JP2001135885A - Semiconductor laser device and its assembling method - Google Patents

Semiconductor laser device and its assembling method

Info

Publication number
JP2001135885A
JP2001135885A JP31339599A JP31339599A JP2001135885A JP 2001135885 A JP2001135885 A JP 2001135885A JP 31339599 A JP31339599 A JP 31339599A JP 31339599 A JP31339599 A JP 31339599A JP 2001135885 A JP2001135885 A JP 2001135885A
Authority
JP
Japan
Prior art keywords
semiconductor laser
substrate
heat sink
light
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31339599A
Other languages
Japanese (ja)
Inventor
Masahiro Kume
雅博 粂
Yuzaburo Ban
雄三郎 伴
Isao Kidoguchi
勲 木戸口
Ryoko Miyanaga
良子 宮永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31339599A priority Critical patent/JP2001135885A/en
Publication of JP2001135885A publication Critical patent/JP2001135885A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To resolve the difficulty of the alignment for bonding the active layer of a GaN-based semiconductor laser element to the side of its heat sink, although a light intercepting electrode for reducing its amplified spontaneous emission light is required to be formed on its transparent insulating substrate. SOLUTION: An opening is formed at a light intercepting electrode, through which p-n electrodes in a semiconductor laser device are aligned to corresponding electrodes in the heat sink.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ディスク装置、
レーザプリンタ等の光情報処理装置、光通信システムや
レーザを用いた計測・分析装置に用いられる半導体レー
ザ装置に関するものである。
[0001] The present invention relates to an optical disk device,
The present invention relates to a semiconductor laser device used for an optical information processing device such as a laser printer, an optical communication system, and a measurement / analysis device using a laser.

【0002】[0002]

【従来の技術】波長0.78μm帯のGaAlAs系半
導体レーザや波長0.65μm帯のInGaAlP系半
導体レーザは導電性のGaAsを基板に用いる。GaA
sはエネルギーギャップが波長0.87μmのところに
あるため、波長0.87μmより短い波長の光はGaA
sが吸収する。従って、波長0.78μm帯のGaAl
As系半導体レーザや波長0.65μm帯のInGaA
lP系半導体レーザでは、基板のGaAsがレーザ光を
吸収する。半導体レーザは、電流が発振しきい値に達し
てレーザ発振が起こるまでに、自然放出光を発生する。
自然放出光はレーザ光と違ってスペクトル幅が広いイン
コヒーレントな光で、レーザ光に混じることは望ましく
ない。通常半導体レーザでは、電流が発振しきい値に達
してレーザ発振が起こってからは、自然放出光はほぼし
きい値での値で飽和するが、低出力時では、レーザ光に
含まれる自然放出光の割合が大きくなり、レーザ光のコ
ヒーレンスが悪化し、雑音の原因となる。
2. Description of the Related Art A conductive GaAs substrate is used for a GaAlAs-based semiconductor laser having a wavelength of 0.78 μm or an InGaAlP-based semiconductor laser having a wavelength of 0.65 μm. GaAs
Since s has an energy gap at a wavelength of 0.87 μm, light having a wavelength shorter than 0.87 μm is GaAs.
s absorbs. Therefore, GaAl of the wavelength of 0.78 μm band
As-based semiconductor laser or InGaAs with a wavelength of 0.65 μm
In an IP semiconductor laser, GaAs on the substrate absorbs laser light. The semiconductor laser generates spontaneous emission light before the current reaches the oscillation threshold and laser oscillation occurs.
Spontaneous emission light is incoherent light having a wide spectrum width unlike laser light, and it is not desirable to mix it with laser light. Normally, in a semiconductor laser, the spontaneous emission light saturates at a value almost equal to the threshold after the current reaches the oscillation threshold and laser oscillation occurs. The proportion of light increases, and the coherence of the laser light deteriorates, causing noise.

【0003】GaAsを基板に用いる、波長0.78μ
m帯のGaAlAs系半導体レーザや波長0.65μm
帯のInGaAlP系半導体レーザでは、活性層から色
々な方向に出射する自然放出光のうち、かなりの割合が
GaAs基板で吸収されるので、レーザ光に混じる自然
放出光は許容出来る範囲に収まる。
When GaAs is used for the substrate, the wavelength is 0.78 μm.
m band GaAlAs based semiconductor laser or wavelength 0.65μm
In the InGaAlP-based semiconductor laser in the band, a considerable proportion of the spontaneous emission light emitted from the active layer in various directions is absorbed by the GaAs substrate, so that the spontaneous emission light mixed with the laser light falls within an allowable range.

【0004】基板にGaAsを用いる半導体レーザは、
基板上にp−n接合ダイオードを結晶成長で形成し、ダ
イオードの一方(n側またはp側)は基板を通じて電流
を流す。すなわち、n型GaAs基板を用いた場合は、
ダイオードのn型層を基板に近い方に形成し、p型Ga
As基板を用いた場合は、ダイオードのp型層を基板に
近い方に形成する。
A semiconductor laser using GaAs for a substrate is:
A pn junction diode is formed on a substrate by crystal growth, and one of the diodes (n-side or p-side) passes a current through the substrate. That is, when an n-type GaAs substrate is used,
The n-type layer of the diode is formed closer to the substrate, and the p-type Ga
When an As substrate is used, the p-type layer of the diode is formed closer to the substrate.

【0005】また、発熱の大きいダイオードを形成した
方をヒートシンクに接触させて実装することが多い。こ
れを、ジャンクション・ダウン・ボンディングという。
この場合、半導体レーザに印加する電圧は、基板に設け
たオーミック電極とヒートシンクに設けた電極間にかけ
ることになる。ヒートシンクが導電性である場合は、ヒ
ートシンクを介して半導体レーザに電圧を印加する方法
もとられる。
In many cases, a diode having a large heat generation is mounted in contact with a heat sink. This is called junction down bonding.
In this case, the voltage applied to the semiconductor laser is applied between the ohmic electrode provided on the substrate and the electrode provided on the heat sink. When the heat sink is conductive, a method of applying a voltage to the semiconductor laser via the heat sink is available.

【0006】[0006]

【発明が解決しようとする課題】波長0.4μm帯を発
振するGaN系半導体レーザでは、サファイアを基板に
用いることが多い。サファイアは透明な電気絶縁体であ
り、GaNの結晶成長時の1000℃を超える高温でも
安定で、GaNに近い格子定数を示すために、広く用い
られている。サファイアは絶縁体であるので、サファイ
ア上に結晶成長したGaNのp−n接合ダイオードのp
側とn側電極はサファイア基板の同一面側に形成しなく
てはならない。また、サファイアは波長0.4μmのレ
ーザ光を透過するので、活性層で発生する自然放出光は
基板を通して外部に漏れ出してしまう。更に、サファイ
アは熱伝導が悪いため、発熱源となる活性層のある側を
ヒートシンクに接着する必要がある。従って、ヒートシ
ンク上には、半導体レーザのp側電極とn側電極に対応
して電極を設けなくてはならない。この場合、p電極と
n電極は電気的に分離されていなければならない。半導
体レーザを接着するヒートシンクはサブマウントと呼ば
れる。
In a GaN-based semiconductor laser that oscillates in a wavelength band of 0.4 μm, sapphire is often used for a substrate. Sapphire is a transparent electrical insulator, and is widely used because it is stable even at a high temperature exceeding 1000 ° C. at the time of crystal growth of GaN and has a lattice constant close to that of GaN. Since sapphire is an insulator, the p-n junction diode of GaN grown on sapphire has the p
The side and the n-side electrode must be formed on the same side of the sapphire substrate. In addition, since sapphire transmits laser light having a wavelength of 0.4 μm, spontaneous emission light generated in the active layer leaks outside through the substrate. Further, since sapphire has poor heat conduction, it is necessary to adhere the side of the active layer which is a heat source to the heat sink. Therefore, electrodes must be provided on the heat sink corresponding to the p-side electrode and the n-side electrode of the semiconductor laser. In this case, the p electrode and the n electrode must be electrically separated. The heat sink to which the semiconductor laser is attached is called a submount.

【0007】半導体レーザをジャンクション・ダウンで
サブマウント上の電極と正確に位置合わせを行なって接
着する必要があるが、サファイア基板が透明であるの
で、基板側から透かして半導体レーザのp、n電極とサ
ブマウントのp、n電極を見ながら位置合わせを行なう
ことが出来る。一方、基板から漏れる自然放出光を減少
させるためには、基板に金属膜等を着けるのが有効な方
法である。しかし、自然放出光対策のために、基板に遮
光膜を付けると、位置合わせのために透かして見ること
が出来なくなる。
It is necessary to accurately align and bond the semiconductor laser to the electrodes on the submount by junction down. However, since the sapphire substrate is transparent, the p and n electrodes of the semiconductor laser are seen through from the substrate side. Positioning can be performed while looking at the p and n electrodes of the submount. On the other hand, to reduce spontaneous emission light leaking from the substrate, it is effective to attach a metal film or the like to the substrate. However, if a light-shielding film is attached to the substrate to prevent spontaneous emission light, the light-shielding film cannot be seen through for alignment.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の半導体レーザ装置では、ヒートシンクの
p、n電極間に対応する位置のサファイア基板の遮光膜
に開口を設ける。この開口を通してヒートシンクのp、
n電極間を透かし見ることで、接着時の位置合わせを行
なうことが出来る。
In order to solve the above-mentioned problem, in the semiconductor laser device of the present invention, an opening is provided in the light-shielding film of the sapphire substrate at a position corresponding to between the p and n electrodes of the heat sink. Through this opening p of the heat sink,
By seeing through between the n electrodes, it is possible to perform alignment during bonding.

【0009】ヒートシンク(サブマウント)のp、n電
極間には溝を形成することで、開口を通して見る時に位
置が確認しやすくなる。また、p、n電極間が半田流れ
によって電気的に短絡することを防止することが出来
る。ヒートシンクには、絶縁性で熱伝導がよいダイヤモ
ンドやSiCやAlNが適しているが、Si等の導電性
材料であっても、表面に絶縁膜を形成することで電気的
に分離したp、n電極を形成することが出来る。
By forming a groove between the p and n electrodes of the heat sink (submount), the position can be easily confirmed when viewed through the opening. Further, it is possible to prevent an electrical short circuit between the p and n electrodes due to the flow of solder. As the heat sink, diamond, SiC, or AlN, which is insulative and has good heat conductivity, is suitable. However, even if a conductive material such as Si is used, p, n electrically separated by forming an insulating film on the surface. Electrodes can be formed.

【0010】基板に設ける遮光膜はAuやAl等の金属
膜を用いるとよい。また、遮光膜に開ける開口は、半導
体レーザの共振器方向全体に渡っていてもよいが、位置
合わせに必要最小限の長さであるほうが、漏れ出す自然
放出光をより少なくするためには望ましい。
The light-shielding film provided on the substrate is preferably a metal film such as Au or Al. Further, the opening formed in the light-shielding film may extend over the entire cavity direction of the semiconductor laser, but it is preferable that the opening has a minimum length necessary for alignment in order to further reduce leaked spontaneous emission light. .

【0011】[0011]

【発明の実施の形態】図1に本発明の半導体レーザ装置
の構造図を示す。半導体レーザ素子は透明基板1の片側
に形成されており、p側電極2とn側電極3が基板1の
同一面にある。基板1のp、n電極面と反対側には遮光
電極4が形成されており、p側電極下のレーザ発光部分
5から発生する自然放出光が基板を通して外部に漏れ出
すのを防いでいる。基板1はGaN系半導体レーザでは
サファイアが一般的であるが、他の透明な基板であって
も本発明を適用することが出来る。
FIG. 1 is a structural view of a semiconductor laser device according to the present invention. The semiconductor laser device is formed on one side of the transparent substrate 1, and the p-side electrode 2 and the n-side electrode 3 are on the same surface of the substrate 1. A light-shielding electrode 4 is formed on the side of the substrate 1 opposite to the p- and n-electrode surfaces, and prevents spontaneous emission light generated from the laser emitting portion 5 below the p-side electrode from leaking outside through the substrate. The substrate 1 is generally sapphire in a GaN-based semiconductor laser, but the present invention can be applied to other transparent substrates.

【0012】遮光電極にはTiとAuを組み合せた金属
膜を用いた。Tiはサファイアとの接着強度を高める役
目を果たし、Auは自然放出光を反射及び吸収して外部
に漏れ出さなくする役目を果たす。同様な作用を有する
金属であれば、他の金属の組み合せであってもかまわな
い。また、単一の膜でもよいし、遮光の目的を果たせ
ば、金属以外の膜を用いることも出来る。
A metal film combining Ti and Au was used for the light-shielding electrode. Ti plays a role in increasing the adhesive strength with sapphire, and Au plays a role in reflecting and absorbing spontaneous emission light so as not to leak out. A combination of other metals may be used as long as the metal has a similar effect. In addition, a single film may be used, or a film other than a metal may be used as long as it serves the purpose of shielding light.

【0013】半導体レーザ素子を接着するヒートシンク
(サブマウント)6には、半導体レーザ素子のp側電極
2と接着するp側電極7と半導体レーザ素子のn側電極
3と接着するn側電極8があり、接着部に半田10が形
成されている。ヒートシンク6のp、n電極7、8間に
は溝9が形成されており、電極7、8間の位置が基板1
を通して確認しやすくすると共に、半田が流れてp、n
電極7、8が短絡するのを防ぐ役目を果たしている。
A heat sink (submount) 6 for bonding the semiconductor laser element has a p-side electrode 7 for bonding to the p-side electrode 2 of the semiconductor laser element and an n-side electrode 8 for bonding to the n-side electrode 3 of the semiconductor laser element. In addition, the solder 10 is formed on the bonding portion. A groove 9 is formed between the p and n electrodes 7 and 8 of the heat sink 6, and the position between the electrodes 7 and 8 is
Through which the solder flows and p, n
It serves to prevent the electrodes 7 and 8 from being short-circuited.

【0014】基板1の遮光電極4には、半導体レーザ素
子のp、n電極間に対応した位置に開口が開けてある。
基板1は透明であるので、開口を通して開口と反対側の
p、n電極2、3の間を見ることが出来る。また、ヒー
トシンク6上のp、n電極7、8間や溝9を基板を透か
して見ることが出来る。
An opening is formed in the light-shielding electrode 4 of the substrate 1 at a position corresponding to between the p and n electrodes of the semiconductor laser device.
Since the substrate 1 is transparent, the space between the p and n electrodes 2 and 3 on the opposite side of the opening can be seen through the opening. Further, the space between the p and n electrodes 7 and 8 and the groove 9 on the heat sink 6 can be seen through the substrate.

【0015】ヒートシンク6は電気絶縁性のSiCやA
lNやダイヤモンドが適しているが、Siに酸化膜を付
け、p、n電極7、8を電気的に分離したものでも用い
ることが出来る。
The heat sink 6 is made of an electrically insulating SiC or A
1N or diamond is suitable, but it is also possible to use a material in which an oxide film is formed on Si and p and n electrodes 7 and 8 are electrically separated.

【0016】本半導体レーザ装置を組み立てるには、ヒ
ートシンク6上の溝9を遮光電極の開口部を通して確認
しながら位置合わせを行い、p側電極2と7及びn側電
極3と8を合わせて固定し、半田が溶ける温度まで加熱
することで行なう。
In order to assemble the present semiconductor laser device, the positioning is performed while checking the groove 9 on the heat sink 6 through the opening of the light-shielding electrode, and the p-side electrodes 2 and 7 and the n-side electrodes 3 and 8 are aligned and fixed. Then, heating is performed to a temperature at which the solder melts.

【0017】遮光電極に開けた開口部は、図1に示す実
施の形態では、半導体レーザの共振器長全体に渡って開
けているが、図2に示すように、部分的に形成すること
も出来る。この場合、開口から漏れ出る自然放出光がよ
り少なくなって望ましい。
In the embodiment shown in FIG. 1, the opening formed in the light-shielding electrode is formed over the entire cavity length of the semiconductor laser. However, as shown in FIG. 2, it may be partially formed. I can do it. In this case, the spontaneous emission light leaking from the opening is desirably reduced.

【0018】組み立て時の位置合わせをより確かにする
には、半田を溶かして接着する前に、通電して発光させ
ると良い。この時、開口部から自然放出光が漏れ出るの
で、発光していることを確認することが出来る。
In order to ensure the alignment at the time of assembling, it is preferable to emit light by energizing before melting and bonding the solder. At this time, since spontaneous emission light leaks from the opening, it can be confirmed that light is emitted.

【0019】[0019]

【発明の効果】本発明の半導体レーザ装置では、透明で
絶縁性基板上に形成した半導体レーザ素子の自然放出光
を減少させることが出来る。また、活性層をヒートシン
クに近ずけた実装が可能となり、熱伝導の悪い基板の影
響を排除することが出来る。
According to the semiconductor laser device of the present invention, it is possible to reduce the spontaneous emission of a semiconductor laser device formed on a transparent insulating substrate. Further, mounting in which the active layer is close to the heat sink becomes possible, and the influence of a substrate having poor heat conduction can be eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体レーザ装置の構造図FIG. 1 is a structural view of a semiconductor laser device of the present invention.

【図2】遮光電極の開口部を示す図FIG. 2 is a view showing an opening of a light-shielding electrode.

【符号の説明】[Explanation of symbols]

1 電気絶縁性透明基板 2 半導体レーザ素子のp側電極 3 半導体レーザ素子のn側電極 4 遮光電極 5 半導体レーザ素子の発光部分 6 ヒートシンク(サブマウント) 7 ヒートシンクのp側電極 8 ヒートシンクのn側電極 9 溝 10 半田 Reference Signs List 1 electrically insulating transparent substrate 2 p-side electrode of semiconductor laser device 3 n-side electrode of semiconductor laser device 4 light-shielding electrode 5 light-emitting portion of semiconductor laser device 6 heat sink (submount) 7 p-side electrode of heat sink 8 n-side electrode of heat sink 9 groove 10 solder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木戸口 勲 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 宮永 良子 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5F036 AA01 BB08 BC06 BD11 BD14 BD16 5F073 BA01 BA06 BA07 CA02 CB05 CB23 FA15 FA23  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Isao Kidoguchi 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. Terms (reference) 5F036 AA01 BB08 BC06 BD11 BD14 BD16 5F073 BA01 BA06 BA07 CA02 CB05 CB23 FA15 FA23

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】透光性かつ電気絶縁性基板上に形成した半
導体レーザ装置で、基板と反対側の同一面にp側電極と
n側電極を有しており、前記p、n電極はそれぞれヒー
トシンク上に形成した電極に接着してあり、前記基板に
はレーザ光を遮る膜が形成されており、ヒートシンクの
p、n電極間に対応する位置の前記基板の遮光膜に開口
を有していることを特徴とする半導体レーザ装置。
1. A semiconductor laser device formed on a translucent and electrically insulating substrate, having a p-side electrode and an n-side electrode on the same surface opposite to the substrate, wherein the p and n electrodes are respectively The substrate is provided with a film for blocking laser light, which is adhered to an electrode formed on a heat sink, and has an opening in a light-shielding film of the substrate at a position corresponding to between the p and n electrodes of the heat sink. A semiconductor laser device.
【請求項2】ヒートシンクのp電極とn電極間に溝が形
成されていることを特徴とする請求項1記載の半導体レ
ーザ装置。
2. The semiconductor laser device according to claim 1, wherein a groove is formed between the p electrode and the n electrode of the heat sink.
【請求項3】ヒートシンクが電気絶縁性材料または、導
電性材料に絶縁膜を付着させたものであることを特徴と
する請求項1記載の半導体レーザ装置。
3. The semiconductor laser device according to claim 1, wherein the heat sink is formed by attaching an insulating film to an electrically insulating material or a conductive material.
【請求項4】基板に形成されたレーザ光を遮る膜が金属
であることを特徴とする請求項1記載の半導体レーザ装
置。
4. The semiconductor laser device according to claim 1, wherein the film formed on the substrate for blocking laser light is made of metal.
【請求項5】基板の遮光膜の開口が半導体レーザの共振
器方向全体に渡って形成されている、または部分的に形
成されていることを特徴とする請求項1記載の半導体レ
ーザ装置。
5. The semiconductor laser device according to claim 1, wherein the opening of the light-shielding film of the substrate is formed over the entire cavity direction of the semiconductor laser or is partially formed.
【請求項6】透光性かつ電気絶縁性基板上に形成した半
導体レーザ装置で、基板と反対側の同一面にp側電極と
n側電極を有しており、前記p、n電極はそれぞれヒー
トシンク上に形成した電極に接着してあり、前記基板に
はレーザ光を遮る膜が形成されており、ヒートシンクの
p、n電極間に対応する位置の前記基板の遮光膜に開口
を有しており、前記基板側から前記開口を通して前記ヒ
ートシンクのp、n電極間に対応する位置を確認するこ
とで、ヒートシンクと半導体レーザ装置の位置合わせを
行なうことを特徴とする半導体レーザ装置の組立方法。
6. A semiconductor laser device formed on a translucent and electrically insulating substrate, having a p-side electrode and an n-side electrode on the same surface opposite to the substrate, wherein the p and n electrodes are respectively The substrate is provided with a film for blocking laser light, which is adhered to an electrode formed on a heat sink, and has an opening in a light-shielding film of the substrate at a position corresponding to between the p and n electrodes of the heat sink. And positioning the heat sink and the semiconductor laser device by confirming a position corresponding to between the p and n electrodes of the heat sink through the opening from the substrate side.
【請求項7】透光性かつ電気絶縁性基板上に形成した半
導体レーザ装置で、基板と反対側の同一面にp側電極と
n側電極を有しており、前記p、n電極はそれぞれヒー
トシンク上に形成した電極に接着してあり、前記基板に
はレーザ光を遮る膜が形成されており、ヒートシンクの
p、n電極間に対応する位置の前記基板の遮光膜に開口
を有しており、半導体レーザをヒートシンクに接触させ
た状態で通電させて発光させ、前記開口を通して光を見
ることで、ヒートシンクと半導体レーザ装置の位置合わ
せを行なうことを特徴とする半導体レーザ装置の組立方
法。
7. A semiconductor laser device formed on a translucent and electrically insulating substrate, having a p-side electrode and an n-side electrode on the same surface opposite to the substrate, wherein the p and n electrodes are respectively The substrate is provided with a film for blocking laser light, which is adhered to an electrode formed on a heat sink, and has an opening in a light-shielding film of the substrate at a position corresponding to between the p and n electrodes of the heat sink. A method of assembling a semiconductor laser device, wherein the semiconductor laser device is energized while the semiconductor laser is in contact with the heat sink to emit light, and the light is viewed through the opening to align the heat sink with the semiconductor laser device.
JP31339599A 1999-11-04 1999-11-04 Semiconductor laser device and its assembling method Pending JP2001135885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31339599A JP2001135885A (en) 1999-11-04 1999-11-04 Semiconductor laser device and its assembling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31339599A JP2001135885A (en) 1999-11-04 1999-11-04 Semiconductor laser device and its assembling method

Publications (1)

Publication Number Publication Date
JP2001135885A true JP2001135885A (en) 2001-05-18

Family

ID=18040763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31339599A Pending JP2001135885A (en) 1999-11-04 1999-11-04 Semiconductor laser device and its assembling method

Country Status (1)

Country Link
JP (1) JP2001135885A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479325B2 (en) * 1999-12-07 2002-11-12 Sony Corporation Method of stacking semiconductor laser devices in a sub-mount and heatsink
US6998279B2 (en) * 2001-08-23 2006-02-14 Sony Corporation Method of mounting light emitting element
US9407063B2 (en) 2007-12-21 2016-08-02 Osram Opto Semiconductors Gmbh Laser light source and method for producing a laser light source
JP6491784B1 (en) * 2018-08-03 2019-03-27 株式会社日立パワーソリューションズ Single crystal silicon carbide substrate, method for manufacturing single crystal silicon carbide substrate, and semiconductor laser

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479325B2 (en) * 1999-12-07 2002-11-12 Sony Corporation Method of stacking semiconductor laser devices in a sub-mount and heatsink
US6720581B2 (en) * 1999-12-07 2004-04-13 Sony Corporation Mounting plate for a laser chip in a semiconductor laser device
US6998279B2 (en) * 2001-08-23 2006-02-14 Sony Corporation Method of mounting light emitting element
US7264980B2 (en) 2001-08-23 2007-09-04 Sony Corporation Method of mounting light emitting element
US9407063B2 (en) 2007-12-21 2016-08-02 Osram Opto Semiconductors Gmbh Laser light source and method for producing a laser light source
US9531158B2 (en) 2007-12-21 2016-12-27 Osram Opto Semiconductors Gmbh Laser light source
US9559497B2 (en) 2007-12-21 2017-01-31 Osram Opto Semiconductors Gmbh Laser light source
US9559496B2 (en) 2007-12-21 2017-01-31 Osram Opto Semiconductors Gmbh Laser light source
JP6491784B1 (en) * 2018-08-03 2019-03-27 株式会社日立パワーソリューションズ Single crystal silicon carbide substrate, method for manufacturing single crystal silicon carbide substrate, and semiconductor laser
JP2020021894A (en) * 2018-08-03 2020-02-06 株式会社日立パワーソリューションズ Single crystal silicon carbide substrate, method of manufacturing single crystal silicon carbide substrate, and semiconductor laser

Similar Documents

Publication Publication Date Title
KR100623024B1 (en) High Power LED Package
US7786502B2 (en) Nitride semiconductor light-emitting device and method of manufacturing the same
US20090080485A1 (en) Nitride semiconductor laser device
JP3559435B2 (en) Semiconductor light emitting device
US6528825B2 (en) Semiconductor emission apparatus
CN111108655A (en) Edge-emitting laser bar
JP3618989B2 (en) Semiconductor laser device
US6621839B1 (en) Method for contacting a high-power diode laser bar and a high-power diode laser bar-contact arrangement of electrical contacts with minor thermal function
KR100794097B1 (en) Semiconductor laser device
JP2001135885A (en) Semiconductor laser device and its assembling method
CN114026752B (en) Semiconductor laser device
JP2006191052A (en) Flip chip bonding structure of luminous element using metal column
JPH06260723A (en) Semiconductor laser device
JPH0451073B2 (en)
JP2003229633A (en) Semiconductor laser device and its manufacturing method
JP2007013044A (en) Light emitting device
JPH11191634A (en) Semiconductor light-emitting device
JP2012186326A (en) Method of manufacturing semiconductor laser driving device
JP2003188456A (en) Photoelectronic device
KR100335106B1 (en) Ⅲ-Ⅴ group GaN semiconductor optical devices
JP7220156B2 (en) Submount and semiconductor laser device
JP2005167080A (en) Light emitting device
JPS61234588A (en) Submount for optical semiconductor element
JPH08321655A (en) Semiconductor light-emitting element
JPH10233549A (en) Nitride semiconductor laser diode

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20050222

Free format text: JAPANESE INTERMEDIATE CODE: A02