JP2001130920A - Glass substrate for display - Google Patents

Glass substrate for display

Info

Publication number
JP2001130920A
JP2001130920A JP30757999A JP30757999A JP2001130920A JP 2001130920 A JP2001130920 A JP 2001130920A JP 30757999 A JP30757999 A JP 30757999A JP 30757999 A JP30757999 A JP 30757999A JP 2001130920 A JP2001130920 A JP 2001130920A
Authority
JP
Japan
Prior art keywords
glass substrate
substrate
stress
glass
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30757999A
Other languages
Japanese (ja)
Inventor
Junichiro Kase
準一郎 加瀬
Yasumasa Nakao
泰昌 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP30757999A priority Critical patent/JP2001130920A/en
Publication of JP2001130920A publication Critical patent/JP2001130920A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a glass substrate for a display, preventing pattern discrepancy in lamination by suppressing substrate deformation occurring in cutting. SOLUTION: This glass substrate is an approximately rectangular plane having >=300 mm short side, <=3,000 mm long side and >=0.3 mm and <=6 mm thickness and has <=1 Mpa deviation stress in the substrate plane, due to residual strain in the glass substrate, in all positions in the substrate and measured in the thickness direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ディスプレイ用の
ガラス基板に関し、特に、液晶ディスプレイ(TFT−
LCD、STN−LCD)、プラズマディスプレイ(P
DP)、プラズマアシスト液晶ディスプレイ(PAL
C)、エレクトロ・ルミネッセンス・ディスプレイ(E
L)、フィールド・エミッション・ディスプレイ(FE
D)等のフラットパネルディスプレイ(平坦なディスプ
レイの総称)用のガラス基板に関する。
The present invention relates to a glass substrate for a display, and more particularly, to a liquid crystal display (TFT-type).
LCD, STN-LCD), plasma display (P
DP), plasma assisted liquid crystal display (PAL)
C), electroluminescent display (E
L), Field Emission Display (FE)
D) and the like, and relates to a glass substrate for a flat panel display (a flat display).

【0002】フラットパネルディスプレイでは、通常2
枚のガラス基板が用いられ、これらガラス基板は、TF
T液晶ディスプレイではアレイ側基板とカラーフィルタ
側基板、プラズマディスプレイでは前面板と背面板等と
呼ばれている。本発明は、これらのガラス基板に関す
る。
[0002] In flat panel displays, usually 2
Glass substrates are used, and these glass substrates are TF
In a T liquid crystal display, it is called an array side substrate and a color filter side substrate, and in a plasma display, it is called a front plate and a back plate. The present invention relates to these glass substrates.

【0003】[0003]

【従来の技術】フラットパネルディスプレイでは通常2
枚のガラス基板が使用されており、これら2枚のガラス
基板の間に発光機構や光透過制御機構が形成される。ガ
ラス基板として使用されるガラスは、代表的なものとし
て、TFT液晶ディスプレイでは無アルカリホウケイ酸
ガラス(たとえば、旭硝子社製[商品名:AN635、
AN100等])等、STN液晶ディスプレイではソー
ダライムガラス(たとえば、旭硝子社製[商品名:A
S])等、プラズマディスプレイでは高歪点ガラス(た
とえば、旭硝子社製[商品名:PD200])等が用い
られている。
2. Description of the Related Art In a flat panel display, usually 2
Two glass substrates are used, and a light emitting mechanism and a light transmission control mechanism are formed between these two glass substrates. The glass used as the glass substrate is typically a non-alkali borosilicate glass (for example, manufactured by Asahi Glass Co., Ltd. [trade name: AN635,
AN100 etc.), soda lime glass (for example, Asahi Glass Co., Ltd. [trade name: A
S]) and the like, high strain point glass (for example, [trade name: PD200] manufactured by Asahi Glass Co., Ltd.) is used in the plasma display.

【0004】これらのガラス基板は、フロート法、フュ
ージョン法、スリットダウンドロー法等の方法で製造さ
れている。これらの製造方法によって一定の厚さに成形
されたガラスリボンは、所定寸法の面形状に切り出さ
れ、ガラス基板として供給される。また、一部のガラス
基板では、成形後に熱収縮率(コンパクション)を一定
の値に制御する目的で、徐冷処理(アニール処理)が施
される。
[0004] These glass substrates are manufactured by a method such as a float method, a fusion method, and a slit down draw method. The glass ribbon formed into a certain thickness by these manufacturing methods is cut into a surface shape having a predetermined dimension and supplied as a glass substrate. Some glass substrates are subjected to annealing (annealing) in order to control the heat shrinkage (compaction) to a constant value after molding.

【0005】上記ガラス基板を用いたフラットパネルデ
ィスプレイの製造において、生産効率を上げるため、多
面取りが行われる場合がある。すなわち、1枚のガラス
基板中に、2面分、4面分、6面分、8面分等のパネル
用の複数のパターンを形成し、同時に複数面のパネルの
製造が行われる。複数面のパターンが形成されたパネル
は、2枚の基板の張り合わせ前、または張り合わせ後に
それぞれ1面分の大きさに切断され、製品パネルの寸法
となる。
[0005] In the production of a flat panel display using the above glass substrate, there are cases where multiple panels are formed in order to increase production efficiency. That is, a plurality of panel patterns such as two, four, six, and eight panels are formed in one glass substrate, and a panel with a plurality of panels is manufactured at the same time. The panel on which the pattern of the plurality of surfaces is formed is cut into a size corresponding to one surface before or after the two substrates are bonded to each other to have the dimensions of a product panel.

【0006】[0006]

【発明が解決しようとする課題】上記多面取り基板にお
いて、ガラス基板に平面方向の歪が存在すると切断によ
り図1に示されるような変形が発生する。ここで、図中
の矢印2は残留応力の方向を示す。すなわち、図1は、
ガラス基板1の切断による変形を説明する模式図であっ
て、(a)は、切断前のガラス基板1の残留応力の状態
を説明する模式図、(b)は、(a)のガラス基板1を
切断した後の形状を示す模式図、(c)は、切断前のガ
ラス基板1の残留応力の状態を説明する模式図、(d)
は、(c)のガラス基板を切断した後の形状を示す模式
図である。
In the above-mentioned multiple substrate, when a glass substrate has a strain in a plane direction, the glass substrate is deformed as shown in FIG. 1 by cutting. Here, arrow 2 in the figure indicates the direction of the residual stress. That is, FIG.
FIGS. 3A and 3B are schematic diagrams illustrating deformation due to cutting of the glass substrate 1, wherein FIG. 3A is a schematic diagram illustrating a state of residual stress of the glass substrate 1 before cutting, and FIG. Is a schematic diagram showing a shape after cutting, FIG. 3C is a schematic diagram illustrating a state of residual stress of the glass substrate 1 before cutting, and FIG.
FIG. 3C is a schematic view showing the shape after cutting the glass substrate of FIG.

【0007】このような変形が発生すると、2枚のガラ
ス基板を張り合わせた際に、形成したパターンにズレが
発生するが、このようなパターンのズレは品質上問題と
なる。たとえば、TFT液晶ディスプレイの製造工程で
は数μm〜十数μmのパターンズレで輝度の低下による
表示むらが発生する。
When such deformation occurs, a deviation occurs in the formed pattern when two glass substrates are bonded to each other, but such deviation of the pattern causes a problem in quality. For example, in a manufacturing process of a TFT liquid crystal display, display unevenness due to a decrease in luminance occurs due to a pattern shift of several μm to several tens of μm.

【0008】上記切断によるガラス基板の変形は、ガラ
ス基板の大きさにも依存し、平面寸法の大きなガラス基
板ほど顕著である。すなわち、ガラス基板の平面の面内
に一様に歪が分布している場合、ガラス基板の平面寸法
が大きくなるほど残留応力が増大する。また、一定形状
の変形をした場合(相似形状の場合)、ガラス基板の平
面寸法が大きくなるほど基板周辺部での変形量が増大す
る。特に、切断によるガラス基板の変形は、矩形では短
辺が300mm以上の大きさのガラス基板において顕著
に発生する問題である。
[0008] The deformation of the glass substrate due to the above cutting also depends on the size of the glass substrate, and is more remarkable for a glass substrate having a larger planar dimension. That is, when the strain is uniformly distributed in the plane of the glass substrate, the residual stress increases as the plane size of the glass substrate increases. Further, when the glass substrate is deformed in a certain shape (similar shape), the larger the planar dimension of the glass substrate, the larger the amount of deformation in the peripheral portion of the substrate. In particular, deformation of the glass substrate due to cutting is a problem that occurs significantly in a rectangular glass substrate having a short side of 300 mm or more.

【0009】ここで、ガラス基板の歪とガラス基板の反
りの関係について説明する。ガラス基板は冷却時の熱履
歴により、内部に歪が生じ、残留応力が発生する。この
現象を利用したガラスとしては物理強化ガラスが知られ
ている。すなわち、ガラスの冷却時に表面に空気等を吹
きつけ、表面を強制的に冷却することにより、ガラス表
面に圧縮応力層を形成する方法である。
Here, the relationship between the distortion of the glass substrate and the warpage of the glass substrate will be described. The glass substrate is internally distorted due to heat history during cooling, and generates residual stress. Physically strengthened glass is known as a glass utilizing this phenomenon. That is, a method of forming a compressive stress layer on the glass surface by blowing air or the like onto the surface when cooling the glass and forcibly cooling the surface.

【0010】ガラスの歪は、強化ガラスで知られている
ガラスの断面方向の応力分布のみに限らず、平面方向で
も発生する。すなわち、ガラス基板の冷却時に、ガラス
基板の中央部に比べて周辺部の温度が低いと、ガラス基
板面内において周囲に沿って圧縮方向の応力が発生す
る。逆にガラス基板の冷却時に、中央部に比べて周辺部
の温度が高いと、ガラス基板面内において周囲に沿って
引張方向の応力が発生する。
[0010] Distortion of glass occurs not only in the stress distribution in the cross-sectional direction of glass known as tempered glass but also in the plane direction. That is, when the temperature of the peripheral part is lower than that of the central part of the glass substrate during cooling of the glass substrate, a stress in the compression direction is generated along the periphery in the surface of the glass substrate. Conversely, when the temperature of the peripheral part is higher than that of the central part during cooling of the glass substrate, a tensile stress is generated along the periphery in the surface of the glass substrate.

【0011】前述した図1は、周囲に歪による応力が残
留している基板を切断した際に起きる基板の変形を模式
的に示している。周囲に圧縮応力がかかっている基板で
は、切断後に圧縮の歪が開放されて伸びるために内側に
変形する(図1(b)の状態)。周囲に引張応力がかか
っている基板では、切断後に引張の歪が開放されて縮む
ために外側に変形する(図1(d)の状態)。
FIG. 1 schematically shows the deformation of a substrate that occurs when a substrate in which stress due to strain remains around the substrate is cut. In the case of a substrate having a compressive stress applied to its periphery, the substrate is deformed inward because the compression strain is released and stretched after cutting (the state shown in FIG. 1B). In a substrate having a tensile stress applied to its surroundings, the substrate is deformed outward because the tensile strain is released and shrunk after cutting (the state shown in FIG. 1D).

【0012】以上に説明したように、ガラス基板に歪が
存在すると、切断時に基板の変形となる。したがって、
歪が存在しないガラス基板、または歪が基板を変形させ
ない程度の一定値以下であるガラス基板が望まれてい
た。
As described above, if there is a distortion in the glass substrate, the substrate is deformed at the time of cutting. Therefore,
There has been a demand for a glass substrate having no distortion or a glass substrate having a distortion equal to or less than a certain value that does not deform the substrate.

【0013】[0013]

【課題を解決するための手段】本発明は、短辺が300
mm以上、長辺が3000mm以下の略矩形の面形状で
あり、かつ板厚が0.3mm以上、6mm以下のガラス
基板であって、ガラス基板内の残留歪による、板厚方向
で測定したときの基板面内の偏差応力が、基板内のすべ
て位置で1MPa以下であるディスプレイ用ガラス基板
を提供する。このような、基板内の残留歪による偏差応
力が小さいガラス基板では、切断時に基板の変形が生じ
ないか、ほとんど無視しうるレベルであり、ディスプレ
イ用ガラス基板として望ましい。なお、本発明のガラス
基板は実質的に略矩形のものであり、周辺部の隅を切り
落とした(コーナーカットした)ガラス基板をも含む。
According to the present invention, the short side is 300.
mm, a glass substrate having a substantially rectangular surface shape having a long side of 3000 mm or less and a plate thickness of 0.3 mm or more and 6 mm or less, when measured in the plate thickness direction due to residual strain in the glass substrate. The present invention provides a display glass substrate having a deviation stress in the substrate plane of 1 MPa or less at all positions in the substrate. Such a glass substrate having a small deviation stress due to residual strain in the substrate does not cause deformation of the substrate at the time of cutting, or has a level almost negligible, and is desirable as a glass substrate for a display. Note that the glass substrate of the present invention is substantially rectangular, and includes a glass substrate in which peripheral corners are cut off (corner cut).

【0014】また、本発明は、板厚が0.3mm以上、
6mm以下のガラス基板であって、短辺が300mm以
上、長辺が3000mm以下の略矩形の面形状に切り出
された後に、加熱・徐冷の熱処理がなされ、かつ、ガラ
ス基板内の残留歪による、板厚方向で測定したときの基
板面内の偏差応力が、基板内のすべての位置で1MPa
以下であるディスプレイ用ガラス基板を提供する。基板
内の残留歪による偏差応力が大きく、ディスプレイ用の
ガラス基板として望ましくないガラス基板であっても、
このような処理を施すことで基板内の残留歪による偏差
応力を小さくできる。
Further, the present invention provides a method for manufacturing a semiconductor device, comprising:
A glass substrate of 6 mm or less, which is cut into a substantially rectangular surface shape having a short side of 300 mm or more and a long side of 3000 mm or less, then subjected to heat treatment of heating and slow cooling, and due to residual strain in the glass substrate. The deviation stress in the substrate plane measured in the thickness direction is 1 MPa at all positions in the substrate.
The following glass substrate for a display is provided. Deviation stress due to residual strain in the substrate is large, even if the glass substrate is not desirable as a display glass substrate,
By performing such processing, the deviation stress due to the residual strain in the substrate can be reduced.

【0015】また、本発明は、板厚が0.3mm以上、
6mm以下のガラス基板であって、短辺が300mm以
上、長辺が3000mm以下の略矩形の面形状に切り出
された後に、加熱・徐冷の熱処理がなされず、かつ、ガ
ラス基板内の残留歪による、板厚方向で測定したときの
基板面内の偏差応力が、基板内のすべての位置で1MP
a以下であるディスプレイ用ガラス基板を提供する。ガ
ラス基板成形時の製造条件を最適化し、基板内の残留歪
による偏差応力の小さいガラス基板を製造できれば、加
熱・徐冷の熱処理が不要であり、最も望ましい。
Further, according to the present invention, the sheet thickness is 0.3 mm or more,
A glass substrate of 6 mm or less, which is cut into a substantially rectangular surface shape with a short side of 300 mm or more and a long side of 3000 mm or less, is not subjected to heat treatment of heating / gradual cooling, and has residual strain in the glass substrate. The deviation stress in the substrate plane when measured in the thickness direction is 1MP at all positions in the substrate.
a glass substrate for a display which is equal to or less than a. It is most desirable if a glass substrate having a small deviation stress due to the residual strain in the substrate can be manufactured by optimizing the manufacturing conditions at the time of molding the glass substrate, since heat treatment of heating and slow cooling is unnecessary.

【0016】また、本発明は、短辺が500mm以上、
板厚が1.1mm以下で、液晶ディスプレイパネルに用
いられるディスプレイ用ガラス基板を提供する。液晶デ
ィスプレイパネルには、通常は上記板厚のガラス基板が
使用され、このような板厚であれば、成形過程で歪は生
じにくく、加熱・徐冷の熱処理が不要である。
Further, according to the present invention, the short side is 500 mm or more,
Provided is a display glass substrate having a thickness of 1.1 mm or less and used for a liquid crystal display panel. A glass substrate having the above thickness is usually used for the liquid crystal display panel. With such a thickness, distortion is unlikely to occur in the forming process, and heat treatment such as heating and slow cooling is unnecessary.

【0017】また、本発明は、短辺が500mm以上、
板厚が1.5mm以上で、プラズマディスプレイパネル
に用いられるディスプレイ用ガラス基板を提供する。プ
ラズマディスプレイパネルには、通常は上記板厚のガラ
ス基板が使用される。このような板厚であれば、加熱・
徐冷の熱処理が基板内の残留歪の減少に有効である。
Further, according to the present invention, the short side is at least 500 mm,
Provided is a display glass substrate having a thickness of 1.5 mm or more and used for a plasma display panel. Generally, a glass substrate having the above-mentioned thickness is used for the plasma display panel. With such a thickness, heating and
Slow cooling heat treatment is effective in reducing residual strain in the substrate.

【0018】[0018]

【発明の実施の形態】本発明において、ガラス基板中の
歪および応力は以下に述べる方法で測定される。ガラス
基板中の歪は光学的な複屈折の測定、すなわち直交する
直線偏光波の光路差の測定で見積ることができる。光路
差をR(nm)として、歪により発生する偏差応力F
(MPa)は、 F=R/CL として表される。ここでLは偏光波が通過した距離(c
m)であり、Cはガラスによって決まる比例定数で光弾
性定数と呼ばれ、通常20〜40(nm/cm)/(M
Pa)の値となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, strain and stress in a glass substrate are measured by the following methods. The distortion in the glass substrate can be estimated by measuring the optical birefringence, that is, by measuring the optical path difference between the orthogonal linearly polarized waves. Assuming that the optical path difference is R (nm), the deviation stress F generated due to the strain
(MPa) is expressed as F = R / CL. Here, L is the distance (c
m), and C is a proportionality constant determined by glass and is called a photoelastic constant, and is usually 20 to 40 (nm / cm) / (M
Pa).

【0019】ガラスに歪がないとき、すなわち応力がな
い、または等方的な応力がかかっているときは、2つの
直交する直線偏光波は同一速度でガラス内を通過する。
ガラス面内に歪があると、圧縮応力方向では偏光波が速
く通過し、引張応力方向では偏光波はゆっくり通過す
る。すなわち、2つの直交する直線偏光波に光路差が発
生する。基板平面に垂直に光路をとり、光路差が最大と
なる方位とその大きさを測定することで、ガラス基板中
の歪の方向性と大きさを測定できる。この値を偏差応力
とする。
When there is no strain in the glass, that is, when there is no stress or isotropic stress, the two orthogonal linearly polarized waves pass through the glass at the same speed.
If there is a strain in the glass surface, the polarized wave will pass faster in the direction of compressive stress and will slowly pass in the direction of tensile stress. That is, an optical path difference occurs between two orthogonal linearly polarized waves. By taking an optical path perpendicular to the plane of the substrate and measuring the azimuth at which the optical path difference is maximized and its magnitude, the directionality and magnitude of the strain in the glass substrate can be measured. This value is defined as the deviation stress.

【0020】偏差応力Fは、偏光波の光路差から測定さ
れる応力値で、平面内に存在する応力の異方性を表す指
標となる。偏差応力Fは、ガラス基板内で偏光が通過し
た距離の平均値であり、光路と垂直な面内で直交する任
意の2軸において、応力差が最大となる方向とその応力
差として求められる。ガラス基板面内のある方向(たと
えばX方向)に圧縮応力が残留している場合と、それと
垂直な方向(Y方向)に同じ大きさの引張応力が残留し
ている場合では、偏差応力の測定は同一の結果となる。
また、直交する2軸方向(X方向とY方向)に同じ量の
圧縮または引張応力が残留していると、偏差応力はゼロ
となる。
The deviation stress F is a stress value measured from the optical path difference of the polarized wave, and is an index indicating the anisotropy of the stress existing in the plane. The deviation stress F is an average value of the distance that the polarized light has passed in the glass substrate, and is determined as the direction in which the stress difference becomes maximum and the stress difference in any two axes orthogonal to each other in a plane perpendicular to the optical path. In the case where a compressive stress remains in a certain direction (for example, the X direction) in the surface of the glass substrate, and in the case where a tensile stress having the same magnitude remains in a direction perpendicular thereto (the Y direction), the deviation stress is measured. Have the same result.
Further, if the same amount of compressive or tensile stress remains in two orthogonal axes directions (X direction and Y direction), the deviation stress becomes zero.

【0021】直線偏光波を利用したガラスの歪測定は、
セナルモン法等が知られており、数十nmの光路差を検
出できる。従来、ガラスの歪測定は、主に強化ガラス等
に残留している数十MPaの応力を対象としており、セ
ナルモン法はこのような歪測定には充分な分析精度を有
していた。
The measurement of glass strain using a linearly polarized wave is as follows.
The Senarmont method and the like are known, and an optical path difference of several tens nm can be detected. Conventionally, strain measurement of glass mainly targets a stress of several tens MPa remaining in tempered glass or the like, and the Senarmont method has sufficient analysis accuracy for such strain measurement.

【0022】しかし、フラットパネルディスプレイ用の
ガラス基板に平面方向で残留している応力は0.1MP
a〜5MPaの大きさであり、従来の測定方法では充分
に検出できない。そこで、本発明者らは、歪の検出装置
としてユニオプト社製ABR−10A複屈折測定器を使
用した。ABR−10A複屈折測定器は、横ゼーマンレ
ーザー光を照射し、直交する直線偏光波の位相差を検出
することにより、複屈折の光路差と主軸方位を測定する
装置である。分解能として、光路差0.01nm、主軸
方位0.1度の精度を有する。
However, the stress remaining on the glass substrate for a flat panel display in the plane direction is 0.1 MPa.
It is a size of a to 5 MPa and cannot be sufficiently detected by the conventional measuring method. Therefore, the present inventors used an ABR-10A birefringence meter manufactured by Uniopt Corporation as a strain detection device. The ABR-10A birefringence measuring device is a device that measures a birefringent optical path difference and a principal axis direction by irradiating a transverse Zeeman laser beam and detecting a phase difference between orthogonal linearly polarized waves. The resolution has an optical path difference of 0.01 nm and a main axis azimuth of 0.1 degree.

【0023】ガラス基板の残留歪は、ガラスリボン成形
後の徐冷における温度分布に依存して発生する。すなわ
ち、先に冷えた部分に圧縮応力が形成され、後から冷え
た部分には引張応力が形成される。このことはガラスの
物理強化または風冷強化の原理としてよく知られてい
る。強化ガラスでは、ガラス表面を急冷することにより
表面に圧縮応力層を形成している。
The residual strain of the glass substrate is generated depending on the temperature distribution in the slow cooling after forming the glass ribbon. That is, a compressive stress is formed in a portion that has been cooled earlier, and a tensile stress is formed in a portion that is cooled later. This is well known as the principle of physical strengthening or air cooling of glass. In the tempered glass, a compression stress layer is formed on the surface by rapidly cooling the glass surface.

【0024】強化ガラスは、ガラスの板厚方向での応力
分布を利用しているが、ガラスには平面方向での応力分
布も存在している。本発明者らは、ガラス基板の平面方
向での応力分布が、ガラス切断時の変形の原因となるこ
と、および、歪による残留する応力を一定値以下に制御
することによって変形を抑制した基板が得られること、
を見い出した。
Although the tempered glass utilizes the stress distribution in the thickness direction of the glass, the glass also has a stress distribution in the plane direction. The present inventors have found that a substrate in which the stress distribution in the plane direction of the glass substrate causes deformation at the time of glass cutting, and a substrate whose deformation is suppressed by controlling the residual stress due to the strain to a certain value or less. Gained,
I found

【0025】ガラス基板の平面方向での応力分布は、ガ
ラスリボン成形後の冷却時の温度分布によって発生す
る。一般にフラットパネルディスプレイ用のガラス基板
は、フロート法、フュージョン法、スリット・ダウンド
ロー法等の製造方法により、連続的に製造されている。
したがって、冷却時の温度分布、特に製造時のガラスリ
ボンの流れと垂直な板幅方向の温度分布によって支配さ
れる。
The stress distribution in the plane direction of the glass substrate is generated by the temperature distribution at the time of cooling after forming the glass ribbon. Generally, a glass substrate for a flat panel display is continuously manufactured by a manufacturing method such as a float method, a fusion method, and a slit down draw method.
Therefore, it is governed by the temperature distribution at the time of cooling, particularly the temperature distribution in the plate width direction perpendicular to the flow of the glass ribbon at the time of manufacturing.

【0026】図2に、ガラスリボンの板幅方向の温度分
布と、切り出したガラス基板1の応力分布を模式的に示
す。ここで、図中の矢印2は残留応力の方向を示す。周
辺部の温度が中心部に比べ低いとき、すなわち図中
(a)の状態のときは周辺部に圧縮の残留応力が入り図
中(b)の状態となり、周辺部の温度が中央部に比べ高
いとき、すなわち図中(c)の状態のときは周辺部に引
張の残留応力が入り図中(d)の状態となる。
FIG. 2 schematically shows the temperature distribution in the width direction of the glass ribbon and the stress distribution of the cut glass substrate 1. Here, arrow 2 in the figure indicates the direction of the residual stress. When the temperature of the peripheral portion is lower than that of the central portion, that is, in the state of (a) in the figure, the residual stress of the compression enters the peripheral portion and becomes the state of (b) in the diagram, and the temperature of the peripheral portion is lower than that of the central portion. When it is high, that is, when it is in the state of (c) in the figure, the residual stress of the tensile force enters the peripheral portion, and the state of (d) is obtained.

【0027】本発明者らは、ガラスリボンの板幅方向の
温度分布とガラス基板の残留応力との関係を検証し、上
記温度分布を操作することによりガラス基板の残留応力
が極めて少なくなる条件を見い出した。
The present inventors have verified the relationship between the temperature distribution in the width direction of the glass ribbon and the residual stress of the glass substrate, and have determined the conditions under which the residual stress of the glass substrate becomes extremely small by manipulating the temperature distribution. I found it.

【0028】また、ガラス基板の残留応力を低減するた
めには、ガラス基板製造工程において、所定寸法に切り
出された略矩形のガラス基板のアニール処理、すなわち
再加熱・徐冷の熱処理工程を施すことが有効である。こ
のように、ガラス基板にアニール処理を施す場合には、
基板の変形や傷の発生に充分に注意して行い、ガラス基
板の徐冷点温度付近まで加熱し、歪点温度付近までの徐
冷を行えばよい。
Further, in order to reduce the residual stress of the glass substrate, in the glass substrate manufacturing process, an annealing process of a substantially rectangular glass substrate cut into a predetermined size, that is, a heat treatment process of reheating and slow cooling is performed. Is valid. Thus, when performing an annealing process on a glass substrate,
The glass substrate may be heated to a temperature near the gradual cooling point temperature and then gradually cooled to a temperature near the strain point temperature.

【0029】一般的に、プラズマディスプレイパネル
は、50型(対角で約1270mm)以上の大型のもの
が多く、用いられるディスプレイ用ガラス基板のサイズ
も大きく、また板厚も大きい。したがって、板ガラス成
形過程で歪が生じやすく、ガラス基板成形後にアニール
処理を施す効果はある。ただし、前述のように、ガラス
基板成形時のアニール処理で温度分布を操作することに
よりガラス基板の残留応力を極めて少なくし、ガラス基
板成形後のアニール処理を不要とすることもできる。
In general, many plasma display panels are 50-inch (about 1270 mm diagonally) or larger, and the size and thickness of the display glass substrate used are large. Therefore, distortion is likely to occur in the sheet glass forming process, and there is an effect of performing an annealing treatment after forming the glass substrate. However, as described above, by controlling the temperature distribution in the annealing process at the time of forming the glass substrate, the residual stress of the glass substrate can be extremely reduced, and the annealing process after forming the glass substrate can be eliminated.

【0030】一方、液晶ディスプレイパネルは軽量化の
要求が強いため、用いられるディスプレイ用ガラス基板
の板厚は一般的に小さい。したがって、成形過程で歪は
生じにくく、ガラス基板成形後にアニール処理を施す必
要性は少ない。
On the other hand, the liquid crystal display panel is strongly required to be reduced in weight, so that the thickness of the display glass substrate used is generally small. Therefore, distortion is unlikely to occur during the forming process, and there is little need to perform an annealing treatment after forming the glass substrate.

【0031】生産コストの面からは、ガラス基板成形後
のアニール処理はコストの上昇につながるため、実施し
ないことが好ましい。ガラス基板成形後にアニール処理
を施さない場合は、ガラス基板成形時に長い徐冷ゾーン
を確保できるフロート法等の横引きの成形方法が好まし
い。
From the viewpoint of production cost, it is preferable that the annealing treatment after the formation of the glass substrate is not carried out, since this leads to an increase in cost. When the annealing treatment is not performed after the glass substrate is formed, a horizontal drawing method such as a float method that can secure a long annealing zone at the time of forming the glass substrate is preferable.

【0032】前述のとおり、光学的に測定される残留応
力は、正確には偏差応力である。すなわち、光軸と垂直
な面内において直交する2つの方向の応力差を測定して
いる。ガラス基板の周辺部では、基板が辺において切れ
ているため、辺に垂直な方向での応力は作用せず、辺に
平行な方向でのみ歪による応力が残留する。したがっ
て、辺近傍での偏差応力は残留応力とほぼ等しいものに
なる。一方、基板中央部での偏差応力は面内のあらゆる
方向から歪による応力が加わり、直交する方向で相対的
に打ち消されるため、真の残留応力より小さい値が測定
される。そこで、本発明では、ガラス基板面内におい
て、たとえば縦横に50mm間隔での偏差応力の測定を
行い、すべての測定点での偏差応力の最大値を指標とし
た。
As described above, the optically measured residual stress is exactly a deviation stress. That is, the stress difference in two directions orthogonal to each other in a plane perpendicular to the optical axis is measured. In the peripheral portion of the glass substrate, since the substrate is cut at the side, no stress is applied in a direction perpendicular to the side, and a stress due to strain remains only in a direction parallel to the side. Therefore, the deviation stress near the side becomes substantially equal to the residual stress. On the other hand, the stress due to strain is applied to the deviation stress in the central portion of the substrate from all directions in the plane and is relatively canceled in the orthogonal direction. Therefore, a value smaller than the true residual stress is measured. Therefore, in the present invention, the deviation stress was measured at, for example, 50 mm intervals horizontally and vertically within the glass substrate surface, and the maximum value of the deviation stress at all the measurement points was used as an index.

【0033】その結果、短辺が300mm以上、長辺が
3000mm以下の略矩形の面形状であり、かつ板厚が
0.3mm以上、6mm以下であって、基板内の残留歪
による、板厚方向で測定したときの基板面内の偏差応力
が、光線を当てて光学的手法により測定した場合、基板
内のすべて位置で1MPa以下であるとき、より好まし
くは0.6MPa以下であるとき、高精細の用途等のガ
ラス基板においては0.3MPa以下であるときに、切
断による変形量が実用上問題にならない程度に小さくな
ることを見い出した。
As a result, it has a substantially rectangular surface shape with a short side of 300 mm or more and a long side of 3000 mm or less, and a plate thickness of 0.3 mm or more and 6 mm or less. When the deviation stress in the substrate plane when measured in the direction is measured by an optical method by irradiating a light beam, when it is 1 MPa or less at all positions in the substrate, more preferably 0.6 MPa or less, It has been found that when the glass substrate is used for fine applications or the like at a pressure of 0.3 MPa or less, the amount of deformation due to cutting becomes small enough to cause no practical problem.

【0034】基板面積が小さいときは残留応力による変
形量も小さいため、変形が発生しても実質的に問題とは
ならない。基板寸法が、矩形では短辺が300mm以
上、より顕著には短辺が500mm以上であるときは、
変形量が大きくなるため残留応力の制御が必要となる。
基板寸法が、矩形では短辺が3000mmを超えると、
重量や基板のたわみの問題により、ガラス基板の取り扱
いが困難となり実用的ではないため、残留応力の制御を
する意味はない。
When the substrate area is small, the amount of deformation due to residual stress is small, so that even if deformation occurs, there is no substantial problem. When the substrate dimensions are rectangular, the short side is 300 mm or more, more remarkably when the short side is 500 mm or more,
Since the amount of deformation increases, it is necessary to control the residual stress.
If the short side of the board dimension exceeds 3000 mm in a rectangle,
Due to the problem of weight and substrate deflection, handling of the glass substrate becomes difficult and impractical, so there is no point in controlling the residual stress.

【0035】ガラス基板の板厚が0.3mm未満の場合
は、ガラス基板強度の低下やたわみの増加が問題となり
実用的ではない。プラズマディスプレイパネル等の30
型(対角で約762mm)以上の大型ディスプレイの基
板では、強度の観点から板厚は1.5mm以上が好まし
い。板厚が6mmを超えるときは、ガラス基板の重量が
重くなりすぎて不適である。液晶ディスプレイ等の軽量
化が重視される用途においては、板厚は1.1mm以下
が好ましい。したがって、プラズマディスプレイ等の用
途においては、1.5mm以上、6mm以下が、液晶デ
ィスプレイ等の用途においては、0.3mm以上、1.
1mm以下が好ましい。
When the thickness of the glass substrate is less than 0.3 mm, the glass substrate is not practical because of a problem in that the strength of the glass substrate is reduced and the deflection is increased. 30 such as plasma display panel
In the case of a substrate for a large display having a mold (about 762 mm diagonally) or more, the thickness is preferably 1.5 mm or more from the viewpoint of strength. If the plate thickness exceeds 6 mm, the weight of the glass substrate becomes too heavy, which is not suitable. In applications where weight reduction is important such as a liquid crystal display, the plate thickness is preferably 1.1 mm or less. Therefore, 1.5 mm or more and 6 mm or less are used for applications such as a plasma display, and 0.3 mm or more and 1.
1 mm or less is preferable.

【0036】[0036]

【実施例】ガラス基板の切断により生じる変形量は、ガ
ラス基板の寸法、切断位置、ガラス基板中の残留応力、
ガラスの縦弾性係数に依存する。以下においては、縦弾
性係数7500kg/mm2、光弾性定数27.6(n
m/cm)/(MPa)のガラス基板を使用した。ガラ
ス基板はフロート法により、肉厚0.7mmに成形し、
試験用ガラス基板として、矩形で550mm×670m
mの寸法に切り出した。この際、550mmの辺がガラ
スリボンの板幅方向、670mmの辺がガラスリボンの
流れ方向となるようにした。
EXAMPLE The amount of deformation caused by cutting a glass substrate is determined by the dimensions of the glass substrate, the cutting position, the residual stress in the glass substrate,
Depends on the longitudinal modulus of glass. In the following, the longitudinal elastic coefficient is 7500 kg / mm 2 and the photoelastic constant is 27.6 (n
m / cm) / (MPa) glass substrate was used. The glass substrate is formed to a thickness of 0.7 mm by the float method,
550mm x 670m rectangular glass substrate for test
m was cut out. At this time, the side of 550 mm was in the width direction of the glass ribbon, and the side of 670 mm was in the flow direction of the glass ribbon.

【0037】試験用ガラス基板の製造時には、ガラスリ
ボンの板幅方向の温度分布がなるべく均一になるように
操作し、歪による残留応力が少なくなるようにした。偏
差応力は、前記のユニオプト社製ABR−10A複屈折
測定器を使用し、複屈折の光路差から換算して求めた。
測定は縦横それぞれ50mm間隔で、1枚のガラス基板
で計143点に対し行った。
During the production of the test glass substrate, the temperature distribution in the width direction of the glass ribbon was controlled so as to be as uniform as possible, so that residual stress due to strain was reduced. The deviation stress was determined by using the above-mentioned ABR-10A birefringence measuring instrument manufactured by Uniopt Co., Ltd. and converting it from the optical path difference of the birefringence.
The measurement was performed at a distance of 50 mm in each of the vertical and horizontal directions for a total of 143 points on one glass substrate.

【0038】応力を測定したガラス基板には、カラーフ
ィルタ用のブラックマトリックスを形成し、ブラックマ
トリックスのコーナー部の位置を精密測長機(ソキア社
製UMIC800)で測定した。具体的には、上記ガラ
ス基板に長方形(サイズ:244.494mm×18
3.893mm)矩形パターンを6面形成し、各長方形
の頂点のX、Y座標を計測した。長方形の配置は、図
5、図6に示される位置関係であり、隣接する長方形間
の間隔は、X、Yいずれの方向においても27mmであ
る。
A black matrix for a color filter was formed on the glass substrate on which the stress was measured, and the positions of the corners of the black matrix were measured with a precision length measuring machine (UMIC800 manufactured by Sokia Corporation). Specifically, a rectangle (size: 244.494 mm × 18) is formed on the glass substrate.
(3.893 mm) Six rectangular patterns were formed, and the X and Y coordinates of the vertices of each rectangle were measured. The arrangement of the rectangles is the positional relationship shown in FIGS. 5 and 6, and the interval between adjacent rectangles is 27 mm in both the X and Y directions.

【0039】ガラス基板を670mmの辺と平行方向で
半分に切断し、すなわち、275mm×670mmのサ
イズに切断し、再びブラックマトリックスのコーナー部
を測長し、切断前後での変形量を評価した。
The glass substrate was cut in half in a direction parallel to the side of 670 mm, that is, cut into a size of 275 mm × 670 mm, and the corners of the black matrix were measured again to evaluate the amount of deformation before and after cutting.

【0040】表1に測定した基板の偏差応力の方向と最
大応力、および切断後の変形の向きと最大変形量を示
す。なお、光路差も併記した。表中、試料1〜6は実施
例、試料7は比較例である。すなわち、試料1〜6は、
ガラスリボンの板幅方向での温度分布がなるべく均一に
なるように制御した試料である。このうち、試料1〜3
はガラスリボンの中央部の温度が周辺部に比べてやや高
く、試料4〜6はガラスリボンの中央部の温度が周辺部
に比べてやや低くなっていたと推定される。
Table 1 shows the direction of the deviation stress and the maximum stress of the substrate, and the direction of deformation after cutting and the maximum amount of deformation. The optical path difference is also shown. In the table, samples 1 to 6 are examples and sample 7 is a comparative example. That is, samples 1 to 6
This is a sample in which the temperature distribution in the width direction of the glass ribbon is controlled to be as uniform as possible. Among them, samples 1 to 3
It is presumed that the temperature of the central portion of the glass ribbon was slightly higher than that of the peripheral portion, and that the temperature of the central portion of the glass ribbon of Samples 4 to 6 was slightly lower than that of the peripheral portion.

【0041】[0041]

【表1】 [Table 1]

【0042】試料1〜3のガラス基板は、周囲に沿って
圧縮方向の応力分布を有しており、切断により圧縮部分
が開放されて伸びるため、内側へ変形している。一方、
試料4〜6のガラス基板は、周囲に沿って引張方向の応
力分布を有しており、切断により引張部分が開放されて
縮むため、外側へ変形している。試料1と4の基板につ
いて偏差応力の測定結果をそれぞれ図3と図4に、切断
後の変形挙動をそれぞれ図5と図6に示す。
The glass substrates of Samples 1 to 3 have a stress distribution in the compression direction along the periphery, and are deformed inward because the compressed portion is opened and stretched by cutting. on the other hand,
The glass substrates of Samples 4 to 6 have a stress distribution in the tensile direction along the periphery, and the tensile portions are opened and shrunk by cutting, and thus are deformed outward. FIGS. 3 and 4 show the measurement results of the deviation stress for the substrates of Samples 1 and 4, respectively, and FIGS. 5 and 6 show the deformation behavior after cutting.

【0043】図3、図4は、ユニオプト社製ABR−1
0A複屈折測定器により測定した結果で、各円の中心が
測定点を示し、円の直径の長さが偏差応力の大きさ、円
の直径として描かれた線が相対的に引張応力となる方
向、直径の線と垂直方向が相対的に圧縮応力となる方向
を示している。図3は円直径の線がガラス基板中央を向
いており、ガラス基板周囲が圧縮方向であることが分か
る。一方、図4は円直径の線が基板周囲に沿って回って
おり、ガラス基板周囲が引張方向であることが分かる。
FIGS. 3 and 4 show ABR-1 manufactured by Uniopt.
As a result of measurement using a 0A birefringence measuring instrument, the center of each circle indicates the measurement point, the length of the diameter of the circle is the magnitude of the deviation stress, and the line drawn as the diameter of the circle is the relative tensile stress. The direction perpendicular to the direction and diameter line indicates the direction in which the compressive stress is relatively generated. In FIG. 3, it can be seen that the line having the circular diameter faces the center of the glass substrate, and the periphery of the glass substrate is in the compression direction. On the other hand, in FIG. 4, the line having the circular diameter is turned around the periphery of the substrate, and it can be seen that the periphery of the glass substrate is in the tensile direction.

【0044】図5、図6は、前記の精密測長機(ソキア
社製UMIC800)により測定した結果である。X、
Y軸の単位はいずれもmmであり、前述したように各長
方形の位置関係を示すが、変位量はガラス基板、長方形
の大きさに比べ微小なので、判別が容易なように、該変
位量のみ切断前後の差を1万倍に拡大して表示してい
る。
FIGS. 5 and 6 show the results of measurement by the above-described precision length measuring machine (UMIC800 manufactured by Sokia Corporation). X,
The unit of the Y axis is mm, and indicates the positional relationship of each rectangle as described above. However, since the displacement amount is small compared to the size of the glass substrate and the rectangle, only the displacement amount is used for easy discrimination. The difference before and after the cutting is enlarged to 10,000 times and displayed.

【0045】図5、図6の各図は、左下の長方形の左下
のコーナー部の測定点を固定し、固定点から長さが27
5mmの辺の方向(X座標)を不動の方向として、他の
点の変位量を表示している。周囲に沿って圧縮方向の応
力分布を有しているガラス基板では内側に(図5)、周
囲に沿って引張方向の応力分布を有しているガラス基板
では外側に(図6)変形している。
Each of FIGS. 5 and 6 fixes the measurement point at the lower left corner of the lower left rectangle, and has a length of 27 mm from the fixed point.
With the direction of the 5 mm side (X coordinate) as the immovable direction, the displacement amounts of other points are displayed. The glass substrate having a stress distribution in the compression direction along the periphery is deformed inward (FIG. 5), and the glass substrate having a stress distribution in the tensile direction along the periphery is deformed outward (FIG. 6). I have.

【0046】前記の表1中の試料7のガラス基板は、比
較例であり、ガラスリボンの板幅方向でガラスリボンの
両端を加熱しながら徐冷して、周囲に引張方向の応力を
発生させたガラス基板である。最大で1MPa以上の応
力が残留しており、変形量も12.6μmと極めて大き
くなっている。
The glass substrate of Sample 7 in Table 1 above is a comparative example. The glass substrate was gradually cooled while heating both ends of the glass ribbon in the width direction of the glass ribbon to generate a tensile stress around the glass ribbon. Glass substrate. A stress of 1 MPa or more remains at the maximum, and the deformation amount is extremely large at 12.6 μm.

【0047】[0047]

【発明の効果】本発明により、ガラス基板を切断したと
きの変形量を実質上問題とならない範囲に制御できる。
本発明のガラス基板により、フラットパネルディスプレ
イを製造する際に1枚の基板中に複数面のパターンを形
成する多面取りを容易に行うことができる。
According to the present invention, the amount of deformation when a glass substrate is cut can be controlled within a range that does not substantially cause a problem.
With the glass substrate of the present invention, when manufacturing a flat panel display, it is possible to easily perform multi-panel formation in which a plurality of patterns are formed on one substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ガラス基板の切断による変形を説明する模式図
であって、(a)は、切断前のガラス基板の残留応力の
状態を説明する模式図、(b)は、(a)のガラス基板
を切断した後の形状を示す模式図、(c)は、切断前の
ガラス基板の残留応力の状態を説明する模式図、(d)
は、(c)のガラス基板を切断した後の形状を示す模式
図、である。
FIGS. 1A and 1B are schematic diagrams illustrating deformation of a glass substrate due to cutting, wherein FIG. 1A is a schematic diagram illustrating a state of residual stress of the glass substrate before cutting, and FIG. FIG. 3C is a schematic diagram illustrating a shape after cutting the substrate, FIG. 3C is a schematic diagram illustrating a state of residual stress of the glass substrate before cutting, and FIG.
(C) is a schematic diagram showing the shape after cutting the glass substrate.

【図2】ガラスリボンの幅方向の温度分布と切り出した
ガラス基板の応力分布の模式図であって、(a)は、周
辺部の温度が中央部に比べ高いときの温度分布、(b)
は、(a)のガラスリボンを切断した後の残留応力の状
態を説明する模式図、(c)は、周辺部の温度が中心部
に比べ低いときの温度分布、(d)は、(c)のガラス
リボンを切断した後の残留応力の状態を説明する模式
図、である。
FIGS. 2A and 2B are schematic diagrams of a temperature distribution in a width direction of a glass ribbon and a stress distribution of a cut glass substrate, in which FIG. 2A shows a temperature distribution when a peripheral portion is higher in temperature than a central portion, and FIG.
(A) is a schematic diagram for explaining the state of residual stress after cutting the glass ribbon, (c) is a temperature distribution when the temperature of the peripheral part is lower than that of the central part, and (d) is (c) FIG. 4 is a schematic diagram illustrating a state of residual stress after cutting the glass ribbon of FIG.

【図3】周囲が圧縮応力であるガラス基板の偏差応力測
定例を示す図である。
FIG. 3 is a diagram showing an example of measuring a deviation stress of a glass substrate whose surrounding is a compressive stress.

【図4】周囲が引張応力であるガラス基板の偏差応力測
定例を示す図である。
FIG. 4 is a diagram illustrating an example of measuring a deviation stress of a glass substrate whose periphery is a tensile stress.

【図5】周囲が圧縮応力であるガラス基板の切断による
変形例を示す図である。
FIG. 5 is a view showing a modified example of cutting a glass substrate having a compressive stress in the periphery.

【図6】周囲が引張応力であるガラス基板の切断による
変形例を示す図である。
FIG. 6 is a view showing a modified example of cutting a glass substrate whose surroundings are tensile stress.

【符号の説明】[Explanation of symbols]

1:切断前のガラス基板 2:残留応力の方向 3:切断後のガラス基板 1: glass substrate before cutting 2: direction of residual stress 3: glass substrate after cutting

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H088 HA01 HA08 HA12 HA14 JA05 JA13 MA20 2H090 JA09 JB02 KA05 KA08 LA04 LA05 LA15 4G015 CA01 CA10 CB02 EA03 5C040 GA09 GA10 JA21 KB29 MA23 MA24  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2H088 HA01 HA08 HA12 HA14 JA05 JA13 MA20 2H090 JA09 JB02 KA05 KA08 LA04 LA05 LA15 4G015 CA01 CA10 CB02 EA03 5C040 GA09 GA10 JA21 KB29 MA23 MA24

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】短辺が300mm以上、長辺が3000m
m以下の略矩形の面形状であり、かつ板厚が0.3mm
以上、6mm以下のガラス基板であって、 ガラス基板内の残留歪による、板厚方向で測定したとき
の基板面内の偏差応力が、基板内のすべての位置で1M
Pa以下であるディスプレイ用ガラス基板。
1. The short side is 300 mm or more and the long side is 3000 m.
m is a substantially rectangular surface shape with a thickness of 0.3 mm or less.
As described above, in a glass substrate having a size of 6 mm or less, the deviation stress in the substrate surface as measured in the thickness direction due to the residual strain in the glass substrate is 1 M at all positions in the substrate.
A glass substrate for display having a pressure of Pa or less.
【請求項2】板厚が0.3mm以上、6mm以下のガラ
ス基板であって、 短辺が300mm以上、長辺が3000mm以下の略矩
形の面形状に切り出された後に、加熱・徐冷の熱処理が
なされ、 かつ、ガラス基板内の残留歪による、板厚方向で測定し
たときの基板面内の偏差応力が、基板内のすべての位置
で1MPa以下であるディスプレイ用ガラス基板。
2. A glass substrate having a thickness of 0.3 mm or more and 6 mm or less, which is cut into a substantially rectangular surface shape having a short side of 300 mm or more and a long side of 3000 mm or less, and then heating and cooling. A glass substrate for a display which is subjected to a heat treatment and has a deviation stress in a substrate plane measured in a thickness direction due to residual strain in the glass substrate of 1 MPa or less at all positions in the substrate.
【請求項3】板厚が0.3mm以上、6mm以下のガラ
ス基板であって、 短辺が300mm以上、長辺が3000mm以下の略矩
形の面形状に切り出された後に、加熱・徐冷の熱処理が
なされず、 かつ、ガラス基板内の残留歪による、板厚方向で測定し
たときの基板面内の偏差応力が、基板内のすべての位置
で1MPa以下であるディスプレイ用ガラス基板。
3. A glass substrate having a thickness of 0.3 mm or more and 6 mm or less, which is cut into a substantially rectangular surface shape having a short side of 300 mm or more and a long side of 3000 mm or less, and then heating and cooling. A glass substrate for a display which is not heat-treated and has a deviation stress in the substrate plane as measured in the thickness direction due to residual strain in the glass substrate of 1 MPa or less at all positions in the substrate.
【請求項4】短辺が500mm以上、板厚が1.1mm
以下で、液晶ディスプレイパネルに用いられる請求項1
または3に記載のディスプレイ用ガラス基板。
4. The short side is 500 mm or more, and the plate thickness is 1.1 mm.
The following is used for a liquid crystal display panel.
Or the glass substrate for display according to 3.
【請求項5】短辺が500mm以上、板厚が1.5mm
以上で、プラズマディスプレイパネルに用いられる請求
項1または2に記載のディスプレイ用ガラス基板。
5. The short side is 500 mm or more, and the plate thickness is 1.5 mm.
The display glass substrate according to claim 1 or 2, which is used for a plasma display panel.
JP30757999A 1999-10-28 1999-10-28 Glass substrate for display Withdrawn JP2001130920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30757999A JP2001130920A (en) 1999-10-28 1999-10-28 Glass substrate for display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30757999A JP2001130920A (en) 1999-10-28 1999-10-28 Glass substrate for display

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009232810A Division JP2010009061A (en) 2009-10-06 2009-10-06 Method of manufacturing glass substrate for display

Publications (1)

Publication Number Publication Date
JP2001130920A true JP2001130920A (en) 2001-05-15

Family

ID=17970781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30757999A Withdrawn JP2001130920A (en) 1999-10-28 1999-10-28 Glass substrate for display

Country Status (1)

Country Link
JP (1) JP2001130920A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172881A (en) * 2003-12-08 2005-06-30 Nippon Electric Glass Co Ltd Substrate for liquid crystal display
JP2007335090A (en) * 2006-06-12 2007-12-27 Matsushita Electric Ind Co Ltd Plasma display panel
JP2008208020A (en) * 2007-01-29 2008-09-11 Nippon Electric Glass Co Ltd Glass substrate for display
JP2008209906A (en) * 2007-01-29 2008-09-11 Nippon Electric Glass Co Ltd Glass substrate for display
JP2009531269A (en) * 2006-03-24 2009-09-03 コーニング インコーポレイテッド Method for minimizing distortion in glass sheets
JP2010504273A (en) * 2006-09-20 2010-02-12 コーニング インコーポレイテッド Shape-induced in-plane stress temperature compensation of glass substrates
US8292141B2 (en) 2005-05-17 2012-10-23 Corning Incorporated Method for separating a pane of brittle material from a moving ribbon of material
CN104536173A (en) * 2015-01-22 2015-04-22 京东方科技集团股份有限公司 Liquid crystal display panel
JP2015519288A (en) * 2012-05-31 2015-07-09 コーニング インコーポレイテッド Method for reducing distortion of glass sheet
CN108529860A (en) * 2018-04-18 2018-09-14 芜湖天梦信息科技有限公司 A kind of rectangular glass cutting machine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172881A (en) * 2003-12-08 2005-06-30 Nippon Electric Glass Co Ltd Substrate for liquid crystal display
US8292141B2 (en) 2005-05-17 2012-10-23 Corning Incorporated Method for separating a pane of brittle material from a moving ribbon of material
JP2009531269A (en) * 2006-03-24 2009-09-03 コーニング インコーポレイテッド Method for minimizing distortion in glass sheets
JP2007335090A (en) * 2006-06-12 2007-12-27 Matsushita Electric Ind Co Ltd Plasma display panel
KR101455875B1 (en) 2006-09-20 2014-11-03 코닝 인코포레이티드 Temperature compensation for shape-induced inplane stresses in glass substrates
JP2010504273A (en) * 2006-09-20 2010-02-12 コーニング インコーポレイテッド Shape-induced in-plane stress temperature compensation of glass substrates
US7984625B2 (en) 2006-09-20 2011-07-26 Corning Incorporated Temperature compensation for shape-induced in-plane stresses in glass substrates
JP2008209906A (en) * 2007-01-29 2008-09-11 Nippon Electric Glass Co Ltd Glass substrate for display
JP2013083995A (en) * 2007-01-29 2013-05-09 Nippon Electric Glass Co Ltd Glass substrate for display
JP2008208020A (en) * 2007-01-29 2008-09-11 Nippon Electric Glass Co Ltd Glass substrate for display
JP2015519288A (en) * 2012-05-31 2015-07-09 コーニング インコーポレイテッド Method for reducing distortion of glass sheet
CN104536173A (en) * 2015-01-22 2015-04-22 京东方科技集团股份有限公司 Liquid crystal display panel
WO2016115811A1 (en) * 2015-01-22 2016-07-28 京东方科技集团股份有限公司 Liquid crystal display panel
CN108529860A (en) * 2018-04-18 2018-09-14 芜湖天梦信息科技有限公司 A kind of rectangular glass cutting machine

Similar Documents

Publication Publication Date Title
JP5224096B2 (en) Manufacturing method of glass substrate for display
JP2001130920A (en) Glass substrate for display
EP2247431B1 (en) Process of making mold for optical film
JP4534282B2 (en) Glass for liquid crystal display substrates
JPWO2019106886A1 (en) Display device
JP4438149B2 (en) Glass substrate for display
TW567173B (en) Glass spacer
KR100618581B1 (en) Method of fabricating liquid crystal display panel having various sizes
Hasegawa et al. In-process estimation of fracture surface morphology during wheel scribing of a glass sheet by high-speed photoelastic observation
CN101251671B (en) Exposure device and exposure system for polymerization allocating process
JP5365970B2 (en) Glass substrate for display
JP5375213B2 (en) Manufacturing method of glass substrate for display and manufacturing method of flat panel display
JP2010009061A (en) Method of manufacturing glass substrate for display
KR20030058133A (en) Jig of Adjusting Curvature of Substrate
JP5434977B2 (en) Manufacturing method of glass substrate for display and manufacturing method of flat panel display
JP2009179552A5 (en)
KR101097537B1 (en) fabrication method for in-plane switching mode LCD
JP5476807B2 (en) Method for evaluating luminance unevenness of glass substrate for display and method for manufacturing glass substrate for display
JP2012128435A (en) Glass substrate for display
KR101858554B1 (en) Method of fabricating lightweight and thin liquid crystal display device
US20020027631A1 (en) Method of fabricating liquid crystal display device, and liquid crystal display device
KR100575232B1 (en) Method of fabricating liquid crystal display panel having various driving mode
KR101832894B1 (en) Method of fabricating lightweight and thin liquid crystal display device
EP4245733A1 (en) Glass composition, glass article prepared therefrom, and display device
KR20050034957A (en) Method of fabricating vertical alignment liquid crystal display panel having various sizes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

A977 Report on retrieval

Effective date: 20081107

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090603

A521 Written amendment

Effective date: 20090608

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707

A521 Written amendment

Effective date: 20091006

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20091016

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20091106

A761 Written withdrawal of application

Effective date: 20111122

Free format text: JAPANESE INTERMEDIATE CODE: A761