルギはゼロ、すなわち除電器23をOFFのままとする。   In the case of the second and subsequent routines after setting in step ST3, the process proceeds from step ST13 to ST6 instead of steps ST4 and ST5. In step ST <b> 13, the controller 28 controls the static eliminator 23 in order to apply the static elimination energy corresponding to the measured potential from the static eliminator 23 to the measurement target surface 11. Here, the static elimination energy corresponding to the measured potential is, for example, when the absolute value of the measured potential of the measurement target surface 11 exceeds 1 kV, the static eliminator 23 is turned on for a time correlated with the exceeded value. For example, when the absolute value of the measured potential of the measurement target surface 11 is 1 kV or less, the static elimination energy is zero, that is, the static eliminator 23 remains OFF.

ステップST3→ST4→ST5→ST6に続くステップST7において、コントローラ28は、X線測定器又は紫外線測定器27による測定データを読み出し、被覆部材21の開口部211と測定対象面11との間から軟X線又は紫外線が漏洩していないかを確認する。そして、ステップST7において、軟X線又は紫外線の漏洩が確認されたら、ステップST12へ進んで除電器23をOFFするとともに漏洩の旨を作業者等に喚起した後、処理を終了する。   In step ST7 following step ST3 → ST4 → ST5 → ST6, the controller 28 reads out the measurement data obtained by the X-ray measuring device or the ultraviolet ray measuring device 27 and softens it from between the opening 211 of the covering member 21 and the measurement target surface 11. Check if X-rays or ultraviolet rays are leaking. In step ST7, if leakage of soft X-rays or ultraviolet rays is confirmed, the process proceeds to step ST12 to turn off the static eliminator 23 and alert the operator to the leakage, and then the process ends.

ステップST7において、軟X線又は紫外線の漏洩が確認されなかったら、ステップST8へ進み、コントローラ28は、再び表面電位計22の測定データを読み出し、その測定データの絶対値が所定値V、たとえば上述した1kV以下であるか否かを判断する。この判断の結果、測定データの絶対値が1kV(所定値V)を超えている場合はステップST2へ戻り、再度電位を測定し(ステップST2)、測定された電位に応じた除電エネルギの付与(ステップST13)、漏洩X線又は漏洩紫外線の測定及び判定(ステップST6及びST7)を繰り返す。ステップST8において、測定データの絶対値が1kV(所定値V)以下の場合はステップST9へ進み、コントローラ28は、給気ポンプ24をONし、被覆部材21の内部へ給気する。給気ポンプ24のON時間は、たとえばタイマーなどを用いて設定することができる。これにより、給気ポンプ24で吸引された空気は、除塵フィルタ241で除塵されたのち、給気配管242を介して4つのエア吹出孔243から被覆部材21の内部へ吹き出し、この空気によって被覆部材21の内部が撹拌されることになる。なお、X線や紫外線以外で、漏れが人体の安全に影響しない除電方法を使用する場合は、ステップST5,ST6,ST7を省略することができる。 If no leakage of soft X-rays or ultraviolet rays is confirmed in step ST7, the process proceeds to step ST8, where the controller 28 reads the measurement data of the surface potentiometer 22 again, and the absolute value of the measurement data is a predetermined value V 0 , for example, It is determined whether the voltage is 1 kV or less. As a result of this determination, if the absolute value of the measurement data exceeds 1 kV (predetermined value V 0 ), the process returns to step ST2, the potential is measured again (step ST2), and charge removal energy is applied according to the measured potential. (Step ST13), measurement and determination of leakage X-rays or leakage ultraviolet rays (steps ST6 and ST7) are repeated. In step ST8, when the absolute value of the measurement data is 1 kV (predetermined value V 0 ) or less, the process proceeds to step ST9, and the controller 28 turns on the air supply pump 24 and supplies air into the covering member 21. The ON time of the air supply pump 24 can be set using, for example, a timer. As a result, the air sucked by the air supply pump 24 is dust-removed by the dust removal filter 241 and then blown out from the four air blowing holes 243 to the inside of the covering member 21 via the air supply pipe 242. The inside of 21 will be stirred. Note that steps ST5, ST6, and ST7 can be omitted when using a static elimination method other than X-rays or ultraviolet rays that does not affect the safety of the human body.

ステップST10において、コントローラ28は、吸引ポンプ25をONし、被覆部材21の内部の空気を吸引する。吸引ポンプ25のON時間は、たとえばタイマーなどを用いて設定することができる。これにより、被覆部材21の内部の空気は、吸引配管252を介してパーティクルカウンタ26に導かれたのち、パーティクル捕集器251を通過し、吸引ポンプ25から排気される。ステップST11において、コントローラ28は、パーティクルカウンタ26をONし、パーティクル数を計測する。なお、パーティクル捕集器251で捕集されたパーティクルは、図外の分析装置などに供され、パーティクルの成分等を分析することでパーティクルの発生源などの特定に利用される。   In step ST <b> 10, the controller 28 turns on the suction pump 25 and sucks the air inside the covering member 21. The ON time of the suction pump 25 can be set using, for example, a timer. As a result, the air inside the covering member 21 is guided to the particle counter 26 via the suction pipe 252, passes through the particle collector 251, and is exhausted from the suction pump 25. In step ST11, the controller 28 turns on the particle counter 26 and measures the number of particles. The particles collected by the particle collector 251 are supplied to an analysis device (not shown) and used for identifying the particle generation source by analyzing the particle components and the like.

以上のとおり、本実施形態の表面付着物の検査装置2によれば、帯電し易い環境下にあるクリーンルーム内の各種装置、壁面、基台、容器などにおいても、除電したのちパーティクルの検査を実行する構成であるため、精度の高い検査装置及び検査方法を提供することができる。特に、軟X線や紫外線を用いた除電器23によれば、測定対象物1が、常圧下での空気中や酸素雰囲気中にあるのか、窒素ガスやアルゴンガス、不活性ガス雰囲気及び減圧下にあるのかでこれらを選択し、これにより測定環境に応じて高い除電効率を発揮することができる。   As described above, according to the surface adhering matter inspection apparatus 2 of the present embodiment, particles are inspected after neutralizing electricity in various devices, wall surfaces, bases, containers, etc. in a clean room that is easily charged. Therefore, a highly accurate inspection apparatus and inspection method can be provided. In particular, according to the static eliminator 23 using soft X-rays or ultraviolet rays, whether the measurement object 1 is in air or an oxygen atmosphere under normal pressure, nitrogen gas, argon gas, inert gas atmosphere, and under reduced pressure. Therefore, it is possible to exhibit high static elimination efficiency depending on the measurement environment.

1…測定対象物
11…測定対象面
2…検査装置
21…被覆部材
211…開口部
212…ヘッド
22…表面電位計(電位測定手段)
23…除電器(除電手段)
24…給気ポンプ(撹拌手段)
241…除塵フィルタ
242…給気配管(撹拌手段)
243…エア吹出孔(撹拌手段)
25…吸引ポンプ(吸引手段)
251…パーティクル捕集器
252…吸引配管(吸引手段)
253…エア吸引孔(吸引手段)
26…パーティクルカウンタ(検査手段)
27…X線測定器,紫外線測定器
28…コントローラ
DESCRIPTION OF SYMBOLS 1 ... Measuring object 11 ... Measuring object surface 2 ... Inspection apparatus 21 ... Cover member 211 ... Opening part 212 ... Head 22 ... Surface electrometer (potential measuring means)
23 ... Static eliminator (static elimination means)
24 ... Air supply pump (stirring means)
241 ... Dust removal filter 242 ... Air supply pipe (stirring means)
243 ... Air blowing hole (stirring means)
25 ... Suction pump (suction means)
251 ... Particle collector 252 ... Suction piping (suction means)
253 ... Air suction hole (suction means)
26 ... Particle counter (inspection means)
27 ... X-ray measuring device, UV measuring device 28 ... Controller

Claims (9)

開口部の端縁が測定対象面に接し、前記測定対象面を被覆するカップ状の被覆部材と、
前記測定対象面の電位を測定する電位測定手段と、
前記電位測定手段により測定された電位をゼロにする又はゼロに近づける除電エネルギを前記測定対象面に付与する除電手段と、
前記被覆部材の内部の空気を撹拌する撹拌手段と、
前記被覆部材の内部の空気を吸引する吸引手段と、
前記吸引手段により吸引した空気中のパーティクルを検査する検査手段と、
を備える表面付着物の検査装置。
A cup-shaped covering member that is in contact with the surface to be measured, and that covers the surface to be measured;
A potential measuring means for measuring the potential of the measurement target surface;
Neutralizing means for applying to the surface to be measured neutralizing energy that makes the potential measured by the potential measuring means zero or close to zero; and
Stirring means for stirring the air inside the covering member;
Suction means for sucking air inside the covering member;
Inspection means for inspecting particles in the air sucked by the suction means;
A surface deposit inspection apparatus comprising:
前記除電手段は、軟X線を照射する軟X線照射装置である請求項1に記載の表面付着物の検査装置。   2. The surface deposit inspection apparatus according to claim 1, wherein the static eliminating unit is a soft X-ray irradiation apparatus that irradiates soft X-rays. 前記被覆部材の開口部と前記測定対象面との接触部の近傍の外部に、前記接触部から漏洩する軟X線量を検出するX線量検出手段が設けられている請求項2に記載の表面付着物の検査装置。   3. The surface-attached surface according to claim 2, wherein an X-ray dose detecting means for detecting a soft X-ray dose leaking from the contact portion is provided outside the vicinity of the contact portion between the opening of the covering member and the measurement target surface. Kimono inspection device. 前記除電手段は、前記被覆部材を前記測定対象面にセットした直後に一定の除電エネルギを付与し、
前記X線量検出手段は、前記接触部から漏洩する軟X線量を検出する請求項3に記載の表面付着物の検査装置。
The static elimination means provides a constant static elimination energy immediately after setting the covering member on the measurement target surface,
The surface deposit inspection apparatus according to claim 3, wherein the X-ray dose detection unit detects a soft X-ray dose leaking from the contact portion.
前記除電手段は、紫外線を照射する紫外線照射装置である請求項1に記載の表面付着物の検査装置。   2. The surface deposit inspection apparatus according to claim 1, wherein the static elimination unit is an ultraviolet irradiation device that irradiates ultraviolet rays. 前記被覆部材の開口部と前記測定対象面との接触部の近傍の外部に、前記接触部から漏洩する紫外線量を検出する紫外線量検出手段が設けられている請求項5に記載の表面付着物の検査装置。   6. The surface deposit according to claim 5, wherein an ultraviolet ray amount detecting means for detecting an ultraviolet ray amount leaking from the contact portion is provided outside the vicinity of the contact portion between the opening of the covering member and the measurement target surface. Inspection equipment. 前記除電手段は、前記被覆部材を前記測定対象面にセットした直後に一定の除電エネルギを付与し、
前記紫外線量検出手段は、前記接触部から漏洩する紫外線量を検出する請求項6に記載の表面付着物の検査装置。
The static elimination means provides a constant static elimination energy immediately after setting the covering member on the measurement target surface,
The said ultraviolet-ray amount detection means is an inspection apparatus of the surface deposit | attachment of Claim 6 which detects the ultraviolet-ray amount which leaks from the said contact part.
前記除電手段は、前記電位測定手段により測定された電位の絶対値が1kV以下になるまで除電処理を実行する請求項1〜7のいずれか一項に記載の表面付着物の検査装置。   8. The surface deposit inspection apparatus according to claim 1, wherein the static elimination unit performs the static elimination process until an absolute value of the potential measured by the potential measurement unit becomes 1 kV or less. カップ状の被覆部材の開口部の端縁を測定対象面に接触させ、前記測定対象面を被覆し、
前記測定対象面の電位を測定し、
測定された電位をゼロにする又はゼロに近づける除電エネルギを前記測定対象面に付与し、
前記被覆部材の内部の空気を撹拌し、
前記被覆部材の内部の空気を吸引し、
吸引した空気中のパーティクルを検査する表面付着物の検査方法。
The edge of the opening of the cup-shaped covering member is brought into contact with the measurement target surface, the measurement target surface is covered,
Measure the potential of the measurement target surface,
Applying neutralization energy that makes the measured potential zero or close to zero to the surface to be measured,
Stirring the air inside the covering member;
Aspirating the air inside the covering member;
An inspection method for surface deposits that inspects particles in the sucked air.
JP2016047904A 2016-03-11 2016-03-11 Inspection apparatus and inspection method for surface adhesion Active JP6515843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016047904A JP6515843B2 (en) 2016-03-11 2016-03-11 Inspection apparatus and inspection method for surface adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016047904A JP6515843B2 (en) 2016-03-11 2016-03-11 Inspection apparatus and inspection method for surface adhesion

Publications (2)

Publication Number Publication Date
JP2017161437A true JP2017161437A (en) 2017-09-14
JP6515843B2 JP6515843B2 (en) 2019-05-22

Family

ID=59853057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016047904A Active JP6515843B2 (en) 2016-03-11 2016-03-11 Inspection apparatus and inspection method for surface adhesion

Country Status (1)

Country Link
JP (1) JP6515843B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115855777A (en) * 2021-11-15 2023-03-28 Komico有限公司 Particle measuring device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102313019B1 (en) * 2021-06-02 2021-10-13 선계은 Particle Measuring Equipment
KR102308875B1 (en) * 2021-06-02 2021-10-01 선계은 Probe for Particle Measurement

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845695A (en) * 1994-08-02 1996-02-16 Shishido Seidenki Kk Discharging device using soft x-rays
JP2000019717A (en) * 1998-07-06 2000-01-21 Mitsubishi Electric Corp Manufacture of mask inspection device and semiconductor device
JP2000321180A (en) * 1999-05-12 2000-11-24 Nec Kyushu Ltd Surface contamination measuring instrument of equipment
JP2007040928A (en) * 2005-08-05 2007-02-15 Hitachi High-Technologies Corp Detector and method for detecting surface foreign matter for plasma treatment apparatus
JP2010199239A (en) * 2009-02-24 2010-09-09 Tokyo Electron Ltd Discharging method of substrate to be treated and substrate treatment apparatus
JP2015018974A (en) * 2013-07-11 2015-01-29 東京応化工業株式会社 Support body separation unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0845695A (en) * 1994-08-02 1996-02-16 Shishido Seidenki Kk Discharging device using soft x-rays
JP2000019717A (en) * 1998-07-06 2000-01-21 Mitsubishi Electric Corp Manufacture of mask inspection device and semiconductor device
US6327021B1 (en) * 1998-07-06 2001-12-04 Mitsubishi Denki Kabushiki Kaisha Mask inspection system and method of manufacturing semiconductor device
JP2000321180A (en) * 1999-05-12 2000-11-24 Nec Kyushu Ltd Surface contamination measuring instrument of equipment
JP2007040928A (en) * 2005-08-05 2007-02-15 Hitachi High-Technologies Corp Detector and method for detecting surface foreign matter for plasma treatment apparatus
JP2010199239A (en) * 2009-02-24 2010-09-09 Tokyo Electron Ltd Discharging method of substrate to be treated and substrate treatment apparatus
JP2015018974A (en) * 2013-07-11 2015-01-29 東京応化工業株式会社 Support body separation unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115855777A (en) * 2021-11-15 2023-03-28 Komico有限公司 Particle measuring device
CN115855777B (en) * 2021-11-15 2024-02-06 Komico有限公司 Particle measuring device

Also Published As

Publication number Publication date
JP6515843B2 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
JP6515843B2 (en) Inspection apparatus and inspection method for surface adhesion
CN100449682C (en) Substrate transport container
US20170315038A1 (en) Test film for detecting surface particles in clean room
TWI484522B (en) Charged particle - ray device
JP2001291655A (en) Method for evaluating hydrophobic treatment, method for forming resist pattern, and formation system for the resist pattern
KR100902946B1 (en) Soft x-ray photoionization charger
KR20160091142A (en) System for measuring fine particulate and gas particulate
JPH0363544A (en) Emitted particle measuring apparatus
JP5510629B2 (en) Charge transfer rate measuring device and method, surface resistance measuring device and method, and program for them
JP6052551B2 (en) Method for measuring the weight concentration of particulate matter in the air
JP6570525B2 (en) Automatic analyzer
Kim et al. Particle deposition velocity onto EUVL masks in vertical airflow
CN111771268B (en) Method for measuring Fe concentration in p-type silicon wafer and SPV measuring apparatus
TWI645184B (en) Aerosol analysis apparatus
JP2006275517A (en) Inspection device of surface deposit, manufacturing method of electronic device, inspection method of surface deposit, control program and readable recording medium
JP5521307B2 (en) Particle collection device and particle collection method
JP2023017651A (en) Static charge measurement device and static charge measurement method
JP6848849B2 (en) Fe concentration measuring method and SPV measuring device in p-type silicon wafer
JP2011033405A (en) Method of measuring particle
JP3121960B2 (en) Pollutant monitoring device for clean room
US20030194816A1 (en) Method of collecting chemically contaminating impurity constituents contained in air
Inaba Effects of Electrostatic Charge on Particle Adhesion on Wafer Surfaces
JP2011027637A (en) Material evaluation method
CN115702338A (en) Foreign matter inspection substrate, substrate processing apparatus, and substrate processing method
JP6848850B2 (en) Fe concentration measuring method and SPV measuring device in p-type silicon wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R150 Certificate of patent or registration of utility model

Ref document number: 6515843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250