JP2001128467A - Power conversion device - Google Patents

Power conversion device

Info

Publication number
JP2001128467A
JP2001128467A JP30496899A JP30496899A JP2001128467A JP 2001128467 A JP2001128467 A JP 2001128467A JP 30496899 A JP30496899 A JP 30496899A JP 30496899 A JP30496899 A JP 30496899A JP 2001128467 A JP2001128467 A JP 2001128467A
Authority
JP
Japan
Prior art keywords
terminal
wiring
terminals
inductance
smoothing capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30496899A
Other languages
Japanese (ja)
Inventor
Shinji Shirakawa
真司 白川
Nobuyoshi Muto
信義 武藤
Seiji Komatsu
清次 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30496899A priority Critical patent/JP2001128467A/en
Publication of JP2001128467A publication Critical patent/JP2001128467A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problem that with a main circuit wiring mounted with low inductance, influence of the wiring inductance in a semiconductor module on the output voltage of an inverter is increased, that is, output three-phase voltage waveform is varied according to differences in wiring inductance in phases U, V, and W in the semiconductor module. SOLUTION: In a semiconductor module, having two or more pairs of P terminals and N terminals, a flat conductor connecting the positive-side terminals and a flat conductor connecting the negative-side terminals are used to mount a laminated wiring structure where insulators are sandwiched between the two flat conductors. Thanks to this laminated wiring structure, the wiring inductance up to three-phase output terminals, as seen from the P terminal and N terminal side is smoothed and reduced, and variation in jump-up voltage waveform during switching is suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力変換装置に関
わり、特に電力変換装置の主回路を構成する電力変換用
半導体モジュールの主回路導体実装技術に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power converter, and more particularly to a technique for mounting a main circuit conductor of a power conversion semiconductor module constituting a main circuit of the power converter.

【0002】[0002]

【従来の技術】電力変換器は順変換器及び逆変換器の主
回路配線はバスバー(導体板状)配線やケーブル配線で
構成されている。順変換器の出力を平滑化するために順
変換器と逆変換器への主回路配線上に平滑コンデンサが
配置されている。平滑コンデンサと逆変換器を結ぶ配線
のインダクタンスが大きいとき、逆変換回路のスイッチ
ング時の跳ね上がり電圧が大きくなり、素子破壊などが
起り得る。そのような跳ね上り電圧の増大を防ぐため
に、最近では主配線の+側配線と−側配線を平板積層構
造にし、配線インダクタンス低減による跳ね上がり電圧
抑制が実施されている。この従来技術としては特開平6
−225545 号公報記載のものがある。この技術は往復電
流が流れる2枚のバスバー配線を近接して配置すること
により、配線インダクタンスを減少させる方法である。
また、上記の配線平板積層構造化による配線インダクタ
ンス低減技術は変換器内の電力変換器用スイッチ素子を
接続する配線構造にも適用されている。この技術として
は特開平6−69415号公報と特開平8−140363 号公報記載
のものがある。
2. Description of the Related Art In a power converter, main circuit wiring of a forward converter and an inverse converter is constituted by bus bar (conductor plate) wiring or cable wiring. A smoothing capacitor is arranged on the main circuit wiring to the forward converter and the inverse converter to smooth the output of the forward converter. When the inductance of the wiring connecting the smoothing capacitor and the inverter is large, the jump voltage at the time of switching of the inverter circuit becomes large, and element destruction or the like may occur. In order to prevent such an increase in the jumping voltage, recently, the + side wiring and the − side wiring of the main wiring have a flat plate laminated structure, and the jumping voltage is suppressed by reducing the wiring inductance. This prior art is disclosed in
There is one described in -225545. This technique is a method of reducing wiring inductance by arranging two bus bar wirings through which a reciprocating current flows in close proximity.
In addition, the above-described wiring inductance reduction technology by the wiring flat plate laminated structure is also applied to a wiring structure for connecting a power converter switch element in a converter. As this technique, there are those described in JP-A-6-69415 and JP-A-8-140363.

【0003】また、電力変換装置と電動機等を組み合わ
せたシステムにおいて電動機等に電力を供給する三相配
線間の電流電圧の非平衡から電動機等の接地線に電流が
流れる。上記の電流(以下、漏れ電流と呼ぶ)は高い周
波数成分を持つノイズ電流が含まれており、漏れ電流を
抑制する従来技術としては、接地線にインダクタンスフ
ィルタを装荷し、高周波領域における電流を遮断する対
策がされている。
Further, in a system in which a power converter and a motor are combined, a current flows through a ground line of the motor or the like due to an imbalance in current and voltage between three-phase wires for supplying power to the motor and the like. The above current (hereinafter referred to as leakage current) includes a noise current having a high frequency component. As a conventional technology for suppressing the leakage current, an inductance filter is mounted on a ground line to cut off a current in a high frequency region. Measures have been taken.

【0004】[0004]

【発明が解決しようとする課題】電力変換器配線では、
特に電流量が大きい平滑コンデンサと逆変換器を結ぶ配
線のインダクタンスが大きいとき、逆変換回路のスイッ
チング時の跳ね上がり電圧が大きくなり、素子破壊や電
力損失などの課題が起る。この課題に対して従来技術で
示した主回路配線積層導体板実装法により、主回路配線
インダクタンスは逆変換器に用いられる電力変換用半導
体モジュール内の配線インダクタンスとほぼ同等の値に
なりつつある。主回路配線インダクタンスの低減によ
り、電力変換用半導体モジュールのスイッチング波形に
対して、前記モジュール内のスイッチ素子を接続する配
線のインダクタンスが与える影響が大きくなっている。
そのため、モジュール内の各相への配線インダクタンス
の違いに応じて、三相出力電圧波形に違いが生じること
になる。この三相出力電圧波形の違いが三相配線間電流
電圧非平衡の一因であり、電力変換装置と電動機等を組
み合わせたシステムにおいて、三相配線間の電流電圧の
非平衡により、三相配線ケーブルに高周波のコモンモー
ド電流が、電動機等の接地線に高周波の漏れ電流が流れ
ることになる。電力変換用半導体モジュール内の配線構
造に関しては従来技術で説明したように低インダクタン
ス化技術により対応している。
SUMMARY OF THE INVENTION In power converter wiring,
In particular, when the inductance of the wiring connecting the smoothing capacitor and the inverter with a large amount of current is large, the jump voltage at the time of switching of the inverter circuit becomes large, causing problems such as element destruction and power loss. With respect to this problem, the main circuit wiring inductance is becoming almost equal to the wiring inductance in the power conversion semiconductor module used for the inverter by the main circuit wiring laminated conductor plate mounting method described in the related art. Due to the reduction in the main circuit wiring inductance, the influence of the inductance of the wiring connecting the switch elements in the power conversion semiconductor module on the switching waveform of the power conversion semiconductor module has increased.
Therefore, a difference occurs in the three-phase output voltage waveform according to a difference in wiring inductance to each phase in the module. This difference in the three-phase output voltage waveform is one of the causes of the current-voltage imbalance between the three-phase wiring. In a system in which a power converter and an electric motor are combined, the three-phase wiring A high-frequency common mode current flows through a cable, and a high-frequency leakage current flows through a ground wire such as an electric motor. The wiring structure in the power conversion semiconductor module is supported by the low inductance technology as described in the related art.

【0005】本発明の目的は、上記課題への対応をさら
に向上させるものであり、P端子とN端子側から見た三
相出力端子までの配線インダクタンスを平滑化、かつ低
減した、即ちスイッチング時の跳ね上り電圧波形のばら
つきを抑制した電力変換器を提供することにある。
An object of the present invention is to further improve the solution to the above-mentioned problem, and to smooth and reduce the wiring inductance from the P terminal and the N terminal to the three-phase output terminal, that is, at the time of switching. It is an object of the present invention to provide a power converter that suppresses a variation in the voltage waveform of a jump.

【0006】[0006]

【課題を解決するための手段】上記の目的は、複数の+
側端子(P端子)と−側端子(N端子)を持つ電力変換
器モジュールに対して、前記電力変換器モジュールのP
端子とN端子に接続する配線の幾何学的構造及びその端
子接続構造を変更することにより達成される。具体的に
は、2対以上の+側端子(P端子)と−側端子(N端
子)を持つ電力変換用半導体モジュールの外部配線とし
て、+側端子間を接続する平板導体と−側端子間を接続
する平板導体を上記2枚の平板導体間に絶縁体を挟み込
んだ積層構造とすることで達成される。本発明は低イン
ダクタンス配線を半導体モジュールの同極端子間に外部
から接続することにより、複数の半導体モジュール端子
から見たインダクタンスを低減すると共に均等化を達成
している。
An object of the present invention is to provide a plurality of +
For a power converter module having a negative terminal (P terminal) and a negative terminal (N terminal),
This is achieved by changing the geometric structure of the wiring connected to the terminal and the N terminal and the terminal connection structure. Specifically, as an external wiring of a power conversion semiconductor module having two or more pairs of a + side terminal (P terminal) and a − side terminal (N terminal), a flat conductor connecting between the + side terminals and a − side terminal. This is achieved by forming a laminated structure in which an insulator is interposed between the two flat conductors. According to the present invention, by connecting a low-inductance wiring between the same-polarity terminals of the semiconductor module from the outside, the inductance seen from a plurality of semiconductor module terminals is reduced and equalization is achieved.

【0007】[0007]

【発明の実施の形態】電力変換装置は、交流入力電源を
直流に変換する順変換器(ダイオードを含む)と順変換機
の出力を平滑化する平滑コンデンサ、及びその直流を可
変電圧・可変周波数に変換する逆変換器等の各電装品を
接続する主回路とこれらの変換器を駆動制御する制御手
段とこれらの電装品を冷却する冷却体(冷却フィン,冷
却ファン,風洞等で構成した冷却体)で構成されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A power converter comprises a forward converter (including a diode) for converting AC input power to DC, a smoothing capacitor for smoothing the output of the forward converter, and a variable voltage / variable frequency for the DC. A main circuit that connects each electrical component such as an inverse converter that converts power to the control device, a control unit that drives and controls these converters, and a cooling body that cools these electrical components (a cooling fin, a cooling fan, a wind tunnel, etc.) Body).

【0008】以下、本発明の実施例を図1から図7に基
づいて説明する。図1から図7において、同じもの及び
同じ機能を有するものは同じ符号を付した。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 7, the same components and components having the same functions are denoted by the same reference numerals.

【0009】図5は、必要最小限の電力変換装置の回路
構成を示している。図5において、1は三相交流電源、
2は入力電線、3は順変換器、4は主回路配線、4aは
主回路配線のP側配線、4bは主回路配線のN側配線、
5は平滑コンデンサ、6は逆変換器モジュール、7は出
力配線、8は誘導電動機(負荷とも呼ばれる)である。
前記順変換器3はIPM、又はパワー半導体等の可変制
御素子で構成されており、三相交流電源1側を直流に変
換すると共に、直流側の電圧がある規定値を超えると三
相交流電源1側に負荷側で生じた電力を回生する。三相
交流電源1側に負荷側で生じた電力を回生しない場合、
前記順変換器3の代わりに全波整流を行うダイオードモ
ジュールを用いることが多い。本発明は前記順変換器3
の代わりに前記ダイオードモジュールを用いてもよい。
前記逆変換器6は平滑コンデンサ5で平滑化された直流
電圧を可変電圧,可変周波数に変換するIPMで構成さ
れている。回路図には示してないが、電力変換器は上記
の構成物の他に、電源投入初期に平滑コンデンサ5へ流
れる大電流を抑制するための初期充電電流抑制抵抗,平
滑コンデンサ5の充電後に初期充電電流抑制抵抗を短絡
する電磁接触器や前記順変換器3と前記逆変換器6等の
発熱する素子及びモジュールを冷却するための冷却フィ
ン,冷却ファン等で構成されている。
FIG. 5 shows a circuit configuration of a minimum necessary power converter. In FIG. 5, 1 is a three-phase AC power supply,
2 is an input wire, 3 is a forward converter, 4 is a main circuit wiring, 4a is a P-side wiring of the main circuit wiring, 4b is an N-side wiring of the main circuit wiring,
5 is a smoothing capacitor, 6 is an inverter module, 7 is an output wiring, and 8 is an induction motor (also called a load).
The forward converter 3 is composed of a variable control element such as an IPM or a power semiconductor. The forward converter 3 converts the three-phase AC power supply 1 into DC and, when the DC-side voltage exceeds a predetermined value, the three-phase AC power supply. The power generated on the load side is regenerated on one side. When the power generated on the load side is not regenerated to the three-phase AC power supply 1,
In many cases, a diode module that performs full-wave rectification is used instead of the forward converter 3. The present invention relates to the forward converter 3
Alternatively, the diode module may be used.
The inverter 6 is composed of an IPM that converts the DC voltage smoothed by the smoothing capacitor 5 into a variable voltage and a variable frequency. Although not shown in the circuit diagram, in addition to the components described above, the power converter includes an initial charging current suppression resistor for suppressing a large current flowing to the smoothing capacitor 5 at the initial stage of power-on, and an initial after charging of the smoothing capacitor 5. It is composed of an electromagnetic contactor for short-circuiting a charging current suppression resistor, a heating element such as the forward converter 3 and the reverse converter 6, a cooling fin for cooling a module, a cooling fan, and the like.

【0010】本発明の実施例1を図1から図4を用いて
説明する。図1は、逆変換器として動作する2対の+側
端子(P端子)と−側端子(N端子)を持つ半導体モジ
ュール(IPM11)において、P端子9aとP端子9b
間を接続する平板導体15とN端子10aとN端子10
b間を接続する平板導体16と、平板導体15,16で
挟み込んだ絶縁シート17の積層構造を示している。
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a P-terminal 9a and a P-terminal 9b in a semiconductor module (IPM11) having two pairs of a + terminal (P terminal) and a-terminal (N terminal) operating as an inverse converter.
The flat conductor 15, the N terminal 10a, and the N terminal 10
3A shows a laminated structure of a flat conductor 16 connecting between b and an insulating sheet 17 sandwiched between the flat conductors 15 and 16.

【0011】図2は、図1のP側平板導体15とN側平
板導体16と絶縁シート17の積層関係を示した図であ
る。この絶縁シート17はP側導体板15とN側導体板
16を電気的に絶縁している。但し、本発明においてP
側平板導体15は絶縁シート17を挟んでN側平板導体
16の上に配置しても同等の効果が得られる。本発明の
平板導体はIPM11の端子位置,高さに合わせるため
に折り曲げられている。
FIG. 2 is a diagram showing the lamination relationship of the P-side plate conductor 15, the N-side plate conductor 16, and the insulating sheet 17 of FIG. This insulating sheet 17 electrically insulates the P-side conductor plate 15 and the N-side conductor plate 16. However, in the present invention, P
Even if the side plate conductor 15 is arranged on the N-side plate conductor 16 with the insulating sheet 17 interposed therebetween, the same effect can be obtained. The flat conductor of the present invention is bent to match the terminal position and height of the IPM 11.

【0012】図3に、半導体モジュール内部の配線イン
ダクタンスを示す。図3から分かるように右側のPN端
子からUVW各相出力端子までの経路の違いにより配線
インダクタンスが異なる。左側のPN端子からUVW各
相出力端子までのインダクタンスも同様に異なる。従来
方式の問題点と本発明の効果を明らかにするために、上
記のPN端子からUVW各相出力端子であるU端子1
2,V端子13,W端子14までの配線インダクタンス
を概算する。図3において左右のP端子間距離が12cm
とし、モジュール内PN配線が幅5mmでかつ左右のP端
子間配線がP端子(左側)−U端子−V端子−W端子−
P端子(右側)間で2:1:1:2に分割されている場
合、P端子(左側)−U端子間20nH,U端子−V端
子間10nH,V端子−W端子間10nH,W端子−P
端子(右側)間20nHとなる。モジュール内のN側配
線インダクタンスも同様の概算値を得る。上記の試算よ
り、左側PN端子から見たU相出力端子までのインダク
タンスはW相出力端子までのインダクタンスの約2倍と
なる。上記のインダクタンスの差によりUVW相出力電
圧波形に差が生じる。この半導体モジュールの右P端子
と左P端子を、右N端子と左N端子を図1に示すように
積層化した2枚の導体平板で接続する。上記導体平板の
インダクタンスは積層化構造により小さくすることがで
き、上記の試算に用いたモジュールに寸法を合わせると
上記導体平板のインダクタンスは20nHと概算され
る。
FIG. 3 shows the wiring inductance inside the semiconductor module. As can be seen from FIG. 3, the wiring inductance is different due to the difference in the path from the right PN terminal to the UVW phase output terminal. The inductance from the left PN terminal to the UVW phase output terminal is also different. In order to clarify the problems of the conventional system and the effects of the present invention, the above-mentioned PN terminal is used to output UVW each phase output terminal U terminal
2, the wiring inductance to the V terminal 13 and the W terminal 14 is roughly calculated. In FIG. 3, the distance between the left and right P terminals is 12 cm.
The width of the PN wiring in the module is 5 mm, and the wiring between the left and right P terminals is P terminal (left) -U terminal-V terminal-W terminal-
When divided into 2: 1: 1: 2 between P terminals (right), 20 nH between P terminal (left) and U terminal, 10 nH between U terminal and V terminal, 10 nH between V terminal and W terminal, W terminal −P
20 nH between terminals (right side). The same approximate value is obtained for the N-side wiring inductance in the module. From the above calculation, the inductance from the left PN terminal to the U-phase output terminal is about twice the inductance to the W-phase output terminal. The difference in inductance causes a difference in the UVW phase output voltage waveform. The right P terminal and the left P terminal of this semiconductor module are connected by two conductor flat plates in which the right N terminal and the left N terminal are stacked as shown in FIG. The inductance of the conductor plate can be reduced by the laminated structure, and the inductance of the conductor plate is estimated to be 20 nH when the dimensions are adjusted to the module used in the above calculation.

【0013】図3に示すように、この積層平板の接続に
より、上記導体平板の配線インダクタンスが左右のPN
端子から見た回路に並列接続されることになり、平滑コ
ンデンサと逆変換器を結ぶ配線を逆変換器の左右どちら
のPN端子に接続した場合でも、PN端子からUVW各
相出力端子までの各インダクタンスを平滑化することが
できる。
As shown in FIG. 3, by connecting the laminated flat plates, the wiring inductance of the conductive flat plate is reduced to the right and left PN.
When the wiring connecting the smoothing capacitor and the inverter is connected to either the left or right PN terminal of the inverter, each circuit from the PN terminal to the UVW phase output terminal is connected in parallel to the circuit viewed from the terminal. Inductance can be smoothed.

【0014】図4に、本発明の効果を示す。図4は、図
3の半導体モジュールの左側PN端子に平滑コンデンサ
と結ぶ配線を接続した場合の本発明である積層導体平板
の有無による各UVW相端子に掛かるスイッチング時の
跳ね上り電圧を比較したものである。有の場合を本発
明、無の場合を比較例としている。図4から、本発明の
実施例の配線構造によりUVW相電圧の跳ね上り電圧が
低減かつ平滑化され、UVW各相の回路動作のばらつき
が抑制されることが分かる。本発明の実施例では、低イ
ンダクタンス配線を半導体モジュールの同極端子間で接
続することにより半導体モジュール内の配線インダクタ
ンスを並列化することで各端子からの配線インダクタン
スの低減と均等化を達成している。また、本発明の実施
例の積層配線構造を順変換器として用いたIPMに順変
換器入力RST相電圧に対しても同様の効果がある。
FIG. 4 shows the effect of the present invention. FIG. 4 is a graph comparing the jump voltage at the time of switching applied to each UVW phase terminal depending on the presence or absence of the laminated conductor flat plate according to the present invention when the wiring connected to the smoothing capacitor is connected to the left PN terminal of the semiconductor module of FIG. It is. The case where there is is the present invention, and the case where there is no is a comparative example. From FIG. 4, it can be seen that the jumping voltage of the UVW phase voltage is reduced and smoothed by the wiring structure of the embodiment of the present invention, and the variation in the circuit operation of each phase of the UVW is suppressed. In the embodiment of the present invention, the low inductance wiring is connected between the same polarity terminals of the semiconductor module to parallelize the wiring inductance in the semiconductor module, thereby reducing and equalizing the wiring inductance from each terminal. I have. Further, the IPM using the stacked wiring structure of the embodiment of the present invention as a forward converter has the same effect on the input RST phase voltage of the forward converter.

【0015】次に、本発明の実施例2を図6を用いて説
明する。図6は本発明のP側平板導体とN側平板導体に
おいて、平滑コンデンサ5と逆変換器(IPM11)を
接続する主回路配線のP側配線18とN側配線19のそ
れぞれをP側の平板導体15とN側の平板導体16と一
体化した構造を示している。このP側平板導体15,P
側配線18とN側平板導体16,N側配線19間は図示
してはいないが絶縁体があり、P側平板導体とN側平板
導体は電気的に絶縁されている構造になっている。IP
M11は冷却フィン21上に配置し、ゲート回路基板2
0はIPMへゲート信号を送るための回路が実装されて
いる。本実施例は実施例1と同様の効果があり、実施例
1と比べて部品点数を減らせる利点がある。また、本実
施例の積層配線構造は2層プリント回路基板を用いても
同等の効果がある。さらに、多層プリント回路基板によ
り、P側の平板導体15,P側配線18とN側の平板導
体16,N側配線19とゲート回路を同一基板上に構成
するとさらに部品点数と組立工数を削減できる利点があ
る。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 6 shows the P-side flat conductor and the N-side flat conductor of the present invention, wherein the P-side wiring 18 and the N-side wiring 19 of the main circuit wiring connecting the smoothing capacitor 5 and the inverter (IPM11) are each a P-side flat plate. The structure in which the conductor 15 and the N-side plate conductor 16 are integrated is shown. This P-side plate conductor 15, P
Although not shown, there is an insulator between the side wiring 18 and the N-side flat conductor 16 and the N-side flat wiring 19, and the P-side flat conductor and the N-side flat conductor are electrically insulated. IP
M11 is disposed on the cooling fin 21 and the gate circuit board 2
For 0, a circuit for sending a gate signal to the IPM is mounted. This embodiment has the same effect as the first embodiment, and has an advantage that the number of parts can be reduced as compared with the first embodiment. Further, the laminated wiring structure of this embodiment has the same effect even when a two-layer printed circuit board is used. Further, when the P-side flat conductor 15, the P-side wiring 18, the N-side flat conductor 16, the N-side wiring 19, and the gate circuit are formed on the same substrate by a multilayer printed circuit board, the number of parts and the number of assembly steps can be further reduced. There are advantages.

【0016】次に、本発明の実施例3を図7を用いて説
明する。図7は主回路配線が接続されているPN端子以
外のPN端子間に補助コンデンサ22を接続した回路構
造を示している。本実施例でPN端子と補助コンデンサ
22を接続する配線は実施例1と同様にP側配線とN側
配線を積層化し、配線インダクタンスを低減する。図7
に示す実施例においてスイッチング時に補助コンデンサ
22からもIPM11内の半導体素子へ電流が流れるよ
うにすることで実施例1と同様の効果がある。上記の実
施例1から実施例3ではIPMのPN端子対が2組の場
合を示したが、2組以上のPN端子がある場合にも、そ
れぞれのP端子間,N端子間を積層構造の平板導体によ
り接続すれば、実施例1と同様にUVW各相跳ね上り電
圧の均等化と低減に効果がある。また、実施例1と実施
例2で2枚の導体平板によって挟まれる絶縁体は2枚の
導体平板の電気的絶縁のみを目的としているため、空気
で代用してもよい。
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 7 shows a circuit structure in which the auxiliary capacitor 22 is connected between PN terminals other than the PN terminal to which the main circuit wiring is connected. In this embodiment, the wiring connecting the PN terminal and the auxiliary capacitor 22 is formed by stacking the P-side wiring and the N-side wiring in the same manner as in the first embodiment, thereby reducing the wiring inductance. FIG.
In the second embodiment, the same effect as in the first embodiment can be obtained by causing a current to flow from the auxiliary capacitor 22 to the semiconductor element in the IPM 11 at the time of switching. In the above-described first to third embodiments, the IPM has two pairs of PN terminals. However, even when there are two or more PN terminals, the P-terminal and the N-terminal have a laminated structure. If the connection is made by a flat plate conductor, it is effective to equalize and reduce the jump voltage of each phase of UVW as in the first embodiment. In addition, the insulator sandwiched between the two conductor flat plates in the first and second embodiments is intended only for electrical insulation of the two conductor flat plates, and may be replaced with air.

【0017】[0017]

【発明の効果】本発明によれば、UVW相電圧の跳ね上
り電圧を均等化かつ低減することで、三相配線間電流電
圧非平衡の一因であるUVW各相の回路動作のばらつき
を抑制した電力変換装置を提供することができる。
According to the present invention, the variation in the circuit operation of each phase of the UVW, which is one of the causes of the current-voltage imbalance between the three-phase wirings, is suppressed by equalizing and reducing the jump voltage of the UVW phase voltage. Power conversion device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の半導体モジュール端子を接
続する配線構造を示す斜視図。
FIG. 1 is a perspective view showing a wiring structure for connecting semiconductor module terminals according to one embodiment of the present invention.

【図2】本発明の一実施例の配線積層構造を示す斜視
図。
FIG. 2 is a perspective view showing a wiring laminated structure according to one embodiment of the present invention.

【図3】本発明の実施例の配線と半導体モジュール内の
配線インダクタンスを考慮した回路図。
FIG. 3 is a circuit diagram in consideration of wiring and wiring inductance in a semiconductor module according to an embodiment of the present invention.

【図4】本発明用いた場合と用いない場合のUVW相端
子における跳ね上り電圧を比較した図。
FIG. 4 is a diagram comparing the jump voltage at the UVW phase terminal when the present invention is used and when it is not used.

【図5】実施例1の電力変換装置主回路部及び電動機の
回路図。
FIG. 5 is a circuit diagram of a power conversion device main circuit unit and a motor according to the first embodiment.

【図6】本発明の一実施例の積層配線構造を示す斜視
図。
FIG. 6 is a perspective view showing a laminated wiring structure according to one embodiment of the present invention.

【図7】本発明の一実施例を示す回路図。FIG. 7 is a circuit diagram showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…三相交流電源、2…入力電線、3…順変換器、4…
主回路配線、4a…主回路配線のP側配線、4b…主回
路配線のN側配線、5…平滑コンデンサ、6…逆変換器
モジュール、7…出力配線、8…誘導電動機、9a,9
b…P端子、10a,10b…N端子、11…IPM、
12…U端子、13…V端子、14…W端子、15,1
6…平板導体、17…絶縁シート、18…P側配線、1
9…N側配線、20…ゲート回路基板、21…冷却フィ
ン。
1: three-phase AC power supply, 2: input wire, 3: forward converter, 4:
Main circuit wiring, 4a: P-side wiring of main circuit wiring, 4b: N-side wiring of main circuit wiring, 5: smoothing capacitor, 6: inverter module, 7: output wiring, 8: induction motor, 9a, 9
b ... P terminal, 10a, 10b ... N terminal, 11 ... IPM,
12 U terminal, 13 V terminal, 14 W terminal, 15, 1
6: flat conductor, 17: insulating sheet, 18: P side wiring, 1
9 ... N side wiring, 20 ... Gate circuit board, 21 ... Cooling fin.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小松 清次 茨城県ひたちなか市市毛1070番地 株式会 社日立製作所水戸事業所内 Fターム(参考) 5H007 BB06 CA01 CB05 CC03 CC12 DA06 HA04  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Seiji Komatsu 1070 Ma, Hitachinaka-shi, Ibaraki F-term in Mito Works, Hitachi, Ltd. F-term (reference) 5H007 BB06 CA01 CB05 CC03 CC12 DA06 HA04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】交流を整流して直流電圧に変換する順変換
器と、前記順変換器の出力を平滑にする平滑コンデンサ
と、前記平滑コンデンサから得られる直流電圧を可変周
波数の交流に変換する逆変換器モジュールとを有し、前
記逆変換器モジュールの複数の+側端子間を接続する平
板導体と複数の−側端子間を接続する平板導体とで絶縁
体を挟み込んだ積層構造を有することを特徴とする電力
変換装置。
1. A forward converter for rectifying an alternating current to convert it into a direct current voltage, a smoothing capacitor for smoothing an output of the forward converter, and converting a direct current voltage obtained from the smoothing capacitor into an alternating current having a variable frequency. An inverter module, having a laminated structure in which an insulator is sandwiched between a plate conductor connecting between a plurality of + terminals and a plate conductor connecting between a plurality of-terminals of the inverter module. A power converter characterized by the above-mentioned.
【請求項2】交流を整流して直流電圧に変換する順変換
器モジュールと、前記順変換器モジュールの出力を平滑
にする平滑コンデンサと、前記平滑コンデンサから得ら
れる直流電圧を可変周波数の交流に変換する逆変換器と
を有し、前記順変換器モジュールの複数の+側端子間を
接続する平板導体と複数の−側端子間を接続する平板導
体で絶縁体を挟み込んだ積層構造を有することを特徴と
する電力変換装置。
2. A forward converter module for rectifying an AC to convert the AC voltage into a DC voltage, a smoothing capacitor for smoothing an output of the forward converter module, and a DC voltage obtained from the smoothing capacitor to an AC having a variable frequency. And a laminated structure in which an insulator is interposed between a flat plate conductor connecting between a plurality of + side terminals and a flat plate conductor connecting between a plurality of -side terminals of the forward converter module. A power converter characterized by the above-mentioned.
【請求項3】請求項1の電力変換装置において、平滑コ
ンデンサと逆変換器モジュールの+側端子を接続する導
体と−側端子を接続する導体を平板で構成し、それぞれ
の+側導体平板と−側導体平板を前記逆変換器モジュー
ルの複数の+側端子間を接続する平板導体と複数の−側
端子間を接続する平板導体と一体とした構造とすること
を特徴とする電力変換装置。
3. The power converter according to claim 1, wherein the conductor connecting the smoothing capacitor and the positive terminal of the inverter module and the conductor connecting the negative terminal of the inverter module are formed of flat plates. A power converter, wherein a negative-side conductor flat plate is integrated with a flat-plate conductor connecting between a plurality of + -side terminals of the inverter module and a flat-plate conductor connecting between a plurality of -side terminals.
【請求項4】交流を整流して直流電圧に変換する順変換
器と、前記順変換器の出力を平滑にする平滑コンデンサ
と、前記平滑コンデンサから得られる直流電圧を可変周
波数の交流に変換する逆変換器モジュールとを有し、前
記逆変換器モジュールの平滑コンデンサと接続する+側
端子と−側端子とは異なる前記逆変換器モジュールの+
側端子と−側端子にコンデンサを接続する構造であるこ
とを特徴とする電力変換装置。
4. A forward converter for rectifying AC and converting it to a DC voltage, a smoothing capacitor for smoothing the output of the forward converter, and converting a DC voltage obtained from the smoothing capacitor into an AC having a variable frequency. And a positive terminal and a negative terminal connected to the smoothing capacitor of the inverse converter module, the positive terminal and the negative terminal of the inverse converter module being different from each other.
A power converter having a structure in which a capacitor is connected to a side terminal and a negative side terminal.
JP30496899A 1999-10-27 1999-10-27 Power conversion device Pending JP2001128467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30496899A JP2001128467A (en) 1999-10-27 1999-10-27 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30496899A JP2001128467A (en) 1999-10-27 1999-10-27 Power conversion device

Publications (1)

Publication Number Publication Date
JP2001128467A true JP2001128467A (en) 2001-05-11

Family

ID=17939488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30496899A Pending JP2001128467A (en) 1999-10-27 1999-10-27 Power conversion device

Country Status (1)

Country Link
JP (1) JP2001128467A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7042198B2 (en) 2002-02-26 2006-05-09 Keio University System using a power converter
WO2007094162A1 (en) * 2006-02-17 2007-08-23 Kabushiki Kaisha Yaskawa Denki Power converter provided with bus bar
JP2013504999A (en) * 2009-09-16 2013-02-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Power semiconductor module and power semiconductor circuit device
US9198332B2 (en) 2013-01-11 2015-11-24 Toyota Jidosha Kabushiki Kaisha Cooling-type switching element module
KR101608265B1 (en) 2013-12-30 2016-04-04 주식회사 효성 Method for configuring bus bar and inverter configuring based on bus bar

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7042198B2 (en) 2002-02-26 2006-05-09 Keio University System using a power converter
WO2007094162A1 (en) * 2006-02-17 2007-08-23 Kabushiki Kaisha Yaskawa Denki Power converter provided with bus bar
US7869193B2 (en) 2006-02-17 2011-01-11 Kabushiki Kaisha Yaskawa Denki Power conversion apparatus
JP4911370B2 (en) * 2006-02-17 2012-04-04 株式会社安川電機 Power converter
JP2013504999A (en) * 2009-09-16 2013-02-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Power semiconductor module and power semiconductor circuit device
US9198332B2 (en) 2013-01-11 2015-11-24 Toyota Jidosha Kabushiki Kaisha Cooling-type switching element module
KR101608265B1 (en) 2013-12-30 2016-04-04 주식회사 효성 Method for configuring bus bar and inverter configuring based on bus bar

Similar Documents

Publication Publication Date Title
US10903736B2 (en) Power converter
US8816625B2 (en) Integrated regenerative AC drive with solid state precharging
US7358442B2 (en) Bus structure for power switching circuits
US8947899B2 (en) Split laminated DC bus structure
JPH11155286A (en) Power converter
JP5860581B2 (en) System and method for providing a power converter
US20060203528A1 (en) Apparatus for power conversion in electric rolling stock
US7567446B2 (en) Power conversion apparatus including a rectifier circuit and an inverter circuit
JPH07245951A (en) Semiconductor stack
JP3830669B2 (en) Power converter
JP2005176555A (en) Power converter
JP2001128467A (en) Power conversion device
JP5016965B2 (en) Power conversion circuit, conductor structure and power switching element
CN113632364B (en) Power conversion unit
JP3275132B2 (en) Power converter
JP4424918B2 (en) Power converter
JP2000125543A (en) Surge voltage-suppressing means and semiconductor power conversion device
JP5272593B2 (en) Electric motor drive system and vehicle equipped with the same
JP2004187484A (en) Stacked structure of power converter
JP4297995B2 (en) Elevator control device
JP2000102260A (en) Power conversion device
JP6433579B2 (en) Power converter
US11870237B2 (en) Surge suppression circuit and rotating electrical machine
WO2023079617A1 (en) Power conversion device
WO2021235150A1 (en) Noise filter and power conversion device