JP2001133057A - Supercritical refrigeration cycle - Google Patents
Supercritical refrigeration cycleInfo
- Publication number
- JP2001133057A JP2001133057A JP31350399A JP31350399A JP2001133057A JP 2001133057 A JP2001133057 A JP 2001133057A JP 31350399 A JP31350399 A JP 31350399A JP 31350399 A JP31350399 A JP 31350399A JP 2001133057 A JP2001133057 A JP 2001133057A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- compressor
- refrigeration cycle
- radiator
- bypass passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/10—Compression machines, plants or systems with non-reversible cycle with multi-stage compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/06—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
- F25B2309/061—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Compressor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、二酸化炭素(CO
2)を冷媒として超臨界域で使用することのできる冷凍
サイクルに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention
2 ) A refrigeration cycle that can be used as a refrigerant in a supercritical region.
【0002】[0002]
【従来の技術】車両用空調装置等の様々な分野で冷凍サ
イクルが用いられている。車両用空調装置の冷凍サイク
ルには、通常、冷媒としてR134aが使用されてい
る。その冷媒は、比熱比(Cp/Cv)が1.178
(at0℃)と小さい。そのため、冷凍サイクルに含ま
れたコンプレッサから吐出される冷媒の温度、即ち、コ
ンプレッサの吐出温度が特に上昇することはなく、した
がって吐出温度の上昇についての特別な対策は必要なか
った。2. Description of the Related Art Refrigeration cycles are used in various fields such as air conditioners for vehicles. In a refrigeration cycle of a vehicle air conditioner, R134a is usually used as a refrigerant. The refrigerant has a specific heat ratio (Cp / Cv) of 1.178.
(At 0 ° C.). Therefore, the temperature of the refrigerant discharged from the compressor included in the refrigeration cycle, that is, the discharge temperature of the compressor does not particularly increase, and therefore, no special measures are required for the increase in the discharge temperature.
【0003】最近では、地球温暖化防止のために、車両
用空調装置の冷凍サイクルに冷媒としてCO2を用いる
ことが提案されている。その冷凍サイクルにおいては、
CO 2が超臨界域で使用され凝縮しないことがある。そ
のため、この種の冷凍サイクルは蒸気圧縮式冷凍サイク
ルや超臨界蒸気圧縮サイクル等と呼ばれることもある
が、ここでは超臨界冷凍サイクルと呼ぶ。Recently, to prevent global warming, vehicles
As a refrigerant in the refrigeration cycle of2Use
It has been proposed. In the refrigeration cycle,
CO 2Is used in the supercritical region and may not condense. So
Therefore, this kind of refrigeration cycle is a vapor compression refrigeration cycle
Or supercritical vapor compression cycle
However, here, it is called a supercritical refrigeration cycle.
【0004】超臨界冷凍サイクルは、一般に、冷媒を吸
入するための吸入ポートと冷媒を吐出するための吐出ポ
ートとを有するコンプレッサ、吸入ポートに接続された
吸熱器(エバポレータ)、吐出ポートに接続された放熱
器(ガスクーラ)、及び吸熱器と放熱器との間に接続さ
れた膨張手段を含んでいる(例えば、特開平9-264
622号公報及び特公平7-18602号公報参照)。A supercritical refrigeration cycle is generally connected to a compressor having a suction port for sucking refrigerant and a discharge port for discharging refrigerant, a heat absorber (evaporator) connected to the suction port, and a discharge port. Radiator (gas cooler), and expansion means connected between the heat absorber and the radiator (for example, Japanese Patent Application Laid-Open No. 9-264).
622 and JP-B-7-18602).
【0005】[0005]
【発明が解決しようとする課題】超臨界冷凍サイクルは
地球温暖化防止に寄与することが期待できる。The supercritical refrigeration cycle can be expected to contribute to the prevention of global warming.
【0006】しかし、超臨界冷凍サイクルで冷媒として
使用されるCO2の比熱比は2.143であり、R13
4aよりも大きいため、超臨界冷凍サイクルの運転にし
たがいコンプレッサの吐出温度やコンプレッサ自体の温
度が上昇してしまう。これらの温度の上昇は、コンプレ
ッサに使用されている有機材料や潤滑油の劣化を促進さ
せる。However, the specific heat ratio of CO 2 used as a refrigerant in the supercritical refrigeration cycle is 2.143, and R13
4a, the discharge temperature of the compressor and the temperature of the compressor itself increase according to the operation of the supercritical refrigeration cycle. These rises in temperature promote the deterioration of the organic materials and lubricating oil used in the compressor.
【0007】それ故に本発明の課題は、コンプレッサの
吐出温度やコンプレッサ自体の温度の上昇を抑止した冷
凍サイクルを提供することにある。It is therefore an object of the present invention to provide a refrigeration cycle in which the discharge temperature of the compressor and the temperature of the compressor itself are prevented from rising.
【0008】本発明の他の課題は、冷媒としてCO2を
使用する場合の問題を解消した冷凍サイクルを提供する
ことにある。Another object of the present invention is to provide a refrigeration cycle that solves the problem of using CO 2 as a refrigerant.
【0009】[0009]
【課題を解決するための手段】本発明によれば、二酸化
炭素を冷媒として用いる冷凍サイクルにおいて、放熱器
から出た冷媒を一部分岐させ、吸熱器を通すことなくコ
ンプレッサに戻すバイパス通路と、前記バイパス通路を
通る冷媒を気液混相にする手段とを備え、前記気液混相
の冷媒を前記コンプレッサに供給して温度上昇を抑止す
ることを特徴とする冷凍サイクルが得られる。According to the present invention, in a refrigeration cycle using carbon dioxide as a refrigerant, a bypass passage for partially branching the refrigerant discharged from a radiator and returning the refrigerant to a compressor without passing through a heat absorber; Means for converting the refrigerant passing through the bypass passage into a gas-liquid mixed phase, wherein the refrigerant in the gas-liquid mixed phase is supplied to the compressor to suppress a rise in temperature, thereby obtaining a refrigeration cycle.
【0010】本発明によれば、冷媒を吸入するための吸
入ポートと冷媒を吐出するための吐出ポートとを有する
コンプレッサ、前記吸入ポートに接続された吸熱器、前
記吐出ポートに接続された放熱器、及び前記吸熱器と前
記放熱器との間に接続された回路側膨張手段を含む冷凍
サイクルにおいて、前記放熱器から出た冷媒の一部を、
前記回路側膨張手段及び前記吸熱器をバイパスして前記
コンプレッサに導くバイパス通路と、前記バイパス通路
に接続され、ここを通る冷媒を気液混相にするバイパス
側膨張手段とを備えたことを特徴とする冷凍サイクルが
得られる。According to the present invention, a compressor having a suction port for sucking refrigerant and a discharge port for discharging refrigerant, a heat absorber connected to the suction port, and a radiator connected to the discharge port In a refrigeration cycle including circuit-side expansion means connected between the heat absorber and the radiator, a part of the refrigerant that has flowed out of the radiator,
A bypass passage that bypasses the circuit-side expansion unit and the heat absorber and leads to the compressor; and a bypass-side expansion unit that is connected to the bypass passage and that causes a refrigerant passing therethrough to be in a gas-liquid mixed phase. Refrigeration cycle is obtained.
【0011】前記バイパス通路は前記コンプレッサのク
ランクケース内に接続されていてもよい。[0011] The bypass passage may be connected in a crankcase of the compressor.
【0012】前記バイパス側膨張手段は前記クランクケ
ース内に備えられていてもよい。[0012] The bypass-side expansion means may be provided in the crankcase.
【0013】前記バイパス通路は前記コンプレッサの吸
入ポートに接続されていてもよい。[0013] The bypass passage may be connected to a suction port of the compressor.
【0014】前記バイパス通路は前記コンプレッサの圧
縮領域に接続されていてもよい。[0014] The bypass passage may be connected to a compression area of the compressor.
【0015】前記放熱器から出た冷媒と前記吸熱器を出
た冷媒との間で熱交換を行なわせる内部熱交換器を備え
てもよい。[0015] An internal heat exchanger may be provided for exchanging heat between the refrigerant exiting the radiator and the refrigerant exiting the heat absorber.
【0016】[0016]
【発明の実施の形態】図1を参照して、本発明の第1の
実施の形態に係る冷凍サイクルについて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A refrigeration cycle according to a first embodiment of the present invention will be described with reference to FIG.
【0017】図1の冷凍サイクルは、CO2を冷媒とし
て使用する超臨界冷凍サイクルである。この超臨界冷凍
サイクルは、冷媒を吸入するための吸入ポート1と冷媒
を吐出するための吐出ポート2とを有するコンプレッサ
3、吸入ポート1に接続されたエバポレータ即ち吸熱器
4、吐出ポート2に接続されたガスクーラ即ち放熱器
5、及び吸熱器4と放熱器5との間に接続された回路側
膨張手段としての膨張弁6を含んでいる。The refrigeration cycle shown in FIG. 1 is a supercritical refrigeration cycle using CO2 as a refrigerant. The supercritical refrigeration cycle includes a compressor 3 having a suction port 1 for sucking refrigerant and a discharge port 2 for discharging refrigerant, an evaporator or heat absorber 4 connected to the suction port 1, and a connection to the discharge port 2. A gas cooler or radiator 5 and an expansion valve 6 as a circuit-side expansion means connected between the heat absorber 4 and the radiator 5 are included.
【0018】さらに、この超臨界冷凍サイクルは、放熱
器5から出た冷媒の一部を、膨張弁6及び吸熱器5をバ
イパスしてコンプレッサ3に導くバイパス通路7と、こ
のバイパス通路7に接続され、ここを通る冷媒を気液混
相にするバイパス側膨張手段としてのキャピラリー8を
備えている。Further, in this supercritical refrigeration cycle, a part of the refrigerant that has flowed out of the radiator 5 is connected to the bypass passage 7 that bypasses the expansion valve 6 and the heat absorber 5 and guides the refrigerant to the compressor 3. Further, a capillary 8 is provided as bypass-side expansion means for converting the refrigerant passing therethrough into a gas-liquid mixed phase.
【0019】コンプレッサ3の駆動時には、冷媒がコン
プレッサ3の吐出ポート2から放熱器5に吐出され、こ
こで放熱される。放熱器5から出た冷媒の大部分は膨張
弁6を通って吸熱器4に流入し、ここで吸熱する。吸熱
器4を出た冷媒はコンプレッサ3の吸入ポート1に吸入
される。かくして、冷媒の大部分はコンプレッサ3、放
熱器5、膨張弁6、及び吸熱器4を、この順で通り循環
する。この冷媒の循環による作用は従来と同様であるた
め説明を省略する。When the compressor 3 is driven, the refrigerant is discharged from the discharge port 2 of the compressor 3 to the radiator 5 where it is radiated. Most of the refrigerant flowing out of the radiator 5 flows into the heat absorber 4 through the expansion valve 6, and absorbs heat there. The refrigerant that has exited the heat absorber 4 is drawn into the suction port 1 of the compressor 3. Thus, most of the refrigerant circulates through compressor 3, radiator 5, expansion valve 6, and heat absorber 4 in that order. The operation by the circulation of the refrigerant is the same as the conventional one, and therefore the description is omitted.
【0020】コンプレッサ3の駆動時には、また、放熱
器5から出た冷媒の一部がバイパス通路7に分岐され、
キャピラリー8を通って気液混相にされる。この気液混
相の冷媒はクランクケース9内に流入する。クランクケ
ース9内に流入する気液混相の冷媒は低温であるため、
コンプレッサ3自体の温度上昇を抑止することになる。
さらに、クランクケース9内の冷媒は、圧縮された上で
吐出ポート2から吐出されるので、コンプレッサ3の吐
出温度も上昇を抑止される。When the compressor 3 is driven, a part of the refrigerant flowing out of the radiator 5 is branched into a bypass passage 7,
A gas-liquid mixed phase is formed through the capillary 8. The gas-liquid mixed phase refrigerant flows into the crankcase 9. Since the gas-liquid mixed-phase refrigerant flowing into the crankcase 9 has a low temperature,
The temperature rise of the compressor 3 itself is suppressed.
Further, the refrigerant in the crankcase 9 is compressed and discharged from the discharge port 2, so that the discharge temperature of the compressor 3 is also prevented from rising.
【0021】図2は、コンプレッサ3の回転数と吐出温
度との関係を示す。冷媒としてCO 2を使用した場合、
コンプレッサ3が低速回転(800rpm)のときは従
来例(a)と本発明(b)との間で吐出温度に大差はな
いが、高速回転(8000rpm)のときには従来例よ
りも本発明の方が大幅に吐出温度が低くなることが分か
る。なお、本発明によると、冷媒としてR134aを使
用した従来例(c)と同程度の吐出温度にすることがで
きる。FIG. 2 shows the rotation speed and discharge temperature of the compressor 3.
Shows the relationship with degrees. CO as refrigerant 2If you use
When the compressor 3 is rotating at low speed (800 rpm),
There is no great difference in the discharge temperature between the conventional example (a) and the present invention (b).
However, at high speeds (8000 rpm)
It can be seen that the discharge temperature of the present invention is significantly lower
You. According to the present invention, R134a is used as the refrigerant.
The same discharge temperature as in the conventional example (c) used above can be obtained.
Wear.
【0022】図3を参照して、変形例を説明する。この
変形例においては、クランクケース9のバイパス通路7
を接続する部分に、バイパス側膨張手段として働く弁装
置10が備えられている。クランクケース9には、バイ
パス通路7をクランクケース9内に連通させる開口11
が形成されている。弁装置10は、クランクケース9の
内側に取り付けられた弁ケース12と、弁ケース12に
内蔵され開口11に対向した弁体13と、弁ケース12
に内蔵され弁体13を開口11に向けて付勢したスプリ
ング等の弾性体からなる付勢手段14とを含んでいる。
この構造によると、開口11の口縁と弁体13との隙間
がキャピラリーとして働く。これは、バイパス側膨張手
段をクランクケース9内に備えたことに相当する。A modification will be described with reference to FIG. In this modification, the bypass passage 7 of the crankcase 9 is
Is provided with a valve device 10 serving as bypass-side expansion means. An opening 11 that allows the bypass passage 7 to communicate with the inside of the crankcase 9 is provided in the crankcase 9.
Are formed. The valve device 10 includes a valve case 12 mounted inside the crankcase 9, a valve body 13 built in the valve case 12 and facing the opening 11, and a valve case 12.
And a biasing means 14 made of an elastic body such as a spring which biases the valve 13 toward the opening 11.
According to this structure, the gap between the edge of the opening 11 and the valve body 13 functions as a capillary. This corresponds to providing the bypass-side expansion means in the crankcase 9.
【0023】なお、バイパス通路7はコンプレッサ3の
吸入ポート1に接続されていてもよいし、コンプレッサ
3圧縮領域に接続されていてもよい。The bypass passage 7 may be connected to the suction port 1 of the compressor 3 or may be connected to the compressor 3 compression area.
【0024】図4を参照して、本発明の第2の実施の形
態に係る冷凍サイクルについて説明する。同様な部分に
は同じ符号を付して説明を省略する。A refrigeration cycle according to a second embodiment of the present invention will be described with reference to FIG. Similar parts are denoted by the same reference numerals, and description thereof is omitted.
【0025】この冷凍サイクルは、さらに、放熱器5か
ら出て吸熱器4に向かう冷媒と吸熱器4を出てコンプレ
ッサ3に向かう冷媒との間で熱交換を行なわせる内部熱
交換器15を備えている。この構造によれば、コンプレ
ッサ3の吸入ポート1に吸入される冷媒の温度が予め低
下するので、コンプレッサ3自体の温度や吐出温度の上
昇を抑制できる。The refrigeration cycle further includes an internal heat exchanger 15 for exchanging heat between the refrigerant exiting the radiator 5 and heading for the heat absorber 4 and the refrigerant exiting the heat absorber 4 and heading for the compressor 3. ing. According to this structure, the temperature of the refrigerant drawn into the suction port 1 of the compressor 3 is reduced in advance, so that the rise in the temperature of the compressor 3 and the discharge temperature can be suppressed.
【0026】[0026]
【発明の効果】以上説明したように,本発明によれば、
コンプレッサの温度上昇防止とコンプレッサの吐出温度
上昇を抑制した冷凍サイクルを提供できる。したがっ
て、この冷凍サイクルに含まれるコンプレッサ内の有機
材料や潤滑油の劣化を防止することができる。As described above, according to the present invention,
It is possible to provide a refrigeration cycle in which a rise in compressor temperature is prevented and a rise in discharge temperature of the compressor is suppressed. Therefore, the deterioration of the organic material and the lubricating oil in the compressor included in the refrigeration cycle can be prevented.
【図1】本発明の第1の実施の形態に係る冷凍サイクル
の回路図である。FIG. 1 is a circuit diagram of a refrigeration cycle according to a first embodiment of the present invention.
【図2】コンプレッサの回転数と吐出温度との関係を示
すグラフである。FIG. 2 is a graph showing a relationship between a rotation speed of a compressor and a discharge temperature.
【図3】図1の冷凍サイクルの変形例におけるコンプレ
ッサの要部の断面図である。FIG. 3 is a sectional view of a main part of a compressor in a modification of the refrigeration cycle of FIG. 1;
【図4】本発明の第2の実施の形態に係る冷凍サイクル
の回路図である。FIG. 4 is a circuit diagram of a refrigeration cycle according to a second embodiment of the present invention.
1 吸入ポート 2 吐出ポート 3 コンプレッサ 4 吸熱器 5 放熱器 6 膨張弁 7 バイパス通路 8 キャピラリー 9 クランクケース 10 弁装置 11 開口 12 弁ケース 13 弁体 14 付勢手段 15 内部熱交換器 DESCRIPTION OF SYMBOLS 1 Intake port 2 Discharge port 3 Compressor 4 Heat sink 5 Heat radiator 6 Expansion valve 7 Bypass passage 8 Capillary 9 Crankcase 10 Valve device 11 Opening 12 Valve case 13 Valve element 14 Energizing means 15 Internal heat exchanger
Claims (7)
クルにおいて、放熱器から出た冷媒を一部分岐させ、吸
熱器を通すことなくコンプレッサに戻すバイパス通路
と、前記バイパス通路を通る冷媒を気液混相にする手段
とを備え、前記気液混相の冷媒を前記コンプレッサに供
給して温度上昇を抑止することを特徴とする冷凍サイク
ル。1. In a refrigeration cycle using carbon dioxide as a refrigerant, a refrigerant that is partially branched from a radiator and returned to a compressor without passing through a heat absorber, and a refrigerant that passes through the bypass is converted into a gas-liquid mixed phase. And a means for supplying the refrigerant in the gas-liquid mixed phase to the compressor to suppress a rise in temperature.
を吐出するための吐出ポートとを有するコンプレッサ、
前記吸入ポートに接続された吸熱器、前記吐出ポートに
接続された放熱器、及び前記吸熱器と前記放熱器との間
に接続された回路側膨張手段を含む冷凍サイクルにおい
て、前記放熱器から出た冷媒の一部を、前記回路側膨張
手段及び前記吸熱器をバイパスして前記コンプレッサに
導くバイパス通路と、前記バイパス通路に接続され、こ
こを通る冷媒を気液混相にするバイパス側膨張手段とを
備えたことを特徴とする冷凍サイクル。2. A compressor having a suction port for sucking refrigerant and a discharge port for discharging refrigerant.
In a refrigeration cycle including a heat sink connected to the suction port, a radiator connected to the discharge port, and a circuit-side expansion means connected between the heat sink and the radiator, the refrigeration cycle includes A part of the refrigerant that has bypassed the circuit-side expansion unit and the heat absorber, and a bypass passage that leads to the compressor; and a bypass-side expansion unit that is connected to the bypass passage and converts the refrigerant passing therethrough into a gas-liquid mixed phase. A refrigeration cycle comprising:
クランクケース内に接続されている請求項1又は2に記
載の冷凍サイクル。3. The refrigeration cycle according to claim 1, wherein the bypass passage is connected inside a crankcase of the compressor.
ケース内に備えられている請求項3に記載の冷凍サイク
ル。4. The refrigeration cycle according to claim 3, wherein said bypass-side expansion means is provided in said crankcase.
吸入ポートに接続されている請求項1又は2に記載の冷
凍サイクル。5. The refrigeration cycle according to claim 1, wherein the bypass passage is connected to a suction port of the compressor.
圧縮領域に接続されている請求項1又は2に記載の冷凍
サイクル。6. The refrigeration cycle according to claim 1, wherein the bypass passage is connected to a compression region of the compressor.
出た冷媒との間で熱交換を行なわせる内部熱交換器を備
えた請求項1〜6のいずれかに記載の冷凍サイクル。7. The refrigeration cycle according to claim 1, further comprising an internal heat exchanger for exchanging heat between the refrigerant exiting the radiator and the refrigerant exiting the heat absorber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31350399A JP2001133057A (en) | 1999-11-04 | 1999-11-04 | Supercritical refrigeration cycle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31350399A JP2001133057A (en) | 1999-11-04 | 1999-11-04 | Supercritical refrigeration cycle |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001133057A true JP2001133057A (en) | 2001-05-18 |
Family
ID=18042105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31350399A Withdrawn JP2001133057A (en) | 1999-11-04 | 1999-11-04 | Supercritical refrigeration cycle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001133057A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003097857A (en) * | 2001-07-12 | 2003-04-03 | Calsonic Kansei Corp | Air conditioning cycle |
EP1441185A3 (en) * | 2003-01-16 | 2004-10-06 | Matsushita Electric Industrial Co., Ltd. | Refrigerator |
US7131294B2 (en) | 2004-01-13 | 2006-11-07 | Tecumseh Products Company | Method and apparatus for control of carbon dioxide gas cooler pressure by use of a capillary tube |
JP2007298203A (en) * | 2006-04-28 | 2007-11-15 | Daikin Ind Ltd | Refrigerating device |
-
1999
- 1999-11-04 JP JP31350399A patent/JP2001133057A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003097857A (en) * | 2001-07-12 | 2003-04-03 | Calsonic Kansei Corp | Air conditioning cycle |
EP1441185A3 (en) * | 2003-01-16 | 2004-10-06 | Matsushita Electric Industrial Co., Ltd. | Refrigerator |
US7024879B2 (en) | 2003-01-16 | 2006-04-11 | Matsushita Electric Industrial Co., Ltd. | Refrigerator |
US7131294B2 (en) | 2004-01-13 | 2006-11-07 | Tecumseh Products Company | Method and apparatus for control of carbon dioxide gas cooler pressure by use of a capillary tube |
US7721569B2 (en) | 2004-01-13 | 2010-05-25 | Tecumseh Products Company | Method and apparatus for control of carbon dioxide gas cooler pressure by use of a capillary tube |
JP2007298203A (en) * | 2006-04-28 | 2007-11-15 | Daikin Ind Ltd | Refrigerating device |
JP4735401B2 (en) * | 2006-04-28 | 2011-07-27 | ダイキン工業株式会社 | Refrigeration equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4463466B2 (en) | Ejector cycle | |
US10132526B2 (en) | Ejector refrigeration cycle | |
WO2012108211A1 (en) | Heat pump cycle | |
JP4923838B2 (en) | Ejector refrigeration cycle | |
US20070039349A1 (en) | Refrigerant cycle device with ejector | |
JP4096824B2 (en) | Vapor compression refrigerator | |
JP2005271906A (en) | Air conditioner for vehicle | |
JP2007178072A (en) | Air conditioner for vehicle | |
JP4400522B2 (en) | Ejector refrigeration cycle | |
JPH1194379A (en) | Refrigeration air-conditioner | |
JPH07329544A (en) | Air conditioner for automobile | |
JP2007205596A (en) | Air conditioner | |
JP2001001754A (en) | Air conditioner for vehicle | |
JP2001133057A (en) | Supercritical refrigeration cycle | |
JP2002240545A (en) | Air conditioner for vehicle, and method for operating the same | |
KR200288717Y1 (en) | Structure of refrigerator for entrainment cars | |
JP2007327355A (en) | Vapor compression type refrigeration circuit and vehicular air conditioning system using same | |
JP5991271B2 (en) | Ejector refrigeration cycle | |
US20090049852A1 (en) | Ejector-type air-conditioning and refrigerating system for automotive vehicle | |
US20030209031A1 (en) | Vapor compression refrigeration system having ejector | |
JPH08108739A (en) | Air conditioner for vehicle | |
JP2003262413A (en) | Ejector cycle | |
JP2003106688A (en) | Refrigerating cycle | |
JP2002316531A (en) | Air conditioner for vehicle | |
JP2002039635A (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20070109 |