JPH07115704A - Retarder - Google Patents

Retarder

Info

Publication number
JPH07115704A
JPH07115704A JP5257182A JP25718293A JPH07115704A JP H07115704 A JPH07115704 A JP H07115704A JP 5257182 A JP5257182 A JP 5257182A JP 25718293 A JP25718293 A JP 25718293A JP H07115704 A JPH07115704 A JP H07115704A
Authority
JP
Japan
Prior art keywords
voltage
low
storage device
winding
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5257182A
Other languages
Japanese (ja)
Inventor
Kosuke Suzui
康介 鈴井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP5257182A priority Critical patent/JPH07115704A/en
Publication of JPH07115704A publication Critical patent/JPH07115704A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/20Electric propulsion with power supplied within the vehicle using propulsion power generated by humans or animals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/58Structural details of electrical machines with more than three phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To enable a high-voltage battery to be charged to the minimum voltage necessary for starting an engine in case of engine start failure. CONSTITUTION:Between an auxiliary winding 16 of a rotating machine that has a duplex winding structure and assists an engine and a comparatively low voltage auxiliary battery, a booster chopper comprising transistors Tr1, Tr2, a thyristor D6 and the auxiliary winding 16 is provided. The booster chopper is part of a rectifier circuit 32. A high voltage battery is charged with power from the auxiliary battery, in which process the voltage of the auxiliary battery, after being boosted with the booster chopper, is transformed with the auxiliary winding 16 and main winding 14, and rectified with an inverter 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両の始動、制動等に
使用されるリターダ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a retarder device used for starting and braking a vehicle.

【0002】[0002]

【従来の技術】リターダ装置は、エンジンを制動する機
能を有すると共に、エンジンを始動又は加速させる際に
そのスタータ及び加速アシストとしても機能する装置で
ある。例えば特開平4−207907号に開示されてい
るリターダ装置は、かご形多相誘導機として構成されて
おり、エンジンのクランク軸と変速機の間に配設されて
いる。エンジンを制動する際には、この誘導機を発電機
として動作させ、機械エネルギを電気エネルギに変換し
てバッテリを充電する。エンジンを始動又は加速する際
には、この誘導機を電動機として動作させ、バッテリか
ら供給される電気エネルギを機械エネルギに変換して、
エンジンの始動及び加速をアシストする。この誘導機
は、クランク軸の制動、加速等のために高出力トルクで
ある必要があり、従ってこのリターダ装置において用い
られるバッテリも高圧バッテリである必要がある。
2. Description of the Related Art A retarder device is a device that has a function of braking an engine and also functions as a starter and an acceleration assist for starting or accelerating the engine. For example, the retarder device disclosed in Japanese Patent Laid-Open No. 4-207907 is configured as a squirrel cage polyphase induction machine, and is arranged between the crankshaft of the engine and the transmission. When the engine is braked, this induction machine is operated as a generator to convert mechanical energy into electric energy and charge the battery. When starting or accelerating the engine, this induction machine is operated as an electric motor to convert the electric energy supplied from the battery into mechanical energy,
Assists in engine starting and acceleration. This induction machine needs to have a high output torque for braking, acceleration, etc. of the crankshaft, and therefore the battery used in this retarder device also needs to be a high voltage battery.

【0003】[0003]

【発明が解決しようとする課題】ところで、車両には、
ヘッドライトその他の電気的補機が搭載されている。こ
の種の補機は低電圧直流電源仕様であるため、通常、上
記高圧バッテリに比べ格段に低圧のバッテリが車両に搭
載される。この低圧バッテリは高圧バッテリの放電電力
で充電することが可能である。そのための構成として
は、例えばDC/DCコンバータを用いる構成がある
が、DC/DCコンバータは高価でまた重量も大きいた
め、できれば用いたくない。
By the way, in the vehicle,
It is equipped with headlights and other electrical accessories. Since this type of auxiliary equipment has a low-voltage DC power supply specification, a battery having a much lower voltage than that of the above-mentioned high-voltage battery is usually mounted in the vehicle. This low voltage battery can be charged with the discharge power of the high voltage battery. As a configuration therefor, for example, there is a configuration using a DC / DC converter, but since the DC / DC converter is expensive and heavy, it is not desirable to use it.

【0004】DC/DCコンバータを用いずに上述の目
的を達成できる構成としては、本願出願人により先に提
案された構成がある(特願平5−84660号)。図5
には、その概略構成が示されている。
As a structure that can achieve the above object without using a DC / DC converter, there is a structure previously proposed by the applicant of the present application (Japanese Patent Application No. 5-84660). Figure 5
Shows the schematic configuration thereof.

【0005】この図に示されるエンジン10は車両の駆
動源であり、そのクランク軸上にはリターダとして機能
する電動発電機12が配設されている。この電動発電機
12は例えば三相交流誘導機として構成される。電動発
電機12は、図6により詳細に示されるように、変圧器
を構成するよう主巻線14及び補機巻線16が固定子に
二重捲回された構成を有している。そのうち主巻線14
はインバータ18を介して高圧バッテリ20に、補機巻
線16はインバータ22を介して低圧バッテリ24に、
それぞれ接続されている。
An engine 10 shown in this figure is a drive source of a vehicle, and a motor generator 12 functioning as a retarder is disposed on the crankshaft of the engine 10. The motor generator 12 is configured as, for example, a three-phase AC induction machine. As shown in more detail in FIG. 6, the motor generator 12 has a structure in which the main winding 14 and the auxiliary winding 16 are double-wound around the stator so as to form a transformer. Main winding 14 of them
To the high voltage battery 20 via the inverter 18, the auxiliary winding 16 to the low voltage battery 24 via the inverter 22,
Each is connected.

【0006】インバータ18及び22は、例えば図6に
示されるように、各相2個のスイッチング素子(この図
ではIGBT:Insulated Gate Bipolar Transistor )
をダイオードと共にブリッジ接続した構成を有してい
る。従って、各IGBTのゲートに変調信号を供給し、
所定の変調デューティでスイッチングを行わせることに
より、高圧バッテリ20又は補機バッテリ24によって
直流端子に印加される直流電圧が上記変調に対応する実
効値を有する交流電流に変換され、各IGBT対の接続
点から出力される。逆に、全てのIGBTをオフさせた
状態で交流出力端子から交流電圧が印加されると、イン
バータ18又は22はダイオードブリッジの構成とな
り、整流回路として機能するから、直流端子に接続され
ている高圧バッテリ20又は補機バッテリ24が整流に
より得られる直流電流により充電される。
The inverters 18 and 22 are, for example, as shown in FIG. 6, two switching elements for each phase (IGBT: Insulated Gate Bipolar Transistor in this figure).
Is bridge-connected with the diode. Therefore, the modulation signal is supplied to the gate of each IGBT,
By performing switching with a predetermined modulation duty, the DC voltage applied to the DC terminal by the high voltage battery 20 or the auxiliary battery 24 is converted into an AC current having an effective value corresponding to the above modulation, and the connection of each IGBT pair is made. It is output from the point. On the contrary, when an AC voltage is applied from the AC output terminal with all the IGBTs turned off, the inverter 18 or 22 has a diode bridge structure and functions as a rectifier circuit. Therefore, the high voltage connected to the DC terminal is high. The battery 20 or the auxiliary battery 24 is charged with a direct current obtained by rectification.

【0007】これら、エンジン10、インバータ18及
び22の動作は、コントローラ26によって制御され
る。図7には、参考例におけるコントローラ26の動
作、特に機関始動制御の流れが示されている。
The operations of the engine 10 and the inverters 18 and 22 are controlled by the controller 26. FIG. 7 shows the operation of the controller 26 in the reference example, particularly the flow of engine start control.

【0008】コントローラ26は、始動信号(ST)が
供給されると、これに応じて機関始動制御を開始する。
機関始動制御を開始した後、コントローラ26はまずエ
ンジン10の回転数Nが0であるか否かを判定し(10
0)、0でない場合にはただちにメインルーチンに進ん
で通常制御に移行する。0である場合には、エンジン1
0が停止していると見なせるため、ステップ102以降
の制御を実行する。
When the start signal (ST) is supplied, the controller 26 starts the engine start control in response to this.
After starting the engine start control, the controller 26 first determines whether the rotation speed N of the engine 10 is 0 (10
0), if not 0, immediately proceed to the main routine and shift to normal control. If 0, engine 1
Since it can be considered that 0 is stopped, the control after step 102 is executed.

【0009】コントローラ26は、ステップ102にお
いて、電圧センサ28により検出される高圧バッテリ2
0の電圧Vhが所定値V1以上であるか否かを判定す
る。この所定値V1はシステムの最低動作点VBmに基づ
き設定され、電動発電機12によりエンジン10を始動
するために最低限必要な電圧(図8参照)である。さら
に、電圧V1は、高圧バッテリ20の放電に伴う電圧の
低下や、放電電流による電圧降下を見込んで設定され
る。また、Vh≧V1である場合、コントローラ26
は、補機バッテリ24とインバータ22の間に設けられ
たコンタクタ30をオフさせた上で(104)、主巻線
14により発生させる磁束φを最大値φmaxに設定し
(106)、電動発電機12により発生させるべきトル
クを示すトルク指令Tを回転数Nに応じて演算し(10
8)、さらに電動発電機12に供給すべき電流を示す電
流指令をトルク指令Tに応じてベクトル演算する(11
0)。ベクトル演算により得られた電流指令は、インバ
ータ18を構成する各IGBTのゲートにPWM(パル
ス幅変調)信号として供給される。従って、この状態で
は、高圧バッテリ20の放電電力により電動発電機12
が電動機として駆動される。この制御は、回転数Nがア
イドル運転状態を示す回転数N1に至るまで繰り返され
(112)、この回転数N1に至ると主巻線14への通
電が停止される(114)。この時点では、エンジン1
0はすでに始動している。
The controller 26 determines, in step 102, the high voltage battery 2 detected by the voltage sensor 28.
It is determined whether the voltage Vh of 0 is a predetermined value V1 or more. The predetermined value V1 is set based on the minimum operating point VBm of the system, and is the minimum voltage (see FIG. 8) required to start the engine 10 by the motor generator 12. Further, the voltage V1 is set in consideration of a voltage drop due to discharge of the high voltage battery 20 and a voltage drop due to a discharge current. If Vh ≧ V1, the controller 26
Turns off the contactor 30 provided between the auxiliary battery 24 and the inverter 22 (104), and sets the magnetic flux φ generated by the main winding 14 to the maximum value φmax (106). The torque command T indicating the torque to be generated by 12 is calculated according to the rotation speed N (10
8) Further, the current command indicating the current to be supplied to the motor generator 12 is vector-calculated according to the torque command T (11).
0). The current command obtained by the vector calculation is supplied as a PWM (pulse width modulation) signal to the gates of the IGBTs forming the inverter 18. Therefore, in this state, the discharge power of the high voltage battery 20 causes the motor generator 12 to operate.
Is driven as an electric motor. This control is repeated until the rotation speed N reaches the rotation speed N1 indicating the idle operation state (112), and when the rotation speed N1 is reached, the main winding 14 is deenergized (114). At this point, engine 1
0 has already started.

【0010】ステップ102においてVh<V1とされ
た場合、そのままでは高圧バッテリ20によって電動発
電機12を駆動しエンジン10を始動することができな
いと見なせる。そこで、コントローラ26は、コンタク
タ30をオンさせ補機バッテリ24をインバータ22に
接続した上で(116)、補機バッテリ24の放電出力
による高圧バッテリ20の充電制御を実行する(11
8)。すなわち、インバータ22を構成する各IGBT
のスイッチング動作を制御し補機バッテリ24の放電出
力を交流電流に変換させると共に、インバータ18を構
成する各IGBTをオフさせインバータ18を整流回路
として機能させる。先に述べたように、主巻線14と補
機巻線16は変圧器を構成しているから、このような制
御によって、高圧バッテリ20を充電することができ
る。充電が進み、電圧Vhが所定値Vmaxに至ると
(120)、コントローラ26は補機バッテリ24によ
る高圧バッテリ20の充電を停止させ(122)、その
後メインルーチンに移行する。従って、この後図7のル
ーチンを再度実行することにより、エンジン10を好適
に始動できる。
When Vh <V1 in step 102, it can be considered that the high voltage battery 20 cannot drive the motor generator 12 to start the engine 10 as it is. Therefore, the controller 26 turns on the contactor 30 and connects the auxiliary battery 24 to the inverter 22 (116), and then executes charging control of the high-voltage battery 20 by the discharge output of the auxiliary battery 24 (11).
8). That is, each IGBT that constitutes the inverter 22
The switching output of the auxiliary battery 24 is controlled to convert the discharge output of the auxiliary battery 24 into an alternating current, and each IGBT constituting the inverter 18 is turned off to cause the inverter 18 to function as a rectifying circuit. As described above, since the main winding 14 and the auxiliary winding 16 constitute a transformer, the high voltage battery 20 can be charged by such control. When the charging progresses and the voltage Vh reaches the predetermined value Vmax (120), the controller 26 stops the charging of the high voltage battery 20 by the auxiliary battery 24 (122), and then shifts to the main routine. Therefore, by subsequently executing the routine of FIG. 7 again, the engine 10 can be suitably started.

【0011】以上、エンジン10の始動や補機バッテリ
24による高圧バッテリ20の充電についての説明か
ら、図5及び図6の構成の下で加速アシストや制動の制
御、高圧バッテリ20による補機バッテリ24の充電等
の制御を実行できることも明らかである。従って、本願
出願人が先に提案した構成によれば、DC/DCコンバ
ータなしに高圧バッテリにより補機バッテリを充電でき
る。
From the above description of the starting of the engine 10 and the charging of the high voltage battery 20 by the auxiliary battery 24, acceleration assist and braking control under the configuration of FIGS. 5 and 6 and the auxiliary battery 24 by the high voltage battery 20 are performed. It is also clear that the control such as charging can be executed. Therefore, according to the configuration previously proposed by the applicant of the present application, the auxiliary battery can be charged by the high-voltage battery without the DC / DC converter.

【0012】しかしながら、図7に示されるような制御
動作で高圧バッテリ20を充電しようとすると、場合に
よっては、エンジン10の始動に必要な電圧まで高圧バ
ッテリ20を充電できない状況が生じる。
However, if the high voltage battery 20 is to be charged by the control operation as shown in FIG. 7, the high voltage battery 20 may not be charged to a voltage required for starting the engine 10 in some cases.

【0013】まず、高圧バッテリ20の電力により補機
バッテリ24を充電する際の電圧変換比(降圧比)は、
インバータ18の変換比×主巻線14と補機巻線16の
巻き数比×インバータ22の整流変換比により定まる。
インバータ18及び22の変換比又は整流変換比は所定
値であるから、降圧比は主巻線14と補機巻線16の巻
き数比で定まる。高圧バッテリ20の最低動作点VBmが
120Vであり補機バッテリ24の仕様が12Vである
場合、この降圧比は例えば10:1に設定する。このと
き、エンジン10の始動に必要な最低電圧V1は、例え
ば140Vに設定する。
First, the voltage conversion ratio (step-down ratio) when charging the auxiliary battery 24 with the electric power of the high-voltage battery 20 is
It is determined by the conversion ratio of the inverter 18, the number of turns of the main winding 14 and the auxiliary winding 16, and the rectification conversion ratio of the inverter 22.
Since the conversion ratio or the rectification conversion ratio of the inverters 18 and 22 is a predetermined value, the step-down ratio is determined by the winding ratio of the main winding 14 and the auxiliary winding 16. When the minimum operating point VBm of the high voltage battery 20 is 120V and the specification of the auxiliary battery 24 is 12V, this step-down ratio is set to 10: 1, for example. At this time, the minimum voltage V1 required for starting the engine 10 is set to 140V, for example.

【0014】補機バッテリ24の電力により高圧バッテ
リ20を充電する際の電圧変換比(昇圧比)は、逆に、
インバータ22の変換比×補機巻線16と主巻線14の
巻き数比×インバータ18の整流変換比であるから、降
圧比を10:1に設定した場合、昇圧比はほぼ1:10
となる。
The voltage conversion ratio (boosting ratio) when charging the high voltage battery 20 with the electric power of the auxiliary battery 24 is conversely
Since the conversion ratio of the inverter 22 × the number of turns of the auxiliary winding 16 and the main winding 14 × the rectification conversion ratio of the inverter 18, when the step-down ratio is set to 10: 1, the step-up ratio is almost 1:10.
Becomes

【0015】このような昇圧を伴う充電を行うときに
は、高圧バッテリ20を最低動作点VBm(120V)ま
で充電することはできるが、エンジン10の始動に必要
な電圧V1(140V)まで再度充電できないことにな
る。従って、一旦充電は行ったものの、エンジン10の
始動に失敗したり、あるいは他の負荷により高圧バッテ
リ20の電力が消費されたりした場合、高圧バッテリ2
0を補機バッテリ24の電力によりエンジン10の始動
に必要な最低電圧V1まで充電するのが困難となる。
When charging with such boosting, the high-voltage battery 20 can be charged to the minimum operating point VBm (120V), but cannot be recharged to the voltage V1 (140V) required for starting the engine 10. become. Therefore, if the engine 10 fails to start or is charged with electric power of the high-voltage battery 20 due to another load, the high-voltage battery 2 is once charged.
It becomes difficult to charge 0 to the minimum voltage V1 required for starting the engine 10 by the electric power of the auxiliary battery 24.

【0016】このような不具合を回避する方法として、
電動発電機12における変圧器のほかに、補機バッテリ
24による高圧バッテリ20充電専用の変圧器を搭載す
る方法を考えることができるが、この方法は、当該変圧
器の付加による重量の増大や、充電経路の切り替えのた
めの接点が必要となる等の問題を発生させる。
As a method of avoiding such a problem,
A method of mounting a transformer dedicated to charging the high voltage battery 20 by the auxiliary battery 24 in addition to the transformer in the motor generator 12 can be considered, but this method increases the weight due to the addition of the transformer, This causes problems such as the need for contacts for switching the charging path.

【0017】本発明は、このような問題点を解決するこ
とを課題としてなされたものであり、二重巻線構造を有
する回転機における巻き数比による昇圧比の制限を、回
路の一部改良により緩和することを目的とする。
The present invention has been made to solve the above problems, and partially improves the circuit by limiting the step-up ratio due to the winding ratio in a rotating machine having a double winding structure. It is intended to be alleviated by

【0018】[0018]

【課題を解決するための手段】このような目的を達成す
るために、本発明のリターダ装置は、変圧器を構成する
よう高圧巻線及び低圧巻線が固定子上に捲回された回転
機と、比較的高電圧で充放電する高圧蓄電装置と、比較
的低電圧で充放電する低圧蓄電装置と、高圧蓄電装置と
高圧巻線の間に設けられ、高圧蓄電装置から放電される
直流電力を交流電力に変換して高圧巻線に供給し、高圧
巻線から供給される交流電力を整流して得られる直流電
力により高圧蓄電装置を充電するインバータと、低圧巻
線と低圧蓄電装置の間に設けられ、低圧巻線から供給さ
れる交流電力を整流制御信号に応じて整流し低圧蓄電装
置を充電し、低圧蓄電装置から放電される直流電力を昇
圧制御信号に応じて昇圧しながら交流電力に変換し低圧
巻線に供給する昇圧機能付整流回路と、低圧巻線から供
給される交流電力を用いて低圧蓄電装置を充電する場合
には整流制御信号を、低圧蓄電装置から放電される直流
電力を用いて高圧蓄電装置を充電する場合には昇圧制御
信号を、出力する制御手段と、を備えることを特徴とす
る。
In order to achieve such an object, the retarder device of the present invention is a rotating machine in which a high voltage winding and a low voltage winding are wound on a stator so as to form a transformer. A high-voltage power storage device that charges and discharges at a relatively high voltage, a low-voltage power storage device that charges and discharges at a relatively low voltage, and a DC power that is provided between the high-voltage power storage device and the high-voltage winding and that is discharged from the high-voltage power storage device. Between the low-voltage winding and the inverter that charges the high-voltage power storage device with the direct-current power obtained by rectifying the AC power supplied from the high-voltage winding AC power supplied from the low-voltage winding is rectified according to the rectification control signal to charge the low-voltage power storage device, and the DC power discharged from the low-voltage power storage device is boosted according to the boost control signal. Converted to and supplied to the low voltage winding When charging the low-voltage power storage device using the functional rectifier circuit and the AC power supplied from the low-voltage winding, the rectification control signal is used to charge the high-voltage power storage device using the DC power discharged from the low-voltage power storage device. In some cases, a control means for outputting a boost control signal is provided.

【0019】[0019]

【作用】本発明においては、低圧蓄電装置から放電され
る直流電力を用いて高圧蓄電装置を充電する場合、制御
手段から昇圧制御信号が出力される。昇圧制御信号が発
生すると、これに基づき、低圧蓄電装置から放電される
直流電力が、昇圧されながら交流電力に変換され低圧巻
線に供給される。従って、当該充電の際の昇圧比が巻き
数比による制限を越えて高くなり、高圧蓄電装置が必要
な電圧まで好適に充電される。
According to the present invention, when the high voltage power storage device is charged with the DC power discharged from the low voltage power storage device, the boosting control signal is output from the control means. When the boost control signal is generated, the DC power discharged from the low-voltage power storage device is converted into AC power while being boosted and supplied to the low-voltage winding based on this. Therefore, the boosting ratio at the time of charging becomes higher than the limit due to the winding number ratio, and the high-voltage power storage device is suitably charged to the required voltage.

【0020】[0020]

【実施例】以下、本発明の好適な実施例について図面に
基づき説明する。なお、図5乃至図8に示される参考例
と同様の構成には同一の符号を付し説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. The same components as those of the reference example shown in FIGS. 5 to 8 are designated by the same reference numerals and the description thereof will be omitted.

【0021】図1には、本発明の一実施例に係るリター
ダ装置の構成が示されている。この図に示されるよう
に、本実施例においては、インバータ22に代えて昇圧
チョッパ付整流回路32が用いられている。昇圧チョッ
パ付整流回路32は、図2に示されるように、5個のダ
イオードD1〜D5及びサイリスタD6をブリッジ接続
した構成であり、さらに、電動発電機12のある1組の
補機巻線16に係るダイオードD1及びD3と並列にト
ランジスタ(この図ではIGBT)Tr1及びTr2を
設けた構成を有している。サイリスタD6は、ダイオー
ドD3と直列接続されている。
FIG. 1 shows the structure of a retarder device according to an embodiment of the present invention. As shown in this figure, in this embodiment, a rectifier circuit 32 with a boost chopper is used instead of the inverter 22. As shown in FIG. 2, the step-up chopper-equipped rectifier circuit 32 has a configuration in which five diodes D1 to D5 and a thyristor D6 are bridge-connected, and further, a set of auxiliary windings 16 including the motor generator 12 is provided. It has a configuration in which transistors (IGBTs in this figure) Tr1 and Tr2 are provided in parallel with the diodes D1 and D3 according to the present invention. The thyristor D6 is connected in series with the diode D3.

【0022】図3には、この実施例におけるコントロー
ラ34の動作、特に機関始動制御動作の流れが示されて
いる。この実施例においては、参考例におけるステップ
118〜122に代え、ステップ124〜130が実行
されている。
FIG. 3 shows the flow of the operation of the controller 34 in this embodiment, particularly the engine start control operation. In this embodiment, steps 124 to 130 are executed instead of steps 118 to 122 in the reference example.

【0023】高圧バッテリ20の電圧Vhが所定値V1
未満である場合には、コントローラ34は、コンタクタ
30をオンさせた上で(116)トランジスタTr1を
オンさせかつサイリスタD6をオフさせる(124)。
続いて、コントローラ34は、トランジスタTr2のゲ
ートに制御信号を供給し(126)、トランジスタTr
2のデューティ制御を開始する。この状態では、補機バ
ッテリ24の+側端子はオンしているトランジスタTr
1を介して補機巻線16に接続されており、また、補機
バッテリ24の−側端子は制御信号に応じてオンするト
ランジスタTr2を介して補機巻線16に接続されてい
る。従って、回路32は補機巻線16との結合により昇
圧チョッパを構成しており、補機バッテリ24の出力
は、この昇圧チョッパにより昇圧される。従って、高圧
バッテリ20の充電は、参考例より高い電圧まで実行可
能になる。コントローラ34は、高圧バッテリ20の電
圧Vhが目標値Vdに達した時点でこの制御を止め(1
28)、トランジスタTr1及びTr2をオフさせたう
えで(130)、メインルーチンに戻る。
The voltage Vh of the high voltage battery 20 is a predetermined value V1.
If less, the controller 34 turns on the contactor 30 (116) and then turns on the transistor Tr1 and turns off the thyristor D6 (124).
Subsequently, the controller 34 supplies a control signal to the gate of the transistor Tr2 (126), and the transistor Tr2
The duty control of 2 is started. In this state, the + side terminal of the auxiliary battery 24 is in the ON state of the transistor Tr.
1 is connected to the auxiliary machine winding 16, and the-side terminal of the auxiliary machine battery 24 is connected to the auxiliary machine winding 16 via a transistor Tr2 which is turned on in response to a control signal. Therefore, the circuit 32 constitutes a step-up chopper by coupling with the auxiliary machine winding 16, and the output of the auxiliary machine battery 24 is boosted by this step-up chopper. Therefore, the high voltage battery 20 can be charged to a voltage higher than that of the reference example. The controller 34 stops this control when the voltage Vh of the high voltage battery 20 reaches the target value Vd (1
28), after turning off the transistors Tr1 and Tr2 (130), the process returns to the main routine.

【0024】図4には、本実施例におけるシステム動作
の内容がタイミングチャートの形式で示されている。こ
の図に示されるように、高圧バッテリ20の電力によっ
て電動発電機12が電動機として動作している状態及び
発電機として動作している状態(補機充電モード)で
は、トランジスタTr1及びTr2がオフ状態に保持さ
れ、サイリスタD6が点弧される。この点弧は、補機バ
ッテリ24の充電電圧に応じて実行する。そのため、コ
ントローラ34は、電動発電機12の補機巻線16側に
設けられた電圧センサ36により、発電電圧を検出す
る。逆に、補機バッテリ24の電力により高圧バッテリ
20を充電している状態(補機放電モード)では、ステ
ップ124及び126の制御が行われる。
FIG. 4 shows the contents of the system operation in this embodiment in the form of a timing chart. As shown in this figure, in the state where the motor generator 12 is operating as an electric motor and the state where the motor generator 12 is operating as a generator (auxiliary equipment charging mode) by the electric power of the high voltage battery 20, the transistors Tr1 and Tr2 are in an off state. , And the thyristor D6 is fired. This ignition is executed according to the charging voltage of the auxiliary battery 24. Therefore, the controller 34 detects the generated voltage by the voltage sensor 36 provided on the side of the auxiliary winding 16 of the motor generator 12. On the contrary, in the state where the high voltage battery 20 is charged by the power of the auxiliary battery 24 (auxiliary device discharge mode), the control of steps 124 and 126 is performed.

【0025】従って、本実施例によれば、昇圧チョッパ
を用いて補機バッテリ24による高圧バッテリ20の充
電を行うようにしたため、エンジン10の始動に失敗し
た場合等においても、高圧バッテリ20をエンジン10
の始動に必要な最低電圧V1まで充電でき、より信頼性
の高い装置が得られる。また、その際、昇圧と整流を単
一の回路32により実現しているため装置構成が簡素と
なりまた他の充電器を設ける必要がなくなる。さらに、
昇圧チョッパ付整流回路32の動作制御自体には機械的
接点は不要であり、この面からも、装置構成が小形化さ
れ信頼性も向上する。
Therefore, according to the present embodiment, since the booster chopper is used to charge the high voltage battery 20 with the auxiliary battery 24, even if the engine 10 fails to start, 10
The device can be charged to the minimum voltage V1 required for starting the device, and a more reliable device can be obtained. Further, at that time, since the step-up and the rectification are realized by the single circuit 32, the device configuration is simplified and it is not necessary to provide another charger. further,
No mechanical contact point is required for the operation control itself of the step-up chopper rectifier circuit 32. From this aspect, the device configuration is downsized and the reliability is improved.

【0026】なお、以上の説明では、電動発電機12の
電力源を高圧バッテリ20としたが、始動という本来の
目的からすれば、これは、十分な静電容量を有するコン
デンサに置き換えてもよい。また、この場合、コンデン
サはバッテリより自己放電しやすいため、電圧低下が生
じやすい。そこで、車両駐車時にも自動的に充電するよ
うにすれば、常時、エンジンを始動可能な電圧に保持で
きる。
In the above description, the power source of the motor generator 12 is the high voltage battery 20, but for the original purpose of starting, this may be replaced with a capacitor having a sufficient electrostatic capacity. . Further, in this case, the capacitor is more likely to be self-discharged than the battery, so that the voltage is likely to drop. Therefore, if the vehicle is automatically charged even when the vehicle is parked, the voltage at which the engine can be started can be maintained at all times.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
低圧蓄電装置から放電される直流電力によって高圧蓄電
装置を充電する際、低圧巻線と低圧蓄電装置の間に配設
された整流回路を昇圧回路として機能させるようにした
ため、当該充電の際の昇圧比が巻き数比による制限を越
えて高くなり、高圧蓄電装置が必要な電圧まで好適に充
電される。これにより、エンジン始動失敗時等において
も再始動等の操作を確実に実行可能になる。
As described above, according to the present invention,
When charging the high-voltage power storage device with the DC power discharged from the low-voltage power storage device, the rectifier circuit arranged between the low-voltage winding and the low-voltage power storage device is made to function as a booster circuit. The ratio becomes higher than the limit due to the winding number ratio, and the high-voltage power storage device is preferably charged to the required voltage. This makes it possible to reliably perform an operation such as restart even when the engine fails to start.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るリターダ装置の構成を
示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a retarder device according to an embodiment of the present invention.

【図2】この実施例の要部の詳細構成を示す回路図であ
る。
FIG. 2 is a circuit diagram showing a detailed configuration of a main part of this embodiment.

【図3】この実施例における機関始動制御の流れを示す
フローチャートである。
FIG. 3 is a flowchart showing a flow of engine starting control in this embodiment.

【図4】この実施例における昇圧チョッパの動作タイミ
ングを示すタイミングチャートである。
FIG. 4 is a timing chart showing the operation timing of the boost chopper in this embodiment.

【図5】本願出願人が先に提案した参考例に係るリター
ダ装置の構成を示すブロック図である。
FIG. 5 is a block diagram showing a configuration of a retarder device according to a reference example previously proposed by the applicant of the present application.

【図6】この参考例の要部の詳細構成を示す回路図であ
る。
FIG. 6 is a circuit diagram showing a detailed configuration of a main part of this reference example.

【図7】この参考例における機関始動制御の流れを示す
フローチャートである。
FIG. 7 is a flowchart showing a flow of engine starting control in this reference example.

【図8】この参考例の問題点を示すバッテリ特性図であ
る。
FIG. 8 is a battery characteristic diagram showing a problem of this reference example.

【符号の説明】[Explanation of symbols]

10 エンジン 12 電動発電機 14 主巻線 16 補機巻線 18 インバータ 20 高圧バッテリ 24 補機バッテリ 30 コンタクタ 32 昇圧チョッパ付整流回路 34 コントローラ D6 サイリスタ Tr1,Tr2 トランジスタ Vh 高圧バッテリの電圧 VBm 最低動作点 V1 エンジン始動に必要な最低電圧 10 Engine 12 Motor Generator 14 Main Winding 16 Auxiliary Winding 18 Inverter 20 High Voltage Battery 24 Auxiliary Battery 30 Contactor 32 Booster Chopper Rectifier Circuit 34 Controller D6 Thyristor Tr1, Tr2 Transistor Vh High Voltage Battery Voltage VBm Minimum Operating Point V1 Minimum voltage required to start the engine

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02J 7/00 L 303 C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H02J 7/00 L 303 C

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 変圧器を構成するよう高圧巻線及び低圧
巻線が固定子上に捲回された回転機と、比較的高電圧で
充放電する高圧蓄電装置と、比較的低電圧で充放電する
低圧蓄電装置と、高圧蓄電装置と高圧巻線の間に設けら
れ、高圧蓄電装置から放電される直流電力を交流電力に
変換して高圧巻線に供給し、高圧巻線から供給される交
流電力を整流して得られる直流電力により高圧蓄電装置
を充電するインバータと、低圧巻線と低圧蓄電装置の間
に設けられ、低圧巻線から供給される交流電力を整流し
て低圧蓄電装置を充電する整流回路と、を備えるリター
ダ装置において、 低圧巻線から供給される交流電力を用いて低圧蓄電装置
を充電する場合には整流制御信号を、低圧蓄電装置から
放電される直流電力を用いて高圧蓄電装置を充電する場
合には昇圧制御信号を、出力する制御手段を備え、 整流回路が、低圧巻線から供給される交流電力を整流制
御信号に応じて整流し低圧蓄電装置を充電し、低圧蓄電
装置から放電される直流電力を昇圧制御信号に応じて昇
圧しながら交流電力に変換し低圧巻線に供給する昇圧機
能付整流回路であることを特徴とするリターダ装置。
1. A rotating machine in which a high-voltage winding and a low-voltage winding are wound on a stator so as to form a transformer, a high-voltage power storage device that charges and discharges with a relatively high voltage, and a charging device with a relatively low voltage. A low-voltage power storage device that discharges, and is provided between the high-voltage power storage device and the high-voltage winding, converts the DC power discharged from the high-voltage power storage device into AC power, supplies the AC power to the high-voltage winding, and supplies the high-voltage winding. An inverter that charges a high-voltage power storage device with direct-current power obtained by rectifying AC power and a low-voltage power storage device that is provided between the low-voltage winding and the low-voltage power storage device and rectifies AC power supplied from the low-voltage winding. In a retarder device including a rectifying circuit to be charged, a rectification control signal is used when charging a low-voltage power storage device with AC power supplied from a low-voltage winding, and a DC power discharged from the low-voltage power storage device is used. When charging a high-voltage power storage device Has a control means for outputting a boost control signal, and the rectifier circuit rectifies the AC power supplied from the low-voltage winding according to the rectification control signal to charge the low-voltage power storage device and discharge it from the low-voltage power storage device. A retarder device, which is a rectifier circuit with a boosting function, which boosts DC power according to a boost control signal while converting it to AC power and supplies the AC power to a low-voltage winding.
JP5257182A 1993-10-14 1993-10-14 Retarder Pending JPH07115704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5257182A JPH07115704A (en) 1993-10-14 1993-10-14 Retarder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5257182A JPH07115704A (en) 1993-10-14 1993-10-14 Retarder

Publications (1)

Publication Number Publication Date
JPH07115704A true JPH07115704A (en) 1995-05-02

Family

ID=17302822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5257182A Pending JPH07115704A (en) 1993-10-14 1993-10-14 Retarder

Country Status (1)

Country Link
JP (1) JPH07115704A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122825A (en) * 1997-10-13 1999-04-30 Denso Corp Charging equipment for battery
JP2000287301A (en) * 1999-03-30 2000-10-13 Nissan Diesel Motor Co Ltd Power supply unit
GB2374740A (en) * 2001-01-20 2002-10-23 Ford Global Tech Inc A method and apparatus for an induction machine
US6546320B2 (en) 2000-06-06 2003-04-08 Suzuki Motor Corporation Control apparatus for hybrid vehicle
WO2007126038A1 (en) * 2006-04-24 2007-11-08 Toyota Jidosha Kabushiki Kaisha Load drive device, vehicle using the same, and load drive device control method
US7439697B2 (en) 2005-11-30 2008-10-21 Hitachi Ltd. Motor driving device and automobile using the same
EP1981163A3 (en) * 2007-04-04 2009-07-08 Honda Motor Co., Ltd Controller of electric motor
JP2009274536A (en) * 2008-05-13 2009-11-26 Toyota Central R&D Labs Inc Power transmission device
US20120019174A1 (en) * 2009-03-27 2012-01-26 Jochen Mahlein Drive System, Method for Operating a Drive System, and Use
JP2012075280A (en) * 2010-09-29 2012-04-12 Panasonic Corp Power supply device for vehicle
JP2014017987A (en) * 2012-07-10 2014-01-30 Nippon Soken Inc Power conversion device
EP2428388A4 (en) * 2009-05-08 2014-07-16 Toyota Motor Co Ltd Power supply system and vehicle equipped with power supply system
CN103972954A (en) * 2013-02-06 2014-08-06 Lg电子株式会社 Charging apparatus and electric vehicle including the same
US20160102644A1 (en) * 2013-03-21 2016-04-14 Honda Motor Co., Ltd. Power generation unit, and motor generator control method
WO2020093626A1 (en) * 2018-11-06 2020-05-14 北京宝沃汽车有限公司 Power supply system and vehicle
CN112803794A (en) * 2021-02-25 2021-05-14 Oppo广东移动通信有限公司 Power adapter, power supply system and power supply method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122825A (en) * 1997-10-13 1999-04-30 Denso Corp Charging equipment for battery
JP2000287301A (en) * 1999-03-30 2000-10-13 Nissan Diesel Motor Co Ltd Power supply unit
US6546320B2 (en) 2000-06-06 2003-04-08 Suzuki Motor Corporation Control apparatus for hybrid vehicle
GB2374740A (en) * 2001-01-20 2002-10-23 Ford Global Tech Inc A method and apparatus for an induction machine
GB2374740B (en) * 2001-01-20 2005-04-13 Ford Global Tech Inc A method and apparatus for an induction machine
US7439697B2 (en) 2005-11-30 2008-10-21 Hitachi Ltd. Motor driving device and automobile using the same
US7821214B2 (en) 2006-04-24 2010-10-26 Toyota Jidosha Kabushiki Kaisha Load driving apparatus, vehicle incorporating the same, and control method for load driving apparatus
WO2007126038A1 (en) * 2006-04-24 2007-11-08 Toyota Jidosha Kabushiki Kaisha Load drive device, vehicle using the same, and load drive device control method
US7898200B2 (en) 2007-04-04 2011-03-01 Honda Motor Co., Ltd. Controller of electric motor
EP1981163A3 (en) * 2007-04-04 2009-07-08 Honda Motor Co., Ltd Controller of electric motor
JP2009274536A (en) * 2008-05-13 2009-11-26 Toyota Central R&D Labs Inc Power transmission device
US8912738B2 (en) * 2009-03-27 2014-12-16 Sew-Eurodrive Gmbh & Co. Kg Drive system, method for operating a drive system, and use
US20120019174A1 (en) * 2009-03-27 2012-01-26 Jochen Mahlein Drive System, Method for Operating a Drive System, and Use
EP2428388A4 (en) * 2009-05-08 2014-07-16 Toyota Motor Co Ltd Power supply system and vehicle equipped with power supply system
JP2012075280A (en) * 2010-09-29 2012-04-12 Panasonic Corp Power supply device for vehicle
JP2014017987A (en) * 2012-07-10 2014-01-30 Nippon Soken Inc Power conversion device
CN103972954A (en) * 2013-02-06 2014-08-06 Lg电子株式会社 Charging apparatus and electric vehicle including the same
CN103972954B (en) * 2013-02-06 2017-01-18 Lg电子株式会社 Charging apparatus and electric vehicle including the same
US20160102644A1 (en) * 2013-03-21 2016-04-14 Honda Motor Co., Ltd. Power generation unit, and motor generator control method
US9709015B2 (en) * 2013-03-21 2017-07-18 Honda Motor Co., Ltd. Power generation unit, and motor generator control method
WO2020093626A1 (en) * 2018-11-06 2020-05-14 北京宝沃汽车有限公司 Power supply system and vehicle
CN112803794A (en) * 2021-02-25 2021-05-14 Oppo广东移动通信有限公司 Power adapter, power supply system and power supply method

Similar Documents

Publication Publication Date Title
JP4116292B2 (en) Electric power generation system for hybrid vehicles
JP4063199B2 (en) Control device for motor-driven 4WD vehicle
US7400116B2 (en) Pre-charging system for smoothing capacitor
JP4023171B2 (en) LOAD DRIVE DEVICE, CHARGE CONTROL METHOD FOR POWER STORAGE DEVICE IN LOAD DRIVE DEVICE, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING PROGRAM FOR CAUSING COMPUTER TO EXECUTE CHARGE CONTROL
EP1039625B1 (en) Operation of a switched reluctance machine from dual supply voltages
US8143824B2 (en) Regenerating braking system including synchronous motor with field excitation and control method thereof
JPH07115704A (en) Retarder
JP6399048B2 (en) vehicle
WO2004055963A1 (en) Power unit for automobile
JP2011239493A (en) Output controller for hybrid engine generator
JP5579493B2 (en) Hybrid power generator switching device for power supply source
JP4082338B2 (en) Control device and control method for motor-driven 4WD vehicle
KR100654144B1 (en) Control device for motor-driven 4wd vehicle and related method
JP2002084672A (en) Power supply system for vehicle
JPH09298840A (en) Charger of electric vehicle
US6304056B1 (en) Pulsed charge power delivery circuit for a vehicle having a combined starter/alternator
JPWO2017154778A1 (en) Control device for hybrid vehicle
JP2000358305A (en) Power device for hybrid electric vehicle
CN112334374B (en) Drive control device and railway vehicle drive device
JP2000102177A (en) Battery charger for hybrid vehicle
JP3304606B2 (en) Dual-voltage output generator motor
JP3220924B2 (en) Electric vehicle power converter
JPH0956197A (en) Power converting apparatus for automobile
JP3444316B2 (en) Charging device
JPH08256405A (en) Battery charger