JP5365970B2 - Glass substrate for display - Google Patents

Glass substrate for display Download PDF

Info

Publication number
JP5365970B2
JP5365970B2 JP2008007507A JP2008007507A JP5365970B2 JP 5365970 B2 JP5365970 B2 JP 5365970B2 JP 2008007507 A JP2008007507 A JP 2008007507A JP 2008007507 A JP2008007507 A JP 2008007507A JP 5365970 B2 JP5365970 B2 JP 5365970B2
Authority
JP
Japan
Prior art keywords
glass substrate
glass
sin
retardation
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008007507A
Other languages
Japanese (ja)
Other versions
JP2008208020A (en
Inventor
嘉成 加藤
英孝 織田
靖彦 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2008007507A priority Critical patent/JP5365970B2/en
Priority to PCT/JP2008/050784 priority patent/WO2008093566A1/en
Priority to KR1020097009942A priority patent/KR101422309B1/en
Priority to TW097102794A priority patent/TWI408116B/en
Publication of JP2008208020A publication Critical patent/JP2008208020A/en
Application granted granted Critical
Publication of JP5365970B2 publication Critical patent/JP5365970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/067Forming glass sheets combined with thermal conditioning of the sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、ディスプレイ用ガラス基板、特に、液晶ディスプレイに用いられるガラス基板に関するものである。   The present invention relates to a glass substrate for display, and more particularly to a glass substrate used for a liquid crystal display.

液晶ディスプレイは、図1に示すように、液晶セル1を2枚のガラス基板、即ち、背面ガラス基板2(アレイ用ガラス基板)と前面ガラス基板3(カラーフィルター用ガラス基板)により挟み込まれた構造となっている。   As shown in FIG. 1, the liquid crystal display has a structure in which a liquid crystal cell 1 is sandwiched between two glass substrates, that is, a rear glass substrate 2 (array glass substrate) and a front glass substrate 3 (color filter glass substrate). It has become.

アレイ用ガラス基板2は、液晶セル1と接する側の基板表面に薄膜トランジスタ4(TFT)、透明な画素電極5及び配向膜6が形成されており、その反対側の表面には、偏光板7が貼られている。   In the glass substrate 2 for the array, a thin film transistor 4 (TFT), a transparent pixel electrode 5 and an alignment film 6 are formed on the substrate surface in contact with the liquid crystal cell 1, and a polarizing plate 7 is formed on the opposite surface. It is pasted.

また、カラーフィルター用ガラス基板3は、液晶セル1と接する側の基板表面に透明な対向電極8、赤、青、緑のカラーフィルター9及び配向膜10が形成されており、その反対側の表面には、偏光板11が貼られている。尚、アレイ用ガラス基板2に貼られた偏光板7の偏光方向とカラーフィルター用ガラス基板3に貼られた偏光板11の偏光方向は互いに直交している。   The glass substrate 3 for the color filter has a transparent counter electrode 8, a red, blue and green color filter 9 and an alignment film 10 formed on the substrate surface in contact with the liquid crystal cell 1, and the surface on the opposite side. Is attached with a polarizing plate 11. In addition, the polarization direction of the polarizing plate 7 stuck on the glass substrate 2 for arrays and the polarizing direction of the polarizing plate 11 stuck on the glass substrate 3 for color filters are mutually orthogonal.

アレイ用ガラス基板2の背後にはバックライト12が設置されている。バックライト12は、ノートブックパソコン等に使用される液晶ディスプレイにおいては、例えば、数本の細い径の冷陰極管の光を拡散板(図示せず)に通して液晶セルに導く構造を有する。   A backlight 12 is installed behind the array glass substrate 2. In a liquid crystal display used for a notebook personal computer or the like, the backlight 12 has a structure that guides light from several small-diameter cold cathode tubes to a liquid crystal cell through a diffusion plate (not shown), for example.

液晶ディスプレイの表示原理の概略は次のようなものである。薄膜トランジスタ4により制御された電圧を画素電極5と対向電極8の間に印加することにより、液晶セル1内の液晶分子13がまっすぐに並ぶことになり、アレイ用ガラス基板2に貼られた偏光板7で偏光されたバックライト12からの光の振動方向は、液晶セル1内で回転(旋光)しないため、カラーフィルター用ガラス基板3に貼られた偏光板11で光は遮断され、黒を表示する。逆に、電極間に電圧を印加しない場合は、液晶セル1内の液晶分子13はねじれた状態で維持されるため、アレイ用ガラス基板2に貼り付けた偏光板7で偏光されたバックライト12からの光の振動方向は、液晶セル1内で回転(旋光)し、カラーフィルター用ガラス基板3に貼り付けた偏光板11を透過し、赤、青または緑を表示する。このように、液晶セル内の液晶分子の配列を制御することで、バックライトからの光の振動方向を制御し、カラーフィルター用ガラス基板に貼られた偏光板で光を透過させたり、遮断させたりして画像を表示させている。   The outline of the display principle of the liquid crystal display is as follows. By applying a voltage controlled by the thin film transistor 4 between the pixel electrode 5 and the counter electrode 8, the liquid crystal molecules 13 in the liquid crystal cell 1 are aligned in a straight line, and the polarizing plate attached to the glass substrate 2 for the array The direction of vibration of the light from the backlight 12 polarized in 7 does not rotate (rotate) in the liquid crystal cell 1, so the light is blocked by the polarizing plate 11 attached to the color filter glass substrate 3 to display black. To do. Conversely, when no voltage is applied between the electrodes, the liquid crystal molecules 13 in the liquid crystal cell 1 are maintained in a twisted state, and therefore the backlight 12 polarized by the polarizing plate 7 attached to the array glass substrate 2. The direction of vibration of light from the light rotates (rotates) in the liquid crystal cell 1 and passes through the polarizing plate 11 attached to the glass substrate 3 for color filter, and displays red, blue or green. In this way, by controlling the alignment of the liquid crystal molecules in the liquid crystal cell, the vibration direction of the light from the backlight is controlled, and light is transmitted or blocked by the polarizing plate attached to the glass substrate for the color filter. The image is displayed.

ところで、ガラス基板としては、ガラス溶融炉で溶融したガラス融液を、フロート法、スロットダウンドロー法、オーバーフローダウンドロー法、リドロー法等によって一定の厚さに成形し、所定寸法のサイズに切断したものが用いられている。   By the way, as a glass substrate, a glass melt melted in a glass melting furnace is formed into a certain thickness by a float method, a slot down draw method, an overflow down draw method, a redraw method, etc., and cut into a predetermined size. Things are used.

通常、上記方法で製造されたガラス基板には歪が残存しており、ガラス基板にレタデーションが生じ、透過した光の偏光状態が変化する。そのため、歪が残存するガラス基板を液晶ディスプレイ用途に用いると、本来、光が遮断される箇所で光漏れが起こり、画面全体或いは一部に輝度ムラが発生するという問題が生じる。この問題を解決するために、所定寸法に切断したガラス基板にアニール処理を施して、ガラス基板に残存する歪の量を小さくすることが考えられるが、処理時間とコストがかかるという問題がある。   Usually, distortion remains in the glass substrate manufactured by the above method, retardation occurs in the glass substrate, and the polarization state of transmitted light changes. For this reason, when a glass substrate in which distortion remains is used for a liquid crystal display, there is a problem in that light leakage occurs at a place where light is originally blocked and luminance unevenness occurs on the entire screen or a part thereof. In order to solve this problem, it is conceivable to anneal the glass substrate cut to a predetermined size to reduce the amount of strain remaining on the glass substrate, but there is a problem that processing time and cost are increased.

そこで、輝度ムラの発生を防止するために、特許文献1では、ガラス基板の厚みと光弾性定数の積を所定値以下に制限したガラス基板を用いることが提案されている。また、特許文献2では、ガラスの熱膨張係数、ヤング率及び光弾性定数の積を所定値以下に制限したガラス基板を用いることが提案されている。
特開2001−255517号公報 特開2001−172041号公報
Therefore, in order to prevent the occurrence of luminance unevenness, Patent Document 1 proposes to use a glass substrate in which the product of the thickness of the glass substrate and the photoelastic constant is limited to a predetermined value or less. Patent Document 2 proposes to use a glass substrate in which the product of the thermal expansion coefficient, Young's modulus, and photoelastic constant of glass is limited to a predetermined value or less.
JP 2001-255517 A JP 2001-172041 A

近年、ディスプレイの大型化が進んでおり、それに伴ってガラス基板のサイズも大きくなってきている。   In recent years, the display has been increased in size, and the size of the glass substrate has been increased accordingly.

しかしながら、ガラス基板が大きくなる程、残留する歪の量も大きくなる傾向にあり、特許文献1及び2で開示されているガラス基板を用いても、画面全体に輝度ムラが発生することがあった。   However, as the glass substrate becomes larger, the amount of residual strain tends to increase, and even when the glass substrate disclosed in Patent Documents 1 and 2 is used, uneven brightness may occur on the entire screen. .

本発明の目的は、大画面でも液晶ディスプレイの輝度ムラの発生を抑制することが可能な液晶ディスプレイ用ガラス基板を提供することである。   The objective of this invention is providing the glass substrate for liquid crystal displays which can suppress generation | occurrence | production of the brightness nonuniformity of a liquid crystal display even with a big screen.

本発明者は種々検討した結果、ダウンドロー法により所定のガラス組成を有するガラス基板を成形すると共に、ガラス基板面と直交する光によりガラス基板面内のレタデーションをΔ(nm)、該レタデーションのガラス基板の辺方向に対する方位角をθ(°)とした際に、ガラス基板面内において、{sin(2θ)}×{sin(180°・Δ/550)}で求められる値のむらを少なくする、即ち、ガラス基板面内の{sin(2θ)}×{sin(180°・Δ/550)}で求められる値の変化率を一定値以下に抑えることで、液晶ディスプレイにした際に、輝度ムラの発生を抑制できることを見いだし、本発明を提案するに至った。 As a result of various studies, the inventor formed a glass substrate having a predetermined glass composition by a downdraw method, and the retardation in the glass substrate surface was Δ (nm) by light orthogonal to the glass substrate surface, and the glass of the retardation When the azimuth angle with respect to the side direction of the substrate is θ (°), unevenness of the value obtained by {sin (2θ)} 2 × {sin (180 ° · Δ / 550)} 2 is reduced in the glass substrate surface. That is, when the rate of change of the value obtained by {sin (2θ)} 2 × {sin (180 ° · Δ / 550)} 2 in the glass substrate surface is suppressed to a certain value or less, a liquid crystal display is obtained. In addition, the inventors have found that it is possible to suppress the occurrence of uneven brightness and have proposed the present invention.

即ち、本発明のディスプレイ用ガラス基板は、ダウンドロー法で成形されてなるガラス基板であって、ガラス組成として、質量百分率で、SiO 40〜70%、Al 2〜25%、B 0〜20%、MgO 0〜10%、CaO 0〜15%、SrO 0〜10%、BaO 0〜15%、ZnO 0〜10%、R O(RはLi、Na、Kを表わす) 0〜0.1%、ZrO 0〜10%を含有し、ガラス基板面と直交する光によりガラス基板面内を50mm間隔で測定したレタデーションをΔ(nm)、該レタデーションのガラス基板の辺方向に対する方位角をθ(°)とし、任意の測定点aにおける{sin(2θ)}×{sin(180°・Δ/550)}で求めた値をA、測定点aに隣り合う測定点a’における{sin(2θ)}×{sin(180°・Δ/550)}で求めた値をA’とした際、隣り合う測定点a、a’における値A、A’の変化率((A−A’)/50)が4.0×10−7以下であることを特徴とする。 That is, the glass substrate for a display of the present invention is a glass substrate formed by a downdraw method, and the glass composition has a mass percentage of SiO 2 40 to 70%, Al 2 O 3 2 to 25%, B 2 O 3 0-20%, MgO 0-10%, CaO 0-15%, SrO 0-10%, BaO 0-15%, ZnO 0-10%, R 2 O (R is Li, Na, K) Represents 0 to 0.1%, ZrO 2 0 to 10%, and the retardation measured at 50 mm intervals in the glass substrate surface by light orthogonal to the glass substrate surface is Δ (nm), and the retardation of the glass substrate of the retardation An azimuth angle with respect to the side direction is θ (°), and a value obtained by {sin (2θ)} 2 × {sin (180 ° · Δ / 550)} 2 at an arbitrary measurement point a is adjacent to A and the measurement point a. {Si at the matching measurement point a ′ (2θ)} 2 × {sin ' when used as a measurement point adjacent a, a' values calculated in (180 ° · Δ / 550) } 2 A value of A, the rate of change of A '((A- A ′) / 50) is 4.0 × 10 −7 or less.

本発明のガラス基板は、ガラス基板面と直交する光によりガラス基板面内のレタデーションをΔ、該レタデーションのガラス基板の辺方向に対する方位角をθとした際に、ガラス基板面内において、隣り合う測定点における{sin(2θ)}2×{sin(180°・Δ/550)}2で求められる値の変化率を小さくしているため、液晶ディスプレイにした際に、輝度ムラの発生を抑制することができる。それ故、液晶ディスプレイに用いられるディスプレイ用ガラス基板として好適である。 The glass substrate of the present invention is adjacent in the glass substrate surface when the retardation in the glass substrate surface is Δ by light orthogonal to the glass substrate surface and the azimuth angle of the retardation with respect to the side direction of the glass substrate is θ. Since the rate of change of the value obtained by {sin (2θ)} 2 × {sin (180 ° · Δ / 550)} 2 at the measurement point is reduced, the occurrence of uneven brightness is suppressed when a liquid crystal display is used. can do. Therefore, it is suitable as a glass substrate for display used in a liquid crystal display.

ディスプレイの輝度ムラの発生は、ガラス基板のレタデーションの大きさだけでなく、該レタデーションのガラス基板の辺方向に対する方位角やこれらの分布状態によっても影響を受ける。   The occurrence of luminance unevenness in the display is affected not only by the magnitude of the retardation of the glass substrate, but also by the azimuth angle of the retardation with respect to the side direction of the glass substrate and the distribution state thereof.

そこで、本発明のディスプレイ用ガラス基板は、上記のように、隣り合う測定点における{sin(2θ)}2×{sin(180°・Δ/550)}2で求められる値の変化率を4.0×10-7以下と小さくなるようにしているため、液晶ディスプレイにした際に、輝度ムラの発生を抑制することができる。尚、隣り合う測定点における{sin(2θ)}2×{sin(180°・Δ/550)}2で求められる値の変化率が4.0×10-7より大きくなると、液晶ディスプレイにした際、画面全体に輝度ムラが発生しやすくなる。この値の好ましい範囲は3.8×10-7以下であり、より好ましくは3.6×10-7以下である。 Therefore, as described above, the display glass substrate of the present invention has a rate of change of the value obtained by {sin (2θ)} 2 × {sin (180 ° · Δ / 550)} 2 at the adjacent measurement points of 4 Since it is set to be as small as 0.0 × 10 −7 or less, occurrence of luminance unevenness can be suppressed when a liquid crystal display is used. When the rate of change of the value obtained by {sin (2θ)} 2 × {sin (180 ° · Δ / 550)} 2 at adjacent measurement points is larger than 4.0 × 10 −7 , a liquid crystal display is formed. In this case, uneven brightness tends to occur on the entire screen. A preferable range of this value is 3.8 × 10 −7 or less, and more preferably 3.6 × 10 −7 or less.

尚、輝度ムラの発生をより確実に抑えるには、上記以外にも、各測定点における{sin(2θ)}2×{sin(180°・Δ/550)}2で求められる値を3.5×10-5以下にすることが望ましい。 In order to more reliably suppress the occurrence of luminance unevenness, in addition to the above, the value obtained by {sin (2θ)} 2 × {sin (180 ° · Δ / 550)} 2 at each measurement point is set to 3. 5 × 10 −5 or less is desirable.

上記のようなガラス基板を得るには、例えば、ガラス溶融炉で溶融したガラス融液を成形炉(成形体)で板状のガラス(ガラスリボン)に成形する際に、ガラスリボンの端部の厚みがガラスリボンの中央部の厚みとほぼ同じ厚みとなるように成形したり、成形したガラスリボンを徐冷炉で徐冷(冷却)する際に、ガラスリボンの幅方向における温度分布をできるだけ小さくするように冷却すればよい。   In order to obtain the glass substrate as described above, for example, when a glass melt melted in a glass melting furnace is formed into a plate-like glass (glass ribbon) in a forming furnace (molded body), the end of the glass ribbon is When the glass ribbon is molded so that the thickness is almost the same as the thickness of the center of the glass ribbon, or when the molded glass ribbon is slowly cooled (cooled) in a slow cooling furnace, the temperature distribution in the width direction of the glass ribbon should be as small as possible Just cool it down.

尚、成形工程において、ガラスリボンの端部の厚みをガラスリボンの中央部の厚みとほぼ同じ厚みになるように成形する理由は、ガラスリボンの端部の厚みがガラスリボンの中央部の厚みと異なると、成形後の冷却工程において、ガラスリボンの端部と中央部とで冷却速度が異なり、その結果、ガラス基板面内のレタデーションの大きさやその方位角にばらつきが生じやすくなるためである。ガラスリボンの端部の厚みとガラスリボンの中央部の厚みが同じになるように成形するには、ガラス融液をガラスリボンに延伸成形するための成形ロール等の回転速度等を調整することで行うことができる。   In the molding process, the thickness of the end of the glass ribbon is approximately the same as the thickness of the center of the glass ribbon because the thickness of the end of the glass ribbon is the same as the thickness of the center of the glass ribbon. If it is different, the cooling rate is different between the end portion and the center portion of the glass ribbon in the cooling step after molding, and as a result, the retardation in the glass substrate surface and the azimuth angle are likely to vary. To form the glass ribbon so that the thickness of the end of the glass ribbon is the same as the thickness of the center of the glass ribbon, adjust the rotational speed of the forming roll etc. to stretch the glass melt into the glass ribbon. It can be carried out.

また、徐冷炉での冷却工程において、ガラスリボンの幅方向における温度分布をできるだけ小さくするには、次のようにすることで行える。
(1)ガラスリボンが均一に加熱されるように、ヒーターの数を多くする。
(2)ヒーターからの熱がガラスリボンに均一に伝わるように、ヒーターとガラスリボンの間に均熱板を設置する。
(3)ガラスリボンの中央部と端部の冷却速度の差が小さくなるように、ガラスリボンの端部に囲いを設置したり、その部分にヒーターを多く配置する。
(4)ガラスの板引き速度を低く(遅く)する。
Moreover, in the cooling process in the slow cooling furnace, in order to make the temperature distribution in the width direction of the glass ribbon as small as possible, it can be performed as follows.
(1) The number of heaters is increased so that the glass ribbon is uniformly heated.
(2) A soaking plate is installed between the heater and the glass ribbon so that the heat from the heater is uniformly transmitted to the glass ribbon.
(3) An enclosure is installed at the end of the glass ribbon or a large number of heaters are arranged at the end so that the difference in the cooling rate between the center and the end of the glass ribbon is reduced.
(4) Lower (slow) the glass drawing speed.

尚、ガラス融液を成形炉でガラスリボンに成形した後、垂直方向(下方向)に板引きしながら、徐冷炉で冷却(徐冷)した後、切断することでガラス基板を得るオーバーフローダウンドロー法やスリットダウンドロー法は、ガラス融液を水平方向に板引きし、徐冷、切断してガラス基板を得るフロート法と異なり、低温雰囲気である切断工程から高温雰囲気である徐冷炉及び成形炉の方向に、常にガラスリボンの表面に沿って低温の空気流が上昇し、上昇した低温の空気流は徐冷炉等の内部で加熱された後、その一部が周壁部の隙間を通して外部雰囲気に洩れ出すため、徐冷炉や成形炉の雰囲気温度が変動しやすくなっている。その結果、オーバーフローダウンドロー法やスリットダウンドロー法で成形されたガラス基板は、ガラス基板面内のレタデーションの大きさやその方位角にばらつきが生じやすくなっている。   In addition, after forming the glass melt into a glass ribbon in a molding furnace, the glass substrate is drawn in the vertical direction (downward), cooled (slow cooling) in a slow cooling furnace, and then cut to obtain a glass substrate. Unlike the float method in which the glass melt is drawn horizontally, slowly cooled, and cut to obtain a glass substrate, the slit down draw method is different from the low temperature atmosphere cutting step to the high temperature atmosphere annealing furnace and molding furnace direction. In addition, a low-temperature air flow always rises along the surface of the glass ribbon, and after the heated low-temperature air flow is heated inside a slow cooling furnace or the like, a part of it leaks to the external atmosphere through the gap in the peripheral wall. The atmospheric temperature of the slow cooling furnace and the molding furnace is likely to fluctuate. As a result, a glass substrate formed by the overflow downdraw method or the slit downdraw method is likely to vary in the size of the retardation in the glass substrate surface and its azimuth angle.

そのため、オーバーフローダウンドロー法やスリットダウンドロー法でガラス基板を成形する場合は、ガラスリボンの端部と中央部の厚みをほぼ同じ厚みにすること、温度分布を小さくすることに加えて、徐冷炉や成形炉における低温の空気流の上昇を抑える必要がある。   Therefore, when forming a glass substrate by the overflow downdraw method or the slit downdraw method, in addition to making the thickness of the end portion and the center portion of the glass ribbon substantially the same thickness, reducing the temperature distribution, It is necessary to suppress an increase in the low-temperature air flow in the molding furnace.

尚、徐冷炉や成形炉における低温の空気流の上昇を抑えるには、徐冷炉内に対流防止板を設けたり、送風機等を用いて成形炉や徐冷炉の外部雰囲気の気圧が高くなるように調整する等して、成形炉や徐冷炉内の空気を外部雰囲気に洩れ出しにくくすればよい。   In order to suppress the rise in the low-temperature air flow in the slow cooling furnace or the forming furnace, a convection prevention plate is provided in the slow cooling furnace, or the air pressure in the external atmosphere of the forming furnace or the slow cooling furnace is adjusted using a blower or the like. Then, it is only necessary to make it difficult for the air in the molding furnace and the slow cooling furnace to leak into the external atmosphere.

また、上記の方法以外にも、ガラス中のSiO2やAl23やB23の含有量を多くしてガラスの熱膨張係数を小さくしたり、アルカリ土類金属酸化物の含有量を多くしてガラスの光弾性定数を小さくしてもよい。 In addition to the above methods, the content of SiO 2 , Al 2 O 3 and B 2 O 3 in the glass is increased to reduce the thermal expansion coefficient of the glass, or the content of alkaline earth metal oxide To increase the photoelastic constant of the glass.

また、本発明のディスプレイ用ガラス基板は、歪が残存しやすく、輝度ムラが顕著に現れやすい大型のガラス基板、具体的には、短辺の長さが1000mm以上であるガラス基板として特に好適である。   The display glass substrate of the present invention is particularly suitable as a large glass substrate in which distortion is likely to remain and luminance unevenness is likely to appear, specifically, a glass substrate having a short side length of 1000 mm or more. is there.

また、本発明のディスプレイ用ガラス基板の具体的な組成は、耐薬品性、熱収縮性、溶融性、成形性、熱膨張係数等を考慮して、決定される。本発明に係るガラス組成範囲は、質量百分率で、SiO 40〜70%、Al 2〜25%、B 0〜20%、MgO 0〜10%、CaO 0〜15%、SrO 0〜10%、BaO 0〜15%、ZnO 0〜10%、RO(RはLi、Na、Kを表わす) 0〜0.1%、ZrO 0〜10%である。 The specific composition of the glass substrate for display of the present invention is determined in consideration of chemical resistance, heat shrinkability, meltability, moldability, thermal expansion coefficient, and the like . The glass composition range according to the present invention is in percentage by mass, SiO 2 40 to 70%, Al 2 O 3 2 to 25%, B 2 O 3 0 to 20%, MgO 0 to 10%, CaO 0 to 15%, SrO 0~10%, BaO 0~15%, 0~10% ZnO, R 2 O (R represents Li, Na, and K) 0~ 0.1%, a ZrO 2 0%.

本発明においてガラスの組成を上記のように限定した理由は、次のとおりである。   The reason for limiting the glass composition as described above in the present invention is as follows.

SiO2は、ガラスのネットワークフォーマーとなる成分であり、ガラスの熱膨張係数を低下させて、ガラス基板のレタデーションΔや該レタデーションのガラス基板の辺方向に対する方位角θのばらつきを抑え、隣り合う測定点における{sin(2θ)}2×{sin(180°・Δ/550)}2で求められる値の変化率を小さくする成分である。また、ガラスの耐酸性を向上させたり、ガラスの歪点を上昇させてガラス基板の熱収縮を小さくする成分でもある。その含有量は40〜70%である。SiO2の含有量が多くなると、ガラスの高温粘度が高くなり、溶融性が悪化すると共にクリストバライトの失透ブツが析出しやすくなる傾向にある。一方、含有量が少なくなると、ガラスの熱膨張係数が大きくなりやすく、ガラス基板のレタデーションΔや該レタデーションの方位角θのばらつきが大きくなる傾向にあり、隣り合う測定点における{sin(2θ)}2×{sin(180°・Δ/550)}2で求められる値の変化率が大きくなる傾向にある。また、ガラスの耐酸性や歪点が低下する傾向にある。SiO2のより好ましい範囲は50〜67%であり、さらに好ましい範囲は、57〜64%である。 SiO 2 is a component that becomes a glass network former, reduces the thermal expansion coefficient of the glass, suppresses variations in the retardation Δ of the glass substrate and the azimuth angle θ of the retardation with respect to the side direction of the glass substrate, and is adjacent. This component reduces the rate of change of the value obtained by {sin (2θ)} 2 × {sin (180 ° · Δ / 550)} 2 at the measurement point. Moreover, it is also a component which improves the acid resistance of glass or raises the strain point of glass and makes the thermal contraction of a glass substrate small. Its content is 40-70%. When the content of SiO 2 is increased, the high-temperature viscosity of the glass is increased, the meltability is deteriorated, and devitrification blisters of cristobalite tend to precipitate. On the other hand, when the content decreases, the thermal expansion coefficient of the glass tends to increase, and the variation of the retardation Δ of the glass substrate and the azimuth angle θ of the retardation tends to increase, and {sin (2θ)} at adjacent measurement points. 2 × {sin (180 ° · Δ / 550)} 2 tends to increase the rate of change of the value obtained. Further, the acid resistance and strain point of the glass tend to decrease. A more preferable range of SiO 2 is 50 to 67%, and a further preferable range is 57 to 64%.

Al23は、ガラスの熱膨張係数を低下させて、ガラス基板のレタデーションΔや該レタデーションのガラス基板の辺方向に対する方位角θのばらつきを抑え、隣り合う測定点における{sin(2θ)}2×{sin(180°・Δ/550)}2で求められる値の変化率を小さくする成分である。また、ガラスの歪点を上昇させたり、クリストバライトの失透ブツの析出を抑える効果もある。その含有量は2〜25%である。Al23の含有量が多くなると、ガラスの耐バッファードフッ酸性が悪化したり、液相温度が上昇して成形しにくくなる傾向にある。一方、含有量が少なくなると、ガラスの熱膨張係数が大きくなりやすく、ガラス基板のレタデーションΔや該レタデーションの方位角θのばらつきが大きくなる傾向にあり、隣り合う測定点における{sin(2θ)}2×{sin(180°・Δ/550)}2で求められる値の変化率が大きくなる傾向にある。また、ガラスの歪点が低下する傾向にある。Al23のより好ましい範囲は10〜20%であり、さらに好ましい範囲は14〜17%である。 Al 2 O 3 reduces the thermal expansion coefficient of the glass, suppresses variations in the retardation Δ of the glass substrate and the azimuth angle θ of the retardation with respect to the side direction of the glass substrate, and {sin (2θ)} at adjacent measurement points. 2 × {sin (180 ° · Δ / 550)} 2 is a component for reducing the rate of change of the value obtained by 2 . It also has the effect of raising the strain point of the glass and suppressing the devitrification of cristobalite. Its content is 2 to 25%. When the content of Al 2 O 3 increases, the buffered hydrofluoric acid resistance of the glass deteriorates or the liquidus temperature tends to increase, making it difficult to form. On the other hand, when the content decreases, the thermal expansion coefficient of the glass tends to increase, and the variation of the retardation Δ of the glass substrate and the azimuth angle θ of the retardation tends to increase, and {sin (2θ)} at adjacent measurement points. 2 × {sin (180 ° · Δ / 550)} 2 tends to increase the rate of change of the value obtained. Moreover, it exists in the tendency for the strain point of glass to fall. A more preferable range of Al 2 O 3 is 10 to 20%, and a more preferable range is 14 to 17%.

23は、融剤として作用し、ガラスの粘性を下げ、溶融性を改善する成分である。また、ガラスの熱膨張係数を低下させて、ガラス基板のレタデーションΔや該レタデーションのガラス基板の辺方向に対する方位角θのばらつきを抑え、隣り合う測定点における{sin(2θ)}2×{sin(180°・Δ/550)}2で求められる値の変化率を小さくする成分でもある。その含有量は0〜20%である。B23の含有量が多くなると、ガラスの歪点が低下したり、耐酸性が悪化する傾向にある。一方、含有量が少なくなると、ガラスの熱膨張係数が大きくなりやすく、ガラス基板のレタデーションΔや該レタデーションの方位角θのばらつきが大きくなる傾向にあり、隣り合う測定点における{sin(2θ)}2×{sin(180°・Δ/550)}2で求められる値の変化率が大きくなる傾向にある。また、融剤として十分に作用せず溶融性が低下する傾向にある。B23のより好ましい範囲は5〜15%であり、さらに好ましい範囲は7.5〜12%である。 B 2 O 3 is a component that acts as a flux, lowers the viscosity of the glass, and improves the meltability. In addition, the thermal expansion coefficient of the glass is decreased to suppress the retardation Δ of the glass substrate and the variation of the azimuth angle θ of the retardation with respect to the side direction of the glass substrate, and {sin (2θ)} 2 × {sin (180 ° · Δ / 550)} 2 is also a component that reduces the rate of change of the value obtained by 2 . Its content is 0-20%. When the content of B 2 O 3 increases, the strain point of the glass tends to decrease or the acid resistance tends to deteriorate. On the other hand, when the content decreases, the thermal expansion coefficient of the glass tends to increase, and the variation of the retardation Δ of the glass substrate and the azimuth angle θ of the retardation tends to increase, and {sin (2θ)} at adjacent measurement points. 2 × {sin (180 ° · Δ / 550)} 2 tends to increase the rate of change of the value obtained. Moreover, it does not act sufficiently as a flux and tends to lower the meltability. A more preferable range of B 2 O 3 is 5 to 15%, and a more preferable range is 7.5 to 12%.

MgOは、ガラスの歪点を低下させずに高温粘性のみを低下させて、ガラスの溶融性を改善する成分である。また、ガラスの光弾性定数を低くする成分でもある。その含有量は0〜10%である。MgOの含有量が多くなると、失透ブツが析出しやすくなる。また、耐バッファードフッ酸性が低下し、ガラス基板表面が侵食されて、反応生成物がガラス基板表面に付着し、ガラス基板が白濁し易くなる。MgOのより好ましい範囲は0〜5%であり、さらに好ましい範囲は0〜3.5%である。   MgO is a component that improves the meltability of glass by lowering only the high temperature viscosity without lowering the strain point of the glass. It is also a component that lowers the photoelastic constant of glass. Its content is 0-10%. When the content of MgO is increased, devitrification is likely to precipitate. In addition, the buffered hydrofluoric acid resistance decreases, the glass substrate surface is eroded, the reaction product adheres to the glass substrate surface, and the glass substrate is likely to become cloudy. A more preferable range of MgO is 0 to 5%, and a more preferable range is 0 to 3.5%.

CaOは、ガラスの歪点を低下させずに高温粘性のみを低下させて、ガラスの溶融性を著しく改善する成分である。また、ガラスの光弾性定数を低くする成分でもある。その含有量は0〜15%である。CaOの含有量が多くなると、耐バッファードフッ酸性が悪化する傾向にある。CaOのより好ましい範囲は0〜12%であり、さらに好ましい範囲は3.5〜9%である。   CaO is a component that remarkably improves the meltability of the glass by reducing only the high temperature viscosity without reducing the strain point of the glass. It is also a component that lowers the photoelastic constant of glass. Its content is 0-15%. When the content of CaO increases, the resistance to buffered hydrofluoric acid tends to deteriorate. A more preferable range of CaO is 0 to 12%, and a more preferable range is 3.5 to 9%.

SrOは、ガラスの耐薬品性と耐失透性を向上させる成分である。また、ガラスの光弾性定数を低くする成分でもある。その含有量は0〜10%である。SrOの含有量が多くなると、ガラスの熱膨張係数が大きくなりやすく、ガラスの熱膨張係数が大きくなりやすく、ガラス基板のレタデーションΔや該レタデーションの方位角θのばらつきが大きくなる傾向にあり、隣り合う測定点における{sin(2θ)}2×{sin(180°・Δ/550)}2で求められる値の変化率が大きくなる傾向にある。SrOのより好ましい範囲は0〜8%であり、さらに好ましい範囲は0.5超〜8%である。 SrO is a component that improves the chemical resistance and devitrification resistance of glass. It is also a component that lowers the photoelastic constant of glass. Its content is 0-10%. When the SrO content increases, the thermal expansion coefficient of the glass tends to increase, the thermal expansion coefficient of the glass tends to increase, and the variation of the retardation Δ of the glass substrate and the azimuth angle θ of the retardation tends to increase. The rate of change of the value obtained by {sin (2θ)} 2 × {sin (180 ° · Δ / 550)} 2 at the matching measurement point tends to increase. A more preferable range of SrO is 0 to 8%, and a more preferable range is more than 0.5 to 8%.

BaOは、SrOと同様にガラスの耐薬品性と耐失透性を向上させる成分である。また、ガラスの光弾性定数を低くする成分でもある。その含有量は0〜15%である。BaOの含有量が多くなると、ガラスの密度や熱膨張係数が大きくなったり、溶融性が著しく悪化する傾向にある。BaOのより好ましい範囲は0〜10%であり、さらに好ましい範囲は0〜8%である。   BaO, like SrO, is a component that improves the chemical resistance and devitrification resistance of glass. It is also a component that lowers the photoelastic constant of glass. Its content is 0-15%. When the content of BaO increases, the density and thermal expansion coefficient of the glass increase, and the meltability tends to deteriorate significantly. A more preferable range of BaO is 0 to 10%, and a more preferable range is 0 to 8%.

ZnOは、ガラスの耐バッファードフッ酸性や溶融性を改善する成分である。その含有量は0〜10%である。ZnOの含有量が多くなると、ガラスの耐失透性や歪点が低下する傾向にある。ZnOのより好ましい範囲は0〜5%であり、さらに好ましい範囲は0〜1%である。   ZnO is a component that improves the buffered hydrofluoric acid resistance and meltability of glass. Its content is 0-10%. When the content of ZnO increases, the devitrification resistance and strain point of the glass tend to decrease. A more preferable range of ZnO is 0 to 5%, and a more preferable range is 0 to 1%.

O(RはLi、Na、Kを表わす)は、ガラスの粘度を低下させて溶融性を改善する成分である。その含有量は0〜0.1%である。ROの含有量が多くなると、ガラスの歪点が低下する傾向にある R 2 O (R represents Li, Na, K) is a component that reduces the viscosity of the glass and improves the meltability. Its content is from 0 0.1%. When the content of R 2 O increases, the strain point of the glass tends to decrease .

尚、本発明のディスプレイ用ガラス基板を液晶ディスプレイ用途に使用する場合、使用するガラスは無アルカリガラスにすべきである。その理由は、ガラス中にアルカリ金属酸化物を含有すると、ガラス中のアルカリ成分が、ガラス基板上に形成された各種の膜やTFT素子の特性を劣化させる虞があるからである。尚、無アルカリとは、R2Oが0.1%以下を意味する。 In addition, when using the glass substrate for a display of this invention for a liquid crystal display use, the glass to be used should be an alkali free glass. The reason is that when an alkali metal oxide is contained in the glass, the alkali component in the glass may deteriorate the characteristics of various films and TFT elements formed on the glass substrate. In addition, alkali free means that R 2 O is 0.1% or less.

ZrO2は、ガラスの歪点を高める成分であり、その含有量は0〜10%である。ZrO2の含有量が多くなるとガラスの密度が著しく上昇したり、ZrO2に起因する失透物が析出する傾向がある。ZrO2のより好ましい範囲は0〜7%であり、さらに好ましい範囲は0〜5%である。 ZrO 2 is a component that increases the strain point of glass, and its content is 0 to 10%. When the ZrO 2 content is increased, the density of the glass is remarkably increased, and devitrified materials due to ZrO 2 tend to precipitate. A more preferable range of ZrO 2 is 0 to 7%, and a more preferable range is 0 to 5%.

また、本発明において、上記成分以外にも、例えば、液相温度を低下させて成形性を向上させるためにY、La、Nb、Pを各3%まで、清澄剤としてAs、Sb、SnO、SO、F、Cl等を合量で2%まで添加することが可能である。但し、As、Sbは、環境負荷物質であるため、導入は避けるべきである。 In the present invention, in addition to the above components, for example, Y 2 O 3 , La 2 O 3 , Nb 2 O 3 , and P 2 O 5 are added to each of 3 in order to improve the moldability by lowering the liquidus temperature. As 2 O 3 , As 2 O 3 , Sb 2 O 3 , SnO 2 , SO 3 , F, Cl, etc. can be added up to 2% in total. However, As 2 O 3, Sb 2 O 3 is because the Ru environmental pollutants der should be avoided introduced.

次に、本発明のディスプレイ用ガラス基板を製造する方法を説明する。   Next, a method for producing the glass substrate for display of the present invention will be described.

まず、上記のガラス組成範囲となるようにガラス原料を調合する。続いて、調合したガラス原料を連続溶融炉に投入して加熱溶融し、脱泡した後、ガラス融液を成形装置に供給し、端部の厚みと中央部の厚みがほぼ同じ厚みとなるようにガラスリボンを成形したり、徐冷炉での冷却工程において、ガラスリボンの幅方向における温度分布をできるだけ小さくすることで、隣り合う測定点における{sin(2θ)}2×{sin(180°・Δ/550)}2で求められる値の変化率の小さいガラス基板を得ることができる。 First, a glass raw material is prepared so that it may become said glass composition range. Subsequently, the prepared glass raw material is put into a continuous melting furnace, heated and melted, defoamed, and then the glass melt is supplied to the molding apparatus so that the thickness of the end portion and the thickness of the central portion are substantially the same. In the cooling process in the slow cooling furnace, the temperature distribution in the width direction of the glass ribbon is made as small as possible, so that {sin (2θ)} 2 × {sin (180 ° · Δ / 550)} A glass substrate having a small change rate of the value obtained in 2 can be obtained.

尚、ガラス基板の成形方法としては、ダウンドロー法、特に、オーバーフローダウンドロー法で板状に成形することが好ましい。その理由は、オーバーフローダウンドロー法の場合、比較的容易に大型のガラス基板を得やすく、しかも、他の成形方法と異なり、ガラス基板の表面は、成形体と接することがないため、汚染部のないガラス表面を有するガラス基板を得ることができる。そのため、ガラス基板表面の研磨が不要となり、製造コストを抑えることができるためである。また、研磨による微小傷の発生をなくすこともできる。但し、オーバーフローダウンドロー法でガラス基板を成形する場合は、ガラスリボンの端部と中央部の厚みをほぼ同じ厚みにすること、温度分布を小さくすることに加えて、徐冷炉や成形炉における低温の空気流の上昇を抑える必要がある。 As the molding method for a glass substrate, da Undoro method, in particular, it is preferably molded into a plate shape by an overflow down draw method. The reason is that in the overflow downdraw method, it is relatively easy to obtain a large glass substrate, and unlike other molding methods, the surface of the glass substrate does not come into contact with the molded body. A glass substrate with no glass surface can be obtained. For this reason, polishing of the glass substrate surface becomes unnecessary, and the manufacturing cost can be suppressed. Moreover, generation | occurrence | production of the fine damage | wound by grinding | polishing can also be eliminated. However, when the glass substrate is formed by the overflow down draw method, the end portion and the center portion of the glass ribbon are made to have substantially the same thickness, and the temperature distribution is reduced, and in addition, the temperature is reduced in a slow cooling furnace or a forming furnace. It is necessary to suppress the rise in airflow.

以下、本発明のディスプレイ用ガラス基板を実施例に基づいて詳細に説明する。   Hereinafter, the glass substrate for display of this invention is demonstrated in detail based on an Example.

表1は本発明の実施例(試料No.1、2)及び比較例(試料No.3)をそれぞれ示している。   Table 1 shows Examples (Sample Nos. 1 and 2) and Comparative Examples (Sample No. 3) of the present invention, respectively.

表中の各試料は、次のようにして作製した。   Each sample in the table was prepared as follows.

まず、質量%で、SiO2 59%、Al23 15%、B23 10%、CaO 6%、SrO 7%、BaO 2%、ZnO 1%の組成となるようにガラス原料を調合し、連続溶融炉で溶融する。 First, in mass%, SiO 2 59%, Al 2 O 3 15%, B 2 O 3 10%, CaO 6%, SrO 7%, BaO 2%, formulating the glass raw material so that the ZnO 1% of the composition And melted in a continuous melting furnace.

続いて、図2に示すようなオーバーフローダウンドロー設備を用いて、溶融ガラスAを成形炉20内に設けられた成形体21の頂部に供給し、その溶融ガラスAを成形体21の頂部から溢れ出させると共にその下端部で融合させ、融合させた溶融ガラスAの両端部を成形体21の下端部付近に設けた一対の成形ロール(エッジロール)22で挟持し板引きすることでガラスリボンBを成形した。   Subsequently, using an overflow downdraw facility as shown in FIG. 2, the molten glass A is supplied to the top of the molded body 21 provided in the molding furnace 20, and the molten glass A overflows from the top of the molded body 21. The glass ribbon B is formed by drawing out and fusing both ends of the fused glass A at a lower end portion of the molded body 21, and sandwiching and drawing between a pair of forming rolls (edge rolls) 22 provided in the vicinity of the lower end portion of the molded body 21. Was molded.

次に、成形したガラスリボンBが表面張力等で幅方向に収縮しないように、徐冷炉23内に垂直方向に設置した複数対の引っ張りロール(アニールロール)24でガラスリボンBを幅方向に引っ張り、ガラスリボンBの中央部の温度が700℃の時のガラスリボンBの中央部と端部における温度差、ガラスリボンBの中央部の温度が680℃の時のガラスリボンの幅方向における最高温度と最低温度の差及び板引き速度が表1に示す値となるように、冷却しながら下方に牽引することで、中央部と端部の肉厚が約0.7mmのガラスリボンBとした。   Next, the glass ribbon B is pulled in the width direction with a plurality of pulling rolls (annealing rolls) 24 installed in the vertical direction in the slow cooling furnace 23 so that the formed glass ribbon B does not shrink in the width direction due to surface tension or the like. The temperature difference between the center and the edge of the glass ribbon B when the temperature of the center of the glass ribbon B is 700 ° C., the maximum temperature in the width direction of the glass ribbon when the temperature of the center of the glass ribbon B is 680 ° C. By pulling downward while cooling so that the difference in the minimum temperature and the plate drawing speed are the values shown in Table 1, a glass ribbon B having a thickness of about 0.7 mm at the center and at the end is obtained.

次に、徐冷炉23下方に設けられた冷却室25に配置されている複数対の支持ロール26で固化したガラスリボンBを下方に牽引しながら室温まで冷却し、切断室27でガラスリボンBを切断することでガラス基板Cを得て、これを試料ガラスとした。   Next, the glass ribbon B solidified by a plurality of pairs of support rolls 26 disposed in the cooling chamber 25 provided below the slow cooling furnace 23 is cooled down to room temperature while being pulled downward, and the glass ribbon B is cut in the cutting chamber 27. By doing this, the glass substrate C was obtained and this was made into sample glass.

尚、成形炉20や徐冷炉23における低温の空気流の上昇を抑えるために、成形室28に配置された送風機29を稼働させ、周壁部30に取り付けられたフィルター31を通してこの設備の外部から成形室28内に空気を導入することで成形炉20や徐冷炉23の外部雰囲気を加圧してガラス基板を作製した。また、徐冷炉とは、ヒーターや冷却器を備えた、ガラスの徐冷点〜歪点の範囲を含む範囲の温度を制御することができる装置を指し、表1中の板引き速度におけるL(cm)はこの徐冷装置の長さを示す。また、試料No.1及びNo.3については1000mm×1200mmのサイズに、試料No.2については1050mm×1250mmのサイズに切断することで試料ガラスとした。   In order to suppress an increase in the low-temperature air flow in the molding furnace 20 and the slow cooling furnace 23, the blower 29 disposed in the molding chamber 28 is operated, and the molding chamber is installed from the outside of the equipment through the filter 31 attached to the peripheral wall portion 30. The glass substrate was produced by introducing air into 28 to pressurize the external atmosphere of the forming furnace 20 and the slow cooling furnace 23. The slow cooling furnace refers to an apparatus equipped with a heater or a cooler and capable of controlling the temperature in a range including the range of the slow cooling point to the strain point of glass. ) Indicates the length of this slow cooling device. Sample No. 1 and no. For sample No. 3, the sample No. Sample 2 was cut into a size of 1050 mm × 1250 mm to obtain a sample glass.

得られたガラスの熱膨張係数、光弾性定数、徐冷点及び歪点を測定したところ、各試料とも熱膨張係数は37×10-7/℃であり、光弾性定数は33(nm/cm)/MPaであり、また、徐冷点は705℃であり、歪点は650℃であった。 When the thermal expansion coefficient, photoelastic constant, annealing point and strain point of the obtained glass were measured, the thermal expansion coefficient of each sample was 37 × 10 −7 / ° C., and the photoelastic constant was 33 (nm / cm ) / MPa, the annealing point was 705 ° C., and the strain point was 650 ° C.

このようして得られた各試料について、ガラス基板内におけるレタデーションΔ、ガラス基板の辺方向に対する該レタデーションの方位角θを50mm間隔で測定し、隣り合う測定点における{sin(2θ)}2×{sin(180°・Δ/550)}2で求められる値の変化率を求めた。また、作製したガラス基板を用いてディスプレイ装置を作製し、輝度ムラの発生状態を評価した。これらの結果を表1に示す。 For each sample thus obtained, the retardation Δ in the glass substrate and the azimuth angle θ of the retardation with respect to the side direction of the glass substrate are measured at intervals of 50 mm, and {sin (2θ)} 2 × at adjacent measurement points. The rate of change of the value obtained by {sin (180 ° · Δ / 550)} 2 was obtained. In addition, a display device was produced using the produced glass substrate, and the state of occurrence of luminance unevenness was evaluated. These results are shown in Table 1.

表1から明らかなように、実施例である試料No.1は、ガラス基板面内において、隣り合う測定点における{sin(2θ)}2×{sin(180°・Δ/550)}2で求められる値の変化率の最大値が1.0×10-7であり、また、試料No.2は、3.5×10-7と小さかった。また、ディスプレイ装置を作製し点灯させた際の輝度ムラの発生状態も全く認められない若しくは弱いものであった。 As is clear from Table 1, sample No. 1 is that the maximum value of the rate of change of the value obtained by {sin (2θ)} 2 × {sin (180 ° · Δ / 550)} 2 at adjacent measurement points in the glass substrate plane is 1.0 × 10. -7 and Sample No. 2 was as small as 3.5 × 10 −7 . In addition, the state of occurrence of luminance unevenness when the display device was manufactured and turned on was not recognized or weak at all.

これに対して、比較例である試料No.3は、隣り合う測定点における{sin(2θ)}2×{sin(180°・Δ/550)}2で求められる値の変化率の最大値が7.0×10-7と大きく、ディスプレイ装置を作製し点灯させた際の輝度ムラも強く発生していた。 On the other hand, sample No. which is a comparative example. 3, the maximum value of the rate of change of the value obtained by {sin (2θ)} 2 × {sin (180 ° · Δ / 550)} 2 at adjacent measurement points is as large as 7.0 × 10 −7 , Brightness unevenness also occurred when the device was manufactured and turned on.

尚、隣り合う測定点における{sin(2θ)}2×{sin(180°・Δ/550)}2で求められる値の変化率については、ユニオプト製の歪計を用いて光ヘテロダイン法により、ガラス基板面内を50mm間隔でレタデーションΔ及びガラス基板の辺方向に対する該レタデーションの方位角θ測定し、測定点aにおける{sin(2θ)}2×{sin(180°・Δ/550)}2で求めた値A及び測定点aに隣り合う測定点a’における{sin(2θ)}2×{sin(180°・Δ/550)}2で求めた値A’を求め、((A−A’)/50)で求めた。尚、図3〜5において、各円の中心は測定点、円の直径はレタデーションΔの大きさ、円の直径として描かれた線の方向はガラス基板の辺方向に対するレタデーションの方位角θを示している。 In addition, about the rate of change of the value calculated | required by {sin (2 (theta))} 2 * {sin (180 (degree) * (DELTA) / 550)} 2 in an adjacent measurement point, it is an optical heterodyne method using the strain gauge made from Uniopt, The retardation Δ and the azimuth angle θ of the retardation with respect to the side direction of the glass substrate are measured in the glass substrate plane at intervals of 50 mm, and {sin (2θ)} 2 × {sin (180 ° · Δ / 550)} 2 at the measurement point a. And the value A ′ obtained by {sin (2θ)} 2 × {sin (180 ° · Δ / 550)} 2 at the measurement point a ′ adjacent to the measurement point a and the value A obtained in step (a). A ′) / 50). 3 to 5, the center of each circle is the measurement point, the diameter of the circle is the size of the retardation Δ, and the direction of the line drawn as the diameter of the circle indicates the azimuth angle θ of the retardation with respect to the side direction of the glass substrate. ing.

また、輝度ムラの発生状態については、ディスプレイ装置を点灯させた際の画面上の輝度ムラを目視で観察し、輝度ムラが全く認められないものを「◎」、輝度ムラが弱く発生しているものを「○」、輝度ムラが強く発生しているものを「×」とした。   As for the occurrence of uneven brightness, the uneven brightness on the screen when the display device is turned on is visually observed, and “◎” indicates that the uneven brightness is not recognized at all. The case where “○” was given and the case where the luminance unevenness was strong was made “X”.

熱膨張係数については、白金坩堝を用いて各試料を1400℃でリメルトしてガラス塊を作製し、得られたガラス塊を直径5.0mm、長さ20mmの円柱状の試料に加工して、ディラトメーターで30〜380℃における平均熱膨張係数を測定した。   Regarding the thermal expansion coefficient, each sample was remelted at 1400 ° C. using a platinum crucible to produce a glass lump, and the obtained glass lump was processed into a cylindrical sample having a diameter of 5.0 mm and a length of 20 mm, The average coefficient of thermal expansion at 30 to 380 ° C. was measured with a dilatometer.

光弾性定数については、直径30mm×5mmの試料を作製し、円盤圧縮法により求めた。   The photoelastic constant was obtained by preparing a sample with a diameter of 30 mm × 5 mm and using a disk compression method.

徐冷点及び歪点についは、ASTM C336−71の方法に基づいて測定した。   The annealing point and strain point were measured based on the method of ASTM C336-71.

本発明のディスプレイ用ガラス基板は、液晶ディスプレイ用途に限られるものではなく、例えば、プラズマディスプレイ、電界放射型ディスプレイ、エレクトロルミネッセンスディスプレイ等の用途のガラス基板として用いることも可能である。   The glass substrate for display of the present invention is not limited to the liquid crystal display application, and can be used as a glass substrate for applications such as a plasma display, a field emission display, and an electroluminescence display.

液晶ディスプレイの構造を示す概略図である。It is the schematic which shows the structure of a liquid crystal display. オーバーフローダウンドロー法によるガラス基板の製造設備を示す概略正面図である。It is a schematic front view which shows the manufacturing equipment of the glass substrate by the overflow downdraw method. 試料No.1におけるガラス基板のレタデーションとその方位角を測定した結果を示す図である。Sample No. It is a figure which shows the result of having measured the retardation of the glass substrate in 1, and its azimuth. 試料No.2におけるガラス基板のレタデーションとその方位角を測定した結果を示す図である。Sample No. It is a figure which shows the result of having measured the retardation of the glass substrate in 2, and its azimuth. 試料No.3におけるガラス基板のレタデーションとその方位角を測定した結果を示す図である。Sample No. 3 is a diagram showing the results of measuring the retardation of a glass substrate and the azimuth angle thereof in FIG.

符号の説明Explanation of symbols

1 液晶セル
2 背面ガラス基板(アレイ用ガラス基板)
3 前面ガラス基板(カラーフィルター用ガラス基板)
4 薄膜トランジスタ(TFT)
5 画素電極
6 配向膜(背面用)
7 偏光板(背面用)
8 対向電極
9 カラーフィルター
10 配向膜(前面用)
11 偏光板(前面用)
12 バックライト
13 液晶分子
20 成形炉
20a 成形炉の炉壁
21 成形体
22 成形ロール
23 徐冷炉
23a 徐冷炉の炉壁
24 引っ張りロール
25 冷却室
26 支持ロール
27 切断室
28 成形室
29 送風機
30 周壁部
31 フィルター
A 溶融ガラス
B ガラスリボン
C ガラス基板
1 Liquid crystal cell 2 Back glass substrate (glass substrate for array)
3 Front glass substrate (glass substrate for color filter)
4 Thin film transistor (TFT)
5 Pixel electrode 6 Alignment film (for back side)
7 Polarizing plate (for the back)
8 Counter electrode 9 Color filter 10 Alignment film (for front)
11 Polarizing plate (for front)
12 Backlight 13 Liquid Crystal Molecule 20 Molding Furnace 20a Molding Furnace Wall 21 Molded Body 22 Molding Roll 23 Slow Cooling Furnace 23a Slow Cooling Furnace Furnace Wall 24 Pulling Roll 25 Cooling Chamber 26 Supporting Roll 27 Cutting Chamber 28 Molding Chamber 29 Blower 30 Peripheral Wall 31 Filter A Molten glass B Glass ribbon C Glass substrate

Claims (5)

ダウンドロー法で成形されてなるガラス基板であって、
ガラス組成として、質量百分率で、SiO 40〜70%、Al 2〜25%、B 0〜20%、MgO 0〜10%、CaO 0〜15%、SrO 0〜10%、BaO 0〜15%、ZnO 0〜10%、R O(RはLi、Na、Kを表わす) 0〜0.1%、ZrO 0〜10%を含有し、
ガラス基板面と直交する光によりガラス基板面内を50mm間隔で測定したレタデーションをΔ(nm)、該レタデーションのガラス基板の辺方向に対する方位角をθ(°)とし、任意の測定点aにおける{sin(2θ)}×{sin(180°・Δ/550)}で求めた値をA、測定点aに隣り合う測定点a’における{sin(2θ)}×{sin(180°・Δ/550)}で求めた値をA’とした際、
隣り合う測定点a、a’における値A、A’の変化率((A−A’)/50)が4.0×10−7以下であることを特徴とするディスプレイ用ガラス基板。
A glass substrate formed by a downdraw method,
As a glass composition, in weight percent, SiO 2 40~70%, Al 2 O 3 2~25%, B 2 O 3 0~20%, 0~10% MgO, CaO 0~15%, SrO 0~10% BaO 0-15%, ZnO 0-10%, R 2 O (R represents Li, Na, K) 0-0.1%, ZrO 2 0-10%,
Retardation measured in the glass substrate surface at intervals of 50 mm by light orthogonal to the glass substrate surface is Δ (nm), the azimuth angle of the retardation with respect to the side direction of the glass substrate is θ (°), and { sin (2θ)} 2 × {sin (180 ° · Δ / 550)} 2 is A, and {sin (2θ)} 2 × {sin (180 °) at the measurement point a ′ adjacent to the measurement point a. Δ / 550)} When the value obtained in 2 is A ′,
A glass substrate for a display, wherein a rate of change ((AA ′) / 50) of values A and A ′ at adjacent measurement points a and a ′ is 4.0 × 10 −7 or less.
ガラス基板の短辺の長さが1000mm以上であることを特徴とする請求項1記載のディスプレイ用ガラス基板。   The glass substrate for a display according to claim 1, wherein the length of the short side of the glass substrate is 1000 mm or more. ガラス組成中のAl の含有量が10〜20質量%であることを特徴とする請求項1又は2に記載のディスプレイ用ガラス基板。 A glass substrate for a display according to claim 1 or 2, wherein the content of Al 2 O 3 in the glass composition is 10 to 20 mass%. オーバーフローダウンドロー成形法により成形されてなることを特徴とする請求項1〜3の何れかに記載のディスプレイ用ガラス基板。   The glass substrate for display according to any one of claims 1 to 3, which is formed by an overflow downdraw molding method. 液晶ディスプレイのガラス基板として使用されることを特徴とする請求項1〜4の何れかに記載のディスプレイ用ガラス基板。   It is used as a glass substrate of a liquid crystal display, The glass substrate for a display in any one of Claims 1-4 characterized by the above-mentioned.
JP2008007507A 2007-01-29 2008-01-17 Glass substrate for display Active JP5365970B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008007507A JP5365970B2 (en) 2007-01-29 2008-01-17 Glass substrate for display
PCT/JP2008/050784 WO2008093566A1 (en) 2007-01-29 2008-01-22 Glass substrate for displays
KR1020097009942A KR101422309B1 (en) 2007-01-29 2008-01-22 Glass substrate for displays
TW097102794A TWI408116B (en) 2007-01-29 2008-01-25 Glass substrate for display

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007017869 2007-01-29
JP2007017869 2007-01-29
JP2008007507A JP5365970B2 (en) 2007-01-29 2008-01-17 Glass substrate for display

Publications (2)

Publication Number Publication Date
JP2008208020A JP2008208020A (en) 2008-09-11
JP5365970B2 true JP5365970B2 (en) 2013-12-11

Family

ID=39673878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008007507A Active JP5365970B2 (en) 2007-01-29 2008-01-17 Glass substrate for display

Country Status (4)

Country Link
JP (1) JP5365970B2 (en)
KR (1) KR101422309B1 (en)
TW (1) TWI408116B (en)
WO (1) WO2008093566A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5224096B2 (en) * 2007-01-29 2013-07-03 日本電気硝子株式会社 Manufacturing method of glass substrate for display
US8210001B2 (en) 2010-11-10 2012-07-03 Corning Incorporated Method of producing uniform light transmission fusion drawn glass
JP5768082B2 (en) * 2013-03-27 2015-08-26 AvanStrate株式会社 Glass plate manufacturing method and glass plate manufacturing apparatus
KR102212726B1 (en) 2020-08-31 2021-02-04 김보화 Electric cooker with heat diffusion structure
KR102555274B1 (en) 2022-12-03 2023-07-13 김환배 Meat roaster with detachable lateral fine dust collection fence that is easy to clean

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922002A (en) * 1995-07-07 1997-01-21 Teijin Ltd Plastic substrate for liquid crystal
JPH1016143A (en) * 1996-07-03 1998-01-20 Kanegafuchi Chem Ind Co Ltd Manufacture of optical transparent plastic sheet
JP2001130920A (en) * 1999-10-28 2001-05-15 Asahi Glass Co Ltd Glass substrate for display
JP2004091244A (en) * 2002-08-30 2004-03-25 Nippon Electric Glass Co Ltd Alkali-free glass substrate and method for manufacturing the same
JP4725046B2 (en) * 2003-08-20 2011-07-13 東ソー株式会社 Plastic substrate for display and display element
JP2005283969A (en) * 2004-03-30 2005-10-13 Nec Corp Liquid crystal display device and liquid crystal projector using the same
JP4716245B2 (en) * 2004-11-11 2011-07-06 日本電気硝子株式会社 Glass substrate and manufacturing method thereof

Also Published As

Publication number Publication date
TWI408116B (en) 2013-09-11
KR101422309B1 (en) 2014-07-22
WO2008093566A1 (en) 2008-08-07
TW200833627A (en) 2008-08-16
JP2008208020A (en) 2008-09-11
KR20090103995A (en) 2009-10-05

Similar Documents

Publication Publication Date Title
JP5224096B2 (en) Manufacturing method of glass substrate for display
US9598307B2 (en) Glass and glass substrate
JP5510315B2 (en) GLASS PLATE FOR DISPLAY PANEL, ITS MANUFACTURING METHOD, AND TFT PANEL MANUFACTURING METHOD
JP5233998B2 (en) Glass plate, method for producing the same, and method for producing TFT panel
US8136371B2 (en) Process for producing glass substrate and glass substrate
JP6365826B2 (en) Glass
JP6532218B2 (en) Glass
JP2009173525A (en) Process and apparatus for producing glass plate
JP2012193108A (en) Alkali-free glass substrate
JP7396413B2 (en) glass
JP5365970B2 (en) Glass substrate for display
JP2024028446A (en) alkali-free glass
WO2009081740A1 (en) Process and apparatus for producing glass plate
JP6770984B2 (en) Glass and glass substrate
JP6955522B2 (en) Glass and glass substrate
JP2019077611A (en) Glass and glass substrate
WO2020255625A1 (en) Method for producing glass substrate
WO2020189337A1 (en) Glass substrate
WO2021131668A1 (en) Glass substrate manufacturing method and glass substrate
WO2009081741A1 (en) Process and apparatus for producing glass plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130901

R150 Certificate of patent or registration of utility model

Ref document number: 5365970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150