JP2001128307A - Generator motor equipment for hybrid motor car - Google Patents

Generator motor equipment for hybrid motor car

Info

Publication number
JP2001128307A
JP2001128307A JP30411499A JP30411499A JP2001128307A JP 2001128307 A JP2001128307 A JP 2001128307A JP 30411499 A JP30411499 A JP 30411499A JP 30411499 A JP30411499 A JP 30411499A JP 2001128307 A JP2001128307 A JP 2001128307A
Authority
JP
Japan
Prior art keywords
generator motor
current
engine
hybrid vehicle
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30411499A
Other languages
Japanese (ja)
Other versions
JP3928835B2 (en
Inventor
Makoto Okamura
誠 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP30411499A priority Critical patent/JP3928835B2/en
Publication of JP2001128307A publication Critical patent/JP2001128307A/en
Application granted granted Critical
Publication of JP3928835B2 publication Critical patent/JP3928835B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PROBLEM TO BE SOLVED: To provide generator motor equipment for a hybrid motor car which can miniaturize a circuit device. SOLUTION: In a hybrid motor car, a field coil type synchronous machine (generator motor) 3, which generates power by being driven with an engine and supplies, as a motor torque to the engine and a wheel driving shaft, is motor-operated. When a motor operation command is inputted, an armature current is controlled in a range where a magnetic flux which is formed by an armature current of the synchronous machine 3 and is interlinked with the field coil of the synchronous machine 3 is smaller than a magnetic flux, which is formed by a field current of the synchronous machine 3, before the armature current is increased and is interlinked with the field coil of the synchronous machine 3. Thereby, when the armature current is increased in order to motoroperate the generator motor 3, generation of a high voltage exceeding a battery voltage is prevented in the field coil, so that adverse effects are not exerted on the battery, and a smoothing capacitor can be miniaturized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハイブリッド車用
発電電動機装置に関する。
The present invention relates to a generator motor for a hybrid vehicle.

【0002】[0002]

【従来の技術】ハイブリッド車では、エンジンに駆動さ
れる発電機が発電を行い、この発電電力を走行モータで
走行動力に変換して車輪駆動軸に伝達している。また、
トルク授受可能に結合された車輪駆動軸を駆動(いわゆ
るトルクアシスト)したり、エンジン始動を行ったりす
るため、この発電機を電動機として動作させることが知
られている。以下、簡単のために、このトルクアシスト
やエンジン始動を行うハイブリッド車の発電機を発電電
動機と以下、呼称する。
2. Description of the Related Art In a hybrid vehicle, a generator driven by an engine generates electric power, and the generated electric power is converted into driving power by a driving motor and transmitted to a wheel drive shaft. Also,
It is known to operate this generator as an electric motor in order to drive (so-called torque assist) a wheel drive shaft that is coupled to receive and transmit torque, or to start an engine. Hereinafter, for simplicity, the generator of the hybrid vehicle that performs the torque assist and the engine start is hereinafter referred to as a generator motor.

【0003】この発電電動機としては、界磁電流制御に
より電動動作時にはトルクを確保し、発電動作時には発
電電圧の過昇を抑止することができる界磁コイル型同期
機を用いるのが通常である。
[0003] As the generator motor, a field coil type synchronous machine is generally used which can secure torque during electric operation by field current control and can suppress excessive rise in generated voltage during power generation operation.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このハ
イブリッド車の発電電動機として用いられる界磁コイル
型同期機では、電動動作時に電機子電流による磁界によ
り界磁コイルに発電電圧が生じ、このため界磁コイルと
バッテリとを接続する界磁コイル回路に異常な高電圧が
生じ、これがバッテリに悪影響を与えたり、界磁コイル
回路の耐圧増大を要求するなどの不具合があった。
However, in the field coil type synchronous machine used as the generator motor of the hybrid vehicle, a generated voltage is generated in the field coil by a magnetic field generated by the armature current during the electric operation. An abnormally high voltage is generated in the field coil circuit connecting the coil and the battery, and this has an adverse effect on the battery and requires an increase in the withstand voltage of the field coil circuit.

【0005】更に説明すれば、電動動作開始のために、
この発電電動機の界磁コイル及び電機子コイルにそれぞ
れ電圧を印加すると、界磁コイルのインダクタンスが電
機子コイルのそれに比較して格段に大きいために、電機
子電流の立ち上がりに比較して界磁電流の立ち上がりが
遅れ、その結果、電機子電流の変化(増加)期間に電磁
誘導により界磁コイルにバッテリ充電方向の電流を生じ
させるという問題があった。
[0005] More specifically, in order to start the electric operation,
When a voltage is applied to each of the field coil and the armature coil of this generator motor, the inductance of the field coil is much larger than that of the armature coil. As a result, there is a problem that a current in the battery charging direction is generated in the field coil by electromagnetic induction during a change (increase) period of the armature current.

【0006】このため、この電機子電流変化期間に、界
磁コイルに高電圧が発生すると、それが界磁コイル回路
を通じてバッテリに印加されてバッテリ性能を劣化させ
るので、バッテリと並列に接続する平滑コンデンサの容
量を大型化しなければならず、回路装置の体格が大きく
なるという問題があった。
Therefore, if a high voltage is generated in the field coil during the armature current change period, the high voltage is applied to the battery through the field coil circuit and deteriorates the battery performance. There is a problem that the capacity of the capacitor must be increased, and the physical size of the circuit device increases.

【0007】本発明は上記問題点に鑑みなされたもので
あり、回路装置の小型化が可能なハイブリッド車用発電
電動機装置を提供することを、その目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a generator motor for a hybrid vehicle in which a circuit device can be downsized.

【0008】[0008]

【課題を解決するための手段】請求項1記載の本発明の
電気自動車走行モータ装置は、ハイブリッド車において
エンジンにより駆動されて発電するとともに電動機とし
てエンジンや車輪駆動軸にトルクを供給する界磁コイル
型同期機(発電電動機)を電動動作させる場合に、界磁
コイル型同期機の電機子電流により形成されて界磁コイ
ル型同期機の界磁コイルと鎖交する磁束が、電機子電流
の増大以前の界磁コイル型同期機の界磁電流により形成
されて界磁コイル型同期機の界磁コイルと鎖交する磁束
よりも小さい範囲に、電動動作指令が入力された場合の
電機子電流を制御する。
According to a first aspect of the present invention, there is provided an electric vehicle running motor device according to the present invention, which is driven by an engine in a hybrid vehicle to generate electric power and to supply a torque to an engine or a wheel drive shaft as an electric motor. When the type synchronous machine (generator motor) is operated electrically, the magnetic flux formed by the armature current of the field coil type synchronous machine and interlinking with the field coil of the field coil type synchronous machine increases the armature current. The armature current when the electric operation command is input is within a range smaller than the magnetic flux formed by the field current of the previous field coil type synchronous machine and interlinking with the field coil of the field coil type synchronous machine. Control.

【0009】このようにすれば、この発電電動機を電動
動作させるため電機子電流を増加する際、界磁コイルに
バッテリ電圧を超える高電圧が発生することがなく、バ
ッテリに悪影響を与えることなく平滑コンデンサの小型
化を図ることができる。
With this configuration, when the armature current is increased to electrically operate the generator motor, a high voltage exceeding the battery voltage is not generated in the field coil, and the battery is smoothened without adversely affecting the battery. The size of the capacitor can be reduced.

【0010】請求項2記載の構成によれば請求項1記載
のハイブリッド車用発電電動機装置において更に、交差
点などにおける一時停車時または走行時の燃費節減のた
めのエコラン(経済走行)時などにエンジンを自動停止
させる場合に、所定条件範囲において界磁電流通電は持
続しておく。
According to a second aspect of the present invention, in the generator motor device for a hybrid vehicle according to the first aspect of the present invention, the engine is further provided at the time of a temporary stop at an intersection or the like during an eco-run (economic running) for reducing fuel consumption at the time of traveling. Is automatically stopped in the predetermined condition range.

【0011】このようにすれば、再度エンジンを始動す
る際、電機子電流を即時通電しても、界磁電流はバッテ
リから界磁コイルへ十分に通電されているので、界磁電
流が反転することがなく、界磁コイルからバッテリ側へ
電流が逆流することがない。したがって、バッテリ性能
に悪影響を与えることがなく平滑コンデンサの体格縮小
と界磁コイル回路の耐圧低下を図ることができる。
With this configuration, when the engine is started again, the field current is sufficiently supplied from the battery to the field coil even if the armature current is immediately supplied, so that the field current is reversed. There is no backflow of current from the field coil to the battery. Therefore, the size of the smoothing capacitor can be reduced and the withstand voltage of the field coil circuit can be reduced without adversely affecting the battery performance.

【0012】更に、電動動作指令入力後、ただちに大電
機子電流を通電することができ、エンジン始動動作のレ
スポンスを向上させることができる。また、発電電動機
にトルクアシスト動作をさせる場合においても、このト
ルクアシストのレスポンスを向上することができ、運転
フィーリングを向上することができる。
Further, the large armature current can be supplied immediately after the input of the electric operation command, and the response of the engine starting operation can be improved. Further, even when the generator motor performs the torque assist operation, the response of the torque assist can be improved, and the driving feeling can be improved.

【0013】請求項3記載の構成によれば請求項2記載
のハイブリッド車用発電電動機装置において更に、この
エンジンの自動停止後の界磁電流通電を所定時間だけ行
う。このようにすれば、長期にわたって停車する場合な
どにおいて界磁電流通電による電力消費の増大を抑止す
ることができる。
According to a third aspect of the present invention, in the generator motor device for a hybrid vehicle according to the second aspect, the field current is supplied for a predetermined time after the engine is automatically stopped. By doing so, it is possible to suppress an increase in power consumption due to the application of the field current when the vehicle is stopped for a long period of time.

【0014】請求項4記載の構成によれば請求項1記載
のハイブリッド車用発電電動機装置において更に、電機
子電流の増大制限を、エンジン始動時に行い、トルクア
シスト時に行わない。
According to a fourth aspect of the present invention, in the generator-motor device for a hybrid vehicle according to the first aspect, the increase of the armature current is further limited at the time of starting the engine and not at the time of torque assist.

【0015】このようにすれば、エンジン始動時には上
記電機子電流の増大制限によりバッテリへの大電圧によ
る充電を阻止してその性能劣化を抑止し、トルクアシス
ト時にはこの電機子電流の増大制限を止めてレスポンス
性に優れるトルクアシストを行うことができる。
With this configuration, when the engine is started, the battery is prevented from being charged with a large voltage by the above-described limitation of the armature current, thereby preventing the performance from deteriorating. When the torque is assisted, the increase in the armature current is stopped. Torque assist with excellent responsiveness.

【0016】請求項5記載の構成によれば請求項1記載
のハイブリッド車用発電電動機装置において更に、界磁
電流小時に電動動作指令が入力された場合に、界磁電流
が所定レベルに達した後まで、又は、所定時間待機後ま
で、電機子電流の通電又はその増大を遅延させる。
According to a fifth aspect of the present invention, in the generator motor device for a hybrid vehicle according to the first aspect, when an electric operation command is input when the field current is small, the field current reaches a predetermined level. Until later, or after waiting for a predetermined time, the supply of the armature current or its increase is delayed.

【0017】このようにすれば、請求項1記載の効果を
簡素な制御で実現することができる。
With this configuration, the effect described in claim 1 can be realized with simple control.

【0018】請求項6記載の構成によれば請求項1記載
のハイブリッド車用発電電動機装置において更に、界磁
電流小時に電動動作指令が入力された場合に、界磁電流
が反転しない範囲で電機子電流を徐々に増加する。
According to a sixth aspect of the present invention, in the generator motor device for a hybrid vehicle according to the first aspect, when the electric operation command is input when the field current is small, the electric motor is controlled within a range in which the field current is not reversed. Increase the daughter current gradually.

【0019】このようにすれば、電機子電流の変化率が
小さくなるので界磁コイルへの誘導電圧が小さくなり、
請求項1記載の効果を簡素な制御で実現することができ
る。
By doing so, the rate of change of the armature current is reduced, so that the induced voltage to the field coil is reduced,
The effect described in claim 1 can be realized with simple control.

【0020】請求項7記載の構成によれば請求項1記載
のハイブリッド車用発電電動機装置において更に、界磁
電流小時に電動動作指令が入力された場合に、界磁電流
が反転しない範囲で徐々に位相角を変更する。
According to a seventh aspect of the present invention, in the generator motor device for a hybrid vehicle according to the first aspect, when an electric operation command is input when the field current is small, the field current is gradually reduced within a range where the field current is not reversed. Change the phase angle to.

【0021】このようにすれば、簡素な制御で請求項1
記載の効果を簡素な制御で実現することができる。
According to the above configuration, the simple control can be used.
The described effect can be realized with simple control.

【0022】請求項8記載の構成によれば請求項5乃至
7のいずれか記載のハイブリッド車用発電電動機装置に
おいて更に、エンジンの自動停止から所定時間だけ界磁
コイル型同期機に界磁電流を通電し、この所定時間経過
後この界磁電流の通電を停止し、その後、請求項5乃至
7のいずれか記載の電機子電流制御を実施する。好適に
は、請求項5乃至7のいずれか記載の電機子電流制御は
エンジン始動またはゆるやかなトルクアシストにおいて
のみ実施される。
According to an eighth aspect of the present invention, in the generator motor device for a hybrid vehicle according to any one of the fifth to seventh aspects, the field current is further supplied to the field coil type synchronous machine for a predetermined time after the automatic stop of the engine. After the passage of the predetermined time, the passage of the field current is stopped, and thereafter, the armature current control according to any one of claims 5 to 7 is performed. Preferably, the armature current control according to any one of claims 5 to 7 is performed only at the time of starting the engine or at the time of gentle torque assist.

【0023】このようにすれば、平滑コンデンサの容
量、耐圧の低減と、トルクアシストレスポンスの悪化を
防止し、電力消費の増大も抑止することができる。
In this way, it is possible to reduce the capacity and the withstand voltage of the smoothing capacitor, prevent the torque assist response from deteriorating, and suppress the increase in power consumption.

【0024】[0024]

【発明を実施するための態様】本発明のハイブリッド車
用発電電動機装置の好適な態様を以下の実施例により具
体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of a generator motor for a hybrid vehicle according to the present invention will be specifically described with reference to the following examples.

【0025】[0025]

【実施例】この実施例のハイブリッド車用発電電動機装
置のブロック図を図1に示す。 (構成)1はエンジン、2はエンジン1のクランク軸、
3は第一発電電動機、4は第二発電電動機、5は拘束機
構、6は平滑コンデンサ、7は車輪駆動軸、8はバッテ
リ、9、10はインバータ、11は界磁電流制御回路、
12はコントローラである。
FIG. 1 is a block diagram of a generator motor device for a hybrid vehicle according to this embodiment. (Configuration) 1 is an engine, 2 is a crankshaft of the engine 1,
3 is a first generator motor, 4 is a second generator motor, 5 is a restraining mechanism, 6 is a smoothing capacitor, 7 is a wheel drive shaft, 8 is a battery, 9 and 10 are inverters, 11 is a field current control circuit,
12 is a controller.

【0026】第一発電電動機(本発明でいう発電電動
機)3は、対面二ロータ型の回転電機であって、互いに
相対回転自在な一対のロータ31,32をもち、ロータ
31はクランク軸2に、ロータ32は第二発電電動機4
のロータ41に直結されている。ロータ31、32の一
方(この実施例ではロータ31)には界磁コイルが巻装
され、ロータ32には電機子コイルが巻装されている。
The first generator motor (generator motor in the present invention) 3 is a facing two-rotor type rotating electric machine, and has a pair of rotors 31 and 32 that can rotate relative to each other. , The rotor 32 is the second generator motor 4
Are directly connected to the rotor 41. A field coil is wound around one of the rotors 31 and 32 (the rotor 31 in this embodiment), and an armature coil is wound around the rotor 32.

【0027】第二発電電動機4はロータ41に相対回転
自在に対面するステータ42を有する通常のロータ−ス
テータ型の回転電機であり、この実施例ではブラシレス
DCモータを採用している。ロータ41は拘束機構5、
クラッチ6を通じて車輪駆動軸7に連結されている。
The second generator motor 4 is an ordinary rotor-stator type rotating electric machine having a stator 42 facing the rotor 41 so as to be rotatable relative to the rotor 41. In this embodiment, a brushless DC motor is employed. The rotor 41 has a restraining mechanism 5,
The clutch 6 is connected to the wheel drive shaft 7.

【0028】拘束機構5は、車両停車時においてシフト
ポジションN又はPにおけるエンジン始動時にエンジン
始動反トルクを受けるものであって、この実施例ではロ
ータ32,41及び車輪駆動軸7と図示しないハウジン
グとの間に設けられたワンウエイクラッチからなり、こ
のエンジン始動時に車両後退方向へのロータ32,41
又は車輪駆動軸7の回転を阻止する。なお、車両走行中
のシフトポジションD、Lなどにおいて、エンジン始動
時にロータ32,41及び車輪駆動軸7にかかる反トル
クは車輪の接地抵抗を通じて支承される。
The restraining mechanism 5 receives an engine start reaction torque when the engine is started in the shift position N or P when the vehicle is stopped. In this embodiment, the rotors 32 and 41, the wheel drive shaft 7, the housing (not shown), A one-way clutch provided between the rotors 32 and 41 in the vehicle retreating direction when the engine is started.
Alternatively, the rotation of the wheel drive shaft 7 is prevented. In the shift positions D and L while the vehicle is running, the anti-torque applied to the rotors 32 and 41 and the wheel drive shaft 7 when the engine is started is supported through the ground resistance of the wheels.

【0029】インバータ9は第一発電電動機3の電機子
コイルとバッテリ8との間の電力授受を制御する直交変
換回路であって、周知の三相インバータ回路からなる。
The inverter 9 is a quadrature conversion circuit for controlling the transfer of electric power between the armature coil of the first generator motor 3 and the battery 8, and is composed of a well-known three-phase inverter circuit.

【0030】インバータ10は第二発電電動機4のステ
ータ42の電機子コイルとバッテリ8との間の電力授受
を制御する直交変換回路であって、周知の三相インバー
タ回路からなる。なお、これら三相インバータ回路はス
イッチング素子としてIGBTを用い、合計6個のIG
BTと逆並列にフライホイルダイオードを用いている。
The inverter 10 is an orthogonal transformation circuit for controlling power transfer between the armature coil of the stator 42 of the second generator motor 4 and the battery 8, and is composed of a well-known three-phase inverter circuit. Note that these three-phase inverter circuits use IGBTs as switching elements, and a total of six IGBTs are used.
A flywheel diode is used in antiparallel with the BT.

【0031】平滑コンデンサ6は、高圧(200〜40
0V)のバッテリ8と並列接続されており、バッテリの
充放電電流の変化を抑止する。実際には、平滑コンデン
サ6はインバータ9、10の高低直流入力端と並列接続
されている。
The smoothing capacitor 6 has a high voltage (200 to 40).
0V) and is connected in parallel with the battery 8 to suppress a change in the charge / discharge current of the battery. Actually, the smoothing capacitor 6 is connected in parallel with the high and low DC input terminals of the inverters 9 and 10.

【0032】界磁電流制御回路11は、図2に示すよう
に、ロータ31に巻装された界磁コイル311を通じて
バッテリ8から給電されるスイッチングトランジスタ1
11と、界磁コイル311と逆並列に接続されたフライ
ホイルダイオード112とからなる。
As shown in FIG. 2, the field current control circuit 11 includes a switching transistor 1 supplied from a battery 8 through a field coil 311 wound around a rotor 31.
11 and a flywheel diode 112 connected in antiparallel with the field coil 311.

【0033】コントローラ12は、各ロータ31,32
の回転角を検出し、これら回転角に基づいてインバータ
9,10を制御することにより、両発電電動機3,4を
制御するマイコン内蔵の制御装置であり、エンジン1も
制御している。
The controller 12 includes the rotors 31 and 32
Is a control device with a built-in microcomputer for controlling both the generator motors 3 and 4 by controlling the inverters 9 and 10 based on these rotation angles, and also controls the engine 1.

【0034】なお、このハイブリッド車用発電電動機装
置は本発明の一構成例であり、本発明の特徴を実現する
範囲で公知ハイブリッド車構成に変更することは当然可
能である。 (運転モードの説明) 車両停止時エンジン始動 車両停止時には、拘束機構5がロータ32,41及び車
輪駆動軸7の逆回転を阻止するので、第一発電電動機3
の界磁コイル311及びロータ32の電機子コイルに通
電して第一発電電動機3を始動させ、エンジン1を始動
させる。
Note that this generator-motor device for a hybrid vehicle is an example of the configuration of the present invention, and it is of course possible to change the configuration to a known hybrid vehicle configuration within the scope of realizing the features of the present invention. (Explanation of the driving mode) Engine start when the vehicle stops When the vehicle stops, the restraining mechanism 5 prevents the reverse rotation of the rotors 32 and 41 and the wheel drive shaft 7, so that the first generator motor 3
The field generator coil 311 and the armature coil of the rotor 32 are energized to start the first generator motor 3 and start the engine 1.

【0035】車両走行時エンジン始動 車両走行時には、拘束機構5がロータ32,41及び車
輪駆動軸7の逆回転を阻止しなくても、ロータ32,4
1及び車輪駆動軸7が逆回転することがないので、第一
発電電動機3の界磁コイル311及びロータ32の電機
子コイルに通電して第一発電電動機3を始動させ、エン
ジン1を始動させる。
When the vehicle is running, even if the restraining mechanism 5 does not prevent the rotors 32, 41 and the wheel drive shaft 7 from rotating in reverse, the rotors 32, 4
1 and the wheel drive shaft 7 do not rotate in reverse, so that the field coil 311 of the first generator motor 3 and the armature coil of the rotor 32 are energized to start the first generator motor 3 and start the engine 1. .

【0036】エンジン回転走行 エンジン回転走行では、エンジン動力の一部はロータ3
2を通じて車輪駆動軸7に伝達され、他の一部は第一発
電電動機3の電機子コイルで発電電力に変換され、この
発電電力はインバータ9を通じて直流電力に変換され、
更にインバータ10を通じて交流電力に変換され、第二
発電電動機4にて動力に変換されて車輪駆動軸7に伝達
される。 エンジン停止走行(エコラン)エンジン停止
走行では、バッテリ8の電力がインバータ10を通じて
第二発電電動機4に送電され、第二発電電動機4はこの
電力を動力に変換して車輪駆動軸7に伝達する。なお、
クランク軸2の拘束機構を増設すれば、エンジン停止時
における第一発電電動機3による車輪駆動軸7の駆動も
可能である。
Engine rotation traveling In engine rotation traveling, part of the engine power is
2 is transmitted to the wheel drive shaft 7, and the other part is converted into generated power by the armature coil of the first generator motor 3, and the generated power is converted into DC power through the inverter 9,
Further, the power is converted into AC power through the inverter 10, converted into power by the second generator motor 4, and transmitted to the wheel drive shaft 7. Engine Stop Travel (Eco-Run) In the engine stop travel, the electric power of the battery 8 is transmitted to the second generator motor 4 through the inverter 10, and the second generator motor 4 converts this electric power into motive power and transmits it to the wheel drive shaft 7. In addition,
If the mechanism for restraining the crankshaft 2 is additionally provided, it is possible to drive the wheel drive shaft 7 by the first generator motor 3 when the engine is stopped.

【0037】回生制動 回生制動では発電電動機3又は4又はその両方を発電動
作させて行う。なお、回生制動に発電電動機3を用いる
場合にエンジン1が受ける反トルクはエンジン1を正ト
ルク方向に回転させるので問題はないが、エンジン1の
回転が拘束されない限り、発電電動機3の回生制動トル
クは大きくできない。
Regenerative braking In regenerative braking, the generator motor 3 or 4 or both are operated to generate power. When the generator motor 3 is used for regenerative braking, the counter torque received by the engine 1 causes no problem because the engine 1 rotates in the positive torque direction. However, as long as the rotation of the engine 1 is not restricted, the regenerative braking torque of the generator motor 3 is not affected. Can not be large.

【0038】トルクアシスト アクセルペダルの踏み量が大きい場合、バッテリ8から
両発電電動機3,4の電機子コイルにそれぞれ電力を供
給し、それらを電動動作させて大きな車輪駆動トルクを
得る。 (制御動作例)コントローラ12により制御されるこの
実施例のハイブリッド車用発電電動機装置の制御動作例
を図3に示すフローチャートを参照して説明する。
When the accelerator pedal is depressed by a large amount, electric power is supplied from the battery 8 to each of the armature coils of the generator motors 3 and 4, and the motors are electrically operated to obtain a large wheel driving torque. (Example of Control Operation) An example of control operation of the generator motor device for a hybrid vehicle of this embodiment, which is controlled by the controller 12, will be described with reference to a flowchart shown in FIG.

【0039】まず、コントローラ12の外部よりエンジ
ン1の始動命令が入力したかどうかを調べ(S10
0)、入力されたならS104に進んでエンジン1の始
動制御サブルーチンを実行する。
First, it is checked whether or not a start command for the engine 1 is input from outside the controller 12 (S10).
0), if it is input, the process proceeds to S104, where a start control subroutine of the engine 1 is executed.

【0040】S100にて、外部よりのエンジン始動命
令入力がなければ、S102に進んで説明省略した入力
条件がエンジン始動可能なあらかじめ記憶する範囲にあ
るかどうかを判別し、これら範囲内にあればエンジン自
動始動条件が満足されていると判定して、S104にて
エンジン1の始動制御サブルーチンを実行する。
In S100, if there is no input of an engine start command from the outside, the process proceeds to S102, in which it is determined whether or not the input conditions omitted in the description are in a pre-stored range in which the engine can be started. It is determined that the engine automatic start condition is satisfied, and a start control subroutine of the engine 1 is executed in S104.

【0041】S102にて、エンジン自動始動条件が満
足されていなければ、S106に進んでコントローラ1
2の外部よりエンジン1の始動命令が入力したかどうか
を調べ(S100)、入力されたならS104に進んで
エンジン1の始動制御サブルーチンを実行する。
If it is determined in S102 that the conditions for automatically starting the engine are not satisfied, the process proceeds to S106 and the controller 1
It is checked whether or not a start command for the engine 1 has been input from the outside of the engine 2 (S100). If the command has been input, the process proceeds to S104 to execute a start control subroutine for the engine 1.

【0042】次のS106では、コントローラ12の外
部よりエンジン1の停止命令が入力したかどうかを調
べ)、入力されたならS110に進んでエンジン1の始
動制御サブルーチンを実行する。
In the next step S106, it is checked whether or not a stop command for the engine 1 has been inputted from outside the controller 12). If it has been inputted, the flow proceeds to S110 to execute a start control subroutine for the engine 1.

【0043】S106にて、外部よりのエンジン停止命
令入力がなければ、S108に進んで説明省略した入力
条件がエンジン停止可能なあらかじめ記憶する範囲にあ
るかどうかを判別し、これら範囲内にあればエンジン自
動停止条件が満足されていると判定して、S110にて
エンジン1の停止制御サブルーチンを実行する。
In S106, if there is no input of the engine stop command from the outside, the process proceeds to S108, in which it is determined whether or not the input condition omitted in the description is within a pre-stored range in which the engine can be stopped. It is determined that the engine automatic stop condition is satisfied, and a stop control subroutine of the engine 1 is executed in S110.

【0044】次に、両発電電動機3,4の運転制御を実
行し(S112)、エンジン1の運転制御を実行して
(S114)、S100にリターンする。 (エンジン停止制御) S110のエンジン停止制御の一例を図4に示す。
Next, the operation control of both the generator motors 3 and 4 is executed (S112), the operation control of the engine 1 is executed (S114), and the process returns to S100. (Engine Stop Control) FIG. 4 shows an example of the engine stop control in S110.

【0045】まずS1101にてエンジン制御用コント
ローラ(ECU)にエンジン停止を指令して第一発電電
動機3の電機子電流を停止し、その後、所定時間(ここ
では3分)待機してから第一発電電動機3の界磁電流を
停止する(S1103)。
First, in step S1101, an engine stop command is issued to an engine control controller (ECU) to stop the armature current of the first generator motor 3, and thereafter, after waiting for a predetermined time (here, three minutes), the first The field current of the generator motor 3 is stopped (S1103).

【0046】これにより、この界磁電流を通電したまま
の待機時にエンジン始動指令やトルクアシスト指令が入
力した場合、第一発電電動機3の界磁コイル311に高
電圧を発生させることなくただちに大電機子電流を流す
ことができ、動作レスポンスの低下を防止することがで
きる。
Thus, when an engine start command or a torque assist command is input during standby while the field current is being supplied, the large electric motor is immediately generated without generating a high voltage in the field coil 311 of the first generator motor 3. A child current can flow, and a decrease in operation response can be prevented.

【0047】なお、S1103の処理は、S1101の
エンジン停止がS108の条件満足による自動停止の場
合にのみ実行するようにしてもよく、この場合には、エ
ンジン停止後、短期間経過した時点でのエンジン再始動
の確率が小さいマニュアル停止の場合にはこの界磁電流
通電延長を実施しないので電力消費増大を抑止すること
ができる。
Note that the process of S1103 may be executed only when the engine stop of S1101 is an automatic stop due to satisfaction of the condition of S108. In this case, a short time after the engine is stopped, In the case of a manual stop in which the probability of restarting the engine is small, the extension of the field current supply is not performed, so that an increase in power consumption can be suppressed.

【0048】また、S108の自動停止時のS1103
の界磁電流延長時間を、S106のマニュアル停止時の
S1103の界磁電流延長時間より長く設定してもよ
い。 (エンジン始動制御1)S104のエンジン始動制御の
一例を図5に示す。
Also, S1103 at the time of automatic stop of S108
May be set longer than the field current extension time in S1103 at the time of manual stop in S106. (Engine Start Control 1) FIG. 5 shows an example of the engine start control in S104.

【0049】まずS1041にて第一発電電動機3の界
磁電流Ifへの通電を開始して所定時間(たとえば2〜
3秒)待機し(S1042)、その後、第一発電電動機
3への電機子電流通電を開始する(S1043)。
First, in S1041, energization of the first generator motor 3 to the field current If is started for a predetermined time (for example,
After waiting for 3 seconds (S1042), the armature current supply to the first generator motor 3 is started (S1043).

【0050】これにより、この第一発電電動機3の界磁
コイル311に流れる界磁電流が十分に大きくなった後
で(界磁コイル311に十分な磁気エネルギーが蓄積さ
れた後で)、電機子電流を流すので、この電機子電流に
より第一発電電動機3の界磁コイル311に高い電圧が
誘導されるのを防止することができる。図8にこの制御
における電機子電流と界磁電流の変化を示す。 (エンジン始動制御2)S104のエンジン始動制御の
他例を図6に示す。
Thus, after the field current flowing through the field coil 311 of the first generator motor 3 becomes sufficiently large (after sufficient magnetic energy is accumulated in the field coil 311), the armature Since the current flows, it is possible to prevent a high voltage from being induced in the field coil 311 of the first generator motor 3 by the armature current. FIG. 8 shows changes in the armature current and the field current in this control. (Engine Start Control 2) Another example of the engine start control in S104 is shown in FIG.

【0051】このエンジン始動制御は、図5のS104
2に示す電機子電流通電遅延に代えて、S1044にて
電機子電流を所定の増加率で増大するものである。ここ
の実施例では、この電機子電流の増加率は、それにより
界磁コイル311に発生する誘導電圧が発電電流を生じ
ない(バッテリが充電される)レベル又はそれより所定
値高い値より小さいレベルとする。
This engine start control is performed in step S104 of FIG.
Instead of the armature current conduction delay shown in FIG. 2, the armature current is increased at a predetermined rate in S1044. In the present embodiment, the rate of increase of the armature current is a level at which the induced voltage generated in the field coil 311 does not generate a generated current (the battery is charged) or a level smaller than a predetermined higher value. And

【0052】このようにすれば、バッテリ8や平滑コン
デンサ6に界磁コイル311から大きな誘導電圧が印加
されることがなく、バッテリ8の劣化を防止し、平滑コ
ンデンサの耐圧低下、容量縮小を図ることができる。
In this way, a large induced voltage is not applied from the field coil 311 to the battery 8 or the smoothing capacitor 6, so that the battery 8 is prevented from deteriorating, the breakdown voltage of the smoothing capacitor is reduced, and the capacity is reduced. be able to.

【0053】なお、S1044にて電機子電流を所定の
増加率で増大する代わりに、電機子電流の増大はより短
時間で行い、電機子電流の位相角(界磁コイルとの間
の)を徐々に電動トルク増大方向に変化させても同じ作
用効果を奏することができる。図9にこの制御における
電機子電流と界磁電流の変化を示す。 (トルクアシスト制御)S112における発電電動機
3,4の運転制御における第一発電電動機3による走行
中トルクアシストについて図7を参照して説明する。
Instead of increasing the armature current at a predetermined increasing rate in S1044, the armature current is increased in a shorter time, and the phase angle of the armature current (between the field coil) is reduced. The same operation and effect can be obtained even when the electric torque is gradually changed in the increasing direction. FIG. 9 shows changes in the armature current and the field current in this control. (Torque assist control) The torque assist during running by the first generator motor 3 in the operation control of the generator motors 3 and 4 in S112 will be described with reference to FIG.

【0054】まず、S200にて第一発電電動機3の界
磁電流Ifが所定しきい値Ifthより小さいかどうか
を調べ、大きければ図3に示すメインルーチンにリター
ンする。小さければ、第一発電電動機3の界磁コイル3
11にスイッチングトランジスタ111のデューティ1
00%で通電を開始し(S202)、その後、第一発電
電動機3の電機子電流を所定の増加率以下で徐増する。
First, in S200, it is checked whether or not the field current If of the first generator motor 3 is smaller than a predetermined threshold Ifth. If it is larger, the process returns to the main routine shown in FIG. If smaller, the field coil 3 of the first generator motor 3
11 is the duty 1 of the switching transistor 111
The energization is started at 00% (S202), and thereafter, the armature current of the first generator motor 3 is gradually increased at a predetermined rate or less.

【0055】このようにすれば、トルクアシスト時にお
いても上記エンジン始動制御2と同様の作用効果を奏す
ることができる。 (変形態様)上記電機子電流の通電遅延や増加率制限は
エンジン始動時に行い、トルクアシスト時に行わないよ
うにしてもよい。このようにすれば、エンジン始動時に
は上記電機子電流の増大制限によりバッテリへの大電圧
による充電を阻止してその性能劣化を抑止し、トルクア
シスト時にはこの電機子電流の増大制限を止めてレスポ
ンス性に優れるトルクアシストを行うことができる。
In this manner, the same operation and effect as the above-described engine start control 2 can be obtained even during torque assist. (Modification) The above-described delay in energization of the armature current and limitation of the increase rate may be performed at the time of starting the engine, and may not be performed at the time of torque assist. In this way, when the engine is started, the battery is prevented from being charged by a large voltage due to the above-described increase in the armature current, thereby suppressing the performance deterioration. At the time of torque assist, the increase in the armature current is stopped, and the response is improved. Excellent torque assist can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1のハイブリッド車用発電電動機装置を
示すブロック図である。
FIG. 1 is a block diagram showing a generator motor device for a hybrid vehicle according to a first embodiment.

【図2】図1に示す界磁電流制御回路11の一例を示す
回路図である。
FIG. 2 is a circuit diagram showing an example of a field current control circuit 11 shown in FIG.

【図3】図1に示すコントローラの制御動作を示すフロ
ーチャートである。
FIG. 3 is a flowchart showing a control operation of a controller shown in FIG.

【図4】図3に示すS110の一例を示すフローチャー
トである。
FIG. 4 is a flowchart illustrating an example of S110 illustrated in FIG. 3;

【図5】図3に示すS104の一例を示すフローチャー
トである。
FIG. 5 is a flowchart illustrating an example of S104 illustrated in FIG. 3;

【図6】図3に示すS104の一例を示すフローチャー
トである。
FIG. 6 is a flowchart illustrating an example of S104 illustrated in FIG. 3;

【図7】図1に示す制御におけるトルクアシスト制御例
を示すフローチャートである。
FIG. 7 is a flowchart showing an example of a torque assist control in the control shown in FIG. 1;

【図8】図4の制御による電機子電流及び界磁電流の変
化を示すタイミングチャートである。
FIG. 8 is a timing chart showing changes in an armature current and a field current under the control of FIG. 4;

【図9】図5の制御による電機子電流及び界磁電流の変
化を示すタイミングチャートである。
FIG. 9 is a timing chart showing changes in an armature current and a field current under the control of FIG. 5;

【符号の説明】[Explanation of symbols]

1はエンジン、3は第一発電電動機(界磁コイル型同期
機)、6は平滑コンデンサ、7は車輪駆動軸、8はバッ
テリ、9はインバータ(交直変換回路)、11は界磁電
流制御回路、12はコントローラ。
1 is an engine, 3 is a first generator motor (field coil type synchronous machine), 6 is a smoothing capacitor, 7 is a wheel drive shaft, 8 is a battery, 9 is an inverter (AC / DC conversion circuit), and 11 is a field current control circuit. , 12 are controllers.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】バッテリと並列接続された平滑コンデン
サ、 ハイブリッド車のエンジンと連結されて走行用電力を発
生するとともにエンジン始動を行う発電電動機をなす界
磁コイル型同期機、 前記バッテリと前記発電電動機の電機子コイルとの間の
授受電力の交直変換を行う交直変換回路、及び、 前記界磁コイル型同期機の回転位置に基づいて前記交直
変換回路を制御するコントローラ、 を備えるハイブリッド車用発電電動機装置において、 前記コントローラは、前記界磁コイル型同期機の電機子
電流により形成されて前記界磁コイル型同期機の界磁コ
イルと鎖交する磁束が、前記電機子電流の増大以前の前
記界磁コイル型同期機の界磁電流により形成されて前記
界磁コイル型同期機の界磁コイルと鎖交する磁束よりも
小さい範囲に、電動動作指令が入力された場合の前記電
機子電流を制御することを特徴とするハイブリッド車用
発電電動機装置。
A smoothing capacitor connected in parallel with a battery; a field coil type synchronous machine which is connected to an engine of a hybrid vehicle to generate running power and starts an engine; and the battery and the generator motor. A generator motor for a hybrid vehicle, comprising: an AC / DC conversion circuit that performs AC / DC conversion of power transmitted to and received from the armature coil; and a controller that controls the AC / DC conversion circuit based on a rotational position of the field coil type synchronous machine. In the apparatus, the controller may be configured such that a magnetic flux formed by an armature current of the field coil type synchronous machine and interlinking with a field coil of the field coil type synchronous machine generates the magnetic field before the armature current increases. The electric motor is driven to a range smaller than a magnetic flux formed by the field current of the magnetic coil type synchronous machine and interlinking with the field coil of the field coil type synchronous machine. The armature current hybrid vehicle generator motor apparatus characterized by controlling the when the work command is input.
【請求項2】請求項1記載のハイブリッド車用発電電動
機装置において、 前記コントローラは、前記エンジンの自動停止中の所定
条件範囲において前記界磁コイル型同期機に界磁電流を
通電することを特徴とするハイブリッド車用発電電動機
装置。
2. The generator motor for a hybrid vehicle according to claim 1, wherein the controller supplies a field current to the field coil type synchronous machine in a predetermined condition range during the automatic stop of the engine. Generator motor device for hybrid vehicles.
【請求項3】請求項2記載のハイブリッド車用発電電動
機装置において、 前記コントローラは、前記エンジンの自動停止から所定
時間だけ前記界磁コイル型同期機に界磁電流を通電する
ことを特徴とするハイブリッド車用発電電動機装置。
3. The generator motor for a hybrid vehicle according to claim 2, wherein the controller supplies a field current to the field coil type synchronous machine for a predetermined time after the automatic stop of the engine. Generator motor device for hybrid vehicles.
【請求項4】請求項1記載のハイブリッド車用発電電動
機装置において、 前記発電電動機は、電動動作して車輪駆動軸のトルクア
シストを行い、 前記コントローラは、前記電機子電流の増大制限を、前
記エンジン始動時に行い、前記トルクアシスト時に行わ
ないことを特徴とするハイブリッド車用発電電動機装
置。
4. The generator motor device for a hybrid vehicle according to claim 1, wherein the generator motor performs an electric operation to perform torque assist of a wheel drive shaft, and the controller restricts the increase of the armature current. A generator-motor device for a hybrid vehicle, which is performed at the time of starting the engine and not performed at the time of the torque assist.
【請求項5】請求項1記載のハイブリッド車用発電電動
機装置において、 前記コントローラは、界磁電流小時に電動動作指令が入
力された場合に、まず界磁電流の増大を指令し、前記界
磁電流が所定レベルに達した後、又は、所定時間待機後
に電動トルク発生のための前記電機子電流の通電又はそ
の増大を指令することを特徴とするハイブリッド車用発
電電動機装置。
5. The generator motor device for a hybrid vehicle according to claim 1, wherein the controller first commands an increase in the field current when an electric operation command is input when the field current is small. A generator-motor device for a hybrid vehicle, wherein after the current reaches a predetermined level or after waiting for a predetermined period of time, a command is issued to supply or increase the armature current for generating an electric torque.
【請求項6】請求項1記載のハイブリッド車用発電電動
機装置において、 前記コントローラは、界磁電流小時に電動動作指令が入
力された場合に、前記界磁電流が反転しない範囲で電動
トルク発生のための前記電機子電流の徐増を指令するこ
とを特徴とするハイブリッド車用発電電動機装置。
6. The generator-motor device for a hybrid vehicle according to claim 1, wherein the controller generates an electric torque within a range where the field current does not reverse when an electric operation command is input when the field current is small. And a command to gradually increase the armature current.
【請求項7】請求項1記載のハイブリッド車用発電電動
機装置において、 前記コントローラは、界磁電流小時に電動動作指令が入
力された場合に、前記界磁電流が反転しない範囲で電動
トルク増大方向への前記電機子電流の位相角変更を指令
することを特徴とするハイブリッド車用発電電動機装
置。
7. The generator motor device for a hybrid vehicle according to claim 1, wherein the controller is configured to, when an electric operation command is input when the field current is small, increase the electric torque within a range in which the field current is not reversed. A generator motor device for a hybrid vehicle, wherein a command is issued to change the phase angle of the armature current.
【請求項8】請求項5乃至7のいずれか記載のハイブリ
ッド車用発電電動機装置において、 前記コントローラは、前記エンジンの自動停止から所定
時間だけ前記界磁コイル型同期機に界磁電流を通電し、
前記所定時間経過後の前記エンジンの再起動時に前記請
求項5乃至7のいずれか記載の電機子電流制御を実施す
ることを特徴とするハイブリッド車用発電電動機装置。
8. The generator motor for a hybrid vehicle according to claim 5, wherein the controller supplies a field current to the field coil type synchronous machine for a predetermined time after the automatic stop of the engine. ,
A generator motor device for a hybrid vehicle, wherein the armature current control according to any one of claims 5 to 7 is performed when the engine is restarted after the predetermined time has elapsed.
JP30411499A 1999-10-26 1999-10-26 Generator motor for hybrid vehicles Expired - Lifetime JP3928835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30411499A JP3928835B2 (en) 1999-10-26 1999-10-26 Generator motor for hybrid vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30411499A JP3928835B2 (en) 1999-10-26 1999-10-26 Generator motor for hybrid vehicles

Publications (2)

Publication Number Publication Date
JP2001128307A true JP2001128307A (en) 2001-05-11
JP3928835B2 JP3928835B2 (en) 2007-06-13

Family

ID=17929208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30411499A Expired - Lifetime JP3928835B2 (en) 1999-10-26 1999-10-26 Generator motor for hybrid vehicles

Country Status (1)

Country Link
JP (1) JP3928835B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064662A1 (en) * 2004-11-24 2006-06-22 Toyota Jidosha Kabushiki Kaisha Vehicle control device
WO2014080775A1 (en) * 2012-11-20 2014-05-30 トヨタ自動車株式会社 Power transmission device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064662A1 (en) * 2004-11-24 2006-06-22 Toyota Jidosha Kabushiki Kaisha Vehicle control device
US7581606B2 (en) 2004-11-24 2009-09-01 Toyota Jidosha Kabushiki Kaisha Vehicular control device
WO2014080775A1 (en) * 2012-11-20 2014-05-30 トヨタ自動車株式会社 Power transmission device
JP2014101005A (en) * 2012-11-20 2014-06-05 Toyota Central R&D Labs Inc Power transmission device
CN104812643A (en) * 2012-11-20 2015-07-29 丰田自动车株式会社 Power transmission device

Also Published As

Publication number Publication date
JP3928835B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
JP4116292B2 (en) Electric power generation system for hybrid vehicles
KR100649989B1 (en) A converter for a switched reluctance machine, a switched reluctance drive, a method of operating a switched reluctance drive, and a method of energising a phase winding of a switched reluctance machine
US7518331B2 (en) AC rotating electric machine control method and electrical power train system
JP2000324857A (en) Variety of power units, and equipment, motor driver, and hybrid vehicle provided with the same
JP6399048B2 (en) vehicle
US7301247B2 (en) Power supply device incorporated in vehicle driven by internal combustion engine
JP3770220B2 (en) Hybrid motorcycle and power transmission device for hybrid motorcycle
KR20050051578A (en) Control device for motor-driven 4wd vehicle and related method
JP2005045905A (en) Drive circuit for rotary electric machine, and electrical equipment unit for vehicle
JPH07115704A (en) Retarder
JP4123706B2 (en) Inverter control device for vehicle AC motor generator
JP5174617B2 (en) Rotating electrical machine device and control device thereof
JP2003061398A (en) Generator-motor equipment for vehicle
JP4171948B2 (en) Vehicle power unit
JP2004320861A (en) Controller for three-phase motor-generator for vehicle
JP3928835B2 (en) Generator motor for hybrid vehicles
JP6419285B1 (en) Engine starter
JP4534114B2 (en) Rotating electrical machine for vehicle
US11489475B2 (en) Power conversion apparatus
JPH06294369A (en) Retarder device
JP3018503B2 (en) Power supply for vehicles
JPH0880095A (en) Internal combustion engine driven power generation system
JP7259563B2 (en) Rotating electric machine control system
JP3147655B2 (en) Engine damper
JP2000257539A (en) Start controller for engine for motor vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6