JP6812532B1 - Reciprocating compression expander - Google Patents

Reciprocating compression expander Download PDF

Info

Publication number
JP6812532B1
JP6812532B1 JP2019232172A JP2019232172A JP6812532B1 JP 6812532 B1 JP6812532 B1 JP 6812532B1 JP 2019232172 A JP2019232172 A JP 2019232172A JP 2019232172 A JP2019232172 A JP 2019232172A JP 6812532 B1 JP6812532 B1 JP 6812532B1
Authority
JP
Japan
Prior art keywords
valve
pressure
main body
piston
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019232172A
Other languages
Japanese (ja)
Other versions
JP2021099089A (en
Inventor
元幸 高橋
元幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui E&S Machinery Co Ltd
Original Assignee
Mitsui E&S Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui E&S Machinery Co Ltd filed Critical Mitsui E&S Machinery Co Ltd
Priority to JP2019232172A priority Critical patent/JP6812532B1/en
Priority to CN202011555685.8A priority patent/CN112648168B/en
Application granted granted Critical
Publication of JP6812532B1 publication Critical patent/JP6812532B1/en
Publication of JP2021099089A publication Critical patent/JP2021099089A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/12Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B1/00Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements
    • F01B1/01Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements with one single cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B25/00Regulating, controlling, or safety means
    • F01B25/02Regulating or controlling by varying working-fluid admission or exhaust, e.g. by varying pressure or quantity
    • F01B25/08Final actuators
    • F01B25/10Arrangements or adaptations of working-fluid admission or discharge valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B29/00Machines or engines with pertinent characteristics other than those provided for in preceding main groups
    • F01B29/08Reciprocating-piston machines or engines not otherwise provided for
    • F01B29/10Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members

Abstract

【課題】 装置の大型化を排除し、閉弁させるための強いばね力に抗して、かつ往復式圧縮膨張機の負荷に応じて、簡易な機構で弁を低い押動力で容易に開弁させることができるようにする。【解決手段】 開弁して低圧の圧縮性流体を低圧路から本体シリンダ内へ吸入する第1弁及び開弁して第1弁から吸入されて本体ピストンの作動により圧縮されて高圧となった圧縮性流体を高圧路(9)へ吐出する第2弁(8)、又は、開弁して高圧路から高圧の圧縮性流体を本体シリンダ内へ流入させる第2弁(8)及び開弁して第2弁から流入されて本体ピストンの作動により膨張されて低圧となった圧縮性流体を低圧路へ排出する第1弁と、第1弁及び第2弁を作動させる油圧駆動又は電動の第1の弁駆動機構と、上記第2弁を圧縮性流体の流体圧により作動させる第2の弁駆動機構(17,18,27)を備える。【選択図】 図3PROBLEM TO BE SOLVED: To eliminate an increase in size of an apparatus, to resist a strong spring force for closing a valve, and to easily open a valve with a simple mechanism with a low pushing force in response to a load of a reciprocating compression / expander. To be able to let. SOLUTION: A first valve that opens and sucks a low-pressure compressible fluid from a low-pressure path into a main body cylinder and a valve that opens and sucks from the first valve and is compressed by the operation of a main body piston to become a high pressure. The second valve (8) that discharges the compressible fluid into the high-pressure path (9), or the second valve (8) that opens and allows the high-pressure compressible fluid to flow into the main body cylinder from the high-pressure path and opens. The first valve, which flows in from the second valve and is expanded by the operation of the main body piston to discharge the compressible fluid which has become low pressure, to the low pressure path, and the hydraulically driven or electric second valve which operates the first valve and the second valve. It includes a valve driving mechanism (1) and a second valve driving mechanism (17, 18, 27) for operating the second valve by the fluid pressure of a compressible fluid. [Selection diagram] Fig. 3

Description

本発明は、例えば、圧縮性流体の圧縮ないし膨張に使用されて好適な、往復式圧縮膨張機に関する。 The present invention relates to, for example, a reciprocating compression expander suitable for use in compressing or expanding a compressible fluid.

従来から、再生可能エネルギとして太陽光発電装置や風力発電装置等が既に広く利用されている。しかし、これらの自然エネルギを利用した発電装置においては、その発電量が大きく変動するため、電力需要に応じて有効に利用することが困難な面がある。 Conventionally, solar power generation devices, wind power generation devices, and the like have already been widely used as renewable energy. However, in a power generation device using these natural energies, since the amount of power generation fluctuates greatly, it is difficult to effectively use the power generation device according to the power demand.

これは、人的に制御することができない自然エネルギによる発電量が、時として需要電力を大幅に上回って過大な余剰電力を発生させるためで、これにより、最悪の場合には電力のブラックアウト現象を発生させることもある。このため、自然エネルギを利用した発電装置の場合には、このような過大な余剰電力が生じないように、その一部を遮断することも行われている。 This is because the amount of power generated by natural energy, which cannot be controlled by humans, sometimes greatly exceeds the required power to generate excessive surplus power, which in the worst case causes a blackout phenomenon of power. May also occur. For this reason, in the case of a power generation device using natural energy, a part of the power generation device is cut off so as not to generate such an excessive surplus power.

そして、この過大な余剰電力対策として、余剰電力を一旦蓄電池で蓄電し、電力需要が増加しそうなときに放出してグリッドへ電力供給することにより、電力の平準化を図ることが考えられる。この蓄電池による蓄電方法は、電気エネルギを直接蓄電するもので、利用等の面で理想的ではあるが、蓄電池には特殊金属等が必要であり、極めて高価なエネルギ貯蔵装置となる。 Then, as a countermeasure against this excessive surplus power, it is conceivable to temporarily store the surplus power in the storage battery and release it when the power demand is likely to increase to supply the power to the grid to level the power. This storage battery-based storage method directly stores electrical energy and is ideal in terms of utilization, but the storage battery requires a special metal or the like, and is an extremely expensive energy storage device.

自然エネルギに基づく余剰電力を保存するための別の解決方法として、電気エネルギを圧縮空気エネルギに変換して蓄える方法が考えられている。この蓄電方法に関しては、圧縮空気エネルギへの変換によるエネルギ貯蔵装置のパイロットプラントが建設され、実証実験も完了している。 Another solution for preserving surplus power based on natural energy is to convert electrical energy into compressed air energy and store it. Regarding this storage method, a pilot plant for an energy storage device that converts it into compressed air energy has been constructed, and demonstration experiments have been completed.

この方法は、余剰電力を用いて電動機を作動させ、この電動機により圧縮機を回転駆動させて圧縮空気を形成して一旦タンクに貯蔵し、電力不足時にこの圧縮空気で膨張機を駆動させて発電機を回転駆動させ、これにより発電を行なって再び電力に変換するものである。実証実験の結果、総合効率で60〜70%になることが確認されている。このエネルギ貯蔵装置においては、圧縮膨張機としてスクリュ式コンプレッサが用いられている。 In this method, an electric motor is operated using surplus electric power, the compressor is rotationally driven by the electric motor to form compressed air, which is temporarily stored in a tank, and when the electric power is insufficient, the expander is driven by the compressed air to generate electric power. The machine is driven to rotate, which generates electricity and converts it back into electric power. As a result of the demonstration experiment, it has been confirmed that the total efficiency is 60 to 70%. In this energy storage device, a screw type compressor is used as a compression expander.

この一方、圧縮機としては、その他ピストンによる往復式もある。このピストンによる従来の往復式圧縮機は、吸入弁及び吐出弁の作動が板ばね等を利用した単純なばね力のみにより行われる(特許文献1参照)。 On the other hand, as a compressor, there is also a reciprocating type using a piston. In the conventional reciprocating compressor using this piston, the suction valve and the discharge valve are operated only by a simple spring force using a leaf spring or the like (see Patent Document 1).

しかしながら、上述の従来のスクリュ式コンプレッサにおいては、次のような問題が憂慮される。すなわち、スクリュ式コンプレッサは、雄雌ロータ同士の間、及びロータとケーシングとの間に構造上どうしても一定の隙間が生じ、圧縮時にこの隙間を通して被圧縮物の漏洩が発生し、圧縮効率や膨張効率が低下する。 However, in the above-mentioned conventional screw type compressor, the following problems are concerned. That is, in the screw compressor, a certain structural gap is inevitably generated between the male and female rotors and between the rotor and the casing, and the material to be compressed leaks through this gap during compression, resulting in compression efficiency and expansion efficiency. Decreases.

また、一つの圧縮膨張機により圧縮行程と膨張行程の双方を行なった場合、それぞれの行程において圧縮膨張機の回転方向が逆になる。このため、圧縮に使用する電動機と発電に使用する発電機とを同方向に回転させて電力装置の簡素化を図るためには、何らかの切替装置等が必要になる。 Further, when both the compression stroke and the expansion stroke are performed by one compression / expansion machine, the rotation directions of the compression / expansion machine are reversed in each stroke. Therefore, in order to simplify the electric power device by rotating the electric motor used for compression and the generator used for power generation in the same direction, some kind of switching device or the like is required.

また、スクリュ式コンプレッサは比較的容量が小さく、大容量のエネルギ貯蔵装置には
不向きである。また、スクリュ式コンプレッサは容量調整を圧縮膨張機単独で行なうことができず、圧縮空気の調圧装置等が必要になる。さらに、このような問題を解決するためには、電力系統にコンバータ等の変換器が必要になることもあり、この場合には装置自体が高価になるという問題がある。
In addition, the screw compressor has a relatively small capacity and is not suitable for a large-capacity energy storage device. Further, in the screw type compressor, the capacity cannot be adjusted by the compression expander alone, and a pressure regulator for compressed air or the like is required. Further, in order to solve such a problem, a converter such as a converter may be required in the power system, and in this case, there is a problem that the device itself becomes expensive.

一方、従来の往復式圧縮機において、吸入弁及び吐出弁を作動させるのは、上述したように板ばね等によるばねであり、この場合には、内圧との差圧により予め設定されたばね力のみにより吸入弁及び吐出弁の作動が行われ、吸気流量や吐出流量を任意に、かつ最適に調整することが必ずしも容易ではないという問題がある。また、膨張機として兼用することができないという問題がある。 On the other hand, in the conventional reciprocating compressor, the suction valve and the discharge valve are operated by a spring such as a leaf spring as described above. In this case, only the spring force preset by the differential pressure from the internal pressure is operated. Therefore, the intake valve and the discharge valve are operated, and there is a problem that it is not always easy to arbitrarily and optimally adjust the intake flow rate and the discharge flow rate. Further, there is a problem that it cannot be used as an expander.

このため、本願発明者は、新たな往復式圧縮膨張機を開発し、圧縮及び膨張の何れに使用されても効率が極めて高く、しかも回転方向が同一であり、容量が大きく大容量の蓄電プラント等に好適であり、かつ、容量調整が極めて容易で、蓄電プラントに利用された場合にも電力系統にコンバータ等の変換器が不要で安価になる、往復式圧縮膨張機を特願2019−227516により提案した。 For this reason, the inventor of the present application has developed a new reciprocating compression / expansion machine, which has extremely high efficiency regardless of whether it is used for compression or expansion, has the same rotation direction, has a large capacity, and has a large capacity. 2019-227516 is a reciprocating compression / expansion machine that is suitable for such purposes, has extremely easy capacity adjustment, and does not require a converter such as a converter in the power system and is inexpensive even when used in a power storage plant. Proposed by.

特開平2−130278号公報Japanese Unexamined Patent Publication No. 2-130278

しかしながら、上述の本願発明者により提案された往復式圧縮膨張機は、圧縮性流体を吸入するための吸入弁や吐出するための吐出弁は、例えば空気ばねにより閉弁する構造である。この空気ばねのばね力は、作動部の重量とその加速度から生じる慣性力や、弁シール部から流体漏れが生じないようにするためのシール性、開弁時の弁傘部に作用する差圧力等を考慮して決定される。 However, the reciprocating compression expander proposed by the inventor of the present application has a structure in which the suction valve for sucking the compressible fluid and the discharge valve for discharging the compressible fluid are closed by, for example, an air spring. The spring force of this air spring is the inertial force generated from the weight of the operating part and its acceleration, the sealing property to prevent fluid leakage from the valve seal part, and the differential pressure acting on the valve umbrella part when the valve is opened. Etc. are taken into consideration when determining.

この一方、内燃機関において、例えば傘型弁の弁傘部にかかる差圧は高々1bar程度であるが、圧縮性流体を高圧に圧縮し、又は高圧の圧縮性流体を膨張させるための往復式圧縮膨張機においては、開弁時の一瞬ではあるが、その差圧が内燃機関の場合の約10倍にもなる。このため、弁の閉弁が確実になされるように、例えば上述の空気ばねのばね力を強くする必要がある。 On the other hand, in an internal combustion engine, for example, the differential pressure applied to the valve umbrella portion of the umbrella valve is about 1 bar at most, but reciprocating compression for compressing the compressible fluid to a high pressure or expanding the high-pressure compressible fluid. In the expander, the differential pressure is about 10 times that of the internal combustion engine, although it is a moment when the valve is opened. Therefore, for example, it is necessary to increase the spring force of the above-mentioned air spring so that the valve can be closed reliably.

特に圧縮時においては、シリンダの内圧が極めて高くなり、吐出弁の弁傘部をシリンダの内側から閉弁側へ強い力で押圧する。このため、圧縮時に吐出弁を開弁させるためには、上記の強い空気ばねのばね力も相乗して、極めて大きな押動力か必要になる。ただし、図6の実線部からも推察されるように、吐出弁が一旦開弁すると、圧縮性流体の流れにより吐出弁の弁傘部にかかる差圧は急激に減少する。 Especially during compression, the internal pressure of the cylinder becomes extremely high, and the valve umbrella portion of the discharge valve is pressed from the inside of the cylinder to the valve closing side with a strong force. Therefore, in order to open the discharge valve at the time of compression, the spring force of the above-mentioned strong air spring also synergizes, and an extremely large pushing force is required. However, as can be inferred from the solid line portion in FIG. 6, once the discharge valve is opened, the differential pressure applied to the valve umbrella portion of the discharge valve sharply decreases due to the flow of the compressible fluid.

このように、圧縮性流体の圧縮や膨張に使用される往復式圧縮膨張機において、弁の閉弁を確実なものにするためには、空気ばねのばね力を一段と高める必要があるが、この空気ばねの強いばね力により、弁を開弁させる油圧駆動又は電動の弁駆動機構に極めて大きな駆動力が必要になるという問題がある。また、上述のように、特に圧縮時にはシリンダの内圧が極めて高くなり、これによっても弁傘部が閉弁側へ押圧されて、開弁時の一瞬ではあるが、弁を開弁させる油圧駆動又は電動の弁駆動機構に、さらに大きな駆動力が必要になるという問題がある。 As described above, in the reciprocating compression / expansion machine used for compressing and expanding the compressible fluid, it is necessary to further increase the spring force of the air spring in order to ensure the valve closing. Due to the strong spring force of the air spring, there is a problem that an extremely large driving force is required for the hydraulic drive or the electric valve drive mechanism for opening the valve. Further, as described above, the internal pressure of the cylinder becomes extremely high, especially during compression, and the valve umbrella portion is also pressed toward the valve closing side by this, and the valve is manually driven to open the valve, although it is a moment when the valve is opened. There is a problem that the electric valve drive mechanism requires a larger driving force.

この大きな駆動力を得るために弁の開弁をカム駆動式とする方法もあるが、カム駆動式
の場合には、一般的に装置が大型化するという問題がある。また、上述の本願発明者により提案された油圧駆動や電動の弁駆動機構の場合には、開弁時の一瞬のために油圧シリンダに対して高い油圧を供給することが必要であり、例えば、油圧源の高圧化や特殊な油圧倍力装置等が必要になるという問題が懸念される。さらに、上述の弁傘部にかかる差圧は往復式圧縮膨張機の負荷に応じて変化するため、その負荷に応じて油圧源の圧力制御が必要になるという問題も懸念される。
In order to obtain this large driving force, there is a method in which the valve opening is a cam drive type, but in the case of the cam drive type, there is a problem that the device generally becomes large. Further, in the case of the hydraulic drive or electric valve drive mechanism proposed by the inventor of the present application described above, it is necessary to supply high hydraulic pressure to the hydraulic cylinder for a moment when the valve is opened. There is concern that the pressure of the hydraulic source will be increased and that a special hydraulic booster will be required. Further, since the differential pressure applied to the valve umbrella portion changes according to the load of the reciprocating compression / expander, there is a concern that the pressure of the hydraulic source needs to be controlled according to the load.

本発明はこのような問題を解決するためになされたものであり、装置の大型化を排除すると共に、閉弁させるための強いばね力に抗して、かつ、往復式圧縮膨張機の負荷に応じて、簡易な機構で弁を低い押動力で容易に開弁させることができる、往復式圧縮膨張機を提供することを課題とする。 The present invention has been made to solve such a problem, eliminates the increase in size of the device, resists the strong spring force for closing the valve, and applies the load of the reciprocating compression / expander. Accordingly, it is an object of the present invention to provide a reciprocating compression / expansion machine capable of easily opening a valve with a simple mechanism with a low pushing force.

上述の課題を解決するために、本発明の往復式圧縮膨張機は、本体シリンダ内を摺動する本体ピストンと、本体ピストンに連結されて回転するクランク軸と、開弁して低圧の圧縮性流体を低圧路から本体シリンダ内へ吸入する第1弁及び開弁して第1弁から吸入されて本体ピストンの作動により圧縮されて高圧となった圧縮性流体を高圧路へ吐出する第2弁、又は、開弁して高圧路から高圧の圧縮性流体を本体シリンダ内へ流入させる第2弁及び開弁して第2弁から流入されて本体ピストンの作動により膨張されて低圧となった圧縮性流体を低圧路へ排出する第1弁と、第1弁及び第2弁を作動させる油圧駆動又は電動の第1の弁駆動機構と、第2弁を圧縮性流体の流体圧により作動させる第2の弁駆動機構を備えたことにある。 In order to solve the above-mentioned problems, the reciprocating compression / expander of the present invention has a main body piston that slides in the main body cylinder, a crank shaft that is connected to the main body piston and rotates, and a low-pressure compressibility that opens a valve. The first valve that sucks the fluid from the low pressure path into the main body cylinder and the second valve that opens and sucks in from the first valve and discharges the compressible fluid that is compressed by the operation of the main body piston and becomes high pressure to the high pressure path. Or, the valve is opened to allow high-pressure compressive fluid to flow into the main body cylinder from the high-pressure path, and the valve is opened to flow in from the second valve and expanded by the operation of the main body piston to reduce the pressure. A first valve that discharges the sexual fluid to the low pressure path, a hydraulically driven or electric first valve drive mechanism that operates the first and second valves, and a second valve that is operated by the fluid pressure of the compressive fluid. It is equipped with 2 valve drive mechanisms.

このように、第2弁を圧縮性流体の流体圧により作動させる第2の弁駆動機構をさらに備えることにより、油圧駆動又は電動の第1の弁駆動機構の駆動力を特段に高めることなく、第2弁を容易に開弁させることができる。 As described above, by further providing the second valve drive mechanism that operates the second valve by the fluid pressure of the compressible fluid, the driving force of the first valve drive mechanism that is hydraulically driven or electrically driven is not particularly increased. The second valve can be easily opened.

上記往復式圧縮膨張機において、第2の弁駆動機構は、第2弁に連結されてピストン面に圧縮性流体の流体圧がかかることにより第2弁を作動させる流体圧ピストンを備えることが望ましい。 In the reciprocating compression / expansion machine, it is desirable that the second valve drive mechanism includes a fluid pressure piston that is connected to the second valve and operates the second valve by applying the fluid pressure of the compressible fluid to the piston surface. ..

このように、第2の弁駆動機構が、第2弁に連結されてピストン面に圧縮性流体の流体圧がかかることにより第2弁を作動させる流体圧ピストンを備えることにより、圧縮性流体の流体圧により作動する第2の弁駆動機構を簡易に形成することができる。また、油圧や電気等の外部のエネルギ源を必要としないという大きな長所を有する。 In this way, the second valve drive mechanism is connected to the second valve and includes a fluid pressure piston that operates the second valve by applying the fluid pressure of the compressible fluid to the piston surface, whereby the compressible fluid is provided. A second valve drive mechanism that operates by fluid pressure can be easily formed. In addition, it has a great advantage that it does not require an external energy source such as electric pressure or electricity.

上記往復式圧縮膨張機において、流体圧ピストンは、上記ピストン面の第2弁側の第1ピストン面に上記高圧路内の圧縮性流体の流体圧がかかることが望ましい。 In the reciprocating compression / expansion machine, it is desirable that the fluid pressure piston applies the fluid pressure of the compressible fluid in the high pressure path to the first piston surface on the second valve side of the piston surface.

このように、流体圧ピストンの第2弁側の第1ピストン面に往復式圧縮膨張機の高圧路内の圧縮性流体の流体圧がかかるようにすることにより、この流体圧ピストンの第2弁側の第1ピストン面にかかる圧縮性流体の流体圧による押圧力と、第2弁にかかる高圧路側からの圧縮性流体の流体圧による押圧力とが相応に相殺され、圧縮時又は膨張時のいずれにおいても、第2弁の開弁動作において高圧路内の圧縮性流体の流体圧による影響を受けにくくする。すなわち、往復式圧縮膨張機のすべての作動状態において、第2弁の開弁のためだけに油圧駆動又は電動の第1の弁駆動機構の、第2弁の開弁側への押動力を特段に高める必要がなくなる。 In this way, the fluid pressure of the compressible fluid in the high-pressure path of the reciprocating compression expander is applied to the first piston surface on the second valve side of the fluid pressure piston, so that the second valve of the fluid pressure piston is applied. The pressing force due to the fluid pressure of the compressive fluid applied to the first piston surface on the side and the pressing force due to the fluid pressure of the compressible fluid applied to the second valve from the high pressure path side are appropriately offset, and during compression or expansion. In either case, the valve opening operation of the second valve is less affected by the fluid pressure of the compressible fluid in the high-pressure path. That is, in all operating states of the reciprocating compression expander, the pushing force of the first valve drive mechanism, which is hydraulically or electrically driven, to the valve opening side of the second valve is specially applied only for opening the second valve. There is no need to increase it.

上記往復式圧縮膨張機において、流体圧ピストンを内部で摺動させる流体圧シリンダは、第2弁側の第1シリンダ室と上記高圧路とを連通させる高圧流体連通路を備えることが望ましい。 In the reciprocating compression / expansion machine, the fluid pressure cylinder that slides the fluid pressure piston inside preferably includes a high-pressure fluid communication passage that connects the first cylinder chamber on the second valve side and the high-pressure passage.

このように、流体圧ピストンを内部で摺動させる流体圧シリンダが、第2弁側の第1シリンダ室と、往復式圧縮膨張機の高圧路とを連通させる高圧流体連通路を備えることにより、流体圧ピストンの第2弁側の第1ピストン面にかかる圧縮性流体の流体圧による押圧力と、第2弁にかかる高圧路側からの圧縮性流体の流体圧による押圧力とが相応に相殺され、圧縮時又は膨張時のいずれにおいても、第2弁の開弁動作において高圧路内の圧縮性流体の流体圧による影響を受けにくくする。すなわち、往復式圧縮膨張機のすべての作動状態において、第2弁の開弁のためだけに油圧駆動又は電動の第1の弁駆動機構の、第2弁の開弁側への押動力を特段に高める必要がなくなる。 In this way, the fluid pressure cylinder that slides the fluid pressure piston inside is provided with a high-pressure fluid communication passage that connects the first cylinder chamber on the second valve side and the high-pressure passage of the reciprocating compression / expander. The pressing force due to the fluid pressure of the compressive fluid applied to the first piston surface on the second valve side of the fluid pressure piston and the pressing force due to the fluid pressure of the compressible fluid applied to the second valve from the high pressure path side are appropriately offset. In both compression and expansion, the valve opening operation of the second valve is less affected by the fluid pressure of the compressible fluid in the high-pressure path. That is, in all operating states of the reciprocating compression expander, the pushing force of the first valve drive mechanism, which is hydraulically or electrically driven, to the valve opening side of the second valve is specially applied only for opening the second valve. There is no need to increase it.

上記往復式圧縮膨張機において、流体圧ピストンの第2弁側の外径は、第2弁の閉弁時に第2弁の高圧路側に露出する露出面の外径と略同一に形成されることが望ましい。 In the reciprocating compression / expansion machine, the outer diameter of the fluid pressure piston on the second valve side is formed to be substantially the same as the outer diameter of the exposed surface exposed on the high pressure path side of the second valve when the second valve is closed. Is desirable.

このように、流体圧ピストンの第2弁側の外径が、第2弁の閉弁時に第2弁の高圧路側に露出する露出面の外径と略同一に形成されることにより、流体圧ピストンの第2弁側の第1ピストン面にかかる圧縮性流体の流体圧による押圧力と、第2弁にかかる高圧路側からの圧縮性流体の流体圧による押圧力とがほぼ相殺され、圧縮時又は膨張時のいずれにおいても、第2弁の開弁動作において高圧路内の圧縮性流体の流体圧による影響を受けにくくする。すなわち、往復式圧縮膨張機のすべての作動状態において、第2弁の開弁のためだけに油圧駆動又は電動の第1の弁駆動機構の、第2弁の開弁側への押動力を特段に高める必要がなくなる。 In this way, the outer diameter of the second valve side of the fluid pressure piston is formed to be substantially the same as the outer diameter of the exposed surface exposed on the high pressure path side of the second valve when the second valve is closed, so that the fluid pressure is formed. The pressing force due to the fluid pressure of the compressive fluid applied to the first piston surface on the second valve side of the piston and the pressing force due to the fluid pressure of the compressible fluid applied to the second valve from the high pressure path side are almost offset, and during compression. Or, at any time during expansion, the valve opening operation of the second valve is less affected by the fluid pressure of the compressible fluid in the high-pressure path. That is, in all operating states of the reciprocating compression expander, the pushing force of the first valve drive mechanism, which is hydraulically or electrically driven, to the valve opening side of the second valve is specially applied only for opening the second valve. There is no need to increase it.

上記往復式圧縮膨張機において、高圧流体連通路は、流体圧シリンダが高圧路側へ内径を略変化させずに延出されてなることが望ましい。 In the reciprocating compression / expansion machine, it is desirable that the high-pressure fluid communication passage extends the fluid pressure cylinder toward the high-pressure road side without substantially changing the inner diameter.

このように、高圧流体連通路が、流体圧シリンダが高圧路側へ内径を略変化させずに延出されてなることにより、流体圧シリンダが高圧流体連通路を兼ねることになり、高圧流体連通路の形成が容易になる。また、内径が変化しないから、高圧路の圧縮性流体の流体圧を減圧させずに流体圧シリンダにかけることができる。 In this way, the high-pressure fluid communication passage is such that the fluid pressure cylinder extends toward the high-pressure path side without substantially changing the inner diameter, so that the fluid pressure cylinder also serves as the high-pressure fluid communication passage, and the high-pressure fluid communication passage also serves. Is easy to form. Further, since the inner diameter does not change, the fluid pressure of the compressible fluid in the high-pressure path can be applied to the fluid pressure cylinder without reducing the pressure.

上記往復式圧縮膨張機において、流体圧ピストンは、反第2弁側の第2ピストン面に本体シリンダ内の圧縮性流体の流体圧がかかることが望ましい。 In the reciprocating compression / expansion machine, it is desirable that the fluid pressure piston applies the fluid pressure of the compressible fluid in the main body cylinder to the second piston surface on the anti-second valve side.

このように、流体圧ピストンの反第2弁側の第2ピストン面に、往復式圧縮膨張機の本体シリンダ内の圧縮性流体の流体圧がかかるようにすることにより、第2ピストン面にかかる圧縮性流体の流体圧により発生する第2弁の開弁側への押圧力と、第2弁にかかる本体シリンダ内の圧縮性流体の流体圧による第2弁の閉弁側への押圧力とが相応に相殺されて、例えば圧縮時のように本体シリンダ内に極めて高い圧縮性流体の流体圧がかかっても、この流体圧ピストンの作用により、第2弁の開弁のためだけに油圧駆動又は電動の第1の弁駆動機構の、第2弁の開弁側への押動力を特段に高める必要はない。 In this way, the fluid pressure of the compressible fluid in the main body cylinder of the reciprocating compression expander is applied to the second piston surface on the anti-second valve side of the fluid pressure piston, so that the fluid pressure is applied to the second piston surface. The pressing force on the valve opening side of the second valve generated by the fluid pressure of the compressible fluid and the pressing force on the valve closing side of the second valve due to the fluid pressure of the compressible fluid in the main body cylinder applied to the second valve. Is offset accordingly, and even if an extremely high fluid pressure of a compressible fluid is applied to the main body cylinder, for example, during compression, the action of this fluid pressure piston causes hydraulic drive only for opening the second valve. Alternatively, it is not necessary to particularly increase the pushing force of the electric first valve drive mechanism to the valve opening side of the second valve.

他方、膨張時のように往復式圧縮膨張機の本体シリンダ内の圧縮性流体の流体圧が低い場合には、それに応じて流体圧ピストンの反第2弁側の第1ピストン面にかかる圧力も低下するから、往復式圧縮膨張機のすべての作動状態において、流体圧ピストンにかかる押圧力が自動的に、かつ最適に調整される。 On the other hand, when the fluid pressure of the compressible fluid in the main body cylinder of the reciprocating compression inflator is low as in the case of expansion, the pressure applied to the first piston surface on the anti-second valve side of the fluid pressure piston also increases accordingly. Since it is reduced, the pressing force applied to the fluid pressure piston is automatically and optimally adjusted in all operating states of the reciprocating compression expander.

上記往復式圧縮膨張機において、流体圧ピストンを内部で摺動させる流体圧シリンダは、反第2弁側の第2シリンダ室と本体シリンダ内とを連通させるシリンダ連通路を備えることが望ましい。 In the reciprocating compression / expansion machine, the fluid pressure cylinder that slides the fluid pressure piston inside preferably includes a cylinder communication passage that communicates the second cylinder chamber on the anti-second valve side and the inside of the main body cylinder.

このように、流体圧ピストンを内部で摺動させる流体圧シリンダが、反第2弁側の第2シリンダ室と本体シリンダ内とを連通させるシリンダ連通路を備えることにより、流体圧ピストンの反第2弁側の第2ピストン面にかかる圧縮性流体の流体圧により発生する第2弁の開弁側への押圧力と、第2弁にかかる本体シリンダ内の圧縮性流体の流体圧による第2弁の閉弁側への押圧力とが相応に相殺されて、例えば圧縮時のように、本体シリンダ内に極めて高い圧縮性流体の流体圧がかかっても、この流体圧ピストンの作用により、第2弁の開弁のためだけに油圧駆動又は電動の第1の弁駆動機構の、第2弁の開弁側への押動力を特段に高める必要はない。 In this way, the fluid pressure cylinder that slides the fluid pressure piston inside is provided with a cylinder communication passage that communicates the second cylinder chamber on the anti-second valve side and the inside of the main body cylinder, so that the anti-deflection of the fluid pressure piston is provided. The pressing force on the valve opening side of the second valve generated by the fluid pressure of the compressive fluid applied to the second piston surface on the two-valve side and the second due to the fluid pressure of the compressive fluid in the main body cylinder applied to the second valve. Even if the pressing force on the valve closing side of the valve is appropriately offset and an extremely high compressive fluid fluid pressure is applied to the main body cylinder, for example, during compression, the action of this fluid pressure piston causes the first It is not necessary to particularly increase the pushing force of the first valve drive mechanism, which is hydraulically or electrically driven, to the valve opening side of the second valve only for opening the two valves.

他方、膨張時のように本体シリンダ内の圧縮性流体の流体圧が低い場合には、それに応じて流体圧ピストンの反第2弁側の第2ピストン面にかかる圧力も低下するから、往復式圧縮膨張機のすべての作動状態において、流体圧ピストンにかかる押圧力が自動的に、かつ最適に調整される。 On the other hand, when the fluid pressure of the compressible fluid in the main body cylinder is low as in the case of expansion, the pressure applied to the second piston surface on the anti-second valve side of the fluid pressure piston also decreases accordingly, so that it is a reciprocating type. The pressing force applied to the fluid pressure piston is automatically and optimally adjusted in all operating conditions of the compression expander.

上述のように、本発明の往復式圧縮膨張機は、本体シリンダ内を摺動する本体ピストンと、本体ピストンに連結されて回転するクランク軸と、開弁して低圧の圧縮性流体を低圧路から本体シリンダ内へ吸入する第1弁及び開弁して第1弁から吸入されて本体ピストンの作動により圧縮されて高圧となった圧縮性流体を高圧路へ吐出する第2弁、又は、開弁して高圧路から高圧の圧縮性流体を本体シリンダ内へ流入させる第2弁及び開弁して第2弁から流入されて本体ピストンの作動により膨張されて低圧となった圧縮性流体を低圧路へ排出する第1弁と、第1弁及び第2弁を作動させる油圧駆動又は電動の弁駆動機構と、第2弁を圧縮性流体の流体圧により作動させる第2の弁駆動機構を備える。 As described above, the reciprocating compression / expander of the present invention has a main body piston that slides in the main body cylinder, a crank shaft that is connected to the main body piston and rotates, and a low pressure path that opens a valve to pass a low pressure compressive fluid. The first valve that sucks into the main body cylinder from, and the second valve that opens and discharges the compressible fluid that is sucked from the first valve and compressed by the operation of the main body piston to a high pressure path, or opens. A second valve that valves and allows high-pressure compressive fluid to flow into the main body cylinder from the high-pressure path, and a low-pressure compressive fluid that opens and flows in from the second valve and is expanded by the operation of the main body piston to become low pressure. It includes a first valve that discharges to the road, a hydraulically driven or electric valve driving mechanism that operates the first and second valves, and a second valve driving mechanism that operates the second valve by the fluid pressure of a compressible fluid. ..

したがって、装置の大型化を排除すると共に、閉弁させるための強いばね力に抗して、かつ、往復式圧縮膨張機の負荷に応じて、簡易な機構で弁を低い押動力で容易に開弁させることができる、という優れた効果を奏する。 Therefore, it is possible to eliminate the increase in size of the device, resist the strong spring force for closing the valve, and easily open the valve with a simple mechanism with a low pushing force according to the load of the reciprocating compression / expander. It has the excellent effect of being able to speak.

往復式圧縮膨張機を示す概略図である。It is the schematic which shows the reciprocating compression expansion machine. 図1の往復式圧縮膨張機の油圧駆動の弁駆動機構を示す概略図である。It is the schematic which shows the valve drive mechanism of the hydraulic drive of the reciprocating compression expansion machine of FIG. 本発明に係る往復式圧縮膨張機の詳細を示す部分縦断面図である。It is a partial vertical sectional view which shows the detail of the reciprocating compression expansion machine which concerns on this invention. 図3の往復式圧縮膨張機の圧縮時の、クランク角度と本体シリンダ内の空気圧力との関係を示すグラフである。It is a graph which shows the relationship between the crank angle and the air pressure in the main body cylinder at the time of compression of the reciprocating compression expansion machine of FIG. 図3の往復式圧縮膨張機の膨張時の、クランク角度と本体シリンダ内の空気圧力との関係を示すグラフである。It is a graph which shows the relationship between the crank angle and the air pressure in the main body cylinder at the time of expansion of the reciprocating compression inflator of FIG. 図3の復式圧縮膨張機の圧縮時の、クランク角度と油圧シリンダに必要とされる作動油圧との関係を示すグラフである。It is a graph which shows the relationship between the crank angle and the hydraulic pressure required for a hydraulic cylinder at the time of compression of the return type compression expansion machine of FIG. 図3のバランスピストンの他の形態を示す部分縦断面図である。It is a partial vertical sectional view which shows the other form of the balance piston of FIG.

本発明に係る往復式圧縮膨張機を実施するための形態を、図1ないし図7を参照して詳
細に説明する。
A mode for carrying out the reciprocating compression / expansion machine according to the present invention will be described in detail with reference to FIGS. 1 to 7.

図1に示すように、本往復式圧縮膨張機1は、本体シリンダ2内を気密に摺動する本体ピストン3と、本体ピストン3にコネクチングロッド4を介して連結されて回転するクランク軸5とを有する。また、圧縮行程時(圧縮時)に外部から低圧の空気(圧縮性流体)を本体シリンダ内へ吸入する吸入弁(第1弁)7と、吸入弁7から吸入されて本体ピストン3の作動により圧縮されて、高圧となった圧縮空気を後述する高圧空気路(高圧路)9を介して外部へ吐出する吐出弁(第2弁)8とを有する。 As shown in FIG. 1, the reciprocating compression / expander 1 includes a main body piston 3 that airtightly slides in the main body cylinder 2, and a crankshaft 5 that is connected to the main body piston 3 via a connecting rod 4 and rotates. Has. Further, during the compression stroke (during compression), the suction valve (first valve) 7 that sucks low-pressure air (compressible fluid) from the outside into the main body cylinder and the suction valve 7 are sucked in and the main body piston 3 operates. It has a discharge valve (second valve) 8 that discharges compressed air that has become high pressure to the outside through a high pressure air passage (high pressure passage) 9 described later.

本往復式圧縮膨張機1の膨張行程時(膨張時)には、上述の吐出弁8は、開弁して、外部から上述の高圧空気路9を通して高圧の圧縮空気を本体シリンダ2内へ流入させる一方、上述の吸入弁7は、開弁して、吐出弁8から流入して本体ピストン3の作動により膨張されて、低圧となった空気を外部へ排出する。 During the expansion stroke (during expansion) of the reciprocating compressor 1, the discharge valve 8 is opened, and high-pressure compressed air flows from the outside through the high-pressure air passage 9 into the main body cylinder 2. On the other hand, the above-mentioned suction valve 7 is opened, flows in from the discharge valve 8, is expanded by the operation of the main body piston 3, and discharges the low-pressure air to the outside.

図2に示すように、吸入弁7の弁軸7aに、この吸入弁7を常時閉弁側へ付勢する空気ばね11が配設される。また、吸入弁7の弁軸7aに、空気ばね11を介して油圧シリンダ12が直接連結される。すなわち、油圧シリンダ12に油圧がかかると、油圧シリンダ12が吸入弁7を空気ばね11の付勢力に抗して開弁させる。 As shown in FIG. 2, an air spring 11 that always urges the suction valve 7 toward the valve closing side is arranged on the valve shaft 7a of the suction valve 7. Further, the hydraulic cylinder 12 is directly connected to the valve shaft 7a of the suction valve 7 via the air spring 11. That is, when the hydraulic cylinder 12 is flooded, the hydraulic cylinder 12 opens the suction valve 7 against the urging force of the air spring 11.

油圧シリンダ12の上流側に油圧アクチュエータ13が配設され、この油圧アクチュエータ13の作動は電子制御弁25により制御される。また、コントローラ20が電子制御弁25の作動を電気的に制御する。電子制御弁25には入口油圧主管14から油圧が供給され、出口油圧主管15から油圧が排出される。 A hydraulic actuator 13 is arranged on the upstream side of the hydraulic cylinder 12, and the operation of the hydraulic actuator 13 is controlled by an electronic control valve 25. Further, the controller 20 electrically controls the operation of the electronic control valve 25. The electronic control valve 25 is supplied with oil from the inlet hydraulic main pipe 14 and discharged from the outlet hydraulic main pipe 15.

吐出弁8にも、上述の吸入弁7と同様に、空気ばね11、油圧シリンダ12等がこの弁駆動機構の上流側へ向けてこの順に配設され、吸入弁7と吐出弁8は、コントローラ20の制御により相互に独立に作動される。すなわち、吸入弁7と吐出弁8は、この弁駆動機構上、相互に独立に開閉弁する。ただし、コントローラ20内のプログラム上、両者が何らかの形で関係付けられて作動されることはある。 Similar to the suction valve 7 described above, the discharge valve 8 also has an air spring 11, a hydraulic cylinder 12, and the like arranged in this order toward the upstream side of the valve drive mechanism, and the suction valve 7 and the discharge valve 8 are controllers. It is operated independently of each other by the control of 20. That is, the suction valve 7 and the discharge valve 8 open and close independently of each other on the valve drive mechanism. However, in the program in the controller 20, both may be operated in relation to each other in some way.

上述のように、油圧シリンダ12が吸入弁7の弁軸7aと吐出弁8の弁軸8aとにそれぞれ連結されて、吸入弁7及び吐出弁8をそれぞれ直接開弁させる。したがって、吸入弁7及び吐出弁8の開閉弁動作は、コントローラ20の指示どおりに極めて迅速に、かつ確実に行われる。これらの空気ばね11、油圧シリンダ12、油圧アクチュエータ13、電子制御弁25、コントローラ20により油圧駆動の弁駆動機構(第1の弁駆動機構)が形成される。 As described above, the hydraulic cylinder 12 is connected to the valve shaft 7a of the suction valve 7 and the valve shaft 8a of the discharge valve 8, respectively, to directly open the suction valve 7 and the discharge valve 8, respectively. Therefore, the on-off valve operation of the suction valve 7 and the discharge valve 8 is performed extremely quickly and reliably as instructed by the controller 20. A hydraulically driven valve drive mechanism (first valve drive mechanism) is formed by the air spring 11, the hydraulic cylinder 12, the hydraulic actuator 13, the electronic control valve 25, and the controller 20.

コントローラ20には、クランク軸5の回転角度を検出する図示しないクランク角度検出センサや、高圧空気路9、外部の圧縮空気タンク等における圧縮空気の空気圧力を検出する図示しない圧縮空気タンク内圧検出センサや、クランク軸5に連結されて回転駆動される外部の発電機の回転動力を検出する図示しない電気動力検出センサ等が電気的に接続され、コントローラ20は、これらのセンサが検出した各パラメータに基づいて、上述の電子制御弁25の作動を制御し、油圧アクチュエータ13及び油圧シリンダ12を介して、本往復式圧縮膨張機1の吸入弁7と吐出弁8を相互に独立に開閉弁させる。 The controller 20 includes a crank angle detection sensor (not shown) that detects the rotation angle of the crank shaft 5, and a compressed air tank internal pressure detection sensor (not shown) that detects the air pressure of compressed air in a high-pressure air passage 9, an external compressed air tank, or the like. Alternatively, an electric power detection sensor (not shown) that detects the rotational power of an external generator that is connected to the crank shaft 5 and is rotationally driven is electrically connected, and the controller 20 is connected to each parameter detected by these sensors. Based on this, the operation of the electronic control valve 25 described above is controlled, and the suction valve 7 and the discharge valve 8 of the reciprocating compressor 1 are opened and closed independently of each other via the hydraulic actuator 13 and the hydraulic cylinder 12.

図2に示すように、往復式圧縮膨張機1の吸入弁7又は吐出弁8の閉弁時には、油圧シリンダ12には油圧アクチュエータ13から油圧が供給されないから、吸入弁7又は吐出弁8は、空気ばね11の付勢力によって閉弁する。コントローラ20が開弁の指示を電子制御弁25へ電気的に送ると、電子制御弁25は、入口油圧主管14から供給される油圧により油圧アクチュエータ13を作動させて、油圧を油圧シリンダ12へ供給させる。こ
れにより、吸入弁7又は吐出弁8は、空気ばね11の付勢力に抗して開弁される。
As shown in FIG. 2, when the suction valve 7 or the discharge valve 8 of the reciprocating compression / expansion machine 1 is closed, the hydraulic cylinder 12 is not supplied with the oil pressure from the hydraulic actuator 13, so that the suction valve 7 or the discharge valve 8 is used. The valve is closed by the urging force of the air spring 11. When the controller 20 electrically sends an instruction to open the valve to the electronic control valve 25, the electronic control valve 25 operates the hydraulic actuator 13 by the hydraulic pressure supplied from the inlet hydraulic main pipe 14 to supply the hydraulic pressure to the hydraulic cylinder 12. Let me. As a result, the suction valve 7 or the discharge valve 8 is opened against the urging force of the air spring 11.

コントローラ20が閉弁の指示を電子制御弁25へ電気的に送ると、電子制御弁25は、油圧アクチュエータ13を作動させて油圧シリンダ12への油圧の供給を遮断し、油圧を開放する。これにより、吸入弁7又は吐出弁8は、空気ばね11の付勢力によって閉弁する。油圧は、出口油圧主管15から排出される。 When the controller 20 electrically sends a valve closing instruction to the electronic control valve 25, the electronic control valve 25 operates the hydraulic actuator 13 to shut off the supply of the oil pressure to the hydraulic cylinder 12 and release the oil pressure. As a result, the suction valve 7 or the discharge valve 8 is closed by the urging force of the air spring 11. The flood pressure is discharged from the outlet hydraulic main pipe 15.

往復式圧縮膨張機1の圧縮行程時において、コントローラ20は、吸入弁7を開弁させて低圧の空気を吸入し、外部の電動機等によりクランク軸5を介して往復動される本体ピストン3により、この吸入した空気を断熱圧縮して本体シリンダ2内でこの空気の圧力及び温度を上昇させた後、吐出弁8を開弁させて圧縮した空気を高圧空気路9を介して吐出し、外部の図示しない圧縮空気タンク等へ供給する。 During the compression stroke of the reciprocating compressor 1, the controller 20 opens the suction valve 7 to suck in low-pressure air, and the main body piston 3 reciprocates via the crank shaft 5 by an external electric motor or the like. After the sucked air is adiabatically compressed to raise the pressure and temperature of the air in the main body cylinder 2, the discharge valve 8 is opened and the compressed air is discharged through the high pressure air passage 9 to the outside. Supply to a compressed air tank, etc. (not shown).

このようにすることにより、例えば余剰電力を一旦圧縮空気エネルギに変換して、外部の圧縮空気タンク等に貯蔵することができると共に、外部電動機の回転動力の調整を弁駆動機構側のコントローラ20によって行うこともでき、電動機側の電気制御を簡易なものにすることができる。 By doing so, for example, the surplus electric power can be once converted into compressed air energy and stored in an external compressed air tank or the like, and the rotational power of the external electric motor can be adjusted by the controller 20 on the valve drive mechanism side. It can also be done, and the electric control on the motor side can be simplified.

また、往復式圧縮膨張機1の膨張行程時において、コントローラ20は、吐出弁8を開弁させて、高圧空気路9を通して外部から高圧空気を流入させ、その空気圧により本体ピストン3を作動させて流入した空気を断熱膨張させ、本体シリンダ2内の空気の圧力及び温度を低下させた後、吸入弁7を開弁して圧力及び温度が低下した空気を外部へ排出する。これと共に、本体ピストン3により回転駆動されるクラング軸5を介して、クラング軸5に連結されて回転駆動される外部発電機等によって、発電を行わせることができる。 Further, during the expansion stroke of the reciprocating compression / expansion machine 1, the controller 20 opens the discharge valve 8 to allow high-pressure air to flow in from the outside through the high-pressure air passage 9, and operates the main body piston 3 by the air pressure. The inflowing air is adiabatically expanded to reduce the pressure and temperature of the air in the main body cylinder 2, and then the suction valve 7 is opened to discharge the air having the reduced pressure and temperature to the outside. At the same time, power can be generated by an external generator or the like that is connected to the clang shaft 5 and rotationally driven via the clang shaft 5 that is rotationally driven by the main body piston 3.

このようにすることにより、例えば余剰電力を圧縮空気エネルギに変換して、一旦外部の圧縮空気タンク等に貯蔵し、この貯蔵していた空気の圧力エネルギを必要時に電力として再生することができる。そして、外部発電機の回転動力の調整をこの第1の弁駆動機構側のコントローラ20によって行うこともでき、発電機側の電気制御を簡易なものにすることができる。 By doing so, for example, surplus electric power can be converted into compressed air energy, temporarily stored in an external compressed air tank or the like, and the pressure energy of the stored air can be regenerated as electric power when necessary. Then, the rotational power of the external generator can be adjusted by the controller 20 on the first valve drive mechanism side, and the electric control on the generator side can be simplified.

図2及び図3に示すように、本往復式圧縮膨張機1は、傘型弁である吐出弁8の、弁傘部8bと上述の空気ばね11との間の弁軸8aに、円形平板状のバランスピストン(第2の弁駆動機構,流体圧ピストン)17が配設される。 As shown in FIGS. 2 and 3, the reciprocating compression / expansion machine 1 has a circular flat plate on the valve shaft 8a between the valve umbrella portion 8b and the above-mentioned air spring 11 of the discharge valve 8 which is an umbrella type valve. A balanced piston (second valve drive mechanism, fluid pressure piston) 17 is arranged.

図3に示すように、バランスピストン17が内部を摺動するバランスピストンシリンダ(第2の弁駆動機構,流体圧シリンダ,高圧流体連通路)18の、吐出弁8の弁傘部8b側(第2弁側)は、吐出弁8から外部へ延びる高圧空気路9内に全面開口し、高圧空気路9中の圧縮空気の圧力(流体圧)P1が、このバランスピストン17の弁傘部8b側の第1ピストン面17aにかかる。 As shown in FIG. 3, the valve umbrella portion 8b side (third) of the discharge valve 8 of the balance piston cylinder (second valve drive mechanism, fluid pressure cylinder, high-pressure fluid communication passage) 18 in which the balance piston 17 slides inside. The 2 valve side) is fully opened in the high pressure air passage 9 extending from the discharge valve 8 to the outside, and the pressure (fluid pressure) P1 of the compressed air in the high pressure air passage 9 is on the valve umbrella portion 8b side of the balance piston 17. It covers the first piston surface 17a of the above.

また、バランスピストンシリンダ18は、その内径を変化させることなくそのまま弁傘部8b側へ延出されて高圧空気路9に連続し、これにより弁傘部8b側の第1シリンダ室18aを形成する。また、バランスピストンシリンダは、高圧空気路9側へその内径を略変化させずに延出されて形成される。 Further, the balance piston cylinder 18 extends to the valve umbrella portion 8b side as it is without changing its inner diameter and continues to the high pressure air passage 9, thereby forming the first cylinder chamber 18a on the valve umbrella portion 8b side. .. Further, the balance piston cylinder is formed so as to extend toward the high pressure air passage 9 side without substantially changing its inner diameter.

すなわち、本往復式圧縮膨張機1において、バランスピストン17を内部で摺動させるバランスピストンシリンダ18は、このバランスピストンシリンダ18を介して、第1シリンダ室18aと吐出弁8から外部へ延びる高圧空気路9との間が連通され、かつ、バランスピストン17の弁傘部8b側の外径、あるいはバランスピストンシリンダ18の弁傘
部8b側の内径が、吐出弁8の閉弁状態において吐出弁8の高圧空気路9内へ露出する露出面8cの外径と略同一に形成される。
That is, in the reciprocating compression / expansion machine 1, the balance piston cylinder 18 that slides the balance piston 17 inside is the high-pressure air that extends outward from the first cylinder chamber 18a and the discharge valve 8 via the balance piston cylinder 18. The discharge valve 8 is communicated with the road 9 and the outer diameter of the balance piston 17 on the valve umbrella portion 8b side or the inner diameter of the balance piston cylinder 18 on the valve umbrella portion 8b side is in the closed state of the discharge valve 8. It is formed to be substantially the same as the outer diameter of the exposed surface 8c exposed into the high-pressure air passage 9.

上述のバランスピストン17の作動力は、閉弁状態で吐出弁8にかかる高圧空気路9側の露出面8cが空気圧を有効に受ける気圧有効面積S2と、バランスピストン17の弁傘部8b側の第1ピストン面17aが空気圧を有効に受ける気圧有効面積S3との比率等の影響を受ける。 The operating force of the balance piston 17 is the pressure effective area S2 on which the exposed surface 8c on the high pressure air passage 9 side applied to the discharge valve 8 effectively receives the air pressure in the closed state, and the valve umbrella portion 8b side of the balance piston 17. The first piston surface 17a is affected by the ratio with the atmospheric pressure effective area S3 that effectively receives air pressure.

しかしながら、本往復式圧縮膨張機1においては、高圧空気路9内の圧縮空気が圧縮性流体であるにもかかわらず、上述のようにバランスピストン17の第1ピストン面17aにかかる高圧空気路9内の圧縮空気の圧力が極力減圧されない形状に形成されているから、吐出弁8にかかる高圧空気路9側の圧縮空気の圧力P2による押圧力と、バランスピストン17の第1ピストン面17aにかかる圧縮空気の圧力P3による押圧力とがほぼ相殺されて、圧縮時又は膨張時のいずれにおいても、吐出弁8の開弁動作において高圧空気路9内の圧縮空気の圧力の影響を受けにくくしている。 However, in the reciprocating compression expander 1, although the compressed air in the high-pressure air passage 9 is a compressible fluid, the high-pressure air passage 9 covering the first piston surface 17a of the balance piston 17 as described above. Since the pressure of the compressed air inside is formed so as not to be depressurized as much as possible, the pressing force of the compressed air on the high-pressure air passage 9 side applied to the discharge valve 8 and the pressing force of the compressed air pressure P2 are applied to the first piston surface 17a of the balance piston 17. The pressing pressure due to the pressure P3 of the compressed air is almost canceled, and the pressure of the compressed air in the high-pressure air passage 9 is less affected by the valve opening operation of the discharge valve 8 during both compression and expansion. There is.

すなわち、本往復式圧縮膨張機1のすべての作動状態において、油圧シリンダ12の吐出弁8に対する開弁側への押動力を特段に高める必要がなくなる。また、バランスピストン17の第1ピストン面17aにかかる圧縮空気の圧力P3による押圧力により、本体シリンダ2内の空気圧が低いときなどに吐出弁8を確実に閉弁させるために必要であった、空気ばね11の高いばね力を弱めることもできる。 That is, in all the operating states of the reciprocating compression / expansion machine 1, it is not necessary to particularly increase the pushing force of the hydraulic cylinder 12 with respect to the discharge valve 8 toward the valve opening side. Further, it is necessary to reliably close the discharge valve 8 when the air pressure in the main body cylinder 2 is low due to the pressing force of the compressed air pressure P3 applied to the first piston surface 17a of the balance piston 17. It is also possible to weaken the high spring force of the air spring 11.

この一方、バランスピストンシリンダ18の空気ばね11側(反第2弁側)の、すなわち上述の第1ピストン室18aとは反対側の第2シリンダ室18bと、本体シリンダ2内との間には圧力供給路(シリンダ連通路)19が配設され、バランスピストンシリンダ18の第2シリンダ室18bと本体シリンダ2内とは、この圧力供給路19を介して連通されている。 On the other hand, between the air spring 11 side (anti-second valve side) of the balance piston cylinder 18, that is, the second cylinder chamber 18b on the side opposite to the first piston chamber 18a described above, and the inside of the main body cylinder 2. A pressure supply path (cylinder communication path) 19 is provided, and the second cylinder chamber 18b of the balance piston cylinder 18 and the inside of the main body cylinder 2 are communicated with each other via the pressure supply path 19.

すなわち、バランスピストンシリンダ18の第2シリンダ室18bには、本体シリンダ2内の圧縮空気が供給されて、バランスピストン17の空気ばね11側の、すなわち上述の第1ピストン面17aとは反対側の第2ピストン面17bには、本体シリンダ2内の圧縮空気の圧力(流体圧)P1に近い圧力P4がかかる。 That is, the compressed air in the main body cylinder 2 is supplied to the second cylinder chamber 18b of the balance piston cylinder 18, which is on the air spring 11 side of the balance piston 17, that is, on the side opposite to the first piston surface 17a described above. A pressure P4 close to the pressure (fluid pressure) P1 of the compressed air in the main body cylinder 2 is applied to the second piston surface 17b.

このため、バランスピストン17の第2ピストン面17bにかかる圧縮空気の圧力による押圧力と、吐出弁8にかかる本体シリンダ2側の圧縮空気の圧力による押圧力とが相応に相殺されて、圧縮時又は膨張時のいずれにおいても、吐出弁8の開弁動作において本体シリンダ2内の圧縮空気の圧力の影響を受けにくくしている。 Therefore, the pressing force due to the pressure of the compressed air applied to the second piston surface 17b of the balance piston 17 and the pressing force due to the pressure of the compressed air applied to the discharge valve 8 on the main body cylinder 2 side are appropriately offset, and during compression. Alternatively, it is less likely to be affected by the pressure of the compressed air in the main body cylinder 2 in the valve opening operation of the discharge valve 8 at any time of expansion.

バランスピストンシリンダ18の第2シリンダ室18b内の圧力P4は、吐出弁8にかかる本体シリンダ2側の圧縮空気の圧力P1の変動に応じて適宜に変化する。すなわち、本往復式圧縮膨張機1のすべての作動状態において、油圧シリンダ12の吐出弁8に対する開弁側への押動力を特段に高める必要がなくなる。 The pressure P4 in the second cylinder chamber 18b of the balance piston cylinder 18 appropriately changes according to the fluctuation of the pressure P1 of the compressed air on the main body cylinder 2 side applied to the discharge valve 8. That is, in all the operating states of the reciprocating compression / expansion machine 1, it is not necessary to particularly increase the pushing force of the hydraulic cylinder 12 with respect to the discharge valve 8 toward the valve opening side.

また、本往復式圧縮膨張機1の被圧縮膨張物たる空気は圧縮性流体であるから、圧力供給路19の断面積や長さ、形状等の影響を少なからず受けて、吐出弁8にかかる往復式圧縮膨張機1の本体シリンダ2側の圧縮空気の圧力P1と、バランスピストンシリンダ18の第2シリンダ室18b内の圧力P4は、本往復式圧縮膨張機1のすべての作動状態において必ずしも同一になるとは限らない。 Further, since the air as the compressed inflatable material of the reciprocating type compression / expansion machine 1 is a compressible fluid, it is affected by the cross-sectional area, length, shape, etc. of the pressure supply path 19 and is applied to the discharge valve 8. The pressure P1 of the compressed air on the main body cylinder 2 side of the reciprocating compression expander 1 and the pressure P4 in the second cylinder chamber 18b of the balance piston cylinder 18 are not necessarily the same in all operating states of the reciprocating compression expander 1. It is not always the case.

さらに、吐出弁8の弁傘部8bの本体シリンダ2側の端面が空気圧を有効に受ける気圧
有効面積S1と、バランスピストン17の第2ピストン面17bが空気圧を有効に受ける気圧有効面積S4との比率等によって、上述の油圧シリンダ12による吐出弁8の押動力への影響が相違する。
Further, an effective atmospheric pressure area S1 in which the end surface of the valve umbrella portion 8b of the discharge valve 8 on the main body cylinder 2 side effectively receives air pressure, and an effective atmospheric pressure area S4 in which the second piston surface 17b of the balance piston 17 effectively receives air pressure. The influence of the hydraulic cylinder 12 on the pushing force of the discharge valve 8 differs depending on the ratio and the like.

図4は、本往復式圧縮膨張機1の圧縮時におけるクランク角度と本体シリンダ2内の空気圧力との関係を示すグラフであり、図5は、本往復式圧縮膨張機1の膨張時におけるクランク角度と本体シリンダ2内の空気圧力との関係を示すグラフである。図4及び図5に示すように、往復式圧縮膨張機1の本体シリンダ2内の圧縮空気の圧力P1は、クランク角度によって大きく変動するが、圧縮時及び膨張時とも、吐出弁8の開弁時にほぼ最高圧になることが示される。 FIG. 4 is a graph showing the relationship between the crank angle during compression of the reciprocating compression / expander 1 and the air pressure in the main body cylinder 2, and FIG. 5 shows the crank at the time of expansion of the reciprocating compression / expansion machine 1. It is a graph which shows the relationship between the angle and the air pressure in a main body cylinder 2. As shown in FIGS. 4 and 5, the pressure P1 of the compressed air in the main body cylinder 2 of the reciprocating compression expander 1 varies greatly depending on the crank angle, but the discharge valve 8 is opened during both compression and expansion. It is sometimes shown that the pressure is almost maximum.

図6において、実線は、従来の往復式圧縮膨張機におけるクランク角度と吐出弁の開弁時に必要とされる油圧シリンダの作動圧力との関係を示し、破線は、本往復式圧縮膨張機1におけるクランク角度と吐出弁8の開弁時に必要とされる油圧シリンダ12の作動圧力との関係を示し、2点鎖線は、クランク角度に対する吐出弁8の開閉弁状態を示す。 In FIG. 6, the solid line shows the relationship between the crank angle in the conventional reciprocating compression / expander and the operating pressure of the hydraulic cylinder required when the discharge valve is opened, and the broken line shows the relationship in the main reciprocating compression / expansion machine 1. The relationship between the crank angle and the operating pressure of the hydraulic cylinder 12 required when the discharge valve 8 is opened is shown, and the two-dot chain line shows the on-off valve state of the discharge valve 8 with respect to the crank angle.

図6に示すように、本往復式圧縮膨張機1において、吐出弁8の開弁時に必要とされる油圧シリンダ12の作動圧力は、従来の往復式圧縮膨張機に比し大幅に低下し、ほぼ開弁後の油圧シリンダ12の作動圧力に近いものになっている。 As shown in FIG. 6, in the reciprocating compression / expansion machine 1, the operating pressure of the hydraulic cylinder 12 required when the discharge valve 8 is opened is significantly lower than that of the conventional reciprocating compression / expansion machine. It is close to the operating pressure of the hydraulic cylinder 12 after the valve is opened.

図7に示すように、バランスピストン27の弁傘部側(第2弁側)の第1ピストン面27aと空気ばね側の第2ピストン面27bの気圧有効面積の比率を変化させるために、例えば、段付きのバランスピストン27とすることもできる。これにより、上述の気圧有効面積S3ないしS4を変化させて、本往復式圧縮膨張機1による油圧シリンダ12に必要とされる作動圧力を調整することもできる。 As shown in FIG. 7, for example, in order to change the ratio of the effective atmospheric pressure area of the first piston surface 27a on the valve umbrella portion side (second valve side) of the balance piston 27 and the second piston surface 27b on the air spring side. , The stepped balance piston 27 can also be used. Thereby, the above-mentioned effective atmospheric pressure areas S3 to S4 can be changed to adjust the operating pressure required for the hydraulic cylinder 12 by the reciprocating compression / expansion machine 1.

以上のように、本往復式圧縮膨張機1は、開弁して低圧の圧縮空気を外部から本体シリンダ2内へ吸入する吸入弁7、及び開弁して吸入弁7から吸入されて本体ピストン3の作動により圧縮されて高圧となった圧縮空気を高圧空気路9へ吐出する吐出弁8、又は、開弁して高圧空気路9から高圧の圧縮空気を本体シリンダ2内へ流入させる吐出弁8、及び開弁して吐出弁8から流入されて本体ピストン3の作動により膨張されて低圧となった圧縮空気を外部へ排出する吸入弁7と、吸入弁7と吐出弁8を作動させる油圧駆動又は電動の弁駆動機構12,13,20,25と、吐出弁8を圧縮空気の圧力により作動させるバランスピストン17及びバランスピストンシリンダ18とを備えたから、装置の大型化を排除すると共に、閉弁させるための空気ばね11の強いばね力に抗して、かつ、往復式圧縮膨張機1の負荷に応じて、簡易な機構で吐出弁8を低い押動力で容易に開弁させることができる。 As described above, the reciprocating compressor 1 opens the suction valve 7 for sucking low-pressure compressed air from the outside into the main body cylinder 2, and opens the valve and sucks the compressed air from the main body piston 7. A discharge valve 8 that discharges compressed air compressed by the operation of 3 to a high pressure air passage 9, or a discharge valve that opens and allows high-pressure compressed air to flow into the main body cylinder 2 from the high pressure air passage 9. 8 and the suction valve 7 that opens and discharges the compressed air that flows in from the discharge valve 8 and is expanded by the operation of the main body piston 3 to the outside, and the hydraulic pressure that operates the suction valve 7 and the discharge valve 8. Since it is provided with drive or electric valve drive mechanisms 12, 13, 20, 25, and a balance piston 17 and a balance piston cylinder 18 that operate the discharge valve 8 by the pressure of compressed air, the size of the device is eliminated and the device is closed. The discharge valve 8 can be easily opened with a low pushing force by a simple mechanism against the strong spring force of the air spring 11 for valve and according to the load of the reciprocating compressor 1. ..

なお、上述の往復式圧縮膨張機1は一例を示したにすぎず、本発明の趣旨に基づいて種々の変形が可能であり、それらを本発明の範囲から除外するものではない。 The reciprocating compression / expansion machine 1 described above is merely an example, and various modifications can be made based on the gist of the present invention, and these are not excluded from the scope of the present invention.

1 往復式圧縮膨張機
2 本体シリンダ
3 本体ピストン
4 コネクチングロッド
5 クランク軸
7 吸入弁(第1弁)
7a 弁軸
8 吐出弁(第2弁)
8a 弁軸
8b 弁傘部
8c 露出面
9 高圧空気路(高圧路)
11 空気ばね
12 油圧シリンダ(第1の弁駆動機構)
13 油圧アクチュエータ(第1の弁駆動機構)
14 入口油圧主管
15 出口油圧主管
17 バランスピストン(第2の弁駆動機構,流体圧ピストン)
17a 第1ピストン面
17b 第2ピストン面
18 バランスピストンシリンダ(第2の弁駆動機構,流体圧シリンダ,高圧流体連通路)
18a 第1シリンダ室
18b 第2シリンダ室
19 圧力供給路(シリンダ連通路)
20 コントローラ(第1の弁駆動機構)
25 電子制御弁(第1の弁駆動機構)
27 段付きバランスピストン(第2の弁駆動機構,流体圧ピストン)
27a 第1ピストン面
27b 第2ピストン面
P1,P2,P3,P4 圧力(流体圧)
S1,S2,S3,S4 気圧有効面積
1 Reciprocating compression expander 2 Main body cylinder 3 Main body piston 4 Connecting rod 5 Crankshaft 7 Suction valve (1st valve)
7a Valve shaft 8 Discharge valve (second valve)
8a Valve shaft 8b Valve umbrella 8c Exposed surface 9 High pressure air passage (high pressure passage)
11 Air spring 12 Hydraulic cylinder (first valve drive mechanism)
13 Hydraulic actuator (first valve drive mechanism)
14 Inlet hydraulic main pipe 15 Outlet hydraulic main pipe 17 Balance piston (second valve drive mechanism, fluid pressure piston)
17a First piston surface 17b Second piston surface 18 Balanced piston cylinder (second valve drive mechanism, fluid pressure cylinder, high-pressure fluid communication passage)
18a 1st cylinder chamber 18b 2nd cylinder chamber 19 Pressure supply path (cylinder communication passage)
20 controller (first valve drive mechanism)
25 Electronically controlled valve (first valve drive mechanism)
27 Stepped balance piston (second valve drive mechanism, fluid pressure piston)
27a 1st piston surface 27b 2nd piston surface P1, P2, P3, P4 Pressure (fluid pressure)
S1, S2, S3, S4 Atmospheric pressure effective area

Claims (3)

本体シリンダ(2)内を摺動する本体ピストン(3)と、前記本体ピストンに連結されて回転するクランク軸(5)と、開弁して低圧の圧縮性流体を低圧路から前記本体シリンダ内へ吸入する第1弁(7)及び開弁して前記第1弁から吸入されて前記本体ピストンの作動により圧縮されて高圧となった前記圧縮性流体を高圧路へ吐出する第2弁(8)、又は、開弁して高圧路から高圧の圧縮性流体を前記本体シリンダ内へ流入させる第2弁(8)及び開弁して前記第2弁から流入されて前記本体ピストンの作動により膨張されて低圧となった前記圧縮性流体を低圧路へ排出する第1弁(7)と、前記第1弁及び前記第2弁を作動させる油圧駆動又は電動の第1の弁駆動機構(12,13,20,25)と、前記第2弁に連結されて両側の第1及び第2ピストン面(17a,17b)に前記圧縮性流体の流体圧がかかることにより前記第2弁を作動させる流体圧ピストン(17)とを備えたことを特徴とする往復式圧縮膨張機。 A main body piston (3) that slides in the main body cylinder (2), a crank shaft (5) that is connected to the main body piston and rotates, and a valve is opened to allow low-pressure compressive fluid to flow from the low-pressure path into the main body cylinder. The first valve (7) that sucks into the valve and the second valve (8) that opens and discharges the compressible fluid that is sucked from the first valve and compressed by the operation of the main body piston to a high pressure. ) Or, the second valve (8), which is opened to allow high-pressure compressive fluid to flow into the main body cylinder from the high-pressure path, and the valve is opened to flow in from the second valve and expand by the operation of the main body piston. A first valve (7) that discharges the compressible fluid that has become low pressure to a low pressure path, and a hydraulically driven or electric first valve driving mechanism (12,) that operates the first valve and the second valve. 13, 20, 25) and the fluid that operates the second valve by applying the fluid pressure of the compressible fluid to the first and second piston surfaces (17a, 17b) on both sides connected to the second valve. A reciprocating compression / expander equipped with a pressure piston (17). 本体シリンダ(2)内を摺動する本体ピストン(3)と、前記本体ピストンに連結されて回転するクランク軸(5)と、開弁して低圧の圧縮性流体を低圧路から前記本体シリンダ内へ吸入する第1弁(7)及び開弁して前記第1弁から吸入されて前記本体ピストンの
作動により圧縮されて高圧となった前記圧縮性流体を高圧路へ吐出する第2弁(8)、又は、開弁して高圧路から高圧の圧縮性流体を前記本体シリンダ内へ流入させる第2弁(8)及び開弁して前記第2弁から流入されて前記本体ピストンの作動により膨張されて低圧となった前記圧縮性流体を低圧路へ排出する第1弁(7)と、前記第1弁及び前記第2弁を作動させる油圧駆動又は電動の第1の弁駆動機構(12,13,20,25)と、前記第2弁に連結されてピストン面(17a,17b)に前記圧縮性流体の流体圧がかかることにより前記第2弁を作動させる流体圧ピストン(17)とを備え、前記流体圧ピストンは、反前記第2弁(8)側の第2ピストン面(17b)に前記本体シリンダ内の前記圧縮性流体の流体圧がかかることを特徴とする往復式圧縮膨張機。
A main body piston (3) that slides in the main body cylinder (2), a crank shaft (5) that is connected to the main body piston and rotates, and a valve is opened to allow a low-pressure compressive fluid to flow from the low-pressure path into the main body cylinder. The first valve (7) that sucks into the valve and the second valve (8) that opens and discharges the compressible fluid that is sucked from the first valve and compressed by the operation of the main body piston to a high pressure. ) Or, the second valve (8), which is opened to allow high-pressure compressive fluid to flow into the main body cylinder from the high-pressure path, and the valve is opened to flow in from the second valve and expand by the operation of the main body piston. A first valve (7) that discharges the compressible fluid that has become low pressure to a low pressure path, and a hydraulically driven or electric first valve driving mechanism (12,) that operates the first valve and the second valve. 13, 20, 25) and the fluid pressure piston (17) that is connected to the second valve and operates the second valve by applying the fluid pressure of the compressible fluid to the piston surfaces (17a, 17b). The fluid pressure piston is a reciprocating compression expander characterized in that the fluid pressure of the compressible fluid in the main body cylinder is applied to the second piston surface (17b) on the opposite side of the second valve (8). ..
本体シリンダ(2)内を摺動する本体ピストン(3)と、前記本体ピストンに連結されて回転するクランク軸(5)と、開弁して低圧の圧縮性流体を低圧路から前記本体シリンダ内へ吸入する第1弁(7)及び開弁して前記第1弁から吸入されて前記本体ピストンの作動により圧縮されて高圧となった前記圧縮性流体を高圧路へ吐出する第2弁(8)、又は、開弁して高圧路から高圧の圧縮性流体を前記本体シリンダ内へ流入させる第2弁及び開弁して前記第2弁から流入されて前記本体ピストンの作動により膨張されて低圧となった前記圧縮性流体を低圧路へ排出する第1弁(7)と、前記第1弁及び前記第2弁を作動させる油圧駆動又は電動の第1の弁駆動機構(12,13,20,25)と、前記第2弁に連結されてピストン面(17a,17b)に前記圧縮性流体の流体圧がかかることにより前記第2弁を作動させる流体圧ピストン(17)とを備え、前記流体圧ピストンを内部で摺動させる流体圧シリンダ(18)は、反前記第2弁側の第2シリンダ室(18b)と前記本体シリンダ内とを連通させるシリンダ連通路(19)をさらに備えたことを特徴とする往復式圧縮膨張機。
A main body piston (3) that slides in the main body cylinder (2), a crank shaft (5) that is connected to the main body piston and rotates, and a valve is opened to allow a low-pressure compressive fluid to flow from the low-pressure path into the main body cylinder. The first valve (7) that sucks into the valve and the second valve (8) that opens and discharges the compressible fluid that is sucked from the first valve and compressed by the operation of the main body piston to a high pressure. ) Or, a second valve that opens and allows high-pressure compressive fluid to flow into the main body cylinder from the high-pressure path, and a second valve that opens and flows in from the second valve and is expanded by the operation of the main body piston to reduce the pressure. The first valve (7) for discharging the compressible fluid to the low pressure path, and the first hydraulically driven or electric valve driving mechanism (12, 13, 20) for operating the first valve and the second valve. , 25) and a fluid pressure piston (17) that operates the second valve by applying the fluid pressure of the compressible fluid to the piston surfaces (17a, 17b) connected to the second valve. The fluid pressure cylinder (18) for sliding the fluid pressure piston inside further includes a cylinder communication passage (19) for communicating the second cylinder chamber (18b) on the second valve side and the inside of the main body cylinder. A reciprocating compression / expansion machine characterized by this.
JP2019232172A 2019-12-24 2019-12-24 Reciprocating compression expander Active JP6812532B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019232172A JP6812532B1 (en) 2019-12-24 2019-12-24 Reciprocating compression expander
CN202011555685.8A CN112648168B (en) 2019-12-24 2020-12-24 Reciprocating compression expander

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019232172A JP6812532B1 (en) 2019-12-24 2019-12-24 Reciprocating compression expander

Publications (2)

Publication Number Publication Date
JP6812532B1 true JP6812532B1 (en) 2021-01-13
JP2021099089A JP2021099089A (en) 2021-07-01

Family

ID=74096406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019232172A Active JP6812532B1 (en) 2019-12-24 2019-12-24 Reciprocating compression expander

Country Status (2)

Country Link
JP (1) JP6812532B1 (en)
CN (1) CN112648168B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018121684A (en) * 2017-01-30 2018-08-09 株式会社三洋物産 Game machine
JP7267633B2 (en) * 2021-09-27 2023-05-02 株式会社サクション瓦斯機関製作所 Compressor and expander

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB127993A (en) * 1918-06-12 1919-06-12 Seward Seymoure Vernon Improvements in and relating to Compressed Air Power Plant.
JPS5930575U (en) * 1982-08-23 1984-02-25 いすゞ自動車株式会社 Air compressor intake air blowback prevention device
EP0921309B1 (en) * 1997-12-02 2003-03-19 Poclain Hydraulics Industrie Hydraulic motor with switch valve
JP2001303995A (en) * 2000-04-26 2001-10-31 Toyota Motor Corp Internal combustion engine
US8448440B2 (en) * 2007-03-07 2013-05-28 Thermal Power Recovery Llc Method and apparatus for achieving higher thermal efficiency in a steam engine or steam expander
KR100984518B1 (en) * 2008-11-10 2010-10-01 하석봉 Pneumatic driving system
EP2530325B1 (en) * 2010-01-29 2018-10-17 Ulvac Kiko, Inc. Pump
CN102787866A (en) * 2012-08-17 2012-11-21 彭学军 Turbine engine using compressed air as working energy
CN106460514B (en) * 2014-04-04 2019-10-22 Z机械技术研究所有限公司 Expanding machine and the air refrigerating devie for having the expanding machine
CN104454014A (en) * 2014-10-21 2015-03-25 大连理工大学 Compressed air engine-air compressor integrated dual-purpose machine

Also Published As

Publication number Publication date
JP2021099089A (en) 2021-07-01
CN112648168B (en) 2022-03-08
CN112648168A (en) 2021-04-13

Similar Documents

Publication Publication Date Title
JP6812532B1 (en) Reciprocating compression expander
JP2009509098A (en) System and method for operating a compressor
JP4022547B2 (en) Compressor with capacity controller
CN101545441A (en) Gas starting device of engine
JP5818967B2 (en) Renewable energy generator with hydraulic pump capable of operation in motoring mode
CN102071973B (en) Scroll compression-expansion compound machine for compressed air energy storage technology
CN104564628A (en) Spring-piece-based starting and stopping air compressor starting and stopping unloading device
US6065945A (en) Hydraulic engine
CN112610442B (en) Reciprocating compression expander
KR20150086589A (en) Electric power generator using heat pump
KR20180029078A (en) Solenoid operated pressure relief valve
JP2002285972A (en) Compressor unit
CN113272552B (en) Hydraulic machine with controllable valve and method for idling such a hydraulic machine
CN110892135B (en) Method and device for gas expansion using a reciprocating piston machine
EP0792416A1 (en) Rotary screw compressor with unloading means
JP7267633B2 (en) Compressor and expander
JP2016160787A (en) Starter of engine, starting method, and ship including starter
JP2013100769A (en) Air engine and power generation system
CN103498702B (en) Air motor
KR100677515B1 (en) Modulation type multi-stage rotary compressor and airconditioner using this
KR20120121370A (en) Internal combustion engine driven oil pressure machine and supercharger thereof
WO2021002146A1 (en) Compressed air storage electricity generating device
WO2008091231A1 (en) Rotary internal combustion engine with external compressor
JP3602492B2 (en) Water pump for boiler
JP2009133282A (en) Booster compressor

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20200312

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200313

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201216

R150 Certificate of patent or registration of utility model

Ref document number: 6812532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111