JP2001132403A - Air pressure engine, air pressure turbine, and air pressure power generating device - Google Patents

Air pressure engine, air pressure turbine, and air pressure power generating device

Info

Publication number
JP2001132403A
JP2001132403A JP35782199A JP35782199A JP2001132403A JP 2001132403 A JP2001132403 A JP 2001132403A JP 35782199 A JP35782199 A JP 35782199A JP 35782199 A JP35782199 A JP 35782199A JP 2001132403 A JP2001132403 A JP 2001132403A
Authority
JP
Japan
Prior art keywords
air
air suction
pressure
turbine
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35782199A
Other languages
Japanese (ja)
Inventor
Kaizo Maeda
開造 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP35782199A priority Critical patent/JP2001132403A/en
Publication of JP2001132403A publication Critical patent/JP2001132403A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

PROBLEM TO BE SOLVED: To provide an air pressure engine which utilizes wind and water force to form a low air pressure state in a cylinder, and utilizes compression air or the like generated by use of atmospheric pressure or wind and water force instead of using fuel for mechanisms in an internal combustion engine for actuating a piston. SOLUTION: Compressed air or a low air pressure state is formed by a compact hydraulic turbine, turbine, or underwater turbine without requiring a dam, and this is connected to an air pressure engine or air pressure turbine to be actuated. A supply air port 3 connected to outside air is provided at an upper part of a cylinder 1, an opening/closing device is provided at the supply air port 3, air sucking ports 5, 6 are provided at an upper and a lower parts of the cylinder 1, and an opening/closing device 4 is provided at the upper air sucking port 5. The upper and the lower air sucking ports 5, 6 and a vacuum device or an air sucking device 7 are connected to a mechanism to suck air in the cylinder 1 through the air sucking port to form a low air pressure state in the cylinder 1 for actuating a piston by air pressure of outside air, thereby a crank shaft is rotated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明の利用分野は主に発電関
係である。
The field of application of the present invention is mainly related to power generation.

【0002】[0002]

【従来の技術】従来の水力発電は、ダムを利用する方法
であり、平野部の河川では設置出来なかった。低気圧等
を利用する気圧機関気圧タービンは従来の技術ではな
い。
2. Description of the Related Art Conventional hydroelectric power generation uses a dam and cannot be installed on a river in a plain. A pressure engine pressure turbine utilizing a low pressure or the like is not a conventional technology.

【0003】[0003]

【発明が解決しようとする課題】ダムを建設せず、化石
燃料を使用せず、風水力を集めて利用し、気圧も利用し
て、地域環境を破壊せず、大気も汚染せず、水力は平野
部の河川まで拡大して利用し充分な電力を得ることであ
る。気圧機関、気圧タービンについては、燃料を使用せ
ず、低気圧状態形成等気圧利用法により充分な作動力を
得ることがその課題である。
SUMMARY OF THE INVENTION No dam is built, no fossil fuel is used, wind and water power is collected and used, and atmospheric pressure is used to destroy the local environment, not pollute the air, and use hydropower. Means to expand and use rivers in the plain to obtain sufficient power. It is an object of the pneumatic engine and the pneumatic turbine to obtain a sufficient operating force by using a pneumatic method such as a low pressure state without using fuel.

【0004】[0004]

【課題を解決する為の手段】河川域海水域風力利用域
に、これらの風水力を利用して可能な限り小規模の、複
数の空気吸出し装置や高気圧空気給気装置を設ける。環
境を破壊しない適地に発電施設を設置し、この発電施設
の中の一個の気圧機関又は一個の気圧タービンと、複数
の空気吸出し装置や高気圧空気給気装置とを、管でつな
ぎ、空気を吸出し又高気圧空気を給気する。ダムにより
大量の水を集める代りに、風水力によるエネルギー等を
集める方法である。平野部のゆるやかな流れの河川も、
前記両装置を多数とすることで利用出来る。海水も同様
である。気圧機関の手段は請求項1、2、3に、気圧タ
ービンの手段は請求項7、8に、各記載のとおりであ
る。
Means for Solving the Problems A plurality of air suction devices and high-pressure air supply devices which are as small as possible using these wind and water powers are provided in a river area seawater area wind power utilization area. Install a power generation facility in an appropriate place that does not destroy the environment, and connect one pneumatic engine or one pneumatic turbine in this power generation facility with a plurality of air suction devices and high-pressure air supply devices with pipes to suck out air. Also supply high pressure air. Instead of collecting a large amount of water by a dam, this is a method of collecting energy by wind and water power. Rivers with gentle flows in the plains,
It can be used by providing a large number of the above two devices. The same applies to seawater. The means of the pneumatic engine is as described in claims 1, 2 and 3, and the means of the pneumatic turbine is as described in claims 7 and 8.

【0005】[0005]

【実施例1】請求項1の実施例につき図1により作用と
共に説明する。 (イ)気筒1の上方に外気と通じる給気口3を設け、こ
の給気口3に回転開閉式の蓋4を設ける。気筒1の側方
上方部に空気吸出口5、下方部に空気吸出口6を設け、
空気吸出口5に開閉弁を設ける。 (ロ)空気吸出し装置7を設け、これと空気吸出し口を
管でつなぎ気筒1内の空気を吸出す機構とする。 (ハ)空気吸出し装置は、水車、タービン、水中タービ
ン、風車等の作動力を利用した真空装置やその他の空気
吸出し装置である。 (ニ)6は常時空気を吸出し、5は大気である外気の給
気直前に閉じる。 ピストン2の下方は常に低気圧状態で、蓋4が開き3か
ら給気されると大気の気圧によりピストンは下降し、ピ
ストンが最下端に達すると同時に4は閉じ吸出し口5の
弁が開き、空気を吸出しピストンは上昇する。
Embodiment 1 An embodiment of the present invention will be described with reference to FIG. (A) An air supply port 3 communicating with the outside air is provided above the cylinder 1, and a rotary opening / closing lid 4 is provided in the air supply port 3. An air suction port 5 is provided at an upper side portion of the cylinder 1 and an air suction port 6 is provided at a lower portion thereof,
An on-off valve is provided at the air suction port 5. (B) An air suction device 7 is provided, and the air suction port is connected to the air suction device by a pipe to provide a mechanism for sucking air in the cylinder 1. (C) The air suction device is a vacuum device using an operating force of a water turbine, a turbine, an underwater turbine, a windmill, or the like, or another air suction device. (D) 6 constantly sucks air and 5 closes immediately before the supply of outside air as the atmosphere. The lower part of the piston 2 is always in a low pressure state, and when the lid 4 is opened and air is supplied from 3, the piston descends due to the atmospheric pressure, and at the same time the piston reaches the lowermost end, 4 closes and the valve of the suction port 5 opens, The air is sucked out and the piston rises.

【実施例2】請求項2の実施例につき図2により説明す
る (イ)給気口3から高気圧空気給気装置による高気圧空
気が給気されピストン2は下降する。給気口3と排気口
8は気筒上方に設ける。 (ロ)9の装置は7と同じく風水力を利用した装置であ
る。 (ハ)作動は通常の内燃機関と爆発を除いてほぼ同様で
ある。
Second Embodiment A second embodiment will be described with reference to FIG. 2. (A) High-pressure air is supplied from a supply port 3 by a high-pressure air supply device, and the piston 2 descends. The supply port 3 and the exhaust port 8 are provided above the cylinder. (B) The device 9 is a device utilizing wind and water power, like the device 7. (C) The operation is almost the same as that of a normal internal combustion engine except for an explosion.

【実施例3】請求項3の実施例を図3により説明する。 (イ)本発明は、空気吸出し口5、6から空気を吸出
し、給気口3から高気圧空気を給気するもので、作用機
構は、図1の給気口3、蓋4、外気の給気、図2の排気
口8を除いてその他は実施例1及び2で説明した通りで
ある。
Embodiment 3 An embodiment according to claim 3 will be described with reference to FIG. (A) The present invention sucks air from the air suction ports 5 and 6 and supplies high-pressure air from the air supply port 3. The operation mechanism is as shown in FIG. Except for the gas and the exhaust port 8 in FIG. 2, the other components are the same as those described in the first and second embodiments.

【実施例4】請求項4、5、6の実施例を図4で説明す
る。まず請求項6の説明。 (イ)風水力を利用した多数の空気吸出し装置7と高気
圧空気給気装置9を空気吸出し口5、6又は給気口3に
管でつなぐ。 (ロ)気圧機関のクランク軸10に発電装置11を取付
ける 請求項4は9が必要でなく、請求項5は7が必要でな
い。気関自体については実施例1、2、3、で言
Fourth Embodiment A fourth embodiment will be described with reference to FIG. First, claim 6 will be described. (B) A number of air suction devices 7 and high-pressure air supply devices 9 using wind and hydraulic power are connected to the air suction ports 5, 6 or the air supply ports 3 by pipes. (B) Attach the power generator 11 to the crankshaft 10 of the pneumatic engine. Claim 4 does not require ninth, and claim 5 does not require 7. The spirit itself is described in Examples 1, 2, and 3.

【実施例5】請求項7の実施例を説明する。図5によ
る、タービン12に外気に通じる給気口13を設け空気
吸出し口16を設け、空気吸出し装置7と管でつなぐ。
タービン内の空気口常に吸出し、外気の気圧でタービン
を回転させる。
Embodiment 5 An embodiment according to claim 7 will be described. According to FIG. 5, the turbine 12 is provided with an air supply port 13 communicating with the outside air, an air suction port 16 is provided, and is connected to the air suction device 7 by a pipe.
The air port inside the turbine is always sucked out and the turbine is rotated at the pressure of the outside air.

【実施例6】請求項8の実施例を図6で説明する。給気
口13と高気圧空気給気装置9とを管でつなぎ、16か
ら空気を吸出すと同時に13から高気圧空気を給気しタ
ービンを回転させる。
Sixth Embodiment An eighth embodiment will be described with reference to FIG. The air supply port 13 and the high-pressure air supply device 9 are connected by a pipe, and air is sucked from 16 and at the same time, high-pressure air is supplied from 13 to rotate the turbine.

【実施例7】請求項9、10の実施例を図7で説明す
る。まず請求項10の説明。 (イ)多数の空気吸出し装置7と空気吸出し口16と管
でつなぎ、多数の高気圧空気給気装置9と給気口13を
管でつなぐ (ロ)タービンの回転軸に発電装置を取付ける。 請求項9は、高気圧空気給気装置9が必要でなく、給気
口13は外気と通じている点が異なる。
Embodiment 7 An embodiment according to claims 9 and 10 will be described with reference to FIG. First, description of claim 10 will be given. (A) A number of air suction devices 7 and air suction ports 16 are connected by pipes, and a number of high-pressure air supply devices 9 and air supply ports 13 are connected by pipes. (B) A power generation device is mounted on the rotating shaft of the turbine. Claim 9 is different in that the high-pressure air supply device 9 is not required, and the supply port 13 communicates with the outside air.

【実施例8】請求項3の気圧機関を更に発展させ、気筒
内を気密としピストン上昇時にも下死点位置のピストン
の下方から高気圧空気を給気する気圧機関の実施例を図
8により説明する。 (イ)ピストン2に複連接棒15aを設け、之を連接棒
15とつなぎ、15aはクランク室と気筒内を通す穴を
上下し、穴と15aは気密を保持出来るようになってい
る。 (ロ)空気吸出し口5、6は空気吸出し装置7と管でつ
なぎ、5、6共に開閉弁を有する。6は、図8と異なり
下死点のピストンの上方にする方法もある。 (ハ)給気口は、上方給気口3の外下方給気口3aを設
け、高気圧空気給気装置9と管でつなぐ。 (ニ)5、6からの空気吸出しによりピストン2が上死
点にある時は気筒内は低気圧状態で、給気口3の弁が開
くと高気圧空気によりピストンは下降し、下死点に達す
る。2aは下死点位置のピストンを示す。クランクの回
転により上昇に転ずるのを待ち給気口3aの弁が開き下
方から高気圧空気が給気される。又ピストンが下死点に
達するのを待ち給気口3の弁は閉じ吸出し口5の弁が開
き空気を吸出す。ピストンが上死点に達するのを待ち給
気口3aは閉じ吸出し口6の弁が開きピストンの下方の
空気を吸出し、吸出し口5、6の弁が閉じ又給気口3の
弁が開き低気圧状態となった気筒内に高気圧空気を給気
しピストンを押し下げる。以上が実施例8の作動方法で
ある。
[Embodiment 8] An embodiment of a pneumatic engine which further develops the pneumatic engine of claim 3 and which supplies air at high pressure from below the piston at the bottom dead center position even when the piston rises, with the inside of the cylinder airtight will be described with reference to FIG. I do. (A) The piston 2 is provided with a double connecting rod 15a, which is connected to the connecting rod 15, which 15a raises and lowers a hole passing through the crank chamber and the cylinder, and the hole and 15a can maintain airtightness. (B) The air suction ports 5 and 6 are connected to the air suction device 7 by a pipe, and both 5 and 6 have on-off valves. The method 6 is different from the method shown in FIG. (C) The air supply port is provided with a lower air supply port 3a outside the upper air supply port 3 and is connected to the high-pressure air air supply device 9 by a pipe. (D) When the piston 2 is at the top dead center due to the suction of air from 5 and 6, the inside of the cylinder is in a low pressure state, and when the valve of the air supply port 3 is opened, the piston descends by the high pressure air and reaches the bottom dead center. Reach. 2a shows a piston at the bottom dead center position. Waiting for the crank to turn upward, the valve of the air supply port 3a opens, and high-pressure air is supplied from below. Waiting for the piston to reach the bottom dead center, the valve of the air supply port 3 closes and the valve of the suction port 5 opens to suck air. Waiting for the piston to reach the top dead center, the air supply port 3a is closed, the valve at the suction port 6 is opened, and the air below the piston is sucked. High-pressure air is supplied into the cylinder which has been in a pressure state, and the piston is pushed down. The above is the operation method of the eighth embodiment.

【実施例9】請求項3の気圧機関を更に発展させた実施
例8と同様な作動方法であるが、気筒内を気密としない
実施例を図9により説明する。 (イ)気筒内は通常の内燃機関と同じくクランク室と一
体となっていて、下方の給気口3aはクランク室を通し
て高気圧空気を下死点付近のピストンの下方から押し上
げるような給気をする機構となっている。 (ロ)吸気口は、5、6の外に更にクランク室内の空気
に直接通ずる吸気口6aを設け吸気を敏速化する機構で
ある。 (ロ)作動方法は実施例8と同様である。
Ninth Embodiment An operation method similar to that of the eighth embodiment, which is a further development of the pneumatic engine of the third embodiment, except that the inside of the cylinder is not airtight will be described with reference to FIG. (A) The inside of the cylinder is integrated with the crank chamber as in a normal internal combustion engine, and the lower air supply port 3a supplies air through the crank chamber to push up high-pressure air from below the piston near the bottom dead center. Mechanism. (B) The intake port is a mechanism for increasing the speed of intake air by providing an intake port 6a that directly communicates with the air in the crank chamber in addition to the intake ports 5 and 6. (B) The operating method is the same as that of the eighth embodiment.

【発明の効果】風水力のみにより電力を得る方法を拡大
し、環境を破壊せず、大気を汚染せず、多くの電力を得
ることが出来る。
As described above, the method for obtaining electric power only by wind and water power is expanded, and a large amount of electric power can be obtained without damaging the environment and polluting the atmosphere.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 請求項1の実施例図FIG. 1 is a diagram of an embodiment according to claim 1;

【図2】 請求項2の実施例図FIG. 2 is a diagram showing an embodiment according to claim 2;

【図3】 請求項3の実施例図FIG. 3 is a diagram showing an embodiment of claim 3;

【図4】 請求項4、5、6の実施例を示す兼用図FIG. 4 is a combined diagram showing an embodiment according to claims 4, 5 and 6;

【図5】 請求項7の実施例図FIG. 5 is a diagram showing an embodiment of claim 7;

【図6】 請求項8の実施例図FIG. 6 is a diagram showing an embodiment according to claim 8;

【図7】 請求項9、10の実施例を示す兼用図FIG. 7 is a combined diagram showing an embodiment according to claims 9 and 10;

【図8】 請求項3の更に発展した発明の実施例図FIG. 8 is a diagram showing an embodiment of a further developed invention according to claim 3;

【図9】 上同実施例を簡単な機構とした実施例図FIG. 9 is an embodiment diagram in which the above embodiment is a simple mechanism.

【符号の説明】[Explanation of symbols]

1 気筒(通称はシリンダー) 2 ピストン 3 給気口 4 給気口3の回転開閉蓋 5 空気吸出し口 6 上同 7 空気吸出し装置を示す図 8 排気口 9 高気圧空気給気装置を示す図 10 クランク軸 2a ピストンの下死点位置図 11 発電装置 12 タービン 13 タービン給気口 14 風車 15 気圧機関の連接棒(図8に表示) 15a 上同複連接棒(上同) 16 タービンの空気吸出し口 3a 給気口 6a 空気吸出し口 DESCRIPTION OF SYMBOLS 1 Cylinder (commonly called a cylinder) 2 Piston 3 Supply port 4 Rotation opening / closing lid of supply port 3 5 Air suction port 6 Same as above 7 Drawing showing air suction device 8 Exhaust port 9 Drawing showing high pressure air supply device 10 Crank Shaft 2a Bottom dead center position diagram of piston 11 Power generator 12 Turbine 13 Turbine inlet 14 Windmill 15 Connecting rod of pneumatic engine (shown in FIG. 8) 15a Upper and lower multiple connecting rod (as above) 16 Air suction port of turbine 3a Air supply port 6a Air suction port

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】(イ)内燃機関の、気筒の上方に外気と通
じる給気口を設け、この給気口に開閉装置を設け、気筒
の上方と下方に空気吸出し口を設け、上方の空気吸出し
口に開閉装置を設ける。 (ロ)この上方と下方の空気吸出し口と、真空装置又は
空気吸出し装置(以下双方を一括して空気吸出し装置と
称する)とを、気筒内の空気を空気吸出し口より吸出す
機構につなぐ。 以上のような機構により、気筒内を低気圧状態とし外気
の気圧によりピストンを作動させクランク軸を回転させ
るように構成された気圧機関。
(1) An internal combustion engine is provided with a supply port for communicating with outside air above a cylinder, an opening / closing device is provided on the supply port, and an air suction port is provided above and below the cylinder. Provide an opening / closing device at the suction port. (B) The upper and lower air suction ports and the vacuum device or the air suction device (both are collectively referred to as an air suction device) are connected to a mechanism for sucking air in the cylinder from the air suction port. A pneumatic engine configured such that the inside of a cylinder is brought into a low pressure state by the above-described mechanism, the piston is operated by the pressure of the outside air, and the crankshaft is rotated.
【請求項2】(イ)内燃機関の、気筒の上方に給気口と
排気口を設け、この給気口と排気口に開閉装置を設け
る。 (ロ)この給気口と、空気圧搾装置又は高気圧空気給気
装置(以下双方を一括して高気圧空気給気装置と称す
る)とを、気筒内に給気口より圧搾空気又は高気圧空気
(以下双方を一括して高気圧空気と称する)を給気する
機構につなぐ。 以上のような機構により、高気圧な空気によりピストン
を作動させクランク軸を回転させるように構成された気
圧機関。
2. An air supply port and an exhaust port are provided above a cylinder of an internal combustion engine, and an opening / closing device is provided at the air supply port and the exhaust port. (B) The air supply port and the air compression device or the high-pressure air supply device (hereinafter, both are collectively referred to as a high-pressure air supply device) are compressed air or high-pressure air (hereinafter referred to as an Both are collectively referred to as high-pressure air). A pneumatic engine configured to operate a piston with high-pressure air to rotate a crankshaft by the above mechanism.
【請求項3】(イ)内燃機関の、気筒の上方に開閉装置
を有する給気口を設け、気筒の上方と下方に空気吸出し
口を設け、上方の空気吸出し口に開閉装置を設ける。 (ロ)この給気口と、高気圧空気給気装置とを、気筒内
に給気口より高気圧空気を給気するようにつなぐ。 (ハ)上方と下方の空気吸出し口と、空気吸出し装置と
を、気筒内の空気を上方と下方の空気吸出し口より吸出
す機構につなぐ。 以上のような機構により、低気圧状態の気筒内に高気圧
空気を給気することにより、ピストンを作動させクラン
ク軸を回転させるように構成された気圧機関。
(A) An internal combustion engine is provided with an air supply port having an opening / closing device above a cylinder, an air suction port above and below the cylinder, and an opening / closing device at an upper air suction port. (B) The air supply port is connected to the high-pressure air supply device so that high-pressure air is supplied from the air supply port into the cylinder. (C) The upper and lower air suction ports and the air suction device are connected to a mechanism that sucks air in the cylinder from the upper and lower air suction ports. A pneumatic engine configured to rotate a crankshaft by operating a piston by supplying high-pressure air into a low-pressure cylinder by the above-described mechanism.
【請求項4】(イ)内燃機関の、気筒の上方に、外気に
通じ開閉装置を有する給気口を設け、気筒の上方と下方
に空気吸出し口を設け、上方の空気吸出し口に開閉装置
を設ける。 (ロ)風力又水力又は海水力又は之等複数の力(以下一
括して風水力と称する)を利用した空気吸出し装置を設
け、この空気吸出し装置と、上方と下方の空気吸出し口
とを、気筒内の空気を空気吸出し口より吸出す機構につ
なぐ。 (ハ)以上の機構の気圧機関のクランク軸に発電装置を
取付ける。 以上のような機構により、風水力と外気の気圧により発
電装置を作動させるように構成した気圧発電装置。
4. An internal combustion engine is provided with an air supply opening above and below a cylinder and having an opening and closing device communicating with the outside air, an air suction opening above and below the cylinder, and a switching device in the upper air suction opening. Is provided. (B) Provide an air suction device using a wind or hydraulic power, a sea hydraulic power, or a plurality of such forces (hereinafter collectively referred to as wind-hydraulic power), and connect the air suction device with the upper and lower air suction ports, Connect the mechanism that sucks the air in the cylinder from the air suction port. (C) A power generator is mounted on the crankshaft of the pneumatic engine having the above mechanism. A pneumatic power generation device configured to operate the power generation device by the wind and water power and the atmospheric pressure of the outside air by the above mechanism.
【請求項5】(イ)内燃機関の、気筒の上方に、開閉装
置を有する給気口と排気口を設ける。 (ロ)風水力を利用した高気圧空気給気装置を設け、こ
の高気圧空気給気装置と給気口とを、気筒内に給気口よ
り高気圧空気を給気する機構につなぐ。 (ハ)以上の機構の気圧機関のクランク軸に発電装置を
取付ける 以上のような機構により、風水力を利用した高気圧空気
により発電装置を作動させるように構成された気圧発電
装置。
5. An intake port and an exhaust port having an opening / closing device are provided above a cylinder of an internal combustion engine. (B) A high-pressure air supply device utilizing wind-hydraulic power is provided, and the high-pressure air supply device and the air supply port are connected to a mechanism for supplying high-pressure air from the air supply port into the cylinder. (C) A power generation device is mounted on the crankshaft of the pneumatic engine having the above-described mechanism. The pneumatic power generation device configured to operate the power generation device by the high-pressure air using the wind and water power by the above-described mechanism.
【請求項6】(イ)内燃機関の、気筒の上方に、開閉装
置を有する給気口を設け、気筒の上方と下方に空気吸出
し口を設け、上方の空気吸出し口に開閉装置を設ける。 (ロ)風水力を利用した高気圧空気給気装置を設け、こ
の高気圧空気給気装置と給気口とを、気筒内に給気口よ
り高気圧空気を給気する機構につなぐ。 (ハ)風水力を利用した空気吸出し装置を設け、この空
気吸出し装置と上方と下方の空気吸出し口とを、気筒内
の空気を上方と下方の空気吸出し口より吸出す機構につ
なぐ。 (ニ)以上の機構の気圧機関のクランク軸に発電装置を
取付ける。 以上のような機構により、風水力利用による低気圧状態
形成と高気圧空気により、発電装置を作動させるように
構成された気圧発電装置。
6. An internal combustion engine is provided with a supply port having an opening / closing device above a cylinder, an air suction port above and below the cylinder, and a switching device at an upper air suction port. (B) A high-pressure air supply device utilizing wind-hydraulic power is provided, and the high-pressure air supply device and the air supply port are connected to a mechanism for supplying high-pressure air from the air supply port into the cylinder. (C) An air suction device utilizing wind-hydraulic power is provided, and the air suction device and the upper and lower air suction ports are connected to a mechanism for sucking air in the cylinder from the upper and lower air suction ports. (D) A power generator is mounted on the crankshaft of the pneumatic engine having the above mechanism. A pneumatic power generation device configured to operate the power generation device by the formation of a low pressure state by utilizing wind and water power and high pressure air by the above mechanism.
【請求項7】タービンに、外気に通じる給気口と空気吸
出し口を設け、この空気吸出し口と空気吸出し装置と
を、タービン内の空気を空気吸出し口より吸出す機構に
つなぐこのような機構により、タービン内を低気圧状態
とし、外気の気圧によりタービンを作動させるように構
成された気圧タービン。
7. A mechanism for providing an air supply port and an air suction port for communicating with outside air in a turbine, and connecting the air suction port and the air suction device to a mechanism for sucking air in the turbine from the air suction port. , The inside of the turbine is in a low pressure state, and the turbine is operated by the pressure of the outside air.
【請求項8】タービンに空気吸出し口を設け、この空気
吸出し口と空気吸出し装置とを、タービン内の空気を空
気吸出し口から吸出す機構につなぐ。このような機構に
より、タービン内を低気圧状態とし、高気圧空気により
タービンを作動させるように構成された気圧タービン。
8. An air suction port is provided in a turbine, and the air suction port and the air suction device are connected to a mechanism for sucking air in the turbine from the air suction port. A pressure turbine configured such that the inside of the turbine is in a low pressure state and the turbine is operated by high pressure air by such a mechanism.
【請求項9】(イ)タービンに、外気と通じる給気口と
空気吸出し口を設ける。 (ロ)風水力を利用した空気吸出し装置を設け、この空
気吸出し装置と空気吸出し口とを、タービン内の空気を
空気吸出し口より吸出す機構につなぐ。 (ハ)以上の機構の気圧タービンに発電装置を取付ける このような機構により、風水力利用してタービン内を低
気圧状態とし、外気の気圧によりタービンを作動させ、
発電装置を作動させるように構成された気圧発電装置。
9. A turbine is provided with an air supply port and an air suction port communicating with outside air. (B) An air suction device utilizing wind-hydraulic power is provided, and the air suction device and the air suction port are connected to a mechanism for sucking air in the turbine from the air suction port. (C) Attach a power generating device to the pneumatic turbine of the above mechanism. With such a mechanism, the inside of the turbine is brought into a low pressure state using wind and hydraulic power, and the turbine is operated by the pressure of the outside air.
A barometric power generator configured to operate the power generator.
【請求項10】(イ)タービンに給気口と空気吸出し口
を設ける。 (ロ)風水力を利用した空気吸出し装置を設け、この空
気吸出し装置と空気吸出し口とを、タービン内の空気を
空気吸出し口より吸出す機構につなぐ。 (ハ)風水力を利用した高気圧空気給気装置を設け、高
気圧空気給気装置と給気口とを、タービン内に高気圧空
気を給気口より給気する機構につなぐ。 (ニ)以上の機構の気圧タービンに発電装置を取付け
る。 この様な機構により、風水力利用による低気圧状態形成
と風水力利用による高気圧空気により、気圧タービンを
作動させ発電装置を作動させるように構成された気圧発
電装置。
10. An air supply port and an air suction port are provided in a turbine. (B) An air suction device utilizing wind-hydraulic power is provided, and the air suction device and the air suction port are connected to a mechanism for sucking air in the turbine from the air suction port. (C) A high-pressure air supply device utilizing wind-hydraulic power is provided, and the high-pressure air supply device and the supply port are connected to a mechanism for supplying high-pressure air from the supply port into the turbine. (D) Attach a power generator to the pneumatic turbine having the above mechanism. With such a mechanism, a barometric pressure power generation device configured to operate a pressure turbine and operate a power generation device by the formation of a low pressure state using wind and water power and the high pressure air by use of wind and water power.
JP35782199A 1999-11-01 1999-11-01 Air pressure engine, air pressure turbine, and air pressure power generating device Pending JP2001132403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35782199A JP2001132403A (en) 1999-11-01 1999-11-01 Air pressure engine, air pressure turbine, and air pressure power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35782199A JP2001132403A (en) 1999-11-01 1999-11-01 Air pressure engine, air pressure turbine, and air pressure power generating device

Publications (1)

Publication Number Publication Date
JP2001132403A true JP2001132403A (en) 2001-05-15

Family

ID=18456102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35782199A Pending JP2001132403A (en) 1999-11-01 1999-11-01 Air pressure engine, air pressure turbine, and air pressure power generating device

Country Status (1)

Country Link
JP (1) JP2001132403A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332927A (en) * 2006-06-19 2007-12-27 Kiyoshi Ogawa Power plant and power generating device using the power plant
JP2008002457A (en) * 2007-03-23 2008-01-10 Hiroshi Wakimoto Pneumatic power
JP2008522083A (en) * 2004-11-26 2008-06-26 ロイド・イー.・ビショップ 2-stroke steam vacuum engine
JP2011220317A (en) * 2010-04-12 2011-11-04 Kazuko Sugita Compressed air reciprocating engine
CN102261264A (en) * 2010-05-24 2011-11-30 福杨久庆 Reciprocating single-cycle engine
CN106567744A (en) * 2015-10-07 2017-04-19 章丘市凤巢创新技术研究所 Air pressure engine with air cylinder, plunger and valve switch being all made of glass
CN111852740A (en) * 2020-07-15 2020-10-30 南通大学 Small shallow sea wave energy capturing equipment with impeller

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008522083A (en) * 2004-11-26 2008-06-26 ロイド・イー.・ビショップ 2-stroke steam vacuum engine
JP4805944B2 (en) * 2004-11-26 2011-11-02 ロイド・イー.・ビショップ 2-stroke steam vacuum engine
JP2007332927A (en) * 2006-06-19 2007-12-27 Kiyoshi Ogawa Power plant and power generating device using the power plant
JP2008002457A (en) * 2007-03-23 2008-01-10 Hiroshi Wakimoto Pneumatic power
JP2011220317A (en) * 2010-04-12 2011-11-04 Kazuko Sugita Compressed air reciprocating engine
CN102261264A (en) * 2010-05-24 2011-11-30 福杨久庆 Reciprocating single-cycle engine
WO2011149034A1 (en) 2010-05-24 2011-12-01 Hisayoshi Fukuyanagi Reciprocating engine
CN106567744A (en) * 2015-10-07 2017-04-19 章丘市凤巢创新技术研究所 Air pressure engine with air cylinder, plunger and valve switch being all made of glass
CN106567744B (en) * 2015-10-07 2019-05-17 章丘市凤巢创新技术研究所 A kind of cylinder axis plug valve switch uses the air-pressure engine of glass manufacture completely
CN111852740A (en) * 2020-07-15 2020-10-30 南通大学 Small shallow sea wave energy capturing equipment with impeller
CN111852740B (en) * 2020-07-15 2021-08-06 南通大学 Small shallow sea wave energy capturing equipment with impeller

Similar Documents

Publication Publication Date Title
JP2001132403A (en) Air pressure engine, air pressure turbine, and air pressure power generating device
JP6812532B1 (en) Reciprocating compression expander
CN101806274B (en) Piston cylinder type tidal power generating set
JP2015200222A (en) Dynamic force generating device
JP3580091B2 (en) Capacitors in Rankine cycle
CN2752495Y (en) Pneumatic reciprocating pump
CN102877929B (en) Scavenging system of constant-pressure air source type free piston internal combustion generator
KR200290723Y1 (en) Power generator using air pressure
US8117826B1 (en) External combustion engine with rotary piston controlled valve
JP2002339702A (en) Air pressure machinery and air pressure power generation
CN2528934Y (en) Low-pressure steam power machine
JP2001200778A (en) Buoyancy applying power generation basic system by lifting-rotation system
CN201241736Y (en) Turbine distribution engine
US20050132699A1 (en) Converting pressure energy from renewable energy sources into electrical energy
JPS56110517A (en) Supercharging device of internal combustion engine
CN2308718Y (en) High efficiency I. C. engine
CN208106495U (en) Without crankshaft steam-to-vacuum engine
CN102003268A (en) Air-supplementing supercharged four-stroke engine
CN102168613B (en) Universal fuel engine
JP3702258B2 (en) Crosshead internal combustion engine equipped with a steam expansion device
RU155271U1 (en) HYDROTURBINE HYBRID ENGINE
TW202348889A (en) Negative pressure motor arrangement, method of operating and uses thereof
CN114000970A (en) High-pressure liquid-gas circulation power engine
CN111441897A (en) Siphon type water circulation intelligent power generation device system
KR100391613B1 (en) Performance improvement device for combustion chamber