JP2012128435A - Glass substrate for display - Google Patents

Glass substrate for display Download PDF

Info

Publication number
JP2012128435A
JP2012128435A JP2012014338A JP2012014338A JP2012128435A JP 2012128435 A JP2012128435 A JP 2012128435A JP 2012014338 A JP2012014338 A JP 2012014338A JP 2012014338 A JP2012014338 A JP 2012014338A JP 2012128435 A JP2012128435 A JP 2012128435A
Authority
JP
Japan
Prior art keywords
glass substrate
substrate
glass
stress
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012014338A
Other languages
Japanese (ja)
Inventor
Junichiro Kase
準一郎 加瀬
Yasumasa Nakao
泰昌 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2012014338A priority Critical patent/JP2012128435A/en
Publication of JP2012128435A publication Critical patent/JP2012128435A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a glass substrate for display in which substrate deformation generated in cutting is suppressed, thereby preventing pattern deviation in laminating.SOLUTION: A glass substrate has a nearly rectangular plane shape with a short side of 300 mm or more and a long side of 3000 mm or less, and a thickness of 0.3 mm or more and 6 mm or less. In the glass substrate for display used for high-definition, a deviatoric stress in the substrate plane, due to residual strain within the glass substrate, measured in the direction of thickness is 0.3 MPa or less at all positions in the substrate, and a photoelasticity constant is 20 to 40 (nm/cm)/(MPa). Further, the maximum deformation, after patterns of multiple planes are formed in one sheet of the substrate and cut in half, is 2.6 μm or less in the case of stress in a compression direction along the periphery and 1.9 μm or less in the case of stress in a tension direction along the periphery.

Description

本発明は、ディスプレイ用のガラス基板に関し、特に、液晶ディスプレイ(TFT−LCD、STN−LCD)、プラズマディスプレイ(PDP)、プラズマアシスト液晶ディスプレイ(PALC)、エレクトロ・ルミネッセンス・ディスプレイ(EL)、フィールド・エミッション・ディスプレイ(FED)等のフラットパネルディスプレイ(平坦なディスプレイの総称)用のガラス基板に関する。   The present invention relates to a glass substrate for display, and in particular, a liquid crystal display (TFT-LCD, STN-LCD), a plasma display (PDP), a plasma assisted liquid crystal display (PALC), an electroluminescence display (EL), a field The present invention relates to a glass substrate for flat panel displays (a general term for flat displays) such as an emission display (FED).

フラットパネルディスプレイでは、通常2枚のガラス基板が用いられ、これらガラス基板は、TFT液晶ディスプレイではアレイ側基板とカラーフィルタ側基板、プラズマディスプレイでは前面板と背面板等と呼ばれている。本発明は、これらのガラス基板に関する。   In a flat panel display, usually two glass substrates are used. These glass substrates are called an array side substrate and a color filter side substrate in a TFT liquid crystal display, and a front plate and a back plate in a plasma display. The present invention relates to these glass substrates.

フラットパネルディスプレイでは通常2枚のガラス基板が使用されており、これら2枚のガラス基板の間に発光機構や光透過制御機構が形成される。ガラス基板として使用されるガラスは、代表的なものとして、TFT液晶ディスプレイでは無アルカリホウケイ酸ガラス(たとえば、旭硝子社製[商品名:AN635、AN100等])等、STN液晶ディスプレイではソーダライムガラス(たとえば、旭硝子社製[商品名:AS])等、プラズマディスプレイでは高歪点ガラス(たとえば、旭硝子社製[商品名:PD200])等が用いられている。   A flat panel display normally uses two glass substrates, and a light emission mechanism and a light transmission control mechanism are formed between the two glass substrates. Typical examples of the glass used as the glass substrate include non-alkali borosilicate glass (for example, manufactured by Asahi Glass Co., Ltd. [trade name: AN635, AN100, etc.) for TFT liquid crystal displays, and soda lime glass (for STN liquid crystal displays). For example, high strain point glass (for example, [trade name: PD200] manufactured by Asahi Glass Co., Ltd.) or the like is used in plasma displays.

これらのガラス基板は、フロート法、フュージョン法、スリットダウンドロー法等の方法で製造されている。これらの製造方法によって一定の厚さに成形されたガラスリボンは、所定寸法の面形状に切り出され、ガラス基板として供給される。また、一部のガラス基板では、成形後に熱収縮率(コンパクション)を一定の値に制御する目的で、徐冷処理(アニール処理)が施される。   These glass substrates are manufactured by a method such as a float method, a fusion method, or a slit down draw method. The glass ribbon formed into a certain thickness by these manufacturing methods is cut into a surface shape of a predetermined dimension and supplied as a glass substrate. Some glass substrates are subjected to a slow cooling treatment (annealing treatment) for the purpose of controlling the heat shrinkage rate (compaction) to a constant value after molding.

上記ガラス基板を用いたフラットパネルディスプレイの製造において、生産効率を上げるため、多面取りが行われる場合がある。すなわち、1枚のガラス基板中に、2面分、4面分、6面分、8面分等のパネル用の複数のパターンを形成し、同時に複数面のパネルの製造が行われる。複数面のパターンが形成されたパネルは、2枚の基板の張り合わせ前、または張り合わせ後にそれぞれ1面分の大きさに切断され、製品パネルの寸法となる。   In the manufacture of a flat panel display using the above glass substrate, multiple chamfering may be performed in order to increase production efficiency. That is, a plurality of patterns for a panel such as two surfaces, four surfaces, six surfaces, and eight surfaces are formed in one glass substrate, and a plurality of panels are manufactured at the same time. A panel on which a pattern of a plurality of surfaces is formed is cut into a size corresponding to one surface before or after the bonding of the two substrates, and becomes the size of the product panel.

特開平5−339021号公報JP-A-5-339021 特開平5−163032号公報JP-A-5-163032

上記多面取り基板において、ガラス基板に平面方向の歪が存在すると切断により図1に示されるような変形が発生する。ここで、図中の矢印2は残留応力の方向を示す。すなわち、図1は、ガラス基板1の切断による変形を説明する模式図であって、(a)は、切断前のガラス基板1の残留応力の状態を説明する模式図、(b)は、(a)のガラス基板1を切断した後の形状を示す模式図、(c)は、切断前のガラス基板1の残留応力の状態を説明する模式図、(d)は、(c)のガラス基板を切断した後の形状を示す模式図である。   In the multi-planar substrate, if a strain in the plane direction exists in the glass substrate, the deformation as shown in FIG. 1 occurs due to cutting. Here, the arrow 2 in the figure indicates the direction of residual stress. That is, FIG. 1 is a schematic diagram for explaining deformation due to cutting of the glass substrate 1, (a) is a schematic diagram for explaining the state of residual stress of the glass substrate 1 before cutting, and (b) is ( The schematic diagram which shows the shape after cut | disconnecting the glass substrate 1 of a), (c) is a schematic diagram explaining the state of the residual stress of the glass substrate 1 before cutting | disconnection, (d) is the glass substrate of (c). It is a schematic diagram which shows the shape after cut | disconnecting.

このような変形が発生すると、2枚のガラス基板を張り合わせた際に、形成したパターンにズレが発生するが、このようなパターンのズレは品質上問題となる。たとえば、TFT液晶ディスプレイの製造工程では数μm〜十数μmのパターンズレで輝度の低下による表示むらが発生する。   When such deformation occurs, a deviation occurs in the formed pattern when the two glass substrates are bonded to each other. However, such a deviation of the pattern is a quality problem. For example, in the manufacturing process of a TFT liquid crystal display, display unevenness due to a decrease in luminance occurs due to a pattern shift of several μm to several tens of μm.

上記切断によるガラス基板の変形は、ガラス基板の大きさにも依存し、平面寸法の大きなガラス基板ほど顕著である。すなわち、ガラス基板の平面の面内に一様に歪が分布している場合、ガラス基板の平面寸法が大きくなるほど残留応力が増大する。また、一定形状の変形をした場合(相似形状の場合)、ガラス基板の平面寸法が大きくなるほど基板周辺部での変形量が増大する。特に、切断によるガラス基板の変形は、矩形では短辺が300mm以上の大きさのガラス基板において顕著に発生する問題である。   The deformation of the glass substrate due to the cutting depends on the size of the glass substrate, and the glass substrate having a larger planar dimension is more conspicuous. That is, when the strain is uniformly distributed in the plane of the glass substrate, the residual stress increases as the plane dimension of the glass substrate increases. In addition, when a certain shape is deformed (similar shape), the amount of deformation at the periphery of the substrate increases as the planar dimension of the glass substrate increases. In particular, the deformation of the glass substrate due to cutting is a problem that occurs remarkably in a rectangular glass substrate having a short side of 300 mm or more.

ここで、ガラス基板の歪とガラス基板の反りの関係について説明する。ガラス基板は冷却時の熱履歴により、内部に歪が生じ、残留応力が発生する。この現象を利用したガラスとしては物理強化ガラスが知られている。すなわち、ガラスの冷却時に表面に空気等を吹きつけ、表面を強制的に冷却することにより、ガラス表面に圧縮応力層を形成する方法である。   Here, the relationship between the distortion of the glass substrate and the warp of the glass substrate will be described. The glass substrate is distorted inside due to the thermal history during cooling, and residual stress is generated. Physically tempered glass is known as a glass using this phenomenon. That is, it is a method of forming a compressive stress layer on the glass surface by blowing air or the like on the surface when the glass is cooled and forcibly cooling the surface.

ガラスの歪は、強化ガラスで知られているガラスの断面方向の応力分布のみに限らず、平面方向でも発生する。すなわち、ガラス基板の冷却時に、ガラス基板の中央部に比べて周辺部の温度が低いと、ガラス基板面内において周囲に沿って圧縮方向の応力が発生する。逆にガラス基板の冷却時に、中央部に比べて周辺部の温度が高いと、ガラス基板面内において周囲に沿って引張方向の応力が発生する。   The distortion of the glass occurs not only in the stress distribution in the cross-sectional direction of the glass known as tempered glass but also in the plane direction. That is, when the temperature of the peripheral portion is lower than that of the central portion of the glass substrate when the glass substrate is cooled, stress in the compression direction is generated along the periphery within the glass substrate surface. Conversely, when the temperature of the peripheral part is higher than that of the central part during cooling of the glass substrate, a stress in the tensile direction is generated along the periphery in the glass substrate surface.

前述した図1は、周囲に歪による応力が残留している基板を切断した際に起きる基板の変形を模式的に示している。周囲に圧縮応力がかかっている基板では、切断後に圧縮の歪が開放されて伸びるために内側に変形する(図1(b)の状態)。周囲に引張応力がかかっている基板では、切断後に引張の歪が開放されて縮むために外側に変形する(図1(d)の状態)。   FIG. 1 described above schematically shows the deformation of the substrate that occurs when the substrate in which the stress due to the strain remains is cut. In the substrate where compressive stress is applied to the periphery, the substrate is deformed inward because the compressive strain is released and stretched after cutting (the state shown in FIG. 1B). In the substrate where tensile stress is applied to the surroundings, the substrate is deformed to the outside because the tensile strain is released and contracts after cutting (the state shown in FIG. 1D).

以上に説明したように、ガラス基板に歪が存在すると、切断時に基板の変形となる。したがって、歪が存在しないガラス基板、または歪が基板を変形させない程度の一定値以下であるガラス基板が望まれていた。   As described above, when a strain exists in the glass substrate, the substrate is deformed at the time of cutting. Therefore, there has been a demand for a glass substrate having no strain or a glass substrate having a certain value or less that does not deform the substrate.

本発明は、短辺が300mm以上、長辺が3000mm以下の略矩形の面形状であり、かつ板厚が0.3mm以上、6mm以下のガラス基板であって、ガラス基板内の残留歪による、板厚方向で測定したときの基板面内の偏差応力が、基板内のすべての位置で0.3MPa以下であり、光弾性定数が20〜40(nm/cm)/(MPa)であり、1枚の基板中に複数面のパターンが形成され、半分に切断された後の最大変形が、応力方向が周囲圧縮である場合には2.6μm以下、応力方向が周囲引張である場合には1.9μm以下である高精細の用途のディスプレイ用ガラス基板を提供する。
このような、基板内の残留歪による偏差応力が小さいガラス基板では、切断時に基板の変形が生じないか、ほとんど無視しうるレベルであり、ディスプレイ用ガラス基板として望ましい。
なお、本発明のガラス基板は実質的に略矩形のものであり、周辺部の隅を切り落とした(コーナーカットした)ガラス基板をも含む。
The present invention is a glass substrate having a substantially rectangular surface shape with a short side of 300 mm or more and a long side of 3000 mm or less, and a plate thickness of 0.3 mm or more and 6 mm or less, due to residual strain in the glass substrate, The deviation stress in the substrate surface when measured in the thickness direction is 0.3 MPa or less at all positions in the substrate, and the photoelastic constant is 20 to 40 (nm / cm) / (MPa). The maximum deformation after a multi-surface pattern is formed on a single substrate and cut in half is 2.6 μm or less when the stress direction is ambient compression, and 1 when the stress direction is ambient tension. Provided is a glass substrate for display for high-definition applications having a size of .9 μm or less.
Such a glass substrate having a small deviation stress due to residual strain in the substrate is desirable as a glass substrate for a display because the substrate is not deformed during cutting or almost negligible.
In addition, the glass substrate of this invention is a substantially rectangular thing, and includes the glass substrate which cut off the corner of the peripheral part (corner cut).

また、本発明においては、略矩形の面形状に切り出された後に、加熱・徐冷の熱処理がなされてもよい。
基板内の残留歪による偏差応力が大きく、ディスプレイ用のガラス基板として望ましくないガラス基板であっても、このような処理を施すことで基板内の残留歪による偏差応力を小さくできる。
In the present invention, after being cut into a substantially rectangular surface shape, a heat treatment of heating / slow cooling may be performed.
Even if the glass substrate is not desirable as a glass substrate for a display because the residual stress due to the residual strain in the substrate is large, the stress due to the residual strain in the substrate can be reduced by performing such processing.

また、本発明においては、ガラス基板成形時の製造条件を最適化し、基板内の残留歪による偏差応力の小さいガラス基板を製造できれば、加熱・徐冷の熱処理が不要であり、最も望ましい。   In the present invention, if the manufacturing conditions at the time of molding the glass substrate are optimized and a glass substrate having a small deviation stress due to residual strain in the substrate can be manufactured, heating / annealing heat treatment is unnecessary, which is most desirable.

また、本発明は、短辺が500mm以上、板厚が1.1mm以下で、液晶ディスプレイパネルに用いられるディスプレイ用ガラス基板を提供する。
液晶ディスプレイパネルには、通常は上記板厚のガラス基板が使用され、このような板厚であれば、成形過程で歪は生じにくく、加熱・徐冷の熱処理が不要である。
Moreover, this invention provides the glass substrate for a display used for a liquid crystal display panel whose short side is 500 mm or more and plate | board thickness is 1.1 mm or less.
In the liquid crystal display panel, a glass substrate having the above-mentioned plate thickness is usually used. With such a plate thickness, distortion is not easily generated in the molding process, and heating / annealing heat treatment is unnecessary.

また、本発明は、短辺が500mm以上、板厚が1.5mm以上で、プラズマディスプレイパネルに用いられるディスプレイ用ガラス基板を提供する。
プラズマディスプレイパネルには、通常は上記板厚のガラス基板が使用される。このような板厚であれば、加熱・徐冷の熱処理が基板内の残留歪の減少に有効である。
The present invention also provides a glass substrate for display having a short side of 500 mm or more and a plate thickness of 1.5 mm or more and used for a plasma display panel.
For the plasma display panel, a glass substrate having the above thickness is usually used. With such a plate thickness, heating / slow cooling heat treatment is effective in reducing residual strain in the substrate.

本発明により、ガラス基板を切断したときの変形量を実質上問題とならない範囲に制御できる。本発明において、フラットパネルディスプレイを製造する際に1枚の基板中に複数面のパターンを形成する多面取りを容易に行うことができる。   According to the present invention, the amount of deformation when the glass substrate is cut can be controlled within a range that does not cause a problem. In the present invention, when a flat panel display is manufactured, a multi-surface pattern forming a pattern of a plurality of surfaces in one substrate can be easily performed.

ガラス基板の切断による変形を説明する模式図であって、(a)は、切断前のガラス基板の残留応力の状態を説明する模式図、(b)は、(a)のガラス基板を切断した後の形状を示す模式図、(c)は、切断前のガラス基板の残留応力の状態を説明する模式図、(d)は、(c)のガラス基板を切断した後の形状を示す模式図、である。It is a schematic diagram explaining the deformation | transformation by the cutting | disconnection of a glass substrate, Comprising: (a) is a schematic diagram explaining the state of the residual stress of the glass substrate before cutting | disconnection, (b) cut | disconnected the glass substrate of (a). The schematic diagram which shows the shape after the cutting | disconnection, (c) is a schematic diagram explaining the state of the residual stress of the glass substrate before a cutting | disconnection, (d) is the schematic diagram which shows the shape after cut | disconnecting the glass substrate of (c). . ガラスリボンの幅方向の温度分布と切り出したガラス基板の応力分布の模式図であって、(a)は、周辺部の温度が中央部に比べ高いときの温度分布、(b)は、(a)のガラスリボンを切断した後の残留応力の状態を説明する模式図、(c)は、周辺部の温度が中心部に比べ低いときの温度分布、(d)は、(c)のガラスリボンを切断した後の残留応力の状態を説明する模式図、である。It is a schematic diagram of the temperature distribution of the width direction of a glass ribbon, and the stress distribution of the cut-out glass substrate, (a) is a temperature distribution when the temperature of a peripheral part is higher than a center part, (b) is (a ) Is a schematic diagram for explaining the state of residual stress after cutting the glass ribbon, (c) is a temperature distribution when the temperature of the peripheral portion is lower than the central portion, and (d) is the glass ribbon of (c). It is a schematic diagram explaining the state of the residual stress after cut | disconnecting. 周囲が圧縮応力であるガラス基板の偏差応力測定例を示す図である。It is a figure which shows the example of deviation stress measurement of the glass substrate whose circumference | surroundings are compressive stress. 周囲が引張応力であるガラス基板の偏差応力測定例を示す図である。It is a figure which shows the example of deviation stress measurement of the glass substrate whose circumference | surroundings are tensile stress. 周囲が圧縮応力であるガラス基板の切断による変形例を示す図である。It is a figure which shows the modification by the cutting | disconnection of the glass substrate whose periphery is a compressive stress. 周囲が引張応力であるガラス基板の切断による変形例を示す図である。It is a figure which shows the modification by the cutting | disconnection of the glass substrate whose periphery is a tensile stress.

本発明において、ガラス基板中の歪および応力は以下に述べる方法で測定される。
ガラス基板中の歪は光学的な複屈折の測定、すなわち直交する直線偏光波の光路差の測定で見積ることができる。光路差をR(nm)として、歪により発生する偏差応力F(MPa)は、
F=R/CL
として表される。ここでLは偏光波が通過した距離(cm)であり、Cはガラスによって決まる比例定数で光弾性定数と呼ばれ、通常20〜40(nm/cm)/(MPa)の値となる。
In the present invention, strain and stress in the glass substrate are measured by the method described below.
The strain in the glass substrate can be estimated by measuring optical birefringence, that is, by measuring the optical path difference of orthogonal linearly polarized waves. When the optical path difference is R (nm), the deviation stress F (MPa) generated by the strain is
F = R / CL
Represented as: Here, L is the distance (cm) through which the polarized wave has passed, and C is a proportional constant determined by the glass, which is called a photoelastic constant, and is usually 20 to 40 (nm / cm) / (MPa).

ガラスに歪がないとき、すなわち応力がない、または等方的な応力がかかっているときは、2つの直交する直線偏光波は同一速度でガラス内を通過する。ガラス面内に歪があると、圧縮応力方向では偏光波が速く通過し、引張応力方向では偏光波はゆっくり通過する。すなわち、2つの直交する直線偏光波に光路差が発生する。基板平面に垂直に光路をとり、光路差が最大となる方位とその大きさを測定することで、ガラス基板中の歪の方向性と大きさを測定できる。この値を偏差応力とする。   When the glass is not distorted, i.e. when there is no stress or isotropic stress, the two orthogonal linearly polarized waves pass through the glass at the same speed. When there is distortion in the glass surface, the polarized wave passes fast in the direction of compressive stress, and the polarized wave passes slowly in the direction of tensile stress. That is, an optical path difference is generated between two orthogonal linearly polarized waves. By taking an optical path perpendicular to the substrate plane and measuring the direction and magnitude of the optical path difference at the maximum, the directionality and magnitude of strain in the glass substrate can be measured. This value is defined as the deviation stress.

偏差応力Fは、偏光波の光路差から測定される応力値で、平面内に存在する応力の異方性を表す指標となる。偏差応力Fは、ガラス基板内で偏光が通過した距離の平均値であり、光路と垂直な面内で直交する任意の2軸において、応力差が最大となる方向とその応力差として求められる。ガラス基板面内のある方向(たとえばX方向)に圧縮応力が残留している場合と、それと垂直な方向(Y方向)に同じ大きさの引張応力が残留している場合では、偏差応力の測定は同一の結果となる。また、直交する2軸方向(X方向とY方向)に同じ量の圧縮または引張応力が残留していると、偏差応力はゼロとなる。   The deviation stress F is a stress value measured from the optical path difference of the polarized wave and serves as an index representing the anisotropy of the stress existing in the plane. The deviation stress F is an average value of the distance through which the polarized light has passed through the glass substrate, and is obtained as the stress difference direction and the stress difference direction in any two axes orthogonal to each other in a plane perpendicular to the optical path. Measurement of deviation stress when compressive stress remains in a certain direction (for example, X direction) in the glass substrate surface and when tensile stress of the same magnitude remains in a direction perpendicular to it (Y direction) Give the same result. In addition, if the same amount of compressive or tensile stress remains in two orthogonal directions (X direction and Y direction), the deviation stress becomes zero.

直線偏光波を利用したガラスの歪測定は、セナルモン法等が知られており、数十nmの光路差を検出できる。従来、ガラスの歪測定は、主に強化ガラス等に残留している数十MPaの応力を対象としており、セナルモン法はこのような歪測定には充分な分析精度を有していた。   Senalmon method or the like is known for measuring strain of glass using a linearly polarized wave, and an optical path difference of several tens of nm can be detected. Conventionally, strain measurement of glass has mainly been directed to stress of several tens of MPa remaining in tempered glass or the like, and the Senarmon method has sufficient analysis accuracy for such strain measurement.

しかし、フラットパネルディスプレイ用のガラス基板に平面方向で残留している応力は0.1MPa〜5MPaの大きさであり、従来の測定方法では充分に検出できない。そこで、本発明者らは、歪の検出装置としてユニオプト社製ABR−10A複屈折測定器を使用した。ABR−10A複屈折測定器は、横ゼーマンレーザー光を照射し、直交する直線偏光波の位相差を検出することにより、複屈折の光路差と主軸方位を測定する装置である。分解能として、光路差0.01nm、主軸方位0.1度の精度を有する。   However, the stress remaining in the plane direction on the glass substrate for a flat panel display has a magnitude of 0.1 MPa to 5 MPa and cannot be sufficiently detected by the conventional measurement method. Therefore, the present inventors used an ABR-10A birefringence measuring device manufactured by UNIOPT as a strain detection device. The ABR-10A birefringence measuring device is an apparatus that measures the optical path difference and principal axis direction of birefringence by irradiating a transverse Zeeman laser beam and detecting the phase difference of orthogonal linearly polarized waves. As a resolution, it has an accuracy of an optical path difference of 0.01 nm and a principal axis direction of 0.1 degree.

ガラス基板の残留歪は、ガラスリボン成形後の徐冷における温度分布に依存して発生する。すなわち、先に冷えた部分に圧縮応力が形成され、後から冷えた部分には引張応力が形成される。このことはガラスの物理強化または風冷強化の原理としてよく知られている。強化ガラスでは、ガラス表面を急冷することにより表面に圧縮応力層を形成している。   The residual strain of the glass substrate is generated depending on the temperature distribution in the slow cooling after forming the glass ribbon. That is, a compressive stress is formed in a portion that has been cooled earlier, and a tensile stress is formed in a portion that has been cooled later. This is well known as the principle of physical strengthening or air cooling strengthening of glass. In tempered glass, a compressive stress layer is formed on the surface by rapidly cooling the glass surface.

強化ガラスは、ガラスの板厚方向での応力分布を利用しているが、ガラスには平面方向での応力分布も存在している。本発明者らは、ガラス基板の平面方向での応力分布が、ガラス切断時の変形の原因となること、および、歪による残留する応力を一定値以下に制御することによって変形を抑制した基板が得られること、を見い出した。   The tempered glass uses the stress distribution in the thickness direction of the glass, but the glass also has a stress distribution in the plane direction. The present inventors have found that a substrate in which the stress distribution in the plane direction of the glass substrate causes deformation during glass cutting and that the deformation is suppressed by controlling the residual stress due to strain to a certain value or less. I found out that I could get it.

ガラス基板の平面方向での応力分布は、ガラスリボン成形後の冷却時の温度分布によって発生する。一般にフラットパネルディスプレイ用のガラス基板は、フロート法、フュージョン法、スリット・ダウンドロー法等の製造方法により、連続的に製造されている。したがって、冷却時の温度分布、特に製造時のガラスリボンの流れと垂直な板幅方向の温度分布によって支配される。   The stress distribution in the plane direction of the glass substrate is generated by the temperature distribution during cooling after forming the glass ribbon. In general, a glass substrate for a flat panel display is continuously manufactured by a manufacturing method such as a float method, a fusion method, or a slit down-draw method. Therefore, it is governed by the temperature distribution during cooling, particularly the temperature distribution in the plate width direction perpendicular to the flow of the glass ribbon during production.

図2に、ガラスリボンの板幅方向の温度分布と、切り出したガラス基板1の応力分布を模式的に示す。ここで、図中の矢印2は残留応力の方向を示す。周辺部の温度が中心部に比べ低いとき、すなわち図中(a)の状態のときは周辺部に圧縮の残留応力が入り図中(b)の状態となり、周辺部の温度が中央部に比べ高いとき、すなわち図中(c)の状態のときは周辺部に引張の残留応力が入り図中(d)の状態となる。   In FIG. 2, the temperature distribution of the plate | board width direction of a glass ribbon and the stress distribution of the cut-out glass substrate 1 are shown typically. Here, the arrow 2 in the figure indicates the direction of residual stress. When the temperature of the peripheral part is lower than that of the central part, that is, in the state of (a) in the figure, the residual stress of compression enters the state of the peripheral part and becomes the state of (b) in the figure, and the temperature of the peripheral part is compared with the central part. When it is high, that is, when it is in the state of (c) in the figure, the tensile residual stress enters the peripheral portion, and the state of (d) in the figure is reached.

本発明者らは、ガラスリボンの板幅方向の温度分布とガラス基板の残留応力との関係を検証し、上記温度分布を操作することによりガラス基板の残留応力が極めて少なくなる条件を見い出した。   The present inventors verified the relationship between the temperature distribution of the glass ribbon in the plate width direction and the residual stress of the glass substrate, and found the condition that the residual stress of the glass substrate becomes extremely small by manipulating the temperature distribution.

また、ガラス基板の残留応力を低減するためには、ガラス基板製造工程において、所定寸法に切り出された略矩形のガラス基板のアニール処理、すなわち再加熱・徐冷の熱処理工程を施すことが有効である。このように、ガラス基板にアニール処理を施す場合には、基板の変形や傷の発生に充分に注意して行い、ガラス基板の徐冷点温度付近まで加熱し、歪点温度付近までの徐冷を行えばよい。   In order to reduce the residual stress of the glass substrate, it is effective to perform an annealing process of the substantially rectangular glass substrate cut out to a predetermined size, that is, a reheating / annealing heat treatment process in the glass substrate manufacturing process. is there. As described above, when the annealing treatment is performed on the glass substrate, it is necessary to pay close attention to the deformation of the substrate and the generation of scratches, and heat the glass substrate to near the annealing point temperature, and gradually cool it to near the strain point temperature. Can be done.

一般的に、プラズマディスプレイパネルは、50型(対角で約1270mm)以上の大型のものが多く、用いられるディスプレイ用ガラス基板のサイズも大きく、また板厚も大きい。したがって、板ガラス成形過程で歪が生じやすく、ガラス基板成形後にアニール処理を施す効果はある。ただし、前述のように、ガラス基板成形時のアニール処理で温度分布を操作することによりガラス基板の残留応力を極めて少なくし、ガラス基板成形後のアニール処理を不要とすることもできる。   Generally, there are many large plasma display panels of 50 type (diagonal approximately 1270 mm) or more, and the size of the glass substrate used for display is large and the plate thickness is also large. Therefore, distortion is likely to occur in the plate glass forming process, and there is an effect of performing an annealing process after forming the glass substrate. However, as described above, the residual stress of the glass substrate can be extremely reduced by manipulating the temperature distribution in the annealing process at the time of forming the glass substrate, and the annealing process after forming the glass substrate can be made unnecessary.

一方、液晶ディスプレイパネルは軽量化の要求が強いため、用いられるディスプレイ用ガラス基板の板厚は一般的に小さい。したがって、成形過程で歪は生じにくく、ガラス基板成形後にアニール処理を施す必要性は少ない。   On the other hand, since the liquid crystal display panel has a strong demand for weight reduction, the thickness of the glass substrate for display used is generally small. Therefore, distortion hardly occurs in the molding process, and there is little need to perform an annealing process after the glass substrate is molded.

生産コストの面からは、ガラス基板成形後のアニール処理はコストの上昇につながるため、実施しないことが好ましい。ガラス基板成形後にアニール処理を施さない場合は、ガラス基板成形時に長い徐冷ゾーンを確保できるフロート法等の横引きの成形方法が好ましい。   From the standpoint of production cost, it is preferable not to perform the annealing process after the glass substrate molding because it leads to an increase in cost. When the annealing treatment is not performed after the glass substrate is formed, a horizontal drawing method such as a float method, which can ensure a long slow cooling zone when the glass substrate is formed, is preferable.

前述のとおり、光学的に測定される残留応力は、正確には偏差応力である。すなわち、光軸と垂直な面内において直交する2つの方向の応力差を測定している。ガラス基板の周辺部では、基板が辺において切れているため、辺に垂直な方向での応力は作用せず、辺に平行な方向でのみ歪による応力が残留する。したがって、辺近傍での偏差応力は残留応力とほぼ等しいものになる。一方、基板中央部での偏差応力は面内のあらゆる方向から歪による応力が加わり、直交する方向で相対的に打ち消されるため、真の残留応力より小さい値が測定される。そこで、本発明では、ガラス基板面内において、たとえば縦横に50mm間隔での偏差応力の測定を行い、すべての測定点での偏差応力の最大値を指標とした。   As described above, the optically measured residual stress is precisely a deviation stress. That is, the stress difference in two directions orthogonal to each other in a plane perpendicular to the optical axis is measured. In the peripheral part of the glass substrate, since the substrate is cut at the side, the stress in the direction perpendicular to the side does not act, and the stress due to strain remains only in the direction parallel to the side. Therefore, the deviation stress in the vicinity of the side is substantially equal to the residual stress. On the other hand, since the stress due to strain is applied from all directions within the plane and the relative stress is canceled in the orthogonal direction, the deviation stress at the center of the substrate is measured to be smaller than the true residual stress. Therefore, in the present invention, the deviation stress is measured, for example, at intervals of 50 mm vertically and horizontally within the surface of the glass substrate, and the maximum value of the deviation stress at all measurement points is used as an index.

その結果、短辺が300mm以上、長辺が3000mm以下の略矩形の面形状であり、かつ板厚が0.3mm以上、6mm以下であって、基板内の残留歪による、板厚方向で測定したときの基板面内の偏差応力が、光線を当てて光学的手法により測定した場合、基板内のすべて位置で1MPa以下であるとき、より好ましくは0.6MPa以下であるとき、高精細の用途等のガラス基板においては0.3MPa以下であるときに、切断による変形量が実用上問題にならない程度に小さくなることを見い出した。   As a result, it has a substantially rectangular surface shape with a short side of 300 mm or more and a long side of 3000 mm or less, and a plate thickness of 0.3 mm or more and 6 mm or less, measured in the plate thickness direction due to residual strain in the substrate. When the deviation stress in the surface of the substrate is measured by an optical method by applying light, when it is 1 MPa or less at all positions in the substrate, more preferably 0.6 MPa or less, high-definition use It has been found that the amount of deformation due to cutting is small enough not to cause a practical problem when the glass substrate is 0.3 MPa or less.

基板面積が小さいときは残留応力による変形量も小さいため、変形が発生しても実質的に問題とはならない。基板寸法が、矩形では短辺が300mm以上、より顕著には短辺が500mm以上であるときは、変形量が大きくなるため残留応力の制御が必要となる。基板寸法が、矩形では短辺が3000mmを超えると、重量や基板のたわみの問題により、ガラス基板の取り扱いが困難となり実用的ではないため、残留応力の制御をする意味はない。   When the substrate area is small, the amount of deformation due to the residual stress is small, so that even if deformation occurs, there is no substantial problem. When the substrate size is rectangular and the short side is 300 mm or more, and more notably, the short side is 500 mm or more, the amount of deformation becomes large, so that the residual stress must be controlled. When the substrate size is rectangular and the short side exceeds 3000 mm, handling of the glass substrate becomes difficult and impractical due to problems of weight and substrate deflection, so there is no point in controlling residual stress.

ガラス基板の板厚が0.3mm未満の場合は、ガラス基板強度の低下やたわみの増加が問題となり実用的ではない。プラズマディスプレイパネル等の30型(対角で約762mm)以上の大型ディスプレイの基板では、強度の観点から板厚は1.5mm以上が好ましい。板厚が6mmを超えるときは、ガラス基板の重量が重くなりすぎて不適である。液晶ディスプレイ等の軽量化が重視される用途においては、板厚は1.1mm以下が好ましい。したがって、プラズマディスプレイ等の用途においては、1.5mm以上、6mm以下が、液晶ディスプレイ等の用途においては、0.3mm以上、1.1mm以下が好ましい。   When the thickness of the glass substrate is less than 0.3 mm, a decrease in the strength of the glass substrate and an increase in deflection are problematic and are not practical. In a large display substrate such as a plasma display panel of 30 type (diagonal approximately 762 mm) or more, the plate thickness is preferably 1.5 mm or more from the viewpoint of strength. When the plate thickness exceeds 6 mm, the glass substrate is too heavy, which is not suitable. In applications where weight reduction is important, such as liquid crystal displays, the plate thickness is preferably 1.1 mm or less. Therefore, 1.5 mm or more and 6 mm or less are preferable for applications such as a plasma display, and 0.3 mm or more and 1.1 mm or less are preferable for applications such as a liquid crystal display.

ガラス基板の切断により生じる変形量は、ガラス基板の寸法、切断位置、ガラス基板中の残留応力、ガラスの縦弾性係数に依存する。以下においては、縦弾性係数7500kg/mm2、光弾性定数27.6(nm/cm)/(MPa)のガラス基板を使用した。ガラス基板はフロート法により、肉厚0.7mmに成形し、試験用ガラス基板として、矩形で550mm×670mmの寸法に切り出した。この際、550mmの辺がガラスリボンの板幅方向、670mmの辺がガラスリボンの流れ方向となるようにした。 The amount of deformation caused by cutting the glass substrate depends on the size of the glass substrate, the cutting position, the residual stress in the glass substrate, and the longitudinal elastic modulus of the glass. In the following, a glass substrate having a longitudinal elastic modulus of 7500 kg / mm 2 and a photoelastic constant of 27.6 (nm / cm) / (MPa) was used. The glass substrate was formed into a thickness of 0.7 mm by a float method, and was cut into a rectangular size of 550 mm × 670 mm as a test glass substrate. At this time, the side of 550 mm was in the plate width direction of the glass ribbon, and the side of 670 mm was in the flow direction of the glass ribbon.

試験用ガラス基板の製造時には、ガラスリボンの板幅方向の温度分布がなるべく均一になるように操作し、歪による残留応力が少なくなるようにした。
偏差応力は、前記のユニオプト社製ABR−10A複屈折測定器を使用し、複屈折の光路差から換算して求めた。測定は縦横それぞれ50mm間隔で、1枚のガラス基板で計143点に対し行った。
During the production of the test glass substrate, the glass ribbon was operated so that the temperature distribution in the plate width direction was as uniform as possible so that the residual stress due to strain was reduced.
The deviation stress was obtained by converting from the optical path difference of birefringence using the above-mentioned ABR-10A birefringence measuring device manufactured by UNIOPT. The measurement was carried out on a total of 143 points on a single glass substrate at intervals of 50 mm in the vertical and horizontal directions.

応力を測定したガラス基板には、カラーフィルタ用のブラックマトリックスを形成し、ブラックマトリックスのコーナー部の位置を精密測長機(ソキア社製UMIC800)で測定した。具体的には、上記ガラス基板に長方形(サイズ:244.494mm×183.893mm)矩形パターンを6面形成し、各長方形の頂点のX、Y座標を計測した。長方形の配置は、図5、図6に示される位置関係であり、隣接する長方形間の間隔は、X、Yいずれの方向においても27mmである。   A black matrix for a color filter was formed on the glass substrate on which the stress was measured, and the positions of the corners of the black matrix were measured with a precision length measuring device (UMIC800 manufactured by Socia). Specifically, six rectangular patterns (size: 244.494 mm × 183.893 mm) were formed on the glass substrate, and the X and Y coordinates of the vertices of each rectangle were measured. The arrangement of the rectangles is the positional relationship shown in FIGS. 5 and 6, and the interval between adjacent rectangles is 27 mm in both the X and Y directions.

ガラス基板を670mmの辺と平行方向で半分に切断し、すなわち、275mm×670mmのサイズに切断し、再びブラックマトリックスのコーナー部を測長し、切断前後での変形量を評価した。   The glass substrate was cut in half in a direction parallel to the side of 670 mm, that is, cut into a size of 275 mm × 670 mm, the corner portion of the black matrix was measured again, and the amount of deformation before and after cutting was evaluated.

表1に測定した基板の偏差応力の方向と最大応力、および切断後の変形の向きと最大変形量を示す。なお、光路差も併記した。表中、試料1〜6は実施例、試料7は比較例である。すなわち、試料1〜6は、ガラスリボンの板幅方向での温度分布がなるべく均一になるように制御した試料である。このうち、試料1〜3はガラスリボンの中央部の温度が周辺部に比べてやや高く、試料4〜6はガラスリボンの中央部の温度が周辺部に比べてやや低くなっていたと推定される。   Table 1 shows the direction and maximum stress of the deviation stress of the substrate measured, and the direction of deformation and the maximum deformation after cutting. The optical path difference is also shown. In the table, samples 1 to 6 are examples, and sample 7 is a comparative example. That is, Samples 1 to 6 are samples controlled so that the temperature distribution in the plate width direction of the glass ribbon is as uniform as possible. Among these samples, it is estimated that the samples 1 to 3 have a slightly higher temperature at the center of the glass ribbon than the periphery, and samples 4 to 6 have a slightly lower temperature at the center of the glass ribbon than the periphery. .

Figure 2012128435
試料1〜3のガラス基板は、周囲に沿って圧縮方向の応力分布を有しており、切断により圧縮部分が開放されて伸びるため、内側へ変形している。一方、試料4〜6のガラス基板は、周囲に沿って引張方向の応力分布を有しており、切断により引張部分が開放されて縮むため、外側へ変形している。試料1と4の基板について偏差応力の測定結果をそれぞれ図3と図4に、切断後の変形挙動をそれぞれ図5と図6に示す。
Figure 2012128435
The glass substrates of Samples 1 to 3 have a stress distribution in the compression direction along the periphery, and are deformed inward because the compression portion is opened and stretched by cutting. On the other hand, the glass substrates of Samples 4 to 6 have a stress distribution in the tensile direction along the periphery, and are deformed to the outside because the tensile portions are opened and contracted by cutting. The measurement results of the deviation stress for the substrates of Samples 1 and 4 are shown in FIGS. 3 and 4, respectively, and the deformation behavior after cutting is shown in FIGS. 5 and 6, respectively.

図3、図4は、ユニオプト社製ABR−10A複屈折測定器により測定した結果で、各円の中心が測定点を示し、円の直径の長さが偏差応力の大きさ、円の直径として描かれた線が相対的に引張応力となる方向、直径の線と垂直方向が相対的に圧縮応力となる方向を示している。図3は円直径の線がガラス基板中央を向いており、ガラス基板周囲が圧縮方向であることが分かる。一方、図4は円直径の線が基板周囲に沿って回っており、ガラス基板周囲が引張方向であることが分かる。   FIG. 3 and FIG. 4 are the results of measurement using an ABR-10A birefringence measuring instrument manufactured by UNIOPT Co., Ltd., where the center of each circle indicates the measurement point, the length of the circle diameter is the magnitude of the deviation stress, and the diameter of the circle. The direction in which the drawn line is relatively tensile stress, and the direction perpendicular to the diameter line is the direction in which it is relatively compressive stress. In FIG. 3, it can be seen that the circle diameter line faces the center of the glass substrate, and the periphery of the glass substrate is in the compression direction. On the other hand, FIG. 4 shows that the circle diameter line rotates around the periphery of the substrate, and the periphery of the glass substrate is in the tensile direction.

図5、図6は、前記の精密測長機(ソキア社製UMIC800)により測定した結果である。X、Y軸の単位はいずれもmmであり、前述したように各長方形の位置関係を示すが、変位量はガラス基板、長方形の大きさに比べ微小なので、判別が容易なように、該変位量のみ切断前後の差を1万倍に拡大して表示している。   FIG. 5 and FIG. 6 show the results of measurement using the above-described precision length measuring machine (UMIC800 manufactured by Sokkia). The units of the X and Y axes are both mm and indicate the positional relationship between the rectangles as described above, but the displacement is smaller than the size of the glass substrate and the rectangle, so that the displacement is easy to distinguish. Only the amount is displayed with the difference before and after cutting magnified 10,000 times.

図5、図6の各図は、左下の長方形の左下のコーナー部の測定点を固定し、固定点から長さが275mmの辺の方向(X座標)を不動の方向として、他の点の変位量を表示している。周囲に沿って圧縮方向の応力分布を有しているガラス基板では内側に(図5)、周囲に沿って引張方向の応力分布を有しているガラス基板では外側に(図6)変形している。   5 and 6, the measurement point at the lower left corner of the lower left rectangle is fixed, and the direction of the side (X coordinate) whose length is 275 mm from the fixed point is set as the stationary direction. The amount of displacement is displayed. The glass substrate having a stress distribution in the compressive direction along the periphery is deformed inside (FIG. 5), and the glass substrate having a stress distribution in the tensile direction along the periphery is deformed outward (FIG. 6). Yes.

前記の表1中の試料7のガラス基板は、比較例であり、ガラスリボンの板幅方向でガラスリボンの両端を加熱しながら徐冷して、周囲に引張方向の応力を発生させたガラス基板である。最大で1MPa以上の応力が残留しており、変形量も12.6μmと極めて大きくなっている。   The glass substrate of Sample 7 in Table 1 is a comparative example, and is a glass substrate in which a tensile stress is generated around the glass ribbon by slowly cooling while heating both ends of the glass ribbon in the width direction of the glass ribbon. It is. The stress of 1 MPa or more remains at the maximum, and the deformation amount is extremely large as 12.6 μm.

1 切断前のガラス基板
2 残留応力の方向
3 切断後のガラス基板
1 Glass substrate before cutting 2 Direction of residual stress 3 Glass substrate after cutting

Claims (6)

短辺が300mm以上、長辺が3000mm以下の略矩形の面形状であり、かつ板厚が0.3mm以上、6mm以下のガラス基板であって、
ガラス基板内の残留歪による、板厚方向で測定したときの基板面内の偏差応力が、基板内のすべての位置で0.3MPa以下であり、光弾性定数が20〜40(nm/cm)/(MPa)であり、1枚の基板中に複数面のパターンが形成され、半分に切断された後の最大変形が、応力方向が周囲圧縮である場合には2.6μm以下、応力方向が周囲引張である場合には1.9μm以下である高精細の用途のディスプレイ用ガラス基板。
A glass substrate with a short side of 300 mm or more and a long side of a substantially rectangular surface shape of 3000 mm or less, and a plate thickness of 0.3 mm or more and 6 mm or less,
The deviation stress in the substrate surface due to residual strain in the glass substrate when measured in the thickness direction is 0.3 MPa or less at all positions in the substrate, and the photoelastic constant is 20 to 40 (nm / cm). / (MPa), the maximum deformation after a multi-plane pattern is formed in one substrate and cut in half is 2.6 μm or less when the stress direction is ambient compression, and the stress direction is A glass substrate for display for high-definition applications having a peripheral tension of 1.9 μm or less.
短辺が500mm以上、板厚が1.1mm以下で、
液晶ディスプレイパネルに用いられる請求項1に記載のディスプレイ用ガラス基板。
The short side is 500 mm or more, the plate thickness is 1.1 mm or less,
The glass substrate for display according to claim 1, which is used for a liquid crystal display panel.
短辺が500mm以上、板厚が1.5mm以上で、
プラズマディスプレイパネルに用いられる請求項1に記載のディスプレイ用ガラス基板。
The short side is 500 mm or more, the plate thickness is 1.5 mm or more,
The glass substrate for display according to claim 1, which is used for a plasma display panel.
用いられるガラスが無アルカリガラスであって、TFT−LCD用である請求項2に記載のディスプレイ用ガラス基板。   The glass substrate for display according to claim 2, wherein the glass used is alkali-free glass and is for TFT-LCD. 用いられるガラスが高歪点ガラスである請求項3に記載のディスプレイ用ガラス基板。   The glass substrate for a display according to claim 3, wherein the glass used is a high strain point glass. 1枚のガラス基板中に、2面分、4面分、6面分または8面分のパネル用の複数のパターンが形成されてなる請求項1〜5のいずれか1項に記載のディスプレイ用ガラス基板。   6. For a display according to any one of claims 1 to 5, wherein a plurality of patterns for two, four, six or eight panels are formed in one glass substrate. Glass substrate.
JP2012014338A 2012-01-26 2012-01-26 Glass substrate for display Withdrawn JP2012128435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012014338A JP2012128435A (en) 2012-01-26 2012-01-26 Glass substrate for display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012014338A JP2012128435A (en) 2012-01-26 2012-01-26 Glass substrate for display

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009232810A Division JP2010009061A (en) 2009-10-06 2009-10-06 Method of manufacturing glass substrate for display

Publications (1)

Publication Number Publication Date
JP2012128435A true JP2012128435A (en) 2012-07-05

Family

ID=46645435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012014338A Withdrawn JP2012128435A (en) 2012-01-26 2012-01-26 Glass substrate for display

Country Status (1)

Country Link
JP (1) JP2012128435A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163032A (en) * 1991-12-10 1993-06-29 Hoya Corp Apparatus for producing glass plate
JPH05306133A (en) * 1992-04-30 1993-11-19 Hoya Corp Stress relieving method for glass body and device therefor
JPH05339021A (en) * 1992-06-04 1993-12-21 Nippon Electric Glass Co Ltd Slow cooling method for glass plate
JP2000016840A (en) * 1998-06-29 2000-01-18 Nippon Electric Glass Co Ltd Glass substrate for flat panel display and production of display substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163032A (en) * 1991-12-10 1993-06-29 Hoya Corp Apparatus for producing glass plate
JPH05306133A (en) * 1992-04-30 1993-11-19 Hoya Corp Stress relieving method for glass body and device therefor
JPH05339021A (en) * 1992-06-04 1993-12-21 Nippon Electric Glass Co Ltd Slow cooling method for glass plate
JP2000016840A (en) * 1998-06-29 2000-01-18 Nippon Electric Glass Co Ltd Glass substrate for flat panel display and production of display substrate

Similar Documents

Publication Publication Date Title
JP5224096B2 (en) Manufacturing method of glass substrate for display
JP5137206B2 (en) Method for producing flat glass with low warpage level
JP5428288B2 (en) Glass plate manufacturing method and manufacturing equipment
JP2009508803A5 (en)
JP5066554B2 (en) Liquid crystal display
WO2005122116A1 (en) Method for sorting plate glass for flat panel display, plate glass for flat panel display and method for manufacturing the same
JP2018066975A (en) Transparent screen glass article
JPWO2019106886A1 (en) Display device
WO2009081740A1 (en) Process and apparatus for producing glass plate
JP2001130920A (en) Glass substrate for display
JP4618426B2 (en) Flat glass plate sorting method and manufacturing method
JP5365970B2 (en) Glass substrate for display
JP4438149B2 (en) Glass substrate for display
Hasegawa et al. In-process estimation of fracture surface morphology during wheel scribing of a glass sheet by high-speed photoelastic observation
JP5737287B2 (en) Retardation film, polarizing plate using the same, and liquid crystal display device
JP5375213B2 (en) Manufacturing method of glass substrate for display and manufacturing method of flat panel display
JP2010009061A (en) Method of manufacturing glass substrate for display
JP2012128435A (en) Glass substrate for display
JP5434977B2 (en) Manufacturing method of glass substrate for display and manufacturing method of flat panel display
JP2009179552A5 (en)
JP2016218479A (en) Retardation film, production method of the same, polarizing plate, and liquid crystal display device
JP5476807B2 (en) Method for evaluating luminance unevenness of glass substrate for display and method for manufacturing glass substrate for display
JP2011256107A5 (en)
EP4245733A1 (en) Glass composition, glass article prepared therefrom, and display device
JP6065144B1 (en) Light control film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140916

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20140919