JP3830669B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP3830669B2
JP3830669B2 JP23763998A JP23763998A JP3830669B2 JP 3830669 B2 JP3830669 B2 JP 3830669B2 JP 23763998 A JP23763998 A JP 23763998A JP 23763998 A JP23763998 A JP 23763998A JP 3830669 B2 JP3830669 B2 JP 3830669B2
Authority
JP
Japan
Prior art keywords
conductor
terminal
positive
negative
electrode side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23763998A
Other languages
Japanese (ja)
Other versions
JP2000069766A (en
Inventor
秀樹 綾野
仲田  清
知 伊東
彰 三島
阿佐子 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23763998A priority Critical patent/JP3830669B2/en
Priority to RU99109135A priority patent/RU2190919C2/en
Priority to CN2010101564747A priority patent/CN101860247B/en
Priority to CN 201010156482 priority patent/CN101854127B/en
Priority to CN 99105382 priority patent/CN1233880B/en
Publication of JP2000069766A publication Critical patent/JP2000069766A/en
Application granted granted Critical
Publication of JP3830669B2 publication Critical patent/JP3830669B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄道車両用等一般に利用される電力変換装置に係わり、特に、直流平滑用コンデンサとインバータ部分間の配線インダクタンスを低減させた電力変換装置に関する。
【0002】
【従来の技術】
通常、電力変換装置において、配線インダクタンスが大きい場合には、半導体素子のスイッチング時に半導体素子に過大な電圧が印加されるため、半導体素子を保護するためのスナバ回路が必要となり、装置を小型化することが困難である。
【0003】
ところで、配線インダクタンスを低減する方法としては、電流の経路である導体をできるだけ幅広の板状とし、かつ往路と復路の導体をできるだけ近接して接続するいわゆる平行平板状にすれば良いことが知られている。これは、往路と復路を流れる電流によって発生する磁束の変化が互いに相殺し、見かけ上磁束の変化がほとんどなくなるからである。
【0004】
電力変換装置の配線においてもこのような原理を利用して、配線インダクタンスの低減が図られており、特にインバータ部分とコンデンサ部分の接続部のインダクタンスの低減方法が、特開平5−292756号公報、特開平6−38507号公報、特開平7−245951号公報、および特開平9−117126号公報などに開示されている。これらにはいずれも上述の平行平板の配線を利用したものであり、接続端子が一方の導体や両導体間に設けられる絶縁層の貫通穴を通って他方の導体に接続されている。また、特開平6−225545号公報に開示されていいるものは、上述の平行平板の配線を利用するものであるが、導体を曲げることによって貫通穴を避けるように構成されている。
【0005】
【発明が解決しようとする課題】
上記従来技術の貫通穴を設ける構造では、貫通穴を有する導体と貫通穴を通って他方の導体に接続するため接続端子との絶縁距離を確保するために前記貫通穴を大きくとる必要がある。この場合には、貫通穴周辺の導体の狭くなった部分に電流が集中し、インピーダンスの増大、局所的な発熱等の問題が生じる。さらに、貫通穴付近では電流分布に偏りが生じるため、インダクタンスの低減効果は小さいという問題がある。
【0006】
また、特開平6−225545号公報に記載のものは、導体を曲げるなどの加工が必要であり、コストの上昇を免れない。さらに、導体が一部の接続端子を覆うように配置されているため、直流平滑用コンデンサの取り外しが極めて困難である。
【0007】
本発明の目的は、上記の問題点に鑑みて、直流平滑用コンデンサとインバータ部分を接続する配線インダクタンスの低減を簡単な構成で実現した電力変換装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の電力変換装置は以下の特徴を有する。
【0009】
少なくとも、複数の半導体素子が組み合わされて構成され、入力側を構成する正側端子と負側端子および出力側を構成する交流端子とを備えるインバータ部と、前記正側端子および負側端子間にそれぞれ正極側導体および負極側導体を介して接続される直流平滑用コンデンサとからなる電力変換装置において、前記正極側導体および前記負極側導体を、対角の位置に1組の接続部を有するとともに平板状に形成し、前記1組の接続部を結ぶ線が交差するように各導体面を同方向で互いに平行に配置し、前記各導体の一方の接続部を前記直流平滑用コンデンサに接続するとともに、前記各導体の他方の接続部を前記正側端子および前記負側端子に接続したことを特徴とする。
【0010】
また、請求項1に記載の電力変換装置において、前記正極側導体および負極側導体の前記一方の接続部間を結ぶ線と平行な幅が、前記各導体の前記一方の接続部間の距離より大きいことを特徴とする。
【0011】
また、少なくとも、複数の半導体素子が組み合わされて構成され、入力側を構成する正側端子と負側端子および出力側を構成する交流端子とを備える複数相のインバータ部から構成される多相インバータ部と、前記各相のインバータ部の前記正側端子および負側端子間にそれぞれ正極側導体および負極側導体を介して接続される直流平滑用コンデンサとからなる電力変換装置において、前記正極側導体および前記負極側導体を、前記各導体の一辺の一端側に片寄って分散配置された一方の複数の接続部および前記各導体の前記一辺に対向する辺の他端側に片寄って分散配置された他方の複数の接続部を有するとともに平板状に形成し、前記各導体のそれぞれの前記一端側と前記他端側とを結ぶ線が互いに交差するように各導体面を同方向に平行に配置し、前記各導体の前記一方の複数の接続部を各相のそれぞれの直流平滑用コンデンサに接続するとともに、前記各導体の他方の複数の接続部をそれぞれの各相インバータ部の前記正側端子および前記負側端子に接続したことを特徴とする。
【0012】
また、少なくとも、複数の半導体素子が組み合わされて構成され、入力側を構成する正側端子と負側端子および出力側を構成する交流端子とを備える複数相のインバータ部から構成される多相インバータ部と、前記各相のインバータ部の前記正側端子および負側端子間に正極側導体および負極側導体を介して接続される直流平滑用コンデンサとからなる電力変換装置において、前記正極側導体および前記負極側導体を、前記各導体の一辺の一端側に片寄って配置された一方の接続部および前記各導体の前記一辺に対向する辺の他端側に片寄って分散配置された他方の複数の接続部を有するとともに平板状に形成し、前記各導体のそれぞれの前記一端側と前記他端側とを結ぶ線が互いに交差するように各導体面を同方向に平行に配置し、前記各導体の前記一方の接続部を直流平滑用コンデンサに接続するとともに、前記各導体の他方の複数の接続部をそれぞれの各相インバータ部の前記正側端子および前記負側端子に接続したことを特徴とする。
【0013】
また、請求項1ないしは請求項4のいずれか1つの請求項に記載の電力変換装置おいて、前記正極側導体と負極側導体を略同一形状のものを用いることを特徴とする。
【0014】
【発明の実施の形態】
はじめに、本発明の第1の実施形態を図1から図6を用いて説明する。
【0015】
図3は、本実施形態に係わる電力変換装置に電源、整流器、およびモータ負荷を接続した状態を示す回路構成図である。
【0016】
同図において、11は電力変換装置、14は三相交流電源、15はこの三相交流電源14の交流電圧を直流電圧に変換する整流器、16はモータ負荷、6および7はそれぞれ整流器15と電力変換装置11を接続する正側導体および負側導体、8は電力変換装置11とモータ負荷16を接続する交流側導体である。
【0017】
ここで、電力変換装置11は、U相変換装置111、V相変換装置112、およびW相変換装置113の3相の変換装置から構成される。
【0018】
図1および図2は、図3に示す各相の変換装置111〜113のうちの1つの内部構造を示す図であり、図4は各相変換装置111〜113のうちの1つの等価回路図である。
【0019】
これらの図において、1は整流器15の出力側に接続されるとともに、各相変換装置111(112〜113)内の半導体素子9,10の入力側に接続される直流平滑用コンデンサ、2は正側導体6と直流平滑用コンデンサ1の正極端子間を接続する正極側導体、3は負側導体7と直流平滑用コンデンサ1の負極端子間を接続する負極側導体、4は正極側導体2と直流平滑用コンデンサ1の正極端子間を接続する接続部、5は負極側導体2と直流平滑用コンデンサ1の負極端子間を接続する接続部、9および10はそれぞれ正側の半導体素子および負側の半導体素子、12は正極側導体2と正側導体6との接続部、13は負極側導体3と負側導体7との接続部である。
【0020】
ここで、正側の半導体素子9、負側の半導体素子10、正側導体6、負側導体7、および交流導体8でインバータ部分を構成する。
【0021】
このインバータ部は、正側の半導体素子9および負側の半導体素子10が、図示していない制御装置によってオンオフ制御され、正側導体6および負側導体7間から供給される直流の電力を交流に変換して交流側導体8に出力する。
【0022】
また、直流平滑用コンデンサ1は正極側導体2および負極側導体3を介してインバータ部分と接続されており、正側の半導体素子9あるいは負側の半導体素子10がスイッチオンした瞬間に電流を供給し、半導体素子9,10の応答速度を補償している。さらに、正側の半導体素子9あるいは負側の半導体素子10がスイッチオフした際の過渡電流を吸収する。
【0023】
また、図1に示すように、正極側導体3は、長方形の一方の対角部分に突出部を有し、一方の突出部上の接続部5において直流平滑用コンデンサ1の負極端子と接続され、もう一方の突出部上の接続部13において負側導体7と接続される。また、正極側導体2は、負極側導体3の左右を反転した形状の導体板であり、負極側導体3の裏面側に設けられる。正極側導体2も負極側導体3と同様に、接続部4において直流平滑用コンデンサ1の正極端子と接続され、接続部12において正側導体6と接続される。さらに、正極側導体2と負極側導体3は、互いに平行にかつ中央の長方形の部分が重なりあうように配置され、接続部5と接続部13、接続部4と接続部12は互い違いに位置するように配置される。また、正極側導体2と負極側導体3の重なり合った部分の横幅Wは直流平滑用コンデンサ1の正極端子と負極端子間の間隔Lよりも長く、また、正極側導体2と負極側導体3間は電圧印加時に放電が生じないように間隙が設けられる。ここで、導体2,3間に絶縁材の板を配置すれば、導体間隔を狭めることも可能となる。
【0024】
図5および図6は、それぞれ正極側導体2および負極側導体3の電流分布を示す図である。
【0025】
同図において、曲線は電流の流線を示し、この間隔が狭いほど電流密度が大きいことを表している。図5では、直流平滑用コンデンサ1の正極端子との接続部4から流入した電流が、正側導体6との接続部12に流出している。図6では、負側導体7との接続部13から流入した電流が直流平滑用コンデンサ1の負極端子との接続部5に流出している。このように、正極側導体2および負極側導体3の電流流線は各導体面内に広がって分布する。これは、一方の導体に流れる電流が、他方の導体の電流密度の高い部分、つまり直流平滑用コンデンサ1の接続部とインバータ側導体の接続部に引き寄せられるためと考えられる。電流流線が面内に広がることにより、直流平滑用コンデンサ1とインバータ部分間の配線インダクタンスが減少する。さらに、正極側導体2の電流と負極側導体3の電流は互いに逆向きになっているため、発生する磁束が互いに相殺され、配線インダクタンスを低減させれることができる。
【0026】
図7は、本発明の第2の実施形態に係わる正極側導体21および負極側導体31の形状を示す図である。
【0027】
本実施形態の正極側導体21および負極側導体31は、第1の実施形態の図1に示したものに比べて、正極側導体21および負極側導体31の重なり合う部分の幅を狭くした点で相違する。本実施形態においても、第1の実施形態と同様に、負極側導体31と正極側導体21は、図示するように、長方形部分が重なり合うように構成され、また、各導体21,31間に電圧が印加されても放電が生じないように間隙が設けられる。なお、その他の構成は第1の実施形態のものと同じであるので説明を省略する。
【0028】
本実施形態によれば、第1の実施形態の正極側導体2および負極側導体3に比べて、重なり合う部分の幅が狭くなっているので、装置の軽量化が図られる。また、幅が狭い長方形部分において電流の流路が両導体間で互いに逆向きになり発生する磁束が相殺されるので、第1の実施形態と同様に配線インダクタンスを低減することができる。
【0029】
図8は、本発明の第3の実施形態に係わる正極側導体22および負極側導体32の形状を示す図である。
【0030】
本実施形態の正極側導体22および負極側導体32は、第1の実施形態の図1に示したものに比べて、正極側導体22および負極側導体32の対角部分の一部を削った点で相違する。第1の実施形態の正極側導体2および負極側導体3が、図5および図6に示すように、正極側導体2と負極側導体3とが重なり合う部分の対角部分の電流分布が少ないことを考慮して、この対角部分の一部を削り取ったものである。本実施形態においても、第1の実施形態と同様に、負極側導体32と正極側導体22間は電圧を印加した際に放電が生じないように間隙が設けられる。なお、その他の構成は第1の実施形態のものと同じである。
【0031】
本実施形態によれば、第1の実施形態の正極側導体2および負極側導体3に比べて、上記対角部分が削除されているので、装置の軽量化が図られる。また、第1の実施形態と同様に、電流の流路が両導体間で互いに逆向きになり発生する磁束が相殺されるので、第1の実施形態と同様に配線インダクタンスを低減することができる。
【0032】
図9は、本発明の第4の実施形態に係わる正極側導体23および負極側導体33の形状を示す図である。
【0033】
本実施形態の正極側導体23および負極側導体33は、第1の実施形態の図1に示したものに比べて、負極側導体33は接続部5,13と接続するための突出部を有さない長方形とするが、正極側導体23は負極側導体33と同じ大きさの長方形であって、同図の点線で示すように、負極側導体33と直流平滑用コンデンサ1との接続部分5、インバータ部分との接続部分13の部分にあたる角の部分のみを切り取った形状とする。ここで切り取る大きさは、両導体23,33間に電圧を印加した場合に正極側導体23と接続部5および接続部13間で放電が生じないような大きさである。なお、その他の構成は第1の実施形態のものと同じである。
【0034】
本実施形態によれば、第1の実施形態の正極側導体2および負極側導体3に比べて、両導体23,33を作成するための加工数を減少させることができる。また、第1の実施形態と同様に、配線インダクタンスの低減効果が得られる。
【0035】
図10は、本発明の第5の実施形態に係わる正極側導体24および負極側導体34の形状を示す図である。
【0036】
本実施形態の正極側導体24および負極側導体34は、第1の実施形態の図1に示したものに比べて、正極側導体24および負極側導体34の重なり合う部分の幅を狭くするとともに、両導体24,34の形状をS字型としたものである。なお、その他の構成は第1の実施形態のものと同じである。
【0037】
本実施形態によれば、第1の実施形態の正極側導体2および負極側導体3に比べて重なり合う部分の幅が狭くなっているので装置の軽量化が図られるとともに、第1の実施形態と同様に、配線インダクタンスの低減効果が得られる。
【0038】
図11は、本発明の第6の実施形態に係わる正極側導体25および負極側導体35の形状を示す図である。
【0039】
同図において、正極側導体25は、各相の電力変換装置111〜113のそれぞれの直流平滑用コンデンサ1の正極端子との接続部4u,4v,4w、およびU相変換装置111の正極側との接続部12u、V相変換装置112の正極側との接続部12v、およびW相変換装置113の正極側との接続部12wにそれぞれ相応して設けられる突出部を備え、負極側導体34も、上記のそれぞれの直流平滑用コンデンサ1の負極端子との接続部5u,5v,5w、およびU相変換装置111の負極側との接続部13u、V相変換装置112の負極側との接続部13v、およびW相変換装置113の負極側との接続部13wに相応して設けられる突出部を備えている。
【0040】
本実施形態と第1の実施形態を比べると、第1の実施形態のものが、各相毎の直流平滑用コンデンサ1と各相の変換装置111〜113間にそれぞれ正極側導体2および負極側導体3を設けているのに対して、本実施形態では、各相毎の直流平滑用コンデンサと各相の変換装置111〜113間に共用する1組の正極側導体25および負極側導体35が設けられている点で相違する。
【0041】
図12(a)および図12(b)は、それぞれ図11に示す正極側導体25および負極側導体35の電流分布の一例を示す図であり、図12(a)は、各相のそれぞれの直流平滑用コンデンサ1の正極端子の接続部4u,4v,4wからU相,V相,W相の各変換装置111〜113の正極側の接続部12u,12v,12wへの電流分布、図12(b)は、U相,V相,W相の各変換装置111〜113の負極側の接続部13u,13v,13wから各相のそれぞれの直流平滑用コンデンサ1の負極端子の接続部5u,5v,5wへの電流分布を示す。
【0042】
本実施形態によれば、U相,V相,W相の各変換装置111〜113に共用の1組の正極側導体24と負極側導体34を用いるので、第1から第5の実施形態の電力変換装置に比べて部品点数を減らすことができ、また、第1の実施形態と同様に、電流が広がって分布するので、配線インダクタンスの逓減効果が得られる。さらに、本実施形態によれば、直流平滑用コンデンサ1の3組の正極側の接続部4u,4v,4w、および負極側の接続部5u,5v,5wから電流が供給されるので、さらに配線インダクタンスを低減することができる。また、インバータ部のU相,V相,W相の各電力変換装置111〜113への電流供給のバランスも良くなる。
【0043】
図13は、本発明の第7の実施形態に係わる正極側導体26および負極側導体36の形状を示す図である。
【0044】
同図において、正極側導体26は、各相の変換装置111〜113に図示されていない共用の直流平滑用コンデンサの正極端子との接続部4、U相変換装置111の正極側との接続部12u、V相変換装置112の負極側との接続部12v、およびW相変換装置113の負極側との接続部12wに相応して設けられる突出部を備え、負極側導体36は、上記共用の直流平滑用コンデンサの負極端子との接続部5、U相変換装置111の負極側との接続部13u、V相変換装置112の負極側との接続部13v、およびW相変換装置113の負極側との接続部13wに相応して設けられる突出部を備えている。
【0045】
本実施形態と第1の実施形態を比べると、第1の実施形態のものが、各相毎の直流平滑用コンデンサ1と各相の変換装置111〜113間にそれぞれ正極側導体2および負極側導体3が設けられているのに対して、本実施形態では、各相に共用する直流平滑用コンデンサと各相の変換装置111〜113に共用する1組の正極側導体26および負極側導体36が設けられている点で相違する。
【0046】
図14(a)および図14(b)は、それぞれ図13に示す正極側導体26および負極側導体36の電流分布の一例を示す図であり、図14(a)は、1つの直流平滑用コンデンサの正極端子の接続部4からU相,V相,W相の各変換装置111〜113の正極側の接続部12u,12v,12wへの電流分布を示し、図14(b)は、U相,V相,W相の各変換装置111〜113の負極側の接続部13u,13v,13wから前記1つの直流平滑用コンデンサの負極端子の接続部5への電流分布を示す。
【0047】
【発明の効果】
本発明の電力変換装置によれば、簡単な構成で直流平滑用コンデンサとインバータ部分の間のインダクタンスを低減でき、半導体素子の能力を最大限に利用できる。さらに、過電圧を抑制して半導体素子を保護するためのスナバ回路の容量低減、もしくはスナバレス化にも寄与する。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係わる各相の変換装置111〜113のうちの1つの内部構造を示す正面図である。
【図2】図1に示す上記内部構造の側面図である。
【図3】本実施形態に係わる電力変換装置に電源、整流器、およびモータ負荷を接続した状態を示す回路構成図である。
【図4】図3に示す各相の変換装置111〜113のうちの1つの等価回路図である。
【図5】図1および図2に示す正極側導体2の電流分布を示す図である。
【図6】図1および図2に示す負極側導体3の電流分布を示す図である。
【図7】本発明の第2の実施形態に係わる正極側導体21および負極側導体31の形状を示す図である。
【図8】本発明の第3の実施形態に係わる正極側導体22および負極側導体32の形状を示す図である。
【図9】本発明の第4の実施形態に係わる正極側導体23および負極側導体33の形状を示す図である。
【図10】本発明の第5の実施形態に係わる正極側導体24および負極側導体34の形状を示す図である。
【図11】本発明の第6の実施形態に係わる正極側導体25および負極側導体35の形状を示す図である。
【図12】図11に示す正極側導体25および負極側導体35の電流分布を示す図である。
【図13】本発明の第7の実施形態に係わる正極側導体26および負極側導体36の形状を示す図である。
【図14】図13に示す正極側導体26および負極側導体36の電流分布を示す図である。
【符号の説明】
1 直流平滑用コンデンサ
2,21,22,23,24,25,26 正極側導体
3,31,32,33,34,35,36 負極側導体
4,4u,4v,4w 正極側導体における直流平滑用コンデンサの正極端子との接続部分
5,5u,5v,5w 負極側導体における直流平滑用コンデンサの負極端子との接続部分
6 正側導体
7 負側導体
8 交流側導体
9 正側の半導体素子
10 負側の半導体素子
11 電力変換装置
111,112,113 U相,V相,W相の電力変換装置
12,12u,12v,12w 正極側導体と正側導体との接続部
13,13u,13v,13w 負極側導体と負側導体との接続部
14 三相交流電源
15 整流器
16 モータ負荷
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power conversion device that is generally used for railway vehicles, and more particularly to a power conversion device that reduces wiring inductance between a DC smoothing capacitor and an inverter portion.
[0002]
[Prior art]
Usually, in a power conversion device, when the wiring inductance is large, an excessive voltage is applied to the semiconductor element when the semiconductor element is switched. Therefore, a snubber circuit for protecting the semiconductor element is required, and the apparatus is downsized. Is difficult.
[0003]
By the way, as a method for reducing the wiring inductance, it is known that the conductor which is a current path is made as wide as possible and the so-called parallel plate shape which connects the forward and return conductors as close as possible is known. ing. This is because changes in the magnetic flux generated by the current flowing in the forward path and the return path cancel each other, and apparently there is almost no change in the magnetic flux.
[0004]
The wiring inductance of the power converter is also reduced by using such a principle, and in particular, a method for reducing the inductance of the connection portion between the inverter portion and the capacitor portion is disclosed in JP-A-5-292756, It is disclosed in JP-A-6-38507, JP-A-7-245951, JP-A-9-117126, and the like. Each of these uses the above-described parallel plate wiring, and the connection terminal is connected to the other conductor through a through hole of an insulating layer provided between one conductor and both conductors. Moreover, what is disclosed in Japanese Patent Application Laid-Open No. 6-225545 uses the above-described parallel plate wiring, but is configured to avoid a through hole by bending a conductor.
[0005]
[Problems to be solved by the invention]
In the structure provided with the through hole according to the prior art, it is necessary to make the through hole large in order to secure an insulation distance between the conductor having the through hole and the connection terminal through the through hole. In this case, the current concentrates on the narrowed portion of the conductor around the through hole, causing problems such as an increase in impedance and local heat generation. Furthermore, since the current distribution is biased in the vicinity of the through hole, there is a problem that the effect of reducing the inductance is small.
[0006]
Moreover, the thing of Unexamined-Japanese-Patent No. 6-225545 requires processing, such as bending a conductor, and cannot avoid an increase in cost. Furthermore, since the conductor is disposed so as to cover a part of the connection terminals, it is extremely difficult to remove the DC smoothing capacitor.
[0007]
In view of the above problems, an object of the present invention is to provide a power converter that realizes a reduction in wiring inductance connecting a DC smoothing capacitor and an inverter part with a simple configuration.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the power conversion device of the present invention has the following characteristics.
[0009]
At least an inverter unit comprising a combination of a plurality of semiconductor elements, a positive side terminal constituting the input side, a negative side terminal and an AC terminal constituting the output side, and between the positive side terminal and the negative side terminal In a power conversion device comprising a DC smoothing capacitor connected through a positive electrode side conductor and a negative electrode side conductor, respectively, the positive electrode side conductor and the negative electrode side conductor have a pair of connecting portions at diagonal positions. Each conductor surface is formed in a flat plate shape and arranged parallel to each other in the same direction so that the lines connecting the one set of connection portions intersect, and one connection portion of each conductor is connected to the DC smoothing capacitor. In addition, the other connecting portion of each conductor is connected to the positive terminal and the negative terminal.
[0010]
Further, in the power conversion device according to claim 1, a width parallel to a line connecting the one connection portions of the positive electrode side conductor and the negative electrode side conductor is greater than a distance between the one connection portions of the conductors. It is large.
[0011]
In addition, a multi-phase inverter composed of a plurality of inverter sections each including at least a positive terminal that constitutes the input side, a negative terminal, and an AC terminal that constitutes the output side, which is configured by combining a plurality of semiconductor elements. And a DC smoothing capacitor connected between the positive side terminal and the negative side terminal of the inverter part of each phase via a positive side conductor and a negative side conductor, respectively, the positive side conductor And the negative electrode side conductors are arranged in a distributed manner on the other end side of the side facing the one side of each conductor and the plurality of connection parts arranged in a distributed manner on one side of the one side of each conductor. Each of the conductor surfaces is flat in the same direction so that the lines connecting the one end side and the other end side of each conductor intersect each other. And connecting the one plurality of connection portions of the conductors to the DC smoothing capacitors of the respective phases, and connecting the other plurality of connection portions of the conductors to the positive terminals of the respective phase inverter portions. It is connected to the side terminal and the negative side terminal.
[0012]
In addition, a multi-phase inverter composed of a plurality of inverter sections each including at least a positive terminal that constitutes the input side, a negative terminal, and an AC terminal that constitutes the output side, which is configured by combining a plurality of semiconductor elements. And a DC smoothing capacitor connected between the positive side terminal and the negative side terminal of the inverter part of each phase via a positive side conductor and a negative side conductor, the positive side conductor and The negative electrode-side conductor is connected to one end of one side of each conductor, and the other plurality of other terminals arranged in a distributed manner toward the other end of the side opposite to the one side of each conductor. Each conductor surface is arranged in parallel in the same direction so that a line connecting the one end side and the other end side of each conductor intersects each other, having a connecting portion and having a flat plate shape, The one connection part of the body is connected to a DC smoothing capacitor, and the other plurality of connection parts of the conductors are connected to the positive terminal and the negative terminal of each phase inverter part. And
[0013]
Further, in the power conversion device according to any one of claims 1 to 4, the positive electrode side conductor and the negative electrode side conductor have substantially the same shape.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
First, a first embodiment of the present invention will be described with reference to FIGS.
[0015]
FIG. 3 is a circuit configuration diagram showing a state where a power supply, a rectifier, and a motor load are connected to the power conversion apparatus according to the present embodiment.
[0016]
In the figure, 11 is a power converter, 14 is a three-phase AC power source, 15 is a rectifier that converts the AC voltage of the three-phase AC power source 14 into DC voltage, 16 is a motor load, and 6 and 7 are the rectifier 15 and power, respectively. A positive-side conductor and a negative-side conductor that connect the converter 11, and 8 are AC-side conductors that connect the power converter 11 and the motor load 16.
[0017]
Here, the power converter 11 includes a three-phase converter, that is, a U-phase converter 111, a V-phase converter 112, and a W-phase converter 113.
[0018]
1 and FIG. 2 are diagrams showing an internal structure of one of the phase conversion devices 111 to 113 shown in FIG. 3, and FIG. 4 is an equivalent circuit diagram of one of the phase conversion devices 111 to 113. It is.
[0019]
In these figures, 1 is connected to the output side of the rectifier 15, and DC smoothing capacitor connected to the input side of the semiconductor elements 9 and 10 in each phase converter 111 (112 to 113). Positive conductor 3 connecting the side conductor 6 and the positive electrode terminal of the DC smoothing capacitor 1, 3 Negative electrode conductor connecting the negative conductor 7 and the negative electrode terminal of the DC smoothing capacitor 1, 4 Positive electrode conductor 2 Connection part for connecting the positive electrode terminals of the DC smoothing capacitor 1, 5 is a connection part for connecting the negative electrode side conductor 2 and the negative electrode terminal of the DC smoothing capacitor 1, and 9 and 10 are the semiconductor element on the positive side and the negative side, respectively. Reference numeral 12 denotes a connection portion between the positive-side conductor 2 and the positive-side conductor 6, and reference numeral 13 denotes a connection portion between the negative-side conductor 3 and the negative-side conductor 7.
[0020]
Here, the positive semiconductor element 9, the negative semiconductor element 10, the positive conductor 6, the negative conductor 7, and the AC conductor 8 constitute an inverter part.
[0021]
In this inverter unit, the positive-side semiconductor element 9 and the negative-side semiconductor element 10 are on / off controlled by a control device (not shown), and direct-current power supplied from between the positive-side conductor 6 and the negative-side conductor 7 is exchanged. And output to the AC side conductor 8.
[0022]
Further, the DC smoothing capacitor 1 is connected to the inverter part via the positive-side conductor 2 and the negative-side conductor 3, and supplies current when the positive-side semiconductor element 9 or the negative-side semiconductor element 10 is switched on. The response speed of the semiconductor elements 9 and 10 is compensated. Further, the transient current when the positive-side semiconductor element 9 or the negative-side semiconductor element 10 is switched off is absorbed.
[0023]
Moreover, as shown in FIG. 1, the positive electrode side conductor 3 has a protrusion part at one diagonal part of the rectangle, and is connected to the negative electrode terminal of the DC smoothing capacitor 1 at the connection part 5 on the one protrusion part. The connection portion 13 on the other protrusion is connected to the negative conductor 7. Further, the positive electrode side conductor 2 is a conductor plate having a shape in which the left and right sides of the negative electrode side conductor 3 are reversed, and is provided on the back surface side of the negative electrode side conductor 3. Similarly to the negative electrode side conductor 3, the positive electrode side conductor 2 is connected to the positive electrode terminal of the DC smoothing capacitor 1 at the connection portion 4, and is connected to the positive side conductor 6 at the connection portion 12. Further, the positive electrode side conductor 2 and the negative electrode side conductor 3 are arranged in parallel with each other so that the central rectangular portions overlap each other, and the connection portion 5 and the connection portion 13 and the connection portion 4 and the connection portion 12 are alternately arranged. Are arranged as follows. Further, the width W of the overlapping portion of the positive electrode side conductor 2 and the negative electrode side conductor 3 is longer than the interval L between the positive electrode terminal and the negative electrode terminal of the DC smoothing capacitor 1 and between the positive electrode side conductor 2 and the negative electrode side conductor 3. Is provided with a gap so that no discharge occurs when a voltage is applied. Here, if an insulating material plate is disposed between the conductors 2 and 3, the conductor interval can be reduced.
[0024]
5 and 6 are diagrams showing current distributions of the positive electrode side conductor 2 and the negative electrode side conductor 3, respectively.
[0025]
In the figure, the curve shows the streamline of current, and the smaller the interval, the greater the current density. In FIG. 5, the current flowing from the connection portion 4 with the positive electrode terminal of the DC smoothing capacitor 1 flows out to the connection portion 12 with the positive conductor 6. In FIG. 6, the current flowing from the connection portion 13 with the negative conductor 7 flows out to the connection portion 5 with the negative electrode terminal of the DC smoothing capacitor 1. Thus, the current stream lines of the positive electrode side conductor 2 and the negative electrode side conductor 3 are spread and distributed in the respective conductor surfaces. This is presumably because the current flowing through one conductor is attracted to the portion where the other conductor has a high current density, that is, the connection portion of the DC smoothing capacitor 1 and the inverter-side conductor. By spreading the current flow lines in the plane, the wiring inductance between the DC smoothing capacitor 1 and the inverter portion is reduced. Furthermore, since the current of the positive electrode side conductor 2 and the current of the negative electrode side conductor 3 are opposite to each other, the generated magnetic fluxes cancel each other and the wiring inductance can be reduced.
[0026]
FIG. 7 is a diagram showing the shapes of the positive electrode side conductor 21 and the negative electrode side conductor 31 according to the second embodiment of the present invention.
[0027]
The positive electrode side conductor 21 and the negative electrode side conductor 31 of this embodiment are the points which narrowed the width | variety of the part which the positive electrode side conductor 21 and the negative electrode side conductor 31 overlap compared with what was shown in FIG. 1 of 1st Embodiment. Is different. Also in the present embodiment, as in the first embodiment, the negative electrode side conductor 31 and the positive electrode side conductor 21 are configured such that the rectangular portions overlap as shown in the figure, and a voltage is applied between the conductors 21 and 31. A gap is provided so that no electric discharge occurs even when is applied. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
[0028]
According to the present embodiment, since the width of the overlapping portion is narrower than that of the positive electrode side conductor 2 and the negative electrode side conductor 3 of the first embodiment, the weight of the device can be reduced. In addition, since the current flow paths are opposite to each other between the two conductors in the rectangular portion having a narrow width and the generated magnetic flux is canceled, the wiring inductance can be reduced as in the first embodiment.
[0029]
FIG. 8 is a diagram showing the shapes of the positive electrode side conductor 22 and the negative electrode side conductor 32 according to the third embodiment of the present invention.
[0030]
The positive electrode side conductor 22 and the negative electrode side conductor 32 of this embodiment cut off some diagonal portions of the positive electrode side conductor 22 and the negative electrode side conductor 32 as compared with the one shown in FIG. 1 of the first embodiment. It is different in point. As shown in FIGS. 5 and 6, the positive-side conductor 2 and the negative-side conductor 3 of the first embodiment have a small current distribution in the diagonal portion where the positive-side conductor 2 and the negative-side conductor 3 overlap each other. In consideration of this, a part of this diagonal portion is cut off. Also in the present embodiment, as in the first embodiment, a gap is provided between the negative electrode side conductor 32 and the positive electrode side conductor 22 so that no discharge occurs when a voltage is applied. Other configurations are the same as those of the first embodiment.
[0031]
According to the present embodiment, the diagonal portion is eliminated as compared with the positive electrode side conductor 2 and the negative electrode side conductor 3 of the first embodiment, so that the weight of the device can be reduced. Further, as in the first embodiment, the current flow paths are opposite to each other between the two conductors, and the generated magnetic flux is canceled out, so that the wiring inductance can be reduced as in the first embodiment. .
[0032]
FIG. 9 is a diagram showing the shapes of the positive electrode side conductor 23 and the negative electrode side conductor 33 according to the fourth embodiment of the present invention.
[0033]
The positive electrode side conductor 23 and the negative electrode side conductor 33 of the present embodiment have protrusions for connecting to the connecting portions 5 and 13 as compared with the one shown in FIG. 1 of the first embodiment. However, the positive electrode side conductor 23 is a rectangle having the same size as the negative electrode side conductor 33, and as shown by the dotted line in the figure, the connecting portion 5 between the negative electrode side conductor 33 and the DC smoothing capacitor 1. , Only the corner portion corresponding to the connection portion 13 with the inverter portion is cut out. The size cut out here is such that no discharge occurs between the positive electrode side conductor 23 and the connecting portion 5 and the connecting portion 13 when a voltage is applied between the conductors 23 and 33. Other configurations are the same as those of the first embodiment.
[0034]
According to this embodiment, compared with the positive electrode side conductor 2 and the negative electrode side conductor 3 of 1st Embodiment, the number of processes for producing both the conductors 23 and 33 can be reduced. In addition, as in the first embodiment, the effect of reducing the wiring inductance can be obtained.
[0035]
FIG. 10 is a diagram showing the shapes of the positive electrode side conductor 24 and the negative electrode side conductor 34 according to the fifth embodiment of the present invention.
[0036]
The positive electrode side conductor 24 and the negative electrode side conductor 34 of the present embodiment are narrower in width than the overlapping portion of the positive electrode side conductor 24 and the negative electrode side conductor 34 compared to the one shown in FIG. 1 of the first embodiment, The shape of both the conductors 24 and 34 is S-shaped. Other configurations are the same as those of the first embodiment.
[0037]
According to this embodiment, since the width of the overlapping portion is narrower than that of the positive electrode side conductor 2 and the negative electrode side conductor 3 of the first embodiment, the weight of the apparatus can be reduced, and the first embodiment and Similarly, the effect of reducing the wiring inductance can be obtained.
[0038]
FIG. 11 is a diagram showing the shapes of the positive electrode side conductor 25 and the negative electrode side conductor 35 according to the sixth embodiment of the present invention.
[0039]
In the figure, the positive electrode side conductor 25 is connected to the positive terminals of the DC smoothing capacitors 1 of the power converters 111 to 113 of each phase and the positive electrode side of the U phase converter 111. Of the V-phase conversion device 112, the connection portion 12v to the positive electrode side of the V-phase conversion device 112, and the projection portion provided corresponding to the connection portion 12w of the W-phase conversion device 113 to the positive electrode side. , Connecting portions 5u, 5v, 5w to the negative electrode terminal of each of the DC smoothing capacitors 1 described above, connecting portions 13u to the negative electrode side of the U-phase converter 111, and connecting portions to the negative electrode side of the V-phase converter 112 13v, and a protrusion provided corresponding to the connecting portion 13w with the negative electrode side of the W-phase converter 113.
[0040]
Comparing this embodiment with the first embodiment, the first embodiment is that the DC-side smoothing capacitor 1 for each phase and the converters 111 to 113 for each phase are respectively connected to the positive-side conductor 2 and the negative-side Whereas the conductor 3 is provided, in the present embodiment, a set of the positive electrode side conductor 25 and the negative electrode side conductor 35 shared between the DC smoothing capacitor for each phase and the conversion devices 111 to 113 for each phase are provided. It differs in that it is provided.
[0041]
12 (a) and 12 (b) are diagrams showing an example of the current distribution of the positive electrode side conductor 25 and the negative electrode side conductor 35 shown in FIG. 11, respectively, and FIG. 12 (a) shows each of the phases. Current distribution from the connecting portions 4u, 4v and 4w of the positive electrode terminal of the DC smoothing capacitor 1 to the connecting portions 12u, 12v and 12w on the positive side of the U-phase, V-phase and W-phase converters 111 to 113, FIG. (B) shows the connection portions 5u of the negative electrode terminals of the DC smoothing capacitors 1 of the respective phases from the connection portions 13u, 13v, 13w on the negative electrode side of the converters 111 to 113 of the U phase, the V phase, and the W phase. The current distribution to 5v and 5w is shown.
[0042]
According to the present embodiment, the common positive electrode side conductor 24 and negative electrode side conductor 34 are used for each of the U-phase, V-phase, and W-phase converters 111 to 113, so that the first to fifth embodiments are used. Compared to the power converter, the number of parts can be reduced, and the current is spread and distributed as in the first embodiment, so that the effect of decreasing the wiring inductance can be obtained. Furthermore, according to the present embodiment, since current is supplied from the three sets of positive electrode side connection portions 4u, 4v, 4w and negative electrode side connection portions 5u, 5v, 5w of the DC smoothing capacitor 1, further wiring is performed. Inductance can be reduced. In addition, the balance of current supply to the U-phase, V-phase, and W-phase power converters 111 to 113 of the inverter section is improved.
[0043]
FIG. 13 is a diagram showing the shapes of the positive electrode side conductor 26 and the negative electrode side conductor 36 according to the seventh embodiment of the present invention.
[0044]
In the figure, the positive side conductor 26 is connected to the positive terminal of a common DC smoothing capacitor not shown in the converters 111 to 113 for each phase, and connected to the positive side of the U-phase converter 111. 12u, a projecting portion provided corresponding to the connection portion 12v to the negative electrode side of the V phase conversion device 112 and the connection portion 12w to the negative electrode side of the W phase conversion device 113, and the negative electrode side conductor 36 Connection portion 5 with the negative electrode terminal of the DC smoothing capacitor, connection portion 13u with the negative electrode side of U-phase converter 111, connection portion 13v with the negative electrode side of V-phase converter 112, and negative electrode side of W-phase converter 113 The protrusion part provided according to the connection part 13w is provided.
[0045]
Comparing this embodiment with the first embodiment, the first embodiment is that the DC-side smoothing capacitor 1 for each phase and the converters 111 to 113 for each phase are respectively connected to the positive-side conductor 2 and the negative-side Whereas the conductor 3 is provided, in the present embodiment, a set of the positive electrode side conductor 26 and the negative electrode side conductor 36 shared by the DC smoothing capacitor shared by each phase and the converters 111 to 113 of each phase. Is different in that it is provided.
[0046]
14 (a) and 14 (b) are diagrams showing an example of the current distribution of the positive electrode side conductor 26 and the negative electrode side conductor 36 shown in FIG. 13, respectively, and FIG. 14 (a) is for one DC smoothing. FIG. 14B shows a current distribution from the connection portion 4 of the positive terminal of the capacitor to the connection portions 12u, 12v, and 12w on the positive side of the U-phase, V-phase, and W-phase converters 111 to 113. The current distribution from the connection part 13u, 13v, 13w by the side of the negative electrode of each converter 111-113 of a phase, V phase, and W phase to the connection part 5 of the negative electrode terminal of said one DC smoothing capacitor is shown.
[0047]
【The invention's effect】
According to the power conversion device of the present invention, the inductance between the DC smoothing capacitor and the inverter portion can be reduced with a simple configuration, and the capacity of the semiconductor element can be utilized to the maximum. Furthermore, it contributes to the reduction of the capacity of the snubber circuit for protecting the semiconductor element by suppressing the overvoltage or the snubber-less operation.
[Brief description of the drawings]
FIG. 1 is a front view showing an internal structure of one of phase conversion devices 111 to 113 according to a first embodiment of the present invention.
FIG. 2 is a side view of the internal structure shown in FIG.
FIG. 3 is a circuit configuration diagram showing a state where a power supply, a rectifier, and a motor load are connected to the power conversion apparatus according to the present embodiment.
4 is an equivalent circuit diagram of one of the phase conversion devices 111 to 113 shown in FIG. 3; FIG.
5 is a diagram showing a current distribution of the positive electrode side conductor 2 shown in FIGS. 1 and 2. FIG.
6 is a diagram showing a current distribution of the negative electrode side conductor 3 shown in FIGS. 1 and 2. FIG.
7 is a diagram showing shapes of a positive electrode side conductor 21 and a negative electrode side conductor 31 according to a second embodiment of the present invention. FIG.
FIG. 8 is a diagram showing shapes of a positive electrode side conductor 22 and a negative electrode side conductor 32 according to a third embodiment of the present invention.
FIG. 9 is a diagram showing shapes of a positive electrode side conductor and a negative electrode side conductor 33 according to a fourth embodiment of the present invention.
FIG. 10 is a diagram showing shapes of a positive electrode side conductor and a negative electrode side conductor according to a fifth embodiment of the present invention.
FIG. 11 is a diagram showing shapes of a positive electrode side conductor 25 and a negative electrode side conductor 35 according to a sixth embodiment of the present invention.
12 is a diagram showing a current distribution of the positive electrode side conductor 25 and the negative electrode side conductor 35 shown in FIG.
FIG. 13 is a diagram showing the shapes of a positive electrode side conductor and a negative electrode side conductor according to a seventh embodiment of the present invention.
14 is a diagram showing a current distribution of the positive electrode side conductor 26 and the negative electrode side conductor 36 shown in FIG.
[Explanation of symbols]
1 DC smoothing capacitor 2, 21, 22, 23, 24, 25, 26 Positive side conductor 3, 31, 32, 33, 34, 35, 36 Negative side conductor 4, 4u, 4v, 4w DC smoothing on positive side conductor Connection part 5, 5u, 5v, 5w with capacitor positive electrode terminal Connection part with negative electrode terminal of DC smoothing capacitor in negative electrode side conductor 6 Positive side conductor 7 Negative side conductor 8 AC side conductor 9 Positive side semiconductor element 10 Negative-side semiconductor element 11 Power converters 111, 112, 113 U-phase, V-phase, W-phase power converters 12, 12u, 12v, 12w Connection portions 13, 13u, 13v between the positive-side conductor and the positive-side conductor 13w Connection portion 14 between negative electrode side conductor and negative side conductor 14 Three-phase AC power supply 15 Rectifier 16 Motor load

Claims (5)

少なくとも、複数の半導体素子が組み合わされて構成され、入力側を構成する正側端子と負側端子および出力側を構成する交流端子とを備えるインバータ部と、前記正側端子および負側端子間にそれぞれ正極側導体および負極側導体を介して接続される直流平滑用コンデンサとからなる電力変換装置において、
前記正極側導体および前記負極側導体を、対角の位置に1組の接続部を有するとともに平板状に形成し、前記1組の接続部を結ぶ線が交差するように各導体面を同方向で互いに平行に配置し、前記各導体の一方の接続部を前記直流平滑用コンデンサに接続するとともに、前記各導体の他方の接続部を前記正側端子および前記負側端子に接続したことを特徴とする電力変換装置。
At least an inverter unit comprising a combination of a plurality of semiconductor elements, a positive side terminal constituting the input side, a negative side terminal and an AC terminal constituting the output side, and between the positive side terminal and the negative side terminal In the power conversion device consisting of a DC smoothing capacitor connected via a positive electrode side conductor and a negative electrode side conductor,
The positive electrode side conductor and the negative electrode side conductor have a pair of connection portions at diagonal positions and are formed in a flat plate shape, and the conductor surfaces are arranged in the same direction so that the lines connecting the one set of connection portions intersect each other. Arranged in parallel with each other, and one connecting portion of each conductor is connected to the DC smoothing capacitor, and the other connecting portion of each conductor is connected to the positive terminal and the negative terminal. A power converter.
請求項1において、前記正極側導体および負極側導体の前記一方の接続部間を結ぶ線と平行な幅が、前記各導体の前記一方の接続部間の距離より大きいことを特徴とする電力変換装置。2. The power conversion according to claim 1, wherein a width parallel to a line connecting the one connection portions of the positive electrode side conductor and the negative electrode side conductor is larger than a distance between the one connection portions of the conductors. apparatus. 少なくとも、複数の半導体素子が組み合わされて構成され、入力側を構成する正側端子と負側端子および出力側を構成する交流端子とを備える複数相のインバータ部から構成される多相インバータ部と、前記各相のインバータ部の前記正側端子および負側端子間にそれぞれ正極側導体および負極側導体を介して接続される直流平滑用コンデンサとからなる電力変換装置において、
前記正極側導体および前記負極側導体を、前記各導体の一辺の一端側に片寄って分散配置された一方の複数の接続部および前記各導体の前記一辺に対向する辺の他端側に片寄って分散配置された他方の複数の接続部を有するとともに平板状に形成し、前記各導体のそれぞれの前記一端側と前記他端側とを結ぶ線が互いに交差するように各導体面を同方向に平行に配置し、前記各導体の前記一方の複数の接続部を各相のそれぞれの直流平滑用コンデンサに接続するとともに、前記各導体の他方の複数の接続部をそれぞれの各相インバータ部の前記正側端子および前記負側端子に接続したことを特徴とする電力変換装置。
A multi-phase inverter unit composed of a plurality of inverter units each including at least a positive terminal that constitutes the input side, a negative side terminal, and an AC terminal that constitutes the output side; In the power converter comprising a DC smoothing capacitor connected between the positive terminal and the negative terminal of the inverter part of each phase via a positive conductor and a negative conductor, respectively.
The positive electrode side conductor and the negative electrode side conductor are shifted toward one end side of one side of each conductor, and the plurality of connection parts arranged in a distributed manner and the other end side of the side opposite to the one side of each conductor. Each conductor surface is formed in the same direction so that the lines connecting the one end side and the other end side of each conductor intersect with each other, having a plurality of other connection portions distributed and arranged in a flat plate shape. Arranged in parallel, and connecting the one plurality of connection portions of the conductors to the DC smoothing capacitors of the respective phases, and connecting the other plurality of connection portions of the conductors to the phase inverter portions of the respective phase inverter portions. A power converter connected to a positive terminal and the negative terminal.
少なくとも、複数の半導体素子が組み合わされて構成され、入力側を構成する正側端子と負側端子および出力側を構成する交流端子とを備える複数相のインバータ部から構成される多相インバータ部と、前記各相のインバータ部の前記正側端子および負側端子間に正極側導体および負極側導体を介して接続される直流平滑用コンデンサとからなる電力変換装置において、
前記正極側導体および前記負極側導体を、前記各導体の一辺の一端側に片寄って配置された一方の接続部および前記各導体の前記一辺に対向する辺の他端側に片寄って分散配置された他方の複数の接続部を有するとともに平板状に形成し、前記各導体のそれぞれの前記一端側と前記他端側とを結ぶ線が互いに交差するように各導体面を同方向に平行に配置し、前記各導体の前記一方の接続部を直流平滑用コンデンサに接続するとともに、前記各導体の他方の複数の接続部をそれぞれの各相インバータ部の前記正側端子および前記負側端子に接続したことを特徴とする電力変換装置。
A multi-phase inverter unit composed of a plurality of inverter units each including at least a positive terminal that constitutes the input side, a negative side terminal, and an AC terminal that constitutes the output side; In the power conversion device comprising a DC smoothing capacitor connected between the positive side terminal and the negative side terminal of the inverter part of each phase via a positive side conductor and a negative side conductor,
The positive electrode side conductor and the negative electrode side conductor are arranged in a distributed manner toward one end of one side of each conductor and the other end side of the side opposite to the one side of each conductor. In addition, the conductor surfaces are formed in a flat plate shape, and the conductor surfaces are arranged in parallel in the same direction so that the lines connecting the one end side and the other end side of each conductor intersect each other. And connecting the one connecting portion of each conductor to a DC smoothing capacitor and connecting the other plurality of connecting portions of each conductor to the positive terminal and the negative terminal of each phase inverter portion The power converter characterized by having performed.
請求項1ないしは請求項4のいずれか1つの請求項において、前記正極側導体と負極側導体を略同一形状のものを用いることを特徴とする電力変換装置。5. The power conversion device according to claim 1, wherein the positive electrode side conductor and the negative electrode side conductor have substantially the same shape.
JP23763998A 1998-04-28 1998-08-24 Power converter Expired - Lifetime JP3830669B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP23763998A JP3830669B2 (en) 1998-08-24 1998-08-24 Power converter
RU99109135A RU2190919C2 (en) 1998-04-28 1999-04-27 Power circuit of electric power inverter
CN2010101564747A CN101860247B (en) 1998-04-28 1999-04-28 Power circuit structure of power converter
CN 201010156482 CN101854127B (en) 1998-04-28 1999-04-28 Main circuit structure of power converter
CN 99105382 CN1233880B (en) 1998-04-28 1999-04-28 Power circuit construction of electric power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23763998A JP3830669B2 (en) 1998-08-24 1998-08-24 Power converter

Publications (2)

Publication Number Publication Date
JP2000069766A JP2000069766A (en) 2000-03-03
JP3830669B2 true JP3830669B2 (en) 2006-10-04

Family

ID=17018315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23763998A Expired - Lifetime JP3830669B2 (en) 1998-04-28 1998-08-24 Power converter

Country Status (1)

Country Link
JP (1) JP3830669B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002125381A (en) * 2000-10-13 2002-04-26 Mitsubishi Electric Corp Power converter
JP4857997B2 (en) * 2006-08-03 2012-01-18 トヨタ自動車株式会社 Electric circuit structure
JP5241177B2 (en) * 2007-09-05 2013-07-17 株式会社オクテック Semiconductor device and manufacturing method of semiconductor device
JP5322554B2 (en) * 2008-09-19 2013-10-23 東芝三菱電機産業システム株式会社 Semiconductor power converter
JP4973697B2 (en) * 2009-06-29 2012-07-11 株式会社デンソー Power converter
JP5097791B2 (en) * 2010-04-05 2012-12-12 株式会社日立産機システム Power converter
WO2015041127A1 (en) * 2013-09-20 2015-03-26 株式会社村田製作所 Capacitor module and power conversion device
JP6481505B2 (en) * 2015-05-19 2019-03-13 日産自動車株式会社 Power converter
WO2018043002A1 (en) * 2016-09-02 2018-03-08 三菱電機株式会社 Bus bar structure and power conversion device using same
JP6643972B2 (en) * 2016-12-13 2020-02-12 日立オートモティブシステムズ株式会社 Bus bar structure and power conversion device using the same
JP6868709B2 (en) * 2017-11-20 2021-05-12 東芝三菱電機産業システム株式会社 Power converter
JP6811762B2 (en) * 2018-12-18 2021-01-13 日立ジョンソンコントロールズ空調株式会社 Power conversion device and refrigeration cycle device equipped with this
JP6988833B2 (en) * 2019-01-09 2022-01-05 フジテック株式会社 Passenger conveyor

Also Published As

Publication number Publication date
JP2000069766A (en) 2000-03-03

Similar Documents

Publication Publication Date Title
US6028779A (en) Power inverter device
JP3692906B2 (en) Power wiring structure and semiconductor device
JP3830669B2 (en) Power converter
WO2012035933A1 (en) Inverter device
CN111480231B (en) Power conversion device
WO2018198290A1 (en) Power conversion unit
US10064302B2 (en) Power inverter with balanced power flow for multiple electrical machines
WO2018180897A1 (en) Inverter unit
JP6902121B2 (en) Electric railroad vehicle equipped with a power converter and a power converter
JP6515836B2 (en) Inverter device
JP3793700B2 (en) Power converter
US10284111B2 (en) Power conversion apparatus having connection conductors having inductance which inhibits ripple current
WO2021152888A1 (en) Noise filter, noise filter device, and power conversion device
JP2014042377A (en) Power supply bus bar and power converter using the same
CN113519050B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP4957842B2 (en) Power converter
TW202234434A (en) Inverter unit, motor unit and vehicle an inverter device, comprising: a power module, a capacitor module and plate-shaped positive and negative bus bars
JP2000152604A (en) Power converter
JP4468614B2 (en) Power semiconductor device
JP4424918B2 (en) Power converter
JP3614704B2 (en) Power converter
JP3213671B2 (en) Power converter
JP2000125543A (en) Surge voltage-suppressing means and semiconductor power conversion device
WO2023140077A1 (en) Semiconductor device and inverter provided with semiconductor device
CN217935444U (en) Power conversion device, motor module, and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

EXPY Cancellation because of completion of term