JP2011220317A - Compressed air reciprocating engine - Google Patents

Compressed air reciprocating engine Download PDF

Info

Publication number
JP2011220317A
JP2011220317A JP2010104433A JP2010104433A JP2011220317A JP 2011220317 A JP2011220317 A JP 2011220317A JP 2010104433 A JP2010104433 A JP 2010104433A JP 2010104433 A JP2010104433 A JP 2010104433A JP 2011220317 A JP2011220317 A JP 2011220317A
Authority
JP
Japan
Prior art keywords
compressed air
air
valve
engine
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010104433A
Other languages
Japanese (ja)
Other versions
JP5391381B2 (en
Inventor
Kazuko Sugita
和子 杉田
Takayuki Sugita
隆行 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010104433A priority Critical patent/JP5391381B2/en
Publication of JP2011220317A publication Critical patent/JP2011220317A/en
Application granted granted Critical
Publication of JP5391381B2 publication Critical patent/JP5391381B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a reciprocating engine that uses compressed air and can be mechanically controlled by partially modifying an existing four-cycle engine to solve the following problems of conventional reciprocating engines: there is concern about pollution due to exhaust gas generated when fuel is combusted or depletion of oil resources due to fuel consumption;or when inflow/discharge of air is controlled by an electrovalve and computer in a reciprocating engine that uses compressed air, advanced knowledge on electricity and equipment are required.SOLUTION: The reciprocating engine that uses compressed air as an energy source is provided with an inflation chamber for inflating the compressed air, a piston to be stored in the inflation chamber so as to reciprocate freely, and a camshaft which rotates along with a crankshaft installed through a connecting rod. An air inlet valve and an air release valve are located in the inflation chamber. The camshaft is set so that the air inlet valve is opened and the air release valve is closed near a top dead point and the air inlet valve is closed and the air release valve is opened near a bottom dead point at each turn of the crankshaft, to electrically control the air and to obtain power.

Description

本発明は往復機関に係わり、実用に供されている現存の4サイクル機関を一部改造し、圧縮空気をエネルギー源として利用する圧縮空気往復機関に関する。The present invention relates to a reciprocating engine, and relates to a compressed air reciprocating engine in which a part of an existing four-cycle engine in practical use is remodeled and compressed air is used as an energy source.

従来の往復機関には、例えばガソリンを燃料として、その燃焼による熱エネルギーを燃焼室内で圧力エネルギーに変換し、ピストンの往復運動をクランク機構により回転運動に変換して動力を得るガソリン機関がある(特許文献1参照)。また、隣接したボイラーでバイオマス系燃料を燃焼させ、発生した熱で水を蒸気に変え、その蒸気をシリンダー内に供給し、伝動機構を介してピストンの往復運動を回転運動に変換する蒸気機関もある(特許文献2参照)。いずれも、燃料の燃焼による熱エネルギーを利用する。  As a conventional reciprocating engine, for example, there is a gasoline engine that uses gasoline as fuel, converts thermal energy from combustion into pressure energy in a combustion chamber, and converts reciprocating motion of a piston into rotational motion by a crank mechanism to obtain power ( Patent Document 1). Also, there is a steam engine that burns biomass fuel in an adjacent boiler, converts water into steam with the generated heat, supplies the steam into the cylinder, and converts the reciprocating motion of the piston into rotational motion via a transmission mechanism. Yes (see Patent Document 2). Both use thermal energy from fuel combustion.

圧縮空気を利用する機関としては次のものがある。
燃焼室内に圧縮二次空気を注入して、高圧圧縮空気の貯蔵装置を有するエンジンの周囲の熱エネルギーを回収する方法に関し、貯蔵装置内の高圧圧縮空気がシリンダー内のピストンなどの可変容量系内で膨張し、機械的手段などによって使用される仕事を発生させることを特徴とするもの(特許文献3参照)。
Examples of engines that use compressed air include:
The present invention relates to a method for injecting compressed secondary air into a combustion chamber and recovering thermal energy around an engine having a storage device for high-pressure compressed air. The high-pressure compressed air in the storage device is in a variable capacity system such as a piston in a cylinder. It is characterized by generating work used by mechanical means or the like (see Patent Document 3).

また、蒸気を発生させるためのボイラーに代えてディーゼルエンジンを駆動源とするエアコンプレッサで圧縮空気を発生させ、それを貯蔵する圧力容器を備え、機関外部の弁室でピストン弁によりポートを開閉し、機械的に蒸気の代わりに圧縮空気を制御し、走行可能とした圧縮空気機関車を提供するもの(特許文献4参照)。  In addition, instead of a boiler for generating steam, compressed air is generated by an air compressor that uses a diesel engine as a drive source, and a pressure vessel for storing the compressed air is provided, and a port is opened and closed by a piston valve in a valve chamber outside the engine. Provided is a compressed air locomotive that mechanically controls compressed air instead of steam to enable travel (see Patent Document 4).

圧縮空気の反発力を動力源として活用するロータリーエンジンで、増圧器による倍増の圧力をエンジンピストン部に交互脈拍の如く加圧し回転出力を得るもの(特許文献5参照)。  A rotary engine that uses the repulsive force of compressed air as a power source, and obtains rotational output by pressurizing the pressure doubled by the pressure booster to the engine piston portion like alternating pulses (see Patent Document 5).

一対の空気充填済みシリンダーと一対の圧力集中シリンダーを設け、充填空気圧を移動循環させることにより、充填圧力に比例した回転力が得られるようにした充填空気循環による駆動装置(特許文献6参照)等である。  A drive device by circulating a filled air in which a pair of air-filled cylinders and a pair of pressure concentration cylinders are provided and a rotational force proportional to the filling pressure is obtained by moving and circulating the filling air pressure (see Patent Document 6), etc. It is.

蒸気機関は、機関外部にボイラー室を設け、燃料を燃焼させ水を蒸気に換える。蒸気は弁室に送られ、コンロッドの動きに連動したピストン弁で流れが切換わり機関に供給される。  A steam engine is provided with a boiler chamber outside the engine to burn fuel and change water to steam. Steam is sent to the valve chamber, and the flow is switched by a piston valve linked to the movement of the connecting rod and supplied to the engine.

4サイクル機関は作動原理として、吸入行程・圧縮行程・膨張行程・排気行程の4行程で1サイクルを完了する。気体の吸入・排気はカムシャフトのカムにより、吸・排気弁を制御し行う。  As a principle of operation, the 4-cycle engine completes one cycle in four strokes of an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke. Gas intake / exhaust is performed by controlling the intake / exhaust valves using the camshaft cam.

本発明では4サイクル機関の吸入行程を圧縮空気の流入による膨張行程に、圧縮行程を排気行程に置き換え、膨張行程・排気行程の2行程のみで1サイクルを完了するように吸気弁、排気弁を制御するカムシャフトを設定する。従って、2サイクル機関と見なされる。  In the present invention, the intake stroke of the 4-cycle engine is replaced with an expansion stroke by inflow of compressed air, the compression stroke is replaced with an exhaust stroke, and an intake valve and an exhaust valve are set so that one cycle is completed only with two strokes of an expansion stroke and an exhaust stroke. Set the camshaft to control. It is therefore considered a two-cycle engine.

一方、現存の2サイクル機関は、ピストンの下降行程で膨張と排気および掃気を行い、上昇行程で圧縮および吸気を行う。また、4サイクル機関に見られる弁もなく、シリンダーに設けられた排気口や掃気口をピストンが通過することによりガスの制御がなされる。従って、本発明の圧縮空気往復機関は現存の2サイクル機関とは異なる。  On the other hand, the existing two-cycle engine performs expansion, exhaust, and scavenging during the downward stroke of the piston, and performs compression and intake during the upward stroke. Further, there is no valve found in a four-cycle engine, and the gas is controlled by the piston passing through an exhaust port and a scavenging port provided in the cylinder. Therefore, the compressed air reciprocating engine of the present invention is different from existing two-cycle engines.

特許公開2007−192231Patent Publication 2007-192231 登録実用新案3122335Registered utility model 312335 特表2000−514901Special table 2000-514901 特許公開2010−12929Patent Publication 2010-12929 特許公開2003−343201Patent Publication 2003-343201 特許公開2008−57420Patent Publication 2008-57420

特許文献1や特許文献2など、燃料の燃焼を伴う従来の往復機関では排気ガスの発生による公害問題や燃料消費による石油資源の枯渇化の問題が懸念される  In conventional reciprocating engines with fuel combustion, such as Patent Document 1 and Patent Document 2, there are concerns about pollution problems due to exhaust gas generation and oil resource depletion problems due to fuel consumption.

また、特許文献3の圧縮空気を使用する往復機関では、空気の流入・排出をエレクトロバルブとコンピュータで制御し、高度な電気的知識・装備を必要とする。  Further, in the reciprocating engine using compressed air disclosed in Patent Document 3, inflow / exhaust of air is controlled by an electrovalve and a computer, and advanced electrical knowledge and equipment are required.

特許文献4は、蒸気機関を利用し、蒸気の代わりに圧縮空気の供給を制御するもので、機関は大型となり、負荷変動の激しい運転や高速運転には適しない。  Patent Document 4 uses a steam engine to control the supply of compressed air instead of steam. The engine is large and is not suitable for operation with heavy load fluctuations or high-speed operation.

特許文献5は圧縮空気を利用したロータリーエンジンであり、空気の制御は流体補給路を有する車輪軸の外径に気密保持し回転自在に鞘管を挿入したロータリーバルブ式機構で行うもので、気密性に問題があり、また高速運転には不向きである。  Patent Document 5 is a rotary engine using compressed air, and the air is controlled by a rotary valve type mechanism in which a sheath tube is rotatably inserted in a hermetically sealed outer diameter of a wheel shaft having a fluid supply path. There is a problem with the characteristics, and it is not suitable for high-speed driving.

また、特許文献6では、ピストンに上下移動で開閉する吸排用の弁を備え空気の制御を行うもので、構造が複雑であり、小型機関には不向きである。  In Patent Document 6, the piston is provided with an intake / exhaust valve that opens and closes by vertical movement, and the air is controlled. Therefore, the structure is complicated and it is not suitable for a small engine.

以上の圧縮空気を用いた機関は、いずれも既存の4サイクル機関に採用されている簡便でコンパクトなカムシャフトによる吸気弁と排気弁を制御する方式ではない。  None of the above-described engines using compressed air is a system that controls the intake and exhaust valves using a simple and compact camshaft that is employed in existing four-cycle engines.

本発明は、これらの課題を解決するためになされたものである。  The present invention has been made to solve these problems.

上記の問題点を解決するために、第一の課題解決手段として圧縮空気をエネルギー源として使用する。さらに、圧縮空気を膨張させる膨張室を備え、膨張室内にピストンを往復自在に収容し、コンロッドを介して取り付けられたクランク軸と連動して回転するカムシャフトを設けた往復機関において、膨張室に吸気弁と排気弁とを配設し、クランク軸1回転毎に上死点付近で吸気弁開および排気弁閉、下死点付近で排気弁開および吸気弁閉となるようにカムシャフトを設定することにより空気の流入・排出を制御し、クランク軸に取り付けられたフライホイールの慣性により回転を持続させ動力を得る。  In order to solve the above problems, compressed air is used as an energy source as a first problem solving means. The reciprocating engine further includes an expansion chamber for expanding compressed air, reciprocally accommodates a piston in the expansion chamber, and is provided with a camshaft that rotates in conjunction with a crankshaft attached via a connecting rod. An intake valve and an exhaust valve are arranged, and the camshaft is set so that the intake valve opens and closes near the top dead center and the exhaust valve opens and closes near the bottom dead center for each rotation of the crankshaft. In this way, air inflow / exhaust is controlled, and rotation is sustained by the inertia of the flywheel attached to the crankshaft to obtain power.

カムシャフトは、180度位相差をもたせた同形状、同仕様の一対の吸気弁用カムと一対の排気弁用カムを互いに軸方向に離し、且つ90度オフセットさせた形状とする。  The camshaft has the same shape with a phase difference of 180 degrees, and a shape in which a pair of intake valve cams and a pair of exhaust valve cams having the same specifications are axially separated from each other and offset by 90 degrees.

さらに、第二の課題解決手段として前記膨張室下部の下死点付近の膨張室壁に側穴を設ける。  Furthermore, as a second problem solving means, a side hole is provided in the expansion chamber wall near the bottom dead center of the lower expansion chamber.

上記第一の課題解決手段による作用は次の通りである。すなわち、圧縮した空気をエネルギー源として使用するため石油資源等の枯渇化を懸念する必要がなく、排気ガス等の公害も発生しないため地球環境に影響を及ぼさない。  The operation of the first problem solving means is as follows. That is, since compressed air is used as an energy source, there is no need to worry about exhaustion of petroleum resources, etc., and no pollution such as exhaust gas occurs, so the global environment is not affected.

圧縮空気を得る手段として圧縮機を用いるが、そのエネルギー源として風力や水力あるいは太陽光等による電力が直接あるいは間接的に利用でき、必ずしも石油資源を使用する必然性はない。  Although a compressor is used as a means for obtaining compressed air, electric power such as wind power, hydraulic power or sunlight can be used directly or indirectly as an energy source, and it is not always necessary to use petroleum resources.

さらに、従来の4サイクルガソリン機関のカムシャフトのみの設計変更で圧縮空気往復機関に置き換え可能となり、新たな開発費を殆ど必要としない。しかも、高度の電気的知識や装備も必要としなく、簡便な方法で、機械的に空気を制御することが可能となる。  Furthermore, it is possible to replace it with a compressed air reciprocating engine by changing the design of only the camshaft of a conventional four-cycle gasoline engine, and almost no new development costs are required. In addition, high-level electrical knowledge and equipment are not required, and air can be mechanically controlled by a simple method.

さらに、第二の課題解決手段による作用として、膨張室下部の下死点付近の膨張室壁に側穴を設けることで、容易に回転数が上昇し、性能向上を図る事が可能である。ホンダ製二輪車のカブ用50cc4サイクル機関を用いて、下死点上2mm位置の膨張室壁の同一周上に合計9個の直径4.5mmの側穴を設け、実験したところ毎分4971回転から9584回転の約2倍のエンジン回転数の増加が得られた。Further, as a function of the second problem solving means, by providing a side hole in the expansion chamber wall near the bottom dead center at the lower portion of the expansion chamber, it is possible to easily increase the rotation speed and improve the performance. Using a 50cc4 cycle engine for a motorcycle made from a Honda motorcycle, nine side holes with a diameter of 4.5mm were provided on the same circumference of the expansion chamber wall at a position 2mm above the bottom dead center. An increase in engine speed approximately twice that of 9584 was obtained.

さらに、圧縮空気による膨張室の圧力は実験値として最大8.38気圧であり、従来の4サイクル機関の燃焼圧の約90気圧に比べ約1/10以下であること、および熱的影響がないので、強度的に小型、軽量、コンパクトな構造が可能となる。  Furthermore, the pressure of the expansion chamber by compressed air is 8.38 atm as a maximum experimental value, which is about 1/10 or less of the combustion pressure of the conventional 4-cycle engine, about 90 atm, and there is no thermal influence. Therefore, a compact, lightweight, and compact structure can be achieved in terms of strength.

また、圧縮空気の代わりに窒素などの高圧の気体でも利用可能である。  Further, high-pressure gas such as nitrogen can be used instead of compressed air.

図1は圧縮空気往復機関の一部断面図である。FIG. 1 is a partial cross-sectional view of a compressed air reciprocating engine. 図2はカムシャフトの斜視図である。FIG. 2 is a perspective view of the camshaft. 図3は軸方向から見たカムシャフトの透視図である。FIG. 3 is a perspective view of the camshaft as seen from the axial direction. 図4は吸気弁および排気弁の開閉タイミングを示した説明図である。FIG. 4 is an explanatory diagram showing opening and closing timings of the intake valve and the exhaust valve. 図5は膨張室壁に設けた側穴の説明図である。FIG. 5 is an explanatory view of a side hole provided in the expansion chamber wall. 図6は機関の逆転方法を示す模式図である。FIG. 6 is a schematic diagram showing a reverse rotation method of the engine. 図7は機関の正転時の状態図である。FIG. 7 is a state diagram during normal rotation of the engine. 図8は機関の逆転時の状態図である。FIG. 8 is a state diagram at the time of reverse rotation of the engine.

以下、本発明の実施の形態を、添付の図面に基づいて説明する。  Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は圧縮空気往復機関の一部断面図であり、ピストンが上死点に位置した状態を示す。膨張室ヘッド10にコンロッド8を介して取り付けられたクランク軸と連動して回転するカムシャフト1、ロッカーアーム9、吸気弁2、排気弁3を配設する。  FIG. 1 is a partial cross-sectional view of a compressed air reciprocating engine, showing a state where a piston is located at a top dead center. A camshaft 1, a rocker arm 9, an intake valve 2, and an exhaust valve 3 that rotate in conjunction with a crankshaft attached to the expansion chamber head 10 via a connecting rod 8 are disposed.

圧縮空気は上死点付近で吸気弁開であると吸気管4から流入し吸気弁2を通って膨張室6の内部で膨張する。膨張によりピストン7は押し下げられ下死点へ向かう。  When the intake valve is open near the top dead center, the compressed air flows in from the intake pipe 4 and expands in the expansion chamber 6 through the intake valve 2. The piston 7 is pushed down by the expansion and heads to the bottom dead center.

クランク軸に取り付けられたフライホイールの慣性によりピストン7は下死点通過後上死点へ向かう。膨張した空気は排気弁3が開であるため排気管5から外部に排出する。Due to the inertia of the flywheel attached to the crankshaft, the piston 7 goes to the top dead center after passing through the bottom dead center. The expanded air is discharged from the exhaust pipe 5 to the outside because the exhaust valve 3 is open.

図2はカムシャフトの斜視図である。カムシャフト1に吸気弁用カム11と排気弁用カム12を設けている。また、図3はカムシャフト1を軸方向から見た吸気弁用カム11および排気弁用カム12の透視図を示す。  FIG. 2 is a perspective view of the camshaft. An intake valve cam 11 and an exhaust valve cam 12 are provided on the camshaft 1. FIG. 3 is a perspective view of the intake valve cam 11 and the exhaust valve cam 12 when the camshaft 1 is viewed from the axial direction.

カムシャフトは、180度位相差をもたせた同形状、同仕様の一対の吸気弁用カムと一対の排気弁用カムを互いに軸方向に離し、且つ90度オフセットさせる。4サイクル機関ではカムシャフトの回転をクランク軸の回転の1/2に減速しているためと、吸気弁を排気弁よりクランク角度で180度早く開閉させるためである。従って、クランク軸一回転毎に吸気弁と排気弁が一回開閉することになる。  The camshaft axially separates a pair of intake valve cams and a pair of exhaust valve cams having the same shape and specifications with a phase difference of 180 degrees and offset by 90 degrees. This is because the rotation of the camshaft is decelerated to half of the rotation of the crankshaft in the four-cycle engine and the intake valve is opened and closed 180 degrees earlier than the exhaust valve at the crank angle. Therefore, the intake valve and the exhaust valve are opened and closed once for each rotation of the crankshaft.

図4は吸気弁と排気弁の開閉タイミングである。吸気弁2を上死点13の手前で開き(吸気弁開15)、下死点14より遅れて閉じる(吸気弁閉16)。圧縮空気はこの吸気弁開口期間19において膨張室内で膨張する。下死点14の手前で排気弁3が開く(排気弁開17)と膨張した空気は上死点13を過ぎて閉じる(排気弁閉18)までの排気弁開口期間20内に排気弁3を通って外部に排出する。  FIG. 4 shows the opening / closing timing of the intake valve and the exhaust valve. The intake valve 2 is opened before the top dead center 13 (intake valve open 15) and closed after the bottom dead center 14 (intake valve closed 16). The compressed air expands in the expansion chamber during the intake valve opening period 19. When the exhaust valve 3 opens before the bottom dead center 14 (exhaust valve open 17), the expanded air passes through the top dead center 13 and closes (exhaust valve closed 18) within the exhaust valve opening period 20 until the exhaust valve 3 is closed. Discharge to the outside through.

弁オーバーラップ21を空気の慣性を利用し吸気・排気を十分に行うためと機関始動時に吸気管内に残る圧力を排気管側に逃がし、容易にピストンを上死点直後に位置させるために設ける。  A valve overlap 21 is provided to sufficiently perform intake and exhaust using the inertia of air, and to release the pressure remaining in the intake pipe to the exhaust pipe side when the engine is started, and to easily position the piston immediately after top dead center.

図5は膨張室壁に設けた側穴22の位置を示す。実験に用いたホンダ製二輪車のカブ用50cc4サイクル機関では、図に示す様に下死点上2mm位置の同一周上に一列に3個の直径4.5mm、7mm間隔の側穴を設け、さらに90度ずらした3方向でそれぞれ3個ずつ合計9個とした。  FIG. 5 shows the position of the side hole 22 provided in the expansion chamber wall. In the 50cc4 cycle engine for a Honda motorcycle used in the experiment, as shown in the figure, three side holes with a diameter of 4.5 mm and an interval of 7 mm are provided in a row on the same circumference at a position of 2 mm above the bottom dead center. A total of nine were made, with three each in three directions shifted by 90 degrees.

また、図6は機関の逆転方法を示す模式図である。吸気側切換弁24、排気側切換弁25、吸気ポート26、排気ポート27、空気取入口28および切換ハンドル29から成る。吸気ポート26を吸気管4に、排気ポート27を排気管5に接続する。また、圧縮空気は空気取入口28より流入する。切換ハンドル29のA方向が正転、B方向が逆転を示す。  FIG. 6 is a schematic diagram showing the engine reverse rotation method. It consists of an intake side switching valve 24, an exhaust side switching valve 25, an intake port 26, an exhaust port 27, an air intake 28 and a switching handle 29. The intake port 26 is connected to the intake pipe 4 and the exhaust port 27 is connected to the exhaust pipe 5. Compressed air flows from the air intake 28. The A direction of the switching handle 29 indicates normal rotation, and the B direction indicates reverse rotation.

図7は機関の正転時の状態Aを示す。図6の切換ハンドル29をAの方向にすると空気取入口28より流入した圧縮空気は吸気側切換弁24を通過して吸気ポート26より吸気管4に向かい、吸気弁2から膨張室6に流入する。膨張後排気弁3より排出する空気は排気管5に接続された排気ポート27より排気側切換弁25を通過して外部に放出される。  FIG. 7 shows a state A during normal rotation of the engine. When the switching handle 29 in FIG. 6 is set to the direction A, the compressed air flowing from the air intake port 28 passes through the intake side switching valve 24, travels from the intake port 26 to the intake pipe 4, and flows into the expansion chamber 6 from the intake valve 2. To do. The air discharged from the exhaust valve 3 after expansion passes through the exhaust side switching valve 25 from the exhaust port 27 connected to the exhaust pipe 5 and is discharged to the outside.

図8は機関の逆転時の状態Bを示す。図6の切換ハンドル29をBの方向にすると空気取入口28より流入した圧縮空気は排気側切換弁25を通過して排気ポート27より排気管5に向かい、排気弁3から膨張室6に流入する。膨張後吸気弁2より排出する空気は吸気管4に接続された吸気ポート26より吸気側切換弁24を通過して外部に放出される。この様に、切換えハンドル29により流入経路が吸気管側から排気管側に切り換わり、簡便にクランク軸を逆転させることができる。  FIG. 8 shows a state B during reverse rotation of the engine. When the switching handle 29 in FIG. 6 is in the direction B, the compressed air flowing in from the air intake port 28 passes through the exhaust side switching valve 25, travels from the exhaust port 27 toward the exhaust pipe 5, and flows into the expansion chamber 6 from the exhaust valve 3. To do. The air discharged from the intake valve 2 after expansion passes through the intake side switching valve 24 from the intake port 26 connected to the intake pipe 4 and is discharged to the outside. In this way, the switching handle 29 switches the inflow path from the intake pipe side to the exhaust pipe side, so that the crankshaft can be easily reversed.

また、互いの機関の排気管と吸気管とを連結し、一方の機関の上死点が隣接する機関の下死点となるようクランク軸に180度位相差を設け共軸配置することで容易に多気筒化することも可能である。  In addition, it is easy to connect the exhaust pipe and the intake pipe of each engine, and provide a 180-degree phase difference on the crankshaft so that the top dead center of one engine becomes the bottom dead center of the adjacent engine, and arrange them coaxially. It is also possible to increase the number of cylinders.

本圧縮空気往復機関の始動については、手動の場合、ピストンを上死点の直後に位置させ、圧縮空気を吸気管より流入させる。また、自動の場合は、スタータモータを装備し、ピストンの位置に関係なく、モータを始動させる。さらに始動後回転数を制御するには吸気管の上流に設けた圧力調整バルブにより吸気圧力を調整する。  As for the start of the compressed air reciprocating engine, in the case of manual operation, the piston is positioned immediately after the top dead center, and the compressed air is introduced from the intake pipe. In the case of automatic, a starter motor is provided, and the motor is started regardless of the position of the piston. Further, in order to control the rotation speed after starting, the intake pressure is adjusted by a pressure adjusting valve provided upstream of the intake pipe.

実際に、ホンダ製二輪車のカブ用50cc4サイクル機関のカムシャフトを本発明用に設定し機関本体に組み付け、機関単体で圧縮空気により作動することを確認した。そして、性能テストを実施した結果、最大毎分7084回転で、1.8馬力が得られた。  Actually, the camshaft of a 50cc 4-cycle engine for a motorcycle of a Honda motorcycle was set for the present invention and assembled to the engine body, and it was confirmed that the engine alone was operated by compressed air. As a result of the performance test, 1.8 horsepower was obtained at a maximum of 7084 revolutions per minute.

さらに、自前カート(ホイールベース1.04m、総重量190Kg,タイヤ径38cm)に搭載し、走行可能であることを確認し、同時に性能データを取得した。空気タンク1本(容量12リットル、充填圧力200気圧)で毎分3886回転、最高速度毎時14.8Km、走行距離400mの結果が得られた。  Furthermore, it was mounted on its own cart (wheelbase 1.04m, total weight 190Kg, tire diameter 38cm), confirmed that it was able to run, and at the same time, performance data was acquired. The results were as follows: one air tank (capacity 12 liters, filling pressure 200 atm), 3886 revolutions per minute, maximum speed of 14.8 Km, and travel distance of 400 m.

また、3.7kwのコンプレッサーにより、30分で充填した空気タンク1本(容量12リットル、充填圧力200気圧)での前記カートの効率の計算結果は約3.0%である。  The calculation result of the efficiency of the cart with one air tank (capacity 12 liters, filling pressure 200 atm) filled in 30 minutes by a 3.7 kw compressor is about 3.0%.

機関や車体の軽量化、空気タンクの充填量の増大あるいは圧縮機の搭載により、走行距離の増加が見込まれる。当面、公園やテーマパーク内の移動や物資の運搬などに利用される可能性がある。  The distance traveled is expected to increase due to the weight reduction of the engine and vehicle body, the increase in the filling amount of the air tank, and the installation of the compressor. For the time being, it may be used for transportation in parks and theme parks and transportation of goods.

さらに、将来的には、圧縮空気の充填ステーションなどインフラ整備の充実により、その利用範囲が拡大するものと思われる。  In the future, the range of use is expected to expand due to the improvement of infrastructure such as a compressed air filling station.

1 カムシャフト
2 吸気弁
3 排気弁
4 吸気管
5 排気管
6 膨張室
7 ピストン
8 コンロッド
9 ロッカーアーム
10 膨張室ヘッド
11 吸気弁用カム
12 排気弁用カム
13 上死点
14 下死点
15 吸気弁開
16 吸気弁閉
17 排気弁開
18 排気弁閉
19 吸気弁開口期間
20 排気弁開口期間
21 弁オーバーラップ
22 側穴
23 クランク
24 吸気側切換弁
25 排気側切換弁
26 吸気ポート
27 排気ポート
28 空気取入口
29 切換ハンドル
1 camshaft 2 intake valve 3 exhaust valve 4 intake pipe 5 exhaust pipe 6 expansion chamber 7 piston 8 connecting rod 9 rocker arm 10 expansion chamber head 11 intake valve cam 12 exhaust valve cam 13 top dead center 14 bottom dead center 15 intake valve Open 16 Inlet valve closed 17 Exhaust valve open 18 Exhaust valve closed 19 Intake valve opening period 20 Exhaust valve opening period 21 Valve overlap 22 Side hole 23 Crank 24 Intake side switching valve 25 Exhaust side switching valve 26 Intake port 27 Exhaust port 28 Air Intake 29 Switching handle

Claims (2)

圧縮空気をエネルギー源として使用し、前記圧縮空気を膨張させる膨張室を備え、前記膨張室内にピストンを往復自在に収容し、コンロッドを介して取り付けられたクランク軸と連動して回転するカムシャフトを設けた往復機関において、前記膨張室に吸気弁と排気弁とを配設し、前記クランク軸1回転毎に上死点付近で吸気弁開および排気弁閉、下死点付近で排気弁開および吸気弁閉となるように前記カムシャフトを設定することにより空気の流入・排出を制御し、前記クランク軸に取り付けられたフライホイールの慣性により回転を持続させ動力を得ることを特徴とする圧縮空気往復機関。  A camshaft that uses compressed air as an energy source, has an expansion chamber for expanding the compressed air, reciprocally accommodates a piston in the expansion chamber, and rotates in conjunction with a crankshaft attached via a connecting rod. In the provided reciprocating engine, an intake valve and an exhaust valve are disposed in the expansion chamber, and the intake valve is opened and closed near the top dead center and the exhaust valve is opened and closed near the bottom dead center every rotation of the crankshaft. Compressed air characterized in that the camshaft is set so that the intake valve is closed to control the inflow / exhaust of air and the rotation is maintained by the inertia of the flywheel attached to the crankshaft to obtain power Reciprocating engine. 前記膨張室下部の下死点付近の膨張室壁に側穴を設けたことを特徴とする請求項1記載の圧縮空気往復機関。  The compressed air reciprocating engine according to claim 1, wherein a side hole is provided in an expansion chamber wall near a bottom dead center of the lower expansion chamber.
JP2010104433A 2010-04-12 2010-04-12 Compressed air reciprocating engine Expired - Fee Related JP5391381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010104433A JP5391381B2 (en) 2010-04-12 2010-04-12 Compressed air reciprocating engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010104433A JP5391381B2 (en) 2010-04-12 2010-04-12 Compressed air reciprocating engine

Publications (2)

Publication Number Publication Date
JP2011220317A true JP2011220317A (en) 2011-11-04
JP5391381B2 JP5391381B2 (en) 2014-01-15

Family

ID=45037590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010104433A Expired - Fee Related JP5391381B2 (en) 2010-04-12 2010-04-12 Compressed air reciprocating engine

Country Status (1)

Country Link
JP (1) JP5391381B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787866A (en) * 2012-08-17 2012-11-21 彭学军 Turbine engine using compressed air as working energy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268924A (en) * 1996-04-03 1997-10-14 Fuji Oozx Inc Four cycle engine for industry
JP2001132403A (en) * 1999-11-01 2001-05-15 Kaizo Maeda Air pressure engine, air pressure turbine, and air pressure power generating device
JP2003214103A (en) * 2002-01-23 2003-07-30 Makio Nobuaki Rotational force generating device and system
JP2005330846A (en) * 2004-05-18 2005-12-02 Toyota Motor Corp Device for recovering heat energy
JP2006329445A (en) * 2005-05-23 2006-12-07 Kansai Electric Power Co Inc:The Natural refrigerant heat pump system
JP2007002749A (en) * 2005-06-23 2007-01-11 Honda Motor Co Ltd Valve operation device for engine
JP2007107490A (en) * 2005-10-17 2007-04-26 Shimane Denko Kk External combustion engine and structure thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268924A (en) * 1996-04-03 1997-10-14 Fuji Oozx Inc Four cycle engine for industry
JP2001132403A (en) * 1999-11-01 2001-05-15 Kaizo Maeda Air pressure engine, air pressure turbine, and air pressure power generating device
JP2003214103A (en) * 2002-01-23 2003-07-30 Makio Nobuaki Rotational force generating device and system
JP2005330846A (en) * 2004-05-18 2005-12-02 Toyota Motor Corp Device for recovering heat energy
JP2006329445A (en) * 2005-05-23 2006-12-07 Kansai Electric Power Co Inc:The Natural refrigerant heat pump system
JP2007002749A (en) * 2005-06-23 2007-01-11 Honda Motor Co Ltd Valve operation device for engine
JP2007107490A (en) * 2005-10-17 2007-04-26 Shimane Denko Kk External combustion engine and structure thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787866A (en) * 2012-08-17 2012-11-21 彭学军 Turbine engine using compressed air as working energy
WO2014026423A1 (en) * 2012-08-17 2014-02-20 Peng Xuejun Turbine engine using compressed air as working energy source

Also Published As

Publication number Publication date
JP5391381B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
AU2012101950A4 (en) Compressed air engine assembly with complementary compressed air circuit
EP2772611B1 (en) Two-stroke air-powered engine assembly
JP2005506489A (en) Engine driven compressor alternator system with auxiliary compressed air injection operating with single energy or multiple energy
JP5678209B2 (en) Electromagnetic booster air power generator system
US9353681B2 (en) Internal combustion engine
WO2011044748A1 (en) Built-in internal combustion engine with two links and two cranks on each cylinder
JP2015513045A (en) Compressed air energy storage system with split-cycle engine
CN105765183B (en) Reciprocator
JP5391381B2 (en) Compressed air reciprocating engine
CN100443706C (en) Two cylinders or multicylinders four-stroke internal-combustion engine of single or multiple cascaded swing pistons
CN112065574B (en) Middle combustion hot gas turbine capable of improving heat engine efficiency and reducing tail gas pollution
CN204419355U (en) Axially liquidate piston tubular actuated by cams formula five two-stroke engine
CN202273758U (en) Two-cylinder four-piston opposed hydraulic control engine
CN104595022A (en) Internal combustion rotor engine
CN101435343B (en) Automatic air intake and discharge pneumatic engine
CN2937500Y (en) Double cylinder head engine
CN113047954B (en) Free piston generator based on rigid synchronous transmission system
CN203098048U (en) Double-combustor reciprocating engine structure
WO2009000107A1 (en) Power machine
JP5463522B1 (en) Co-directional 4-cycle circular engine
RU60141U1 (en) INTERNAL COMBUSTION ENGINE
CN101581250A (en) Rotary piston type generator with two rotation and one circulation properties
RU155271U1 (en) HYDROTURBINE HYBRID ENGINE
CN101832178B (en) Rotary piston engine
CN102261280A (en) Rotary piston type engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees