JP2001140048A - METHOD OF MANUFACTURE FOR Al-Mg-Si TYPE ALUMINUM ALLOY EXTRUDED MATERIAL, AND METHOD OF WORKING - Google Patents

METHOD OF MANUFACTURE FOR Al-Mg-Si TYPE ALUMINUM ALLOY EXTRUDED MATERIAL, AND METHOD OF WORKING

Info

Publication number
JP2001140048A
JP2001140048A JP2000217115A JP2000217115A JP2001140048A JP 2001140048 A JP2001140048 A JP 2001140048A JP 2000217115 A JP2000217115 A JP 2000217115A JP 2000217115 A JP2000217115 A JP 2000217115A JP 2001140048 A JP2001140048 A JP 2001140048A
Authority
JP
Japan
Prior art keywords
aluminum alloy
extruded material
weight
extruded
plastic strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000217115A
Other languages
Japanese (ja)
Other versions
JP4011270B2 (en
Inventor
Masahito Yatsukura
政仁 谷津倉
Shigeru Okaniwa
茂 岡庭
Kunihiro Yasunaga
晋拓 安永
Yasuyuki Hama
靖之 浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Nippon Light Metal Co Ltd
Original Assignee
Honda Motor Co Ltd
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Nippon Light Metal Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000217115A priority Critical patent/JP4011270B2/en
Publication of JP2001140048A publication Critical patent/JP2001140048A/en
Application granted granted Critical
Publication of JP4011270B2 publication Critical patent/JP4011270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Al-Mg-Si type aluminum alloy extruded material to which a prescribed proof stress value is given by aging treatment by regulating the plastic strain of an extruded material to a predetermined value. SOLUTION: An Al-Mg-Si type aluminum alloy is extruded. Then, >=0.2% plastic strain is applied to the resultant extruded material by plastic deformation such as straightening, followed by aging treatment. As the Al-Mg-Si type aluminum alloy, an aluminum alloy containing 0.25-0.9% Si, 0.4-1.2% Mg, 0.1-0.3% Fe, 0.005-0.2% Ti and 0.001-0.01% B and further containing, if necessary, one or more kinds among 0.01-0.4% Cu, 0.05-0.2% Cr, 0.05-0.2% Zr and 0.05-0.3% Mn is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐力値にバラツキがな
く曲げ加工に適したAl−Mg−Si系アルミニウム合
金押出材を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an extruded Al-Mg-Si-based aluminum alloy material having no variation in proof stress and suitable for bending.

【0002】[0002]

【従来の技術】Al−Mg−Si系アルミニウム合金
は、押出加工で所定形状に成形した後、Mg2Si等の
金属間化合物を析出させる時効処理によって高強度が付
与される。この長所を活用し、軽量で耐食性に優れてい
ることと併せて、車輌用機材,建築資材,作業用機器
等、広範な分野で使用されている。Al−Mg−Si系
アルミニウム合金押出材の製造には、押出加工後に空
冷,水冷等で常温付近まで冷却した後、整直し、160
〜220℃で時効処理するT5処理や、時効処理に先立
って溶体化処理及び焼入れするT6処理後に整直する方
法等が採用されている。時効処理されたAl−Mg−S
i系アルミニウム合金は、合金組成,製造履歴,析出物
の量等に応じて耐力値が変わる。そこで、合金組成,押
出前の均質化処理条件,押出条件(ビレット温度,押出
材温度,押出材の冷却速度等),時効処理条件(保持温
度,保持時間等)等をできるだけ一定にすることによ
り、耐力値の安定化を図っていた。
BACKGROUND OF THE INVENTION Al-Mg-Si based aluminum alloy, after forming into a predetermined shape by extrusion, high strength is given by the aging treatment for precipitating an intermetallic compound such as Mg 2 Si. Taking advantage of this advantage, it is used in a wide range of fields, such as vehicle equipment, construction materials, and work equipment, in addition to being lightweight and excellent in corrosion resistance. To manufacture an Al—Mg—Si based aluminum alloy extruded material, it is cooled to around room temperature by air cooling, water cooling, or the like after extrusion processing, and then realigned.
A T5 treatment of aging at ~ 220 ° C, a solution treatment and a quenching prior to the aging treatment, and a method of adjusting after quenching T6 are adopted. Aged Mg-S
The proof stress value of the i-based aluminum alloy changes according to the alloy composition, the manufacturing history, the amount of the precipitate, and the like. Therefore, the alloy composition, homogenization conditions before extrusion, extrusion conditions (billet temperature, extruded material temperature, extruded material cooling rate, etc.), and aging conditions (holding temperature, holding time, etc.) are made as constant as possible. , The proof stress value was stabilized.

【0003】[0003]

【発明が解決しようとする課題】合金組成,均質化条
件,押出条件,時効処理条件を一定にしても、依然とし
て押出材の耐力値にバラツキが生じることがある。耐力
値にバラツキが生じる原因を調査したところ、同じよう
に製造された押出材であってもMg2Si等の析出量が
変動しており、析出量が多いものほど耐力値が高くなっ
ていた。析出量のバラツキは、押出直後や焼入れ後の押
出材の曲り具合や長さ等が押出材ごとに異なり、同じ設
定で整直しても押出材ごとに塑性歪み量が異なることに
原因があるものと推察される。塑性歪み量が異なると、
時効処理時に析出核となる転位量にバラツキが生じ、結
果として機械的強度に寄与するMg2Si等の析出量が
変動する。
Even if the alloy composition, homogenization conditions, extrusion conditions, and aging conditions are kept constant, the proof stress of the extruded material may still vary. When the cause of the variation in the proof stress value was investigated, even in the case of the extruded material manufactured in the same manner, the amount of precipitation of Mg 2 Si and the like fluctuated, and the greater the amount of precipitation, the higher the proof stress value was. . The variation in the amount of precipitation is due to the fact that the degree of bending or length of the extruded material immediately after extrusion or after quenching differs for each extruded material, and the amount of plastic strain differs for each extruded material even if the same setting is used for realignment. It is inferred. If the amount of plastic strain is different,
During the aging treatment, the amount of dislocations serving as precipitation nuclei varies, and as a result, the amount of precipitation of Mg 2 Si or the like that contributes to mechanical strength fluctuates.

【0004】耐力値のバラツキを考慮して要求特性を満
足する製品として出荷するためには、変動幅を見込んで
Mg2Si等の析出量が若干多く、換言すれば目標値よ
り高めの耐力値を付与する条件下で時効処理する方法が
採用される。しかし、最近では、耐力値の下限だけでな
く、上限の保証も求められるようになってきた。たとえ
ば、曲げ加工用に使用される押出材では曲げ加工時のス
プリングバックを一定にすることが曲げ製品の形状安定
性に必要なことから、押出材の耐力値を一定範囲に収め
ることがユーザから求められている。また、車輌用スペ
ースフレーム等の用途では、閾値以上の力が加わったと
きに壊れて衝撃を吸収することが乗員保護のために必要
であり、この点でも押出材の耐力値を一定範囲に収める
ことが求められている。耐力値の範囲に対する要求が厳
しくなっている現状では、変動幅を見込んでMg2Si
等を若干多量に析出させる従来の時効処理では対応でき
ない。
In order to ship a product satisfying the required characteristics in consideration of the variation in proof stress, the amount of precipitation of Mg 2 Si or the like is slightly larger in view of the fluctuation range, in other words, the proof stress higher than the target value. A method of performing aging treatment under the condition of imparting is given. However, recently, it has been required to guarantee not only the lower limit but also the upper limit of the proof stress value. For example, for extruded materials used for bending, it is necessary for the stability of the shape of the bent product to have a constant springback during bending, so it is necessary for users to keep the proof stress of the extruded material within a certain range. It has been demanded. In addition, in applications such as space frames for vehicles, it is necessary to protect the occupant by breaking when a force exceeding the threshold is applied and absorbing the impact. In this regard, the strength of the extruded material is kept within a certain range. Is required. At present, the demands on the range of proof stress values are becoming stricter, and Mg 2 Si
The conventional aging treatment, which causes a relatively large amount of precipitation, cannot be used.

【0005】[0005]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、Mg2Si等の
析出量を変動させる原因である塑性歪みを一定にするこ
とにより、時効処理によって一定の耐力値が付与された
Al−Mg−Si系アルミニウム合金押出材を提供する
ことを目的とする。本発明の製造方法は、その目的を達
成するため、Al−Mg−Si系アルミニウム合金を押
し出した後、塑性変形によって0.2%以上の塑性歪み
を付与し、次いで時効処理を施すことを特徴とする。
0.2%以上の塑性歪みは、たとえば押出後の整直で与
えられる。
SUMMARY OF THE INVENTION The present invention has been devised to solve such a problem, and is intended to reduce the amount of precipitation of Mg 2 Si or the like by keeping the plastic strain constant. It is another object of the present invention to provide an Al-Mg-Si-based aluminum alloy extruded material to which a certain proof stress is given by aging treatment. The production method of the present invention is characterized in that in order to achieve the object, after extruding an Al-Mg-Si-based aluminum alloy, a plastic strain of 0.2% or more is given by plastic deformation, and then aging treatment is performed. And
The plastic strain of 0.2% or more is given, for example, by straightening after extrusion.

【0006】Al−Mg−Si系アルミニウム合金とし
ては、Si:0.2〜0.9重量%,Mg:0.4〜
1.2重量%,Fe:0.1〜0.3重量%,Ti:
0.005〜0.2重量%,B:0.001〜0.01
重量%を含み、更に必要に応じてCu:0.01〜0.
4重量%,Cr:0.05〜0.2重量%,Zr:0.
05〜0.2重量%,Mn:0.05〜0.3重量%の
1種又は2種以上を含むアルミニウム合金が使用され
る。
[0006] As an Al-Mg-Si-based aluminum alloy, Si: 0.2-0.9% by weight, Mg: 0.4-
1.2% by weight, Fe: 0.1 to 0.3% by weight, Ti:
0.005 to 0.2% by weight, B: 0.001 to 0.01
% By weight, and further, if necessary, Cu: 0.01-0.
4% by weight, Cr: 0.05 to 0.2% by weight, Zr: 0.
An aluminum alloy containing one or more of 0.05 to 0.2% by weight and Mn: 0.05 to 0.3% by weight is used.

【0007】具体的には、押出ダイスから出た直後の材
温が500〜560℃となるようにAl−Mg−Si系
アルミニウム合金を押し出し、450〜250℃の温度
域を50℃/分以上で冷却した後、整直により0.2%
以上の塑性歪みを与え、次いで時効処理を施す。時効処
理は、整直されたAl−Mg−Si系アルミニウム合金
押出材を160〜220℃に保持するT5処理や、時効
処理に先立って溶体化処理及び焼入れを施すT6処理等
が採用される。T6処理の場合には、焼入れ後に塑性歪
みが付与される。また、ダイス端焼入れを併用したT5
処理も採用可能である。
Specifically, an Al-Mg-Si-based aluminum alloy is extruded so that the material temperature immediately after exiting the extrusion die is 500 to 560 ° C, and the temperature range of 450 to 250 ° C is increased to 50 ° C / min or more. After cooling at 0.2%
The above plastic strain is given, and then aging treatment is performed. As the aging treatment, a T5 treatment in which the rectified Al-Mg-Si-based aluminum alloy extruded material is kept at 160 to 220 ° C, a T6 treatment in which solution treatment and quenching are performed prior to the aging treatment, and the like are employed. In the case of T6 treatment, plastic strain is imparted after quenching. In addition, T5 combined with die edge quenching
Processing can also be employed.

【0008】[0008]

【作用】耐力値にバラツキを発生させる原因が押出材の
塑性歪み量にあるとの前提で、塑性歪みを一定にする方
法を検討した。個々の押出材ごとに整直機の設定値を変
更し、押出材の曲り具合や長さに応じた引張り力で押出
材を整直することにより、塑性歪みを一定にすることが
できる。しかし、押出材ごとに設定値を変更することは
現実的でない。そこで、本発明者等は、整直によって押
出材に付与される塑性歪み量と耐力値との関係を調査検
討した。その結果、耐力値は、図1に示すように初期段
階では塑性歪み量の増加に応じて上昇するが、0.2%
以上(好ましくは、0.4%以上)の塑性歪み量が与え
られた状態では変化率が小さくなることを見出した。
[Action] On the premise that the cause of the variation in the proof stress is the amount of plastic strain of the extruded material, a method of making the plastic strain constant was studied. By changing the set value of the straightening machine for each extruded material and reshaping the extruded material with a tensile force according to the degree of bending and length of the extruded material, the plastic strain can be kept constant. However, it is not realistic to change the set value for each extruded material. Then, the present inventors investigated and examined the relationship between the amount of plastic strain applied to the extruded material by straightening and the proof stress value. As a result, the proof stress value increases as the amount of plastic strain increases at the initial stage as shown in FIG.
It has been found that the rate of change is small in a state where the above (preferably 0.4% or more) plastic strain is given.

【0009】変化率の低下は、塑性歪み量が0.2%以
上になると多数の転位が発生し、時効処理時に析出核と
して働く転位が相互に打ち消し合うことによるものと推
察される。したがって、0.2%以上の塑性歪みを付与
すると、塑性歪みが多少異なっても時効処理で付与され
る強度が大きく変動せず、押出材ごとに整直機の設定値
を変更する必要もない。ただし、過剰な塑性歪みは押出
材の伸びを低下させ、肉厚や断面形状も悪化させる原因
となるので、押出材に加える塑性歪み量を2%以下にす
ることが好ましい。
It is presumed that the decrease in the rate of change is due to the fact that a large number of dislocations are generated when the amount of plastic strain is 0.2% or more, and the dislocations acting as precipitation nuclei during aging cancel each other out. Therefore, when a plastic strain of 0.2% or more is applied, even if the plastic strain is slightly different, the strength applied by the aging treatment does not fluctuate greatly, and it is not necessary to change the set value of the straightening machine for each extruded material. . However, excessive plastic strain reduces elongation of the extruded material and deteriorates the wall thickness and cross-sectional shape. Therefore, the amount of plastic strain applied to the extruded material is preferably set to 2% or less.

【0010】次いで、本発明が対象とするAl−Mg−
Si系アルミニウム合金の合金成分,含有量,製造条件
等を説明する。合金成分 Si:0.2〜0.9重量% 時効処理時にMg2Siとして析出し、押出材に強度を
付与する合金成分である。十分な機械的強度を得るため
には、0.2重量%以上のSi含有量が必要である。し
かし、0.9重量%を超える過剰なSiが含まれると、
押出直後に押出材が冷却される過程でMg2Siが析出
し易くなり、時効処理時に強度向上に有効なMg2Si
の析出量が減少する。 Mg:0.4〜1.2重量% 時効処理時にMg2Siとして析出し、押出材に強度を
付与する合金成分である。十分な機械的強度を得るため
には、0.4重量%以上のMg含有量が必要である。し
かし、1.2重量%を超える過剰なMgが含まれると、
押出直後に押出材が冷却される過程でMg2Siが析出
し易くなり、時効処理時に強度向上に有効なMg2Si
の析出量が減少する。
Next, the Al-Mg-
The alloy components, content, manufacturing conditions, and the like of the Si-based aluminum alloy will be described. Alloy component Si: 0.2 to 0.9% by weight An alloy component that precipitates as Mg 2 Si during aging treatment and imparts strength to the extruded material. In order to obtain sufficient mechanical strength, a Si content of 0.2% by weight or more is required. However, when excess Si exceeding 0.9% by weight is contained,
Extruded material is liable to Mg 2 Si precipitation in the process of being cooled immediately after extrusion, effective Mg 2 Si in improving the strength at the time of aging treatment
The amount of precipitation decreases. Mg: 0.4 to 1.2% by weight An alloy component that precipitates as Mg 2 Si during aging treatment and imparts strength to the extruded material. To obtain sufficient mechanical strength, a Mg content of 0.4% by weight or more is required. However, if an excess of more than 1.2% by weight of Mg is contained,
Extruded material is liable to Mg 2 Si precipitation in the process of being cooled immediately after extrusion, effective Mg 2 Si in improving the strength at the time of aging treatment
The amount of precipitation decreases.

【0011】Fe:0.1〜0.3重量% Al−Fe−Si相を生成し、押出材の結晶粒を微細化
することにより機械的性質を改善する合金成分である。
このような作用は、0.1重量%以上で顕著になる。し
かし、0.3重量%を超える過剰量のFeが含まれる
と、Al−Fe−Si相は量的に増加するものの、その
分だけSiが減少し、時効処理時に析出するMg2Si
が少なくなる。 Ti:0.005〜0.2重量% 鋳塊の結晶粒を微細化し、鋳造割れを抑制する作用を呈
する合金成分であり、0.005重量%以上でTi添加
の効果が顕著になる。しかし、0.2重量%を超える過
剰量のTi含有は、粗大なAl−Ti系晶出物の生成を
促進させ、押出性を劣化させる。
Fe: 0.1 to 0.3% by weight An Al-Fe-Si alloy component that produces an Al-Fe-Si phase and refines the crystal grains of the extruded material to improve mechanical properties.
Such an effect becomes remarkable at 0.1% by weight or more. However, when an excessive amount of Fe exceeding 0.3% by weight is contained, although the Al—Fe—Si phase is increased in quantity, Si is reduced by that amount, and Mg 2 Si precipitated during aging treatment is reduced.
Is reduced. Ti: 0.005 to 0.2% by weight This is an alloy component that has the effect of refining the crystal grains of the ingot and suppressing casting cracks. At 0.005% by weight or more, the effect of adding Ti becomes remarkable. However, an excessive amount of Ti exceeding 0.2% by weight promotes the formation of coarse Al-Ti crystallized substances and deteriorates extrudability.

【0012】B:0.001〜0.01重量% 鋳塊の結晶粒を微細化し、鋳造割れを抑制する作用を呈
する合金成分であり、0.001重量%以上でB添加の
効果が顕著になる。しかし、0.01重量%を超える過
剰量のB含有は、Ti−B化合物を増加させ、押出性を
劣化させる。 Cu:0.01〜0.4重量% 必要に応じて添加される合金成分であり、0.1重量%
以上で機械的強度を向上させる効果が顕著になる。しか
し、0.4重量%を超える過剰量のCuを添加すると、
押出直後に押出材が冷却される過程でMg2Siが析出
し易くなる。その結果、本発明で規定した冷却条件下で
も機械的強度向上に寄与しないMg2Siが析出し、時
効処理時に強度向上に有効なMg2Siの析出量が減少
する。
B: 0.001 to 0.01% by weight An alloy component which has the effect of refining the crystal grains of the ingot and suppressing casting cracks, and the effect of adding B is remarkable at 0.001% by weight or more. Become. However, an excessive B content exceeding 0.01% by weight increases the Ti-B compound and deteriorates the extrudability. Cu: 0.01 to 0.4% by weight Alloy component added as necessary, 0.1% by weight
As described above, the effect of improving the mechanical strength becomes remarkable. However, when an excessive amount of Cu exceeding 0.4% by weight is added,
Mg 2 Si tends to precipitate in the process of cooling the extruded material immediately after extrusion. As a result, Mg 2 Si which does not contribute to the improvement of the mechanical strength under the cooling conditions specified in the present invention is precipitated, and the amount of Mg 2 Si which is effective for improving the strength during the aging treatment is reduced.

【0013】 Cr:0.05〜0.2重量% Zr:0.05〜0.2重量% Mn:0.05〜0.3重量% Cr,Zr及びMnは、必要に応じて添加される合金成
分であり、ビレットを押出前に均質化処理するときに化
合物として析出し、押出時に組織の再結晶や再結晶粒の
粗大化を抑制する作用を呈し、押出材の軟化を防止す
る。また、耐食性の向上にも有効である。このような作
用は、Cr及びZrでは0.05重量%以上、Mnでは
0.05重量%以上で顕著になる。しかし、0.2重量
%を超える過剰量のCrやZr、又は0.3重量%を超
える過剰量のMnを添加すると、押出直後に押出材が冷
却される過程でMg2Siが析出し易くなる。その結
果、時効処理時に強度向上に有効なMg2Siの析出量
が減少する。
Cr: 0.05 to 0.2% by weight Zr: 0.05 to 0.2% by weight Mn: 0.05 to 0.3% by weight Cr, Zr and Mn are added as required. An alloy component, which precipitates as a compound when the billet is homogenized before extrusion, exhibits an action of suppressing recrystallization of the structure and coarsening of recrystallized grains during extrusion, and prevents softening of the extruded material. It is also effective in improving corrosion resistance. Such effects become remarkable at 0.05% by weight or more for Cr and Zr and 0.05% by weight or more for Mn. However, when an excessive amount of Cr or Zr exceeding 0.2% by weight or an excessive amount of Mn exceeding 0.3% by weight is added, Mg 2 Si tends to precipitate in a process of cooling the extruded material immediately after extrusion. Become. As a result, the amount of Mg 2 Si that is effective for improving the strength during the aging treatment is reduced.

【0014】押出工程 押出加工では、押出ダイスから出てきた直後の押出材が
材温500〜560℃となるように熱管理し、450〜
250℃の温度域の冷却速度が50℃/分以上となるよ
うに冷却する。押出直後の材温及び冷却速度は、押出材
のマトリックスを過飽和固溶状態に維持する上で重要で
ある。過飽和固溶状態によって、強度付与に有効な析出
物を後工程の時効処理段階で析出させることができる。
また、Cu,Cr,Mn,Zrを含む押出材では析出物
が発生し易いので、水焼入れ,ミスト冷却等で冷却速度
を1000℃/分以上にすることが好ましい。
Extrusion Step In the extrusion process, heat management is performed so that the extruded material immediately after coming out of the extrusion die has a material temperature of 500 to 560 ° C.
The cooling is performed so that the cooling rate in the temperature range of 250 ° C. is 50 ° C./min or more. Material temperature and cooling rate immediately after extrusion are important for maintaining the matrix of the extruded material in a supersaturated solid solution state. Depending on the supersaturated solid solution state, a precipitate effective for imparting strength can be precipitated in an aging treatment stage in a later step.
In the case of an extruded material containing Cu, Cr, Mn, and Zr, precipitates are easily generated. Therefore, it is preferable to set the cooling rate to 1000 ° C./min or more by water quenching, mist cooling, or the like.

【0015】整直工程 押出材は、整直機で引っ張られ、曲りが矯正される。こ
のとき、整直機に加わる荷重が急激に変化したとき、押
出材がまっすぐになったと判断され、その時点での押出
材の長さを本来の押出材長さとすることができる。更に
引張り力を加えると押出材が伸びるが、押出材本来の長
さに対する伸び量の比を塑性歪み量とし、塑性歪み量が
0.2%以上になるまで整直する。これにより、時効処
理によって付与される耐力値が所定範囲になる状態に押
出し材が調整される。整直は、材温が80℃以下に低下
した押出材に施すことが好ましい。材温が80℃を超え
ると、押出材の位置によっては材温が大きく異なり、均
一な歪みが付与できないことがある。
Straightening Step The extruded material is pulled by a straightening machine to correct the bending. At this time, when the load applied to the straightening machine changes abruptly, it is determined that the extruded material has been straightened, and the length of the extruded material at that time can be used as the original extruded material length. When the tensile force is further applied, the extruded material elongates. The ratio of the amount of elongation to the original length of the extruded material is defined as the amount of plastic strain, and the extruded material is adjusted until the amount of plastic strain becomes 0.2% or more. Thus, the extruded material is adjusted so that the proof stress value given by the aging treatment falls within a predetermined range. The straightening is preferably performed on an extruded material whose material temperature has dropped to 80 ° C. or lower. When the material temperature exceeds 80 ° C., the material temperature varies greatly depending on the position of the extruded material, and uniform strain may not be applied.

【0016】時効処理 整直された押出材に対して、160〜220℃で2〜1
2時間保持するT5処理が施される。T5処理によって
Mg2Si等が析出し、押出材が時効硬化する。このと
きの時効条件は、押出材の要求特性に応じて160〜2
20℃及び2〜12時間の範囲で加熱温度及び保持時間
が適宜設定される。また、480〜580℃に1〜8時
間保持する溶体化処理後に焼入れし、整直を経て、次い
で同様な条件下で時効処理するT6処理も採用可能であ
る。押出材のマトリックスは、溶体化処理によって過飽
和固溶状態になり、焼入れ後に整直機で引張られること
により焼入れ時に生じた曲りが矯正されると共に、0.
2%以上の塑性歪みが付与される。整直の終了した押出
材は、160〜220℃で2〜12時間保持することに
より、Mg2Si等の析出によって時効硬化する。この
場合も、押出材の要求特性に応じて160〜220℃及
び2〜12時間の範囲で加熱温度及び保持時間が適宜設
定される。
Aging treatment The extruded material is adjusted at 160 to 220 ° C. for 2 to 1
T5 treatment for 2 hours is applied. By the T5 treatment, Mg 2 Si or the like precipitates, and the extruded material age hardens. The aging condition at this time is 160 to 2 depending on the required characteristics of the extruded material.
The heating temperature and the holding time are appropriately set within the range of 20 ° C. and 2 to 12 hours. Further, a T6 treatment in which quenching is performed after solution treatment in which the solution is kept at 480 to 580 ° C. for 1 to 8 hours, straightening is performed, and then aging treatment is performed under the same conditions, can also be adopted. The matrix of the extruded material is turned into a supersaturated solid solution state by the solution treatment, and after being quenched, is stretched by a straightening machine to correct the bending generated at the time of quenching.
A plastic strain of 2% or more is provided. The extruded material after the straightening is kept at 160 to 220 ° C. for 2 to 12 hours to age harden by precipitation of Mg 2 Si or the like. Also in this case, the heating temperature and the holding time are appropriately set in the range of 160 to 220 ° C. and 2 to 12 hours according to the required characteristics of the extruded material.

【0017】曲げ加工 押出材とほぼ同じ形状の挿通口を有する固定金型と可動
金型とを各々の挿通口が一直線になるように配置し、押
出材を固定金型の挿通口から可動金型の挿通口に向かっ
て押し込む。押出材の先端が可動金型の挿通口を通過し
たら、押出材の押し混みを継続しながら徐々に可動金型
を移動させることにより、押出材に自在な曲げ加工が施
される。可動金型の移動量はスプリングバック量を考慮
して決定されるが、この曲げ加工方法は一般にマルチベ
ンディングと呼ばれる方法であり、ドローベンディング
やストレッチベンディング等の他の曲げ加工方法より、
スプリングバック量およびそのバラツキが大きいため、
より押出材の耐力を一定にしておく必要性があるが、
0.2%以上の塑性歪みを与えたAl−Mg−Si系ア
ルミニウム合金押出材を使用した曲げ加工では、押出材
の耐力が一定であるため、寸法精度の優れた曲げ加工材
が得られる。
The bending extruded material substantially stationary mold and the movable mold and each of the insertion opening having insertion opening of the same shape are disposed so that a straight line, the movable metal extrusion material from the fixed die through opening Push it into the mold opening. When the tip of the extruded material passes through the insertion opening of the movable mold, the extruded material can be freely bent by gradually moving the movable mold while continuously pushing and pushing the extruded material. The amount of movement of the movable mold is determined in consideration of the amount of springback, but this bending method is a method generally called multi-bending, which is more difficult than other bending methods such as draw bending and stretch bending.
Due to the large amount of springback and its variation,
It is necessary to keep the strength of the extruded material constant,
In bending using an Al-Mg-Si-based aluminum alloy extruded material having a plastic strain of 0.2% or more, since the proof strength of the extruded material is constant, a bent material having excellent dimensional accuracy can be obtained.

【0018】[0018]

【実施例1】組成を表1に示したAl−Mg−Si系ア
ルミニウム合金1のビレットを9本用意し、580℃×
2時間で均質化処理した後、450℃に加熱し、100
mm×100mm,肉厚2mmの中空矩形断面をもつ長
さ40mの押出材を製造した。次いで、ファン空冷によ
り平均冷却速度70℃/分で30℃まで押出材を冷却し
た。
Example 1 Nine billets of an Al-Mg-Si-based aluminum alloy 1 having the composition shown in Table 1 were prepared, and 580 ° C ×
After homogenizing for 2 hours, heat to 450 ° C.
An extruded material having a length of 40 m and a hollow rectangular cross section having a size of 100 mm and a thickness of 2 mm was produced. Next, the extruded material was cooled to 30 ° C. at an average cooling rate of 70 ° C./min by air cooling with a fan.

【0019】 [0019]

【0020】得られた各押出材を整直機にかけて引っ張
り、種々の塑性歪み量を付与した後、180℃に4時間
保持するT5処理を施した。なお、時効処理の実施時期
は、押出終了から30時間経過した時点に設定した。表
2は、T5処理された各押出材の耐力及び伸びを測定し
た結果を示す。表2から明らかなように、塑性歪み量が
0.2%までは時効処理で付与された耐力が急激に上昇
しているが、0.2%以上の塑性歪み量では耐力の増加
割合が少なくなった。しかし、塑性歪み量の増加に伴っ
て、時効処理された押出材の伸びが漸減した。
Each of the obtained extruded materials was pulled by a straightening machine to impart various amounts of plastic strain, and then subjected to a T5 treatment at 180 ° C. for 4 hours. The aging treatment was performed at the time when 30 hours had passed since the end of extrusion. Table 2 shows the results of measuring the proof stress and elongation of each extruded material subjected to T5 treatment. As is clear from Table 2, the proof stress imparted by the aging treatment sharply increases up to the plastic strain amount of 0.2%, but the increase rate of the proof stress is small at the plastic strain amount of 0.2% or more. became. However, as the amount of plastic strain increased, the elongation of the aged extruded material gradually decreased.

【0021】 [0021]

【0022】[0022]

【実施例2】Al−Mg−Si系アルミニウム合金2の
ビレットを9本用意し、580℃×2時間で均質化処理
した後、480℃に加熱し、押出ダイスから出てきた直
後の材温が520℃になる条件下で100mm×100
mm,肉厚2mmの中空矩形断面をもつ長さ40mの形
状に押し出し、得られた押出材を水焼入れで1000℃
/分以上の冷却速度で室温まで冷却した。ダイス端焼入
れされた各押出材を整直機にかけて引っ張り、種々の塑
性歪み量を付与した後、180℃に4時間保持する時効
処理を施した。なお、時効処理の実施時期は、押出終了
から30時間経過した時点に設定した。表3は、時効処
理された各押出材の耐力及び伸びを測定した結果を示
す。表3から明らかなように、この場合にも塑性歪み量
が0.2%までは時効処理で付与された耐力が急激に上
昇しているが、0.2%以上の塑性歪み量では耐力の増
加割合が少なくなった。
Example 2 Nine billets of Al-Mg-Si-based aluminum alloy 2 were prepared, homogenized at 580 ° C for 2 hours, heated to 480 ° C, and the material temperature immediately after coming out of the extrusion die. 100 mm x 100 under the condition that
The extruded material is extruded to a shape of 40 mm in length having a hollow rectangular cross section with a thickness of 2 mm and a thickness of 2 mm.
The temperature was cooled to room temperature at a cooling rate of not less than / min. Each extruded material quenched at the die end was pulled by a straightening machine to impart various amounts of plastic strain, and then subjected to an aging treatment at 180 ° C. for 4 hours. The aging treatment was performed at the time when 30 hours had passed since the end of extrusion. Table 3 shows the results of measuring the proof stress and elongation of each of the aged extruded materials. As is clear from Table 3, in this case also, the proof stress imparted by the aging treatment sharply increases up to the plastic strain amount of 0.2%, but the proof stress is increased at the plastic strain amount of 0.2% or more. The rate of increase has been reduced.

【0023】 [0023]

【0024】[0024]

【実施例3】Al−Mg−Si系アルミニウム合金2の
ビレットを9本用意し、580℃×2時間で均質化処理
した後、450℃に加熱し、100mm×100mm,
肉厚2mmの中空矩形断面をもつ長さ40mの押出材を
製造した。得られた各押出材を540℃で2時間溶体化
処理した後、水焼入れした(T6処理)。T6処理され
た各押出材を整直機にかけて引っ張り、種々の塑性歪み
量を付与した後、180℃に4時間保持する時効処理を
施した。なお、時効処理の実施時期は、押出終了から3
0時間経過した時点に設定した。表4は、時効処理され
た各押出材の耐力及び伸びを測定した結果を示す。表4
から明らかなように、この場合にも塑性歪み量が0.2
%までは時効処理で付与された耐力が急激に上昇してい
るが、0.2%以上の塑性歪み量では耐力の増加割合が
少なくなった。
Example 3 Nine billets of Al-Mg-Si-based aluminum alloy 2 were prepared, homogenized at 580 ° C for 2 hours, and then heated to 450 ° C to obtain 100 mm x 100 mm,
An extruded material having a thickness of 40 mm and a hollow rectangular cross section with a thickness of 2 mm was produced. Each of the obtained extruded materials was subjected to a solution treatment at 540 ° C. for 2 hours and then water-quenched (T6 treatment). Each extruded material subjected to T6 treatment was pulled by a straightening machine to impart various amounts of plastic strain, and then subjected to an aging treatment at 180 ° C. for 4 hours. The aging treatment is performed 3 times after the end of extrusion.
It was set at the time when 0 hour had passed. Table 4 shows the results of measuring the proof stress and elongation of each of the aged extruded materials. Table 4
As is clear from FIG.
%, The proof stress imparted by the aging treatment sharply increased, but the rate of increase in the proof stress decreased at an amount of plastic strain of 0.2% or more.

【0025】 [0025]

【0026】[0026]

【実施例4】実施例1〜3で製造された押出材(100
×100mm,肉厚2mmの中空材)を,23℃の雰囲
気において図2に示すように固定金型1と可動金型2に
押通し方向Dに通過速度90cm/分で通しながら、可
動金型2の曲率半径Rが200mmとなるように移動さ
せ、押出材Mを曲げ加工した。加工後に押出材の形状を
測定し、曲率半径rを求めた。表5の結果にみられるよ
うに、塑性歪み量が0%,0.1%の場合、実施例1の
T5処理材では78.2mm(48.6+29.6m
m),実施例2の水焼入れ材では73.6mm(40.
6+33mm),実施例3のT6処理材では60.7m
m(41.7+19mm)と、曲げ加工された押出材の
曲率半径rに大きな差が生じていた。このことから、
0.2%未満の塑性歪み量では、僅かに塑性歪み量が異
なるだけでスプリングバック量が大きく異なってしまう
ことが判る。
Example 4 The extruded material (100
2 is passed through a fixed mold 1 and a movable mold 2 at a passing speed of 90 cm / min in a pressing direction D in an atmosphere at 23 ° C. as shown in FIG. The extruded material M was moved so that the radius of curvature R of No. 2 became 200 mm. After processing, the shape of the extruded material was measured, and the radius of curvature r was determined. As can be seen from the results in Table 5, when the amount of plastic strain is 0% or 0.1%, the T5 treated material of Example 1 has 78.2 mm (48.6 + 29.6 m).
m), and 73.6 mm (40.
6 + 33 mm), 60.7 m for the T6 treated material of Example 3.
m (41.7 + 19 mm) and the radius of curvature r of the extruded material that was bent were large. From this,
It can be seen that when the amount of plastic strain is less than 0.2%, the amount of springback is greatly different even if the amount of plastic strain is slightly different.

【0027】これに対し、0.2%,0.4%の塑性歪
み量を与えると、実施例1のT5処理材では30.9m
m,実施例2の水焼入れ材では37.5mm,実施例3
のT6処理材では21.5mmと、同じ歪み量の変化で
も加工された押出材の曲率半径rの差が小さくなってい
る。また、塑性歪み量が大きくなるほど曲率半径rの差
が小さくなる傾向が顕著になっている。このことから、
0.2%以上の塑性歪み量を与えるとき、塑性歪み量の
変化に拘わらずスプリングバック量が大きく変化せず、
形状が良好な曲げ加工品が得られることが判る。
On the other hand, when the plastic strain amounts of 0.2% and 0.4% are given, the T5 treated material of Example 1 has a thickness of 30.9 m.
m, 37.5 mm for the water-quenched material of Example 2, Example 3
In the case of the T6 treated material, the difference in the radius of curvature r of the processed extruded material is 21.5 mm, which is small even with the same change in the amount of strain. In addition, the tendency that the difference in the radius of curvature r becomes smaller as the amount of plastic strain increases becomes more conspicuous. From this,
When giving a plastic strain amount of 0.2% or more, the springback amount does not greatly change regardless of the change in the plastic strain amount,
It can be seen that a bent product having a good shape can be obtained.

【0028】 [0028]

【0029】[0029]

【発明の効果】以上に説明したように、本発明において
は、押出加工で製造された押出材に時効処理を施す前
に、2%以上の塑性歪み量を押出材に与えている。塑性
歪みの導入によって、時効処理時にMg2Si等の析出
核となる転位が相互に打ち消し合う程度に増加するた
め、時効処理後に過度の強度上昇が抑えられ、耐力値を
所定範囲に収めた押出材が得られる。このようにして、
ユーザが要求する下限と上限との範囲に耐力値を収める
ことができるため、曲げ加工用,車輌用機材を始めとし
て広範な分野で使用される押出材が提供される。
As described above, in the present invention, an extruded material produced by extrusion processing is given a plastic strain of 2% or more before aging treatment. Due to the introduction of plastic strain, dislocations serving as precipitation nuclei such as Mg 2 Si during the aging treatment increase to such an extent that they cancel each other out, so that an excessive increase in strength is suppressed after the aging treatment, and the proof stress is within a predetermined range. Wood is obtained. In this way,
Since the proof stress can be set within the range of the lower limit and the upper limit required by the user, an extruded material used in a wide range of fields including bending and vehicle equipment is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 整直で与えた塑性歪み量が時効処理後の耐力
値に及ぼす影響を示したグラフ
FIG. 1 is a graph showing the effect of the amount of plastic strain given by straightening on the yield strength after aging treatment.

【図2】 押出材の曲げ加工を説明する図FIG. 2 is a diagram illustrating a bending process of an extruded material.

【符号の説明】[Explanation of symbols]

1:固定金型 2:可動金型 M:押出材 D:
押通し方向
1: fixed mold 2: movable mold M: extruded material D:
Pushing direction

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 630 C22F 1/00 630A 630K 682 682 683 683 685 685Z 692 692A 692B 694 694A 694B (72)発明者 岡庭 茂 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 安永 晋拓 埼玉県和光市中央一丁目4番1号 株式会 社本田技術研究所内 (72)発明者 浜 靖之 埼玉県和光市中央一丁目4番1号 株式会 社本田技術研究所内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 630 C22F 1/00 630A 630K 682 682 683 683 683 685 685Z 692 692A 692B 694 694A 694B (72) Invention Person Shigeru Owaniwa 1-34-1 Kambara, Kambara-cho, Abara-gun, Shizuoka Prefecture Within the Nippon Light Metal Co., Ltd.Group Technology Center (72) Inventor Shintaku Yasunaga 1-4-1 Chuo, Wako-shi, Saitama Prefecture Honda Motor Research Institute, Inc. (72) Inventor Yasuyuki Hama 1-4-1 Chuo, Wako-shi, Saitama Pref.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Al−Mg−Si系アルミニウム合金を
押し出した後、塑性変形によって0.2%以上の塑性歪
みを付与し、次いで時効処理を施すことを特徴とするA
l−Mg−Si系アルミニウム合金押出材の製造方法。
1. An extruding method comprising the steps of: extruding an Al—Mg—Si based aluminum alloy, applying a plastic strain of 0.2% or more by plastic deformation, and then performing aging treatment.
A method for producing an extruded l-Mg-Si aluminum alloy.
【請求項2】 Si:0.2〜0.9重量%,Mg:
0.4〜1.2重量%,Fe:0.1〜0.3重量%,
Ti:0.005〜0.2重量%,B:0.001〜
0.01重量%を含み、残部が実質的にAlの組成をも
つAl−Mg−Si系アルミニウム合金を使用する請求
項1記載のAl−Mg−Si系アルミニウム合金押出材
の製造方法。
2. Si: 0.2 to 0.9% by weight, Mg:
0.4 to 1.2% by weight, Fe: 0.1 to 0.3% by weight,
Ti: 0.005 to 0.2% by weight, B: 0.001 to
The method for producing an extruded Al-Mg-Si-based aluminum alloy according to claim 1, wherein an Al-Mg-Si-based aluminum alloy containing 0.01% by weight and a balance substantially having an Al composition is used.
【請求項3】 更にCu:0.01〜0.4重量%,C
r:0.05〜0.2重量%,Zr:0.05〜0.2
重量%,Mn:0.05〜0.3重量%の1種又は2種
以上を含むAl−Mg−Si系アルミニウム合金を使用
する請求項2記載のAl−Mg−Si系アルミニウム合
金押出材の製造方法。
3. Cu: 0.01 to 0.4% by weight, C
r: 0.05 to 0.2% by weight, Zr: 0.05 to 0.2
The Al-Mg-Si-based aluminum alloy extruded material according to claim 2, wherein an Al-Mg-Si-based aluminum alloy containing one or more of Mn: 0.05 to 0.3% by weight is used. Production method.
【請求項4】 押出後の整直により0.2%以上の塑性
歪みを付与する請求項1〜3の何れかに記載のAl−M
g−Si系アルミニウム合金押出材の製造方法。
4. The Al-M according to claim 1, wherein a plastic strain of 0.2% or more is imparted by straightening after extrusion.
A method for producing an extruded g-Si aluminum alloy.
【請求項5】 押出ダイスから出た直後の材温が500
〜560℃となるようにAl−Mg−Si系アルミニウ
ム合金を押し出し、450〜250℃の温度域を50℃
/分以上で冷却した後、整直により0.2%以上の塑性
歪みを与え、次いで時効処理を施すことを特徴とするA
l−Mg−Si系アルミニウム合金押出材の製造方法。
5. The material temperature immediately after leaving the extrusion die is 500
Extrude an Al-Mg-Si-based aluminum alloy so that the temperature becomes 5560 ° C.
After cooling at a rate of at least / min, a plastic strain of 0.2% or more is given by straightening, and then aging treatment is performed.
A method for producing an extruded l-Mg-Si aluminum alloy.
【請求項6】 時効処理の前にAl−Mg−Si系アル
ミニウム合金を溶体化処理し、焼き入れた後、0.2%
以上の塑性歪みを付与する請求項1〜4の何れかに記載
のAl−Mg−Si系アルミニウム合金押出材の製造方
法。
6. An Al—Mg—Si based aluminum alloy is subjected to a solution treatment before aging treatment and quenching,
The method for producing an Al-Mg-Si-based aluminum alloy extruded material according to any one of claims 1 to 4, wherein the plastic strain is imparted.
【請求項7】 請求項1〜6何れかの方法で製造された
アルミニウム合金押出材を固定金型と可動金型に通しな
がら可動金型を移動させることにより、押出材を曲げ加
工することを特徴とするアルミニウム合金押出材の加工
方法。
7. A method of bending an extruded material by moving a movable mold while passing an aluminum alloy extruded material produced by the method according to claim 1 through a fixed mold and a movable mold. A method for processing extruded aluminum alloys.
JP2000217115A 1999-09-03 2000-07-18 Method for producing Al-Mg-Si-based aluminum alloy extruded material and processing method thereof Expired - Fee Related JP4011270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000217115A JP4011270B2 (en) 1999-09-03 2000-07-18 Method for producing Al-Mg-Si-based aluminum alloy extruded material and processing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-250271 1999-09-03
JP25027199 1999-09-03
JP2000217115A JP4011270B2 (en) 1999-09-03 2000-07-18 Method for producing Al-Mg-Si-based aluminum alloy extruded material and processing method thereof

Publications (2)

Publication Number Publication Date
JP2001140048A true JP2001140048A (en) 2001-05-22
JP4011270B2 JP4011270B2 (en) 2007-11-21

Family

ID=26539711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000217115A Expired - Fee Related JP4011270B2 (en) 1999-09-03 2000-07-18 Method for producing Al-Mg-Si-based aluminum alloy extruded material and processing method thereof

Country Status (1)

Country Link
JP (1) JP4011270B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009262A (en) * 2005-06-29 2007-01-18 Mitsubishi Alum Co Ltd Aluminum alloy sheet with excellent thermal conductivity, strength and bendability and its manufacturing method
KR20180095556A (en) * 2015-12-23 2018-08-27 노르스크 히드로 아에스아 Process for producing heat-treatable aluminum alloy having improved mechanical properties
CN111801433A (en) * 2018-03-05 2020-10-20 昭和电工株式会社 Hollow extrusion material of Al-Mg-Si series aluminum alloy and method for producing the same
US11345980B2 (en) 2018-08-09 2022-05-31 Apple Inc. Recycled aluminum alloys from manufacturing scrap with cosmetic appeal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009262A (en) * 2005-06-29 2007-01-18 Mitsubishi Alum Co Ltd Aluminum alloy sheet with excellent thermal conductivity, strength and bendability and its manufacturing method
KR20180095556A (en) * 2015-12-23 2018-08-27 노르스크 히드로 아에스아 Process for producing heat-treatable aluminum alloy having improved mechanical properties
US11313019B2 (en) 2015-12-23 2022-04-26 Norsk Hydro Asa Method for producing a heat treatable aluminum alloy with improved mechanical properties
KR102631098B1 (en) * 2015-12-23 2024-01-29 노르스크 히드로 아에스아 Method for producing heat treatable aluminum alloy with improved mechanical properties
CN111801433A (en) * 2018-03-05 2020-10-20 昭和电工株式会社 Hollow extrusion material of Al-Mg-Si series aluminum alloy and method for producing the same
US11345980B2 (en) 2018-08-09 2022-05-31 Apple Inc. Recycled aluminum alloys from manufacturing scrap with cosmetic appeal

Also Published As

Publication number Publication date
JP4011270B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
CN111004950B (en) 2000 aluminium alloy section bar and its manufacturing method
EP2563944A1 (en) Damage tolerant aluminium material having a layered microstructure
EP3208361B1 (en) Method for producing aluminum alloy member, and aluminum alloy member obtained by same
CN111542627A (en) 6xxx aluminum alloy extrusion forging stock and manufacturing method thereof
US5123973A (en) Aluminum alloy extrusion and method of producing
JPWO2019167469A1 (en) Al-Mg-Si based aluminum alloy material
JPH08144031A (en) Production of aluminum-zinc-magnesium alloy hollow shape excellent in strength and formability
JP2002235158A (en) Method for producing high strength aluminum alloy extrusion shape material having excellent bending workability
JP3670706B2 (en) Method for producing high-strength aluminum alloy extrusion mold with excellent bending workability
JP2931538B2 (en) High strength aluminum alloy material for bumpers excellent in bending workability and method for producing the same
JP2001140048A (en) METHOD OF MANUFACTURE FOR Al-Mg-Si TYPE ALUMINUM ALLOY EXTRUDED MATERIAL, AND METHOD OF WORKING
JPH10317114A (en) Manufacture of medium-strength al-mg-si alloy extruded material excellent in air hardening property
JPH0747806B2 (en) High strength aluminum alloy extruded shape manufacturing method
JPH10298691A (en) Aluminum extruded shape, and manufacture of the extruded shape and structural member
JPH116044A (en) High strength/high toughness aluminum alloy
JP2001158951A (en) METHOD OF MANUFACTURING HIGH STRENGTH Al-Mg-Si-TYPE ALUMINUM ALLOY EXTRUDED MATERIAL, AND WORKING METHOD THEREFOR
JP3834076B2 (en) Extruded material manufacturing method
JP3550944B2 (en) Manufacturing method of high strength 6000 series aluminum alloy extruded material with excellent dimensional accuracy
WO2007114521A1 (en) 6000 aluminum extrudate excelling in paint-baking hardenability and process for producing the same
JPH0625783A (en) Aluminum alloy extruded material excellent in bendability and impact absorption and its manufacture
JP2002241880A (en) Aluminum alloy extrusion profile material having excellent bending workability and production method therefor
JP3550943B2 (en) Manufacturing method of 6000 series aluminum alloy extruded material with excellent dimensional accuracy
JPH05171328A (en) Thin hollow shape of aluminum alloy excellent in bendability and its production
JPH10306338A (en) Hollow extruded material of al-cu-mg-si alloy, excellent in strength and corrosion resistance, and its manufacture
JPH08120387A (en) Aluminum alloy extruded material excellent in surface property, its production and frame for two-wheeler made of aluminum alloy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070306

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4011270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees