JP2001123664A - Preparation device for reinforcing bar machine specification - Google Patents

Preparation device for reinforcing bar machine specification

Info

Publication number
JP2001123664A
JP2001123664A JP30252399A JP30252399A JP2001123664A JP 2001123664 A JP2001123664 A JP 2001123664A JP 30252399 A JP30252399 A JP 30252399A JP 30252399 A JP30252399 A JP 30252399A JP 2001123664 A JP2001123664 A JP 2001123664A
Authority
JP
Japan
Prior art keywords
reinforcing bar
line segment
processing
rebar
dimensional coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30252399A
Other languages
Japanese (ja)
Other versions
JP3448528B2 (en
Inventor
Toru Nakajima
徹 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Architec KK
Original Assignee
Architec KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Architec KK filed Critical Architec KK
Priority to JP30252399A priority Critical patent/JP3448528B2/en
Publication of JP2001123664A publication Critical patent/JP2001123664A/en
Application granted granted Critical
Publication of JP3448528B2 publication Critical patent/JP3448528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a preparation device for a reinforcing bar machining specification capable of automatically deriving the machining specification of reinforcing bars used for a skeleton based on the layout data and bar arrangement list data of skeleton constituting elements registered in a computer system in advance. SOLUTION: The passing reference points 2 of the reinforcing bars 1 arranged in each skeleton constituting element are set on the three-dimensional coordinates based on the layout data and bar arrangement list data of the skeleton constituting element. The machining specification of each reinforcing bar is expressed by the length of the line segment 3 calculated from the three- dimensional coordinates of adjacent passing reference points 2, 2 and the relative angle between the base axis 4 selected from the line segment 3 included in the reinforcing bar 1 and another line segment 3. This preparation device for the reinforcing bar machining specification is provided with a machining specification preparation means 6 outputting the relative angle with the horizontal angle α and vertical angle β relative to a base plane 5 including the base axis 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄筋建造物を構築
する際に用いる鉄筋の切断・屈曲・伸長仕様を作成する
為の鉄筋加工仕様作成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rebar processing specification creating apparatus for creating rebar cutting / bending / extending specifications used when constructing a rebar building.

【0002】[0002]

【従来の技術】従来の鉄筋加工仕様は、各々一本の鉄筋
を対象として躯体に対する位置関係とは無関係に与えら
れていた。
2. Description of the Related Art Conventional steel bar processing specifications have been given for one steel bar irrespective of the positional relationship with respect to the skeleton.

【0003】[0003]

【発明が解決しようとする課題】その結果、予めコンピ
ュータシステムに躯体構成要素の配置データや配筋リス
トデータを保持しながらも、各躯体構成要素における鉄
筋の加工仕様を、手作業で一つ一つ拾い出さなければな
らないという煩雑さがあった。
As a result, the processing specifications of the reinforcing bars in each skeleton component are manually determined one by one while the arrangement data and the reinforcement list data of the skeleton components are held in the computer system in advance. There was the trouble of having to pick up one.

【0004】本発明は、上記実情に鑑みて成されたもの
であって、コンピュータシステムに予め登録された躯体
構成要素の配置データや配筋リストデータに基づき当該
躯体に用いられる鉄筋の加工仕様を自動的に導き出し得
る鉄筋加工仕様作成装置の提供を目的とする。
[0004] The present invention has been made in view of the above-mentioned circumstances, and based on the arrangement data and the reinforcing bar list data of skeleton components registered in advance in a computer system, a processing specification of a reinforcing bar used for the skeleton is specified. An object of the present invention is to provide a rebar processing specification creating device that can be automatically derived.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に成された本発明による鉄筋加工仕様作成装置は、各躯
体構成要素内に配設される鉄筋の通過基準点を、予め登
録した各躯体構成要素の配置データ及び配筋リストデー
タに基づく三次元座標を以て設定し、各鉄筋の加工仕様
を、隣接する通過基準点の三次元座標から算出される線
分の長さと、当該鉄筋が含む線分から選択した基軸と他
の線分との相対角度又は隣接する通過基準点間の差分座
標によって表したもので、前記線分の長さと相対角度に
よって表した場合にあっては、当該相対角度を前記基軸
を含んだ基面に対する水平角及び垂直角を以て出力する
加工仕様作成手段を具備したことを特徴とする。
According to the present invention, there is provided a rebar processing specification creating apparatus according to the present invention for solving the above-mentioned problems, in which a pre-registered reference point of a reinforcing bar disposed in each structural element is registered. Set with the three-dimensional coordinates based on the layout data and the reinforcing bar list data of the skeleton components, and include the processing specifications of each rebar, the length of the line segment calculated from the three-dimensional coordinates of the adjacent passing reference point, and the rebar. Represented by the relative angle between the base axis selected from the line segment and another line segment or the difference coordinates between adjacent passing reference points, and when represented by the length and relative angle of the line segment, the relative angle Is output as a horizontal angle and a vertical angle with respect to a base plane including the base axis.

【0006】前記鉄筋の通過基準点とは、例えば、各鉄
筋の端点や屈曲点など、当該鉄筋の位置及び形状を示す
際の指標となり得る部分を指す。配置データとは、躯体
構成要素の仕様及び配置座標並びに通芯に対する偏芯量
など、配置する部材及び場所を特定する為に必要なデー
タであり、配筋リストデータとは、躯体構成要素の仕様
に応じて設定された配筋状況を納めたデータである。こ
れらに基づく三次元座標とは、躯体が置かれる基準面
(例えば水平面)をX軸及びY軸を含む平面と設定し、
当該基準面と直交するZ軸を加えた三次元座標系で示さ
れた座標を、前記配置データが示す配置状況及び配筋リ
ストデータが示す配筋態様から算出した位置座標であ
る。
[0006] The passage reference point of the rebar refers to, for example, a portion that can serve as an index when indicating the position and shape of the rebar, such as an end point or a bending point of each rebar. The arrangement data is data required to specify the members and locations to be arranged, such as the specifications and arrangement coordinates of the skeleton components and the amount of eccentricity with respect to the grid, and the reinforcing bar list data is the specifications of the skeleton components This is data in which the bar arrangement status set according to is stored. With three-dimensional coordinates based on these, a reference plane (for example, a horizontal plane) on which a skeleton is placed is set as a plane including the X axis and the Y axis,
The coordinates indicated by the three-dimensional coordinate system obtained by adding the Z axis orthogonal to the reference plane are position coordinates calculated from the arrangement status indicated by the arrangement data and the arrangement state indicated by the arrangement list data.

【0007】又、加工仕様とは何mmの線分に続いて何
処方向へ何度で屈曲させるといった加工の仕方を少なく
とも数値的に示したものである。線分とは、前記隣接す
る通過基準点間において鉄筋が直線的である場合は、当
該直線部を指し、隣接する通過基準点間において鉄筋が
湾曲している場合は、当該湾曲部の両端点を結ぶ仮想直
線を指す。基面は、前記加工仕様を表す際に最も都合が
良いと選択された面である。具体的には、各鉄筋が含む
二つの線分と平行な平面を以て基面とするのが、折り曲
げ作業を少しでも省略できる点で効率的であるが、基面
を構成するものとして選択される線分によって加工時に
おける作業性も異なり、各鉄筋が含む線分のうちで最も
長い線分と2番目に長い線分を含む平面を以て基面とす
ることが便利な場合が多く、同様の見方からすれば、各
鉄筋が含む線分のうちで最も長い線分を基軸とするのが
便利な場合も多い。隣接する通過基準点間の差分座標と
は、前記隣接する通過基準点間の三次元座標の差分を絶
対値で示したものであり、この場合も、前記相対角度で
示す場合と同様の基準を持って三次元座標系の基面を設
定することが有効となる。
[0007] The processing specification indicates at least numerically a method of processing such as how many times a line segment is followed by bending in any direction. The line segment refers to the straight line portion when the reinforcing bar is linear between the adjacent passing reference points, and when the reinforcing bar is curved between the adjacent passing reference points, both ends of the curved portion. Refers to a virtual straight line connecting. The base surface is a surface selected as the most convenient when expressing the processing specifications. Specifically, it is efficient to use a plane parallel to the two line segments included in each reinforcing bar in that the bending operation can be omitted even a little, but it is selected as constituting the base surface. Workability at the time of machining differs depending on the line segment, and it is often convenient to use the plane containing the longest line segment and the second longest line segment among the line segments included in each reinforcing bar as the base surface. Therefore, it is often convenient to use the longest line segment among the line segments included in each reinforcing bar as a base axis. The difference coordinate between the adjacent passing reference points is a difference between the three-dimensional coordinates between the adjacent passing reference points indicated by an absolute value.In this case, the same reference as the case indicated by the relative angle is used. It is effective to hold and set the base plane of the three-dimensional coordinate system.

【0008】[0008]

【発明の実施の形態】以下、本発明による加工仕様作成
装置の実施の形態を図面に基づき説明する。本発明によ
る加工仕様作成装置7は、図1の如くいわゆるパーソナ
ルコンピュータ等と、当該パーソナルコンピュータ等へ
各種インターフェースを介して接続される入出力装置と
から構成された躯体積算関連システムの一部を担い、通
常は、通芯、平面図、階名・階高、並びに躯体構成要素
リスト及びそれらの各仕様をはじめとする躯体仕様を入
力する為の図面編集装置8や、躯体に用いた鉄筋、コン
クリート等の積算を行う為の躯体積算装置9などと共に
構築されるものである。前記パーソナルコンピュータ等
は、周知の如く、CPU、メモリー、及び記憶装置を備
えた一種のコンピュータシステムであり、内部記憶装置
にインストールされたプログラム、或いは外部記憶装置
に記録されたプログラムが起動することによって当該加
工仕様作成装置7の加工仕様作成手段6が起動すること
となる。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of a machining specification creating apparatus according to the present invention. The processing specification creating device 7 according to the present invention plays a part of a frame integration related system composed of a so-called personal computer as shown in FIG. 1 and an input / output device connected to the personal computer or the like via various interfaces. Normally, a drawing editing device 8 for inputting a grid, a floor plan, a floor name / height, a frame component list, and a frame specification including each of those specifications, a reinforcing bar used for the frame, concrete It is constructed together with the frame integration device 9 for performing the integration of the above. As is well known, the personal computer or the like is a kind of computer system including a CPU, a memory, and a storage device, and is activated by a program installed in an internal storage device or a program recorded in an external storage device. The processing specification creating means 6 of the processing specification creating device 7 is activated.

【0009】上記図面編集装置8によってパーソナルコ
ンピュータへ前記躯体仕様が既に入力されていることを
前提として、加工仕様作成手段6を起動すれば、先ず、
寸法決定手段10により各躯体構成要素の寸法が決定さ
れる。寸法の決定は、表1及び表2に記載の如く、連続
基礎、柱及び梁の断面寸法、並びに連続基礎、スラブ及
び壁の厚さにあっては、平面図を入力する際に、その仕
様が明示された設計図書の図面・数値内容を登録する入
力操作(数値入力やマウス操作等)によって自動設定さ
れた3次元座標(躯体が置かれる基準面(例えば水平
面)をX軸及びY軸を含む平面と設定し、当該基準面と
直交するZ軸を加えた三次元座標系で示された座標。以
下同じ。)から算出される。
Assuming that the frame specification has already been input to the personal computer by the drawing editing device 8, the processing specification creating means 6 is activated.
The dimensions of each skeleton component are determined by the dimension determining means 10. The dimensions are determined as shown in Tables 1 and 2 in terms of the cross-sectional dimensions of continuous foundations, columns and beams, and the thicknesses of continuous foundations, slabs and walls when entering a plan view. The three-dimensional coordinates (reference plane (for example, horizontal plane) on which the frame is placed) automatically set by input operation (numerical input, mouse operation, etc.) for registering drawings and numerical contents of The coordinate is expressed in a three-dimensional coordinate system obtained by adding a plane including the Z-axis perpendicular to the reference plane.

【0010】また、連続基礎、柱及び梁の軸方向の寸法
にあっては、当該躯体構成要素とその軸方向に存在する
躯体構成要素との境界、又は当該躯体構成要素の始点と
終点に基づいてその外縁が設定され、当該外縁を特定す
るに必要な3次元座標を算出し、それに躯体構成要素の
傾斜と湾曲を加味して算出される。更に、スラブや壁の
平面寸法にあっては、当該躯体構成要素の周囲に存在す
る躯体構成要素との境界、又は躯体構成要素の端辺に基
づいてその外縁が設定され、当該外縁を特定するに必要
な3次元座標を算出し、それに躯体構成要素の傾斜と湾
曲を加味して算出される。上記算出方法のいずれにあっ
ても、基本的に前記3次元座標で示されるポイント間の
直線距離或いは曲線距離を算出するという形で行われ、
後に、この様にして得られた寸法と予め設定された配筋
リストとを参照することにより、躯体構成要素の加工仕
様が導き出されることとなる。
[0010] The dimensions of the continuous foundation, columns and beams in the axial direction are based on the boundary between the skeleton component and the skeleton component existing in the axial direction, or the start point and end point of the skeleton component. The outer edge is set, and the three-dimensional coordinates required to specify the outer edge are calculated, and the three-dimensional coordinates are calculated in consideration of the inclination and curvature of the skeleton component. Furthermore, in the plane dimensions of the slab and the wall, the outer edge is set based on the boundary with the skeleton component existing around the skeleton component or the edge of the skeleton component, and the outer edge is specified. Is calculated in consideration of the inclination and curvature of the skeleton components. In any of the above calculation methods, it is basically performed in a form of calculating a linear distance or a curved distance between points indicated by the three-dimensional coordinates,
Later, by referring to the dimensions obtained in this way and the preset bar arrangement list, the processing specifications of the skeleton components will be derived.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】独立した躯体構成要素の加工仕様は、前記
寸法と予め設定された配筋リストデータのみから導き出
されるが、特別に、柱、梁、連続基礎、スラブ等の連続
して躯体の一部を形作る躯体構成要素にあっては、前記
寸法の決定の他、連続情報取得手段11の稼働により、
平面図に含まれる配置データからそれら躯体構成要素の
連続状態が導き出され、前記配筋リストデータを参照し
つつ加工仕様が導き出される(図3参照)。以下、上下
に連続する柱12の連続状態を導き出す際の例を図2に
基づき説明する。尚、便宜上図面では倒れた状態で表し
てある。
The processing specifications of the independent skeleton components are derived only from the dimensions and the pre-set reinforcing bar list data. In particular, a part of the skeleton such as a column, a beam, a continuous foundation, a slab, etc. In the skeleton component forming the shape, in addition to the determination of the dimensions, by the operation of the continuous information acquisition means 11,
The continuous state of the skeleton components is derived from the layout data included in the plan view, and the processing specifications are derived with reference to the reinforcing bar list data (see FIG. 3). Hereinafter, an example of deriving the continuous state of the vertically continuous columns 12 will be described with reference to FIG. In addition, for convenience, it is represented in a state of being inclined in the drawings.

【0014】連続情報取得手段11は、躯体仕様を参照
して、図2(イ)の如く順次選択された柱12の芯線P
が向かう方向に断面13が一部でも重なる柱12を検出
し、前記躯体構成要素リストに含まれる配筋リストデー
タに則って、上下に連続する柱12の内部に配設される
べき鉄筋1を順次連結する(図2(ロ)参照)。特にこ
の例では、柱12を配置する際、その柱12の断面13
を配置するという形で行われるので、連続する柱群の始
端断面13aから終端断面13bに至るまで配置された
柱12の断面13を順次検出していくと言う形で行われ
る。
The continuity information acquiring means 11 refers to the skeleton specification, and as shown in FIG.
Column 12 whose cross section 13 is at least partially overlapped in the direction toward which the reinforcing bar 1 is to be disposed inside the vertically continuous column 12 in accordance with the reinforcing bar list data included in the skeleton component list. They are sequentially connected (see FIG. 2B). In particular, in this example, when arranging the pillar 12,
Are arranged, so that the sections 13 of the columns 12 arranged from the start section 13a to the end section 13b of the continuous column group are sequentially detected.

【0015】この処理は、連結されるべき鉄筋1を内包
する柱12を全て検出するまで行われるが、連結される
べき鉄筋1を内包する柱12がまだ存在するにも関わら
ず途中で当該柱12の芯線Pの方向で続く柱12の断面
13を検出できなくなった場合、即ち、前の柱12の芯
線Pの向かう方向が次の柱12にて変化した場合は、変
化の始点となる断面に続く部分の芯線P、例えば、当該
柱12の上端と下端、上端と中間点、又は下端と中間点
との断面の中心の3次元座標を結ぶ芯線Pが新たな芯線
Pとなり、各芯線Pに対して平行に配設される鉄筋1の
連結点が当該柱12の内部に配設される鉄筋1の通過基
準点2となる。
This processing is performed until all the columns 12 including the reinforcing bar 1 to be connected are detected. When the cross section 13 of the pillar 12 that continues in the direction of the core line P of 12 cannot be detected, that is, when the direction of the core line P of the previous pillar 12 changes in the next column 12, the cross section serving as the starting point of the change , For example, a core line P connecting the three-dimensional coordinates of the center of the cross section between the upper end and the lower end, the upper end and the intermediate point, or the lower end and the intermediate point of the column 12 becomes a new core line P. The connection point of the reinforcing bar 1 arranged in parallel with the column becomes the passage reference point 2 of the reinforcing bar 1 disposed inside the column 12.

【0016】次に、座標変換手段14を起動し、各鉄筋
1の通過基準点2の3次元座標を、鉄筋1の線分3を2
つ以上含んだ基面5に対する相対座標に変換する。以
下、図4の如く3次元座標系へ図2に示す柱の鉄筋の中
から一本の鉄筋1aを抜粋し、具体的な変換手順の一例
を示す。
Next, the coordinate conversion means 14 is activated, and the three-dimensional coordinates of the passage reference point 2 of each reinforcing bar 1 are calculated by dividing the line segment 3 of the reinforcing bar 1 by two.
The coordinates are converted into relative coordinates with respect to the base plane 5 including one or more. Hereinafter, one rebar 1a is extracted from the column rebar shown in FIG. 2 into a three-dimensional coordinate system as shown in FIG. 4, and an example of a specific conversion procedure is shown.

【0017】1) 前記通過基準点2を結ぶ線分3のう
ち最も長い線分(この例ではこれを基軸4とする。)3
を鉄筋1aから検出する。 2) 前記基軸4が当該3次元座標系のX軸と平行とな
るように複数の線分3が連結して成る対象鉄筋1a全体
を移動させ、対象鉄筋1bとして各通過基準点2の座標
を更新する。 3) 前記通過基準点2を結ぶ線分3のうち2番目に長
い線分3aを検出する。 4) 2番目に長い線分3aが当該3次元座標系のXY
平面に対して平行となるようにそのX軸と平行な軸を中
心に前記鉄筋全体を回転させ、対象鉄筋1cとして各通
過基準点2の座標を更新する(この例では、ここで更新
された座標を相対座標とし、前記基軸4、即ち最も長い
線分3と2番目に長い線分3aとで定まる面を基面5と
する。)。
1) The longest line segment 3 among the line segments 3 connecting the passage reference points 2 (this axis is defined as a base axis 4) 3
Is detected from the reinforcing bar 1a. 2) The entire target rebar 1a formed by connecting a plurality of line segments 3 is moved so that the base axis 4 is parallel to the X axis of the three-dimensional coordinate system, and the coordinates of each passage reference point 2 are set as the target rebar 1b. Update. 3) The second longest line segment 3a among the line segments 3 connecting the passage reference points 2 is detected. 4) The second longest line segment 3a is the XY of the three-dimensional coordinate system.
The entire rebar is rotated about an axis parallel to the X axis so as to be parallel to the plane, and the coordinates of each passage reference point 2 are updated as the target rebar 1c (in this example, the coordinates are updated here. The coordinates are relative coordinates, and the base axis 4, that is, the plane defined by the longest line segment 3 and the second longest line segment 3a is referred to as a base plane 5.)

【0018】続いて、角度算出手段15は、この様に変
換されて成る相対座標を用いて、基軸4以外の各線分3
について前記基軸4と他の線分3との相対角度を、前記
基軸4を含んだ基面5に対する水平角α及び垂直角βと
いう形で算出する。算出結果は、仕様出力手段16の起
動により適宜設けられた出力装置へ、例えば、対象鉄筋
1c全体を、図4(ロ)の如くX−Y平面、X−Z平
面、場合によってはY−Z平面へ投影した2次元の図面
を以て表示し、それぞれの図面において各線分3にかか
る水平角α及び垂直角β並びに長さを表記しておけば良
い。尚、上記表示方法を挙げたことによって、必要に応
じて基軸4以外の線分3との相対角度で示すことを妨げ
るものではなく、場合によっては、図7の二点鎖線円内
に示す如く隣接する通過基準点2,2で定まる線分3の
長さと、隣接する通過基準点2,2間の差分座標によっ
て表す場合もある。
Subsequently, the angle calculation means 15 uses the relative coordinates converted in this way to calculate each line segment 3 other than the base axis 4.
, The relative angle between the base axis 4 and the other line segment 3 is calculated in the form of a horizontal angle α and a vertical angle β with respect to the base surface 5 including the base axis 4. The calculation result is output to an output device appropriately provided by the activation of the specification output unit 16 by, for example, transferring the entire target reinforcing bar 1c to the XY plane, the XZ plane, or the YZ plane as shown in FIG. A two-dimensional drawing projected on a plane may be displayed, and the horizontal angle α and the vertical angle β and the length of each line segment 3 may be described in each drawing. Note that the above display method does not prevent the relative angle with the line segment 3 other than the base axis 4 as necessary, and in some cases, as shown in the two-dot chain line circle in FIG. In some cases, the distance may be represented by the length of a line segment 3 defined by the adjacent passage reference points 2 and 2 and the difference coordinates between the adjacent passage reference points 2 and 2.

【0019】図7の例では、鉄筋の一端からZ軸に沿っ
て550mmの線分3を取り、その終端である通過基準
点2から、Y軸方向(紙面裏方向、以下同じ)へ56m
m、Z軸方向(紙面上方向、以下同じ)へ674mm、
X軸方向(紙面右方向、以下同じ)へ3370mm離れ
た点を指す方向へ屈曲させ、長さ:3440mmの線分
3を取り、更に、当該線分3の終端である通過基準点2
からY軸方向へ57mm、Z軸方向へ689mm、X軸
方向へ2870mm離れた点を指す方向へ屈曲させ、長
さ:2955mmの線分3を取り、最後に、Z軸に沿っ
て695mmの線分3を取るといった加工を行う旨が表
示されている。即ち、この例では、当該鉄筋の始端部と
終端部にあたる550mmの線分3と695mmの線分
3とで、X軸とZ軸による基面17を構成しているもの
である。
In the example of FIG. 7, a line segment 3 of 550 mm is taken from one end of the reinforcing bar along the Z-axis, and 56 m from the end of the passage reference point 2 in the Y-axis direction (the back side of the paper, the same applies hereinafter).
m, 674 mm in the Z-axis direction (upward on the paper, the same applies hereinafter),
It is bent in the X-axis direction (rightward on the paper, the same applies hereinafter) in a direction indicating a point separated by 3370 mm, a line segment 3 having a length of 3440 mm is taken, and further, a passage reference point 2 which is an end of the line segment 3
Is bent in a direction pointing to a point at a distance of 57 mm in the Y-axis direction, 689 mm in the Z-axis direction, and 2870 mm in the X-axis direction. It is displayed that processing such as taking three minutes is performed. That is, in this example, the base line 17 by the X axis and the Z axis is constituted by the line segment 3 of 550 mm and the line segment 3 of 695 mm corresponding to the start end and the end of the reinforcing bar.

【0020】尚、この様な加工仕様作成処理は、図5乃
至図6に示す曲線的な柱を含む処理にも適用出来、その
際も、各鉄筋の加工仕様を、隣接する通過基準点2,2
で定まる線分3の長さと、当該鉄筋1が含む線分3から
選択した基軸4と他の線分3との相対角度又は隣接する
通過基準点2,2間の差分座標により、当該湾曲部18
の曲がり量をも含めて充分明確に示すことができるもの
である。
The processing specification creation processing as described above can also be applied to the processing including a curved column shown in FIGS. 5 and 6, and in this case, the processing specification of each rebar is also changed to the adjacent passage reference point 2. , 2
Is determined by the length of the line segment 3 determined by the following formula and the relative angle between the base axis 4 selected from the line segment 3 included in the reinforcing bar 1 and another line segment 3 or the difference coordinates between the adjacent passage reference points 2 and 2. 18
Can be sufficiently clearly shown including the amount of bending.

【0021】[0021]

【発明の効果】以上の如く、本発明による加工仕様作成
装置を使用すれば、単数の躯体構成要素に内包される鉄
筋の加工仕様は言うに及ばず、複数の躯体構成要素に亘
って連続して内包される鉄筋の加工仕様も、予めコンピ
ュータシステムに入力されている躯体構成要素の配置デ
ータや配筋リストデータを利用して速やかに作成するこ
とができ、従来、各躯体構成要素における鉄筋の加工仕
様を、手作業で一つ一つ拾い出していた煩雑さを解消す
ることができる。
As described above, if the processing specification creating apparatus according to the present invention is used, not only the processing specifications of the reinforcing bars included in a single skeleton component, but also the continuous configuration over a plurality of skeleton components. The processing specifications of the reinforcing bars included in the system can be quickly created using the arrangement data of the building components and the list of reinforcing bars input to the computer system in advance. The complexity of manually picking up the processing specifications one by one can be eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による加工仕様作成装置の躯体積算関連
システムにおける位置づけを示すブロック図である。
FIG. 1 is a block diagram showing a position of a processing specification creating apparatus according to the present invention in a skeleton integration-related system.

【図2】(イ)(ロ) 連続した躯体構成要素の一例たる柱群の連続状況の一例
を示す概略図である。
FIGS. 2A and 2B are schematic diagrams showing an example of a continuous state of a column group as an example of a continuous skeleton component.

【図3】本発明による加工仕様作成装置の加工仕様作成
手段の一例を示すブロック図である。
FIG. 3 is a block diagram illustrating an example of a processing specification creating unit of the processing specification creating device according to the present invention.

【図4】(イ)(ロ) 本発明による加工仕様作成装置の座標変換手段の処理態
様の一例を示す説明図と、加工仕様の一態様であるとこ
ろの2次元投影図の一例を示す説明図である。
FIGS. 4A and 4B are an explanatory diagram illustrating an example of a processing mode of a coordinate conversion unit of the processing specification creating device according to the present invention, and a description illustrating an example of a two-dimensional projection view as an aspect of the processing specification. FIG.

【図5】(イ)(ロ) 連続した躯体構成要素の一例たる柱群の連続状況の一例
を示す概略図である。
FIGS. 5A and 5B are schematic diagrams showing an example of a continuous state of a column group as an example of a continuous skeleton component.

【図6】(イ)(ロ) 本発明による加工仕様作成装置の座標変換手段の処理態
様の一例を示す説明図と、加工仕様の一態様であるとこ
ろの2次元投影図の一例を示す説明図である。
FIGS. 6A and 6B are an explanatory diagram illustrating an example of a processing mode of a coordinate conversion unit of the processing specification creating device according to the present invention, and a description illustrating an example of a two-dimensional projection view as an embodiment of the processing specification. FIG.

【図7】本発明による加工仕様作成装置で出力される加
工仕様の一例を示す要部説明図である。
FIG. 7 is an explanatory diagram of a main part showing an example of a processing specification output by the processing specification creating device according to the present invention.

【符号の説明】 1 鉄筋 2 通過基準点 3 線分 4 基軸 5 基面 6 加工仕様作成手段 17 基面 α 水平角,β 垂直角[Description of Signs] 1 Reinforcing bar 2 Passing reference point 3 Line segment 4 Base axis 5 Base plane 6 Processing specification creation means 17 Base plane α Horizontal angle, β Vertical angle

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 各躯体構成要素内に配設される鉄筋
(1)の通過基準点(2)を、予め登録した各躯体構成
要素の配置データ及び配筋リストデータに基づく三次元
座標を以て設定し、各鉄筋の加工仕様を、隣接する通過
基準点(2,2)の三次元座標から算出される線分
(3)の長さと、当該鉄筋(1)が含む線分(3)から
選択した基軸(4)と他の線分(3)との相対角度によ
って表し、当該相対角度を前記基軸(4)を含んだ基面
(5)に対する水平角(α)及び垂直角(β)を以て出
力する加工仕様作成手段(6)を具備した鉄筋加工仕様
作成装置。
1. A pass reference point (2) of a reinforcing bar (1) disposed in each structural element is set using three-dimensional coordinates based on arrangement data of each structural element registered in advance and reinforcing arrangement list data. Then, the processing specification of each reinforcing bar is selected from the length of the line segment (3) calculated from the three-dimensional coordinates of the adjacent passage reference point (2, 2) and the line segment (3) included in the reinforcing bar (1). The relative angle between the base axis (4) described above and another line segment (3) is expressed by a horizontal angle (α) and a vertical angle (β) with respect to the base plane (5) including the base axis (4). A rebar processing specification creating device comprising a processing specification creating means (6) for outputting.
【請求項2】 各鉄筋(1)が含む二つの線分(3,
3)と平行な平面を以て相対角度の基準たる基面(5)
とする加工仕様作成手段(6)を具備する前記請求項1
に記載の鉄筋加工仕様作成装置。
2. The two line segments (3, 3) included in each reinforcing bar (1).
Base plane (5) which is a reference of relative angle with a plane parallel to 3)
2. The method according to claim 1, further comprising a processing specification creating means (6).
The rebar processing specification creation device described in 1.
【請求項3】 各鉄筋(1)が含む線分(3)のうちで
最も長い線分(3)と2番目に長い線分(3)を含む平
面を以て相対角度の基準たる基面(5)とする加工仕様
作成手段(6)を具備する前記請求項1又は請求項2の
いずれかに記載の鉄筋加工仕様作成装置。
3. A base plane (5) serving as a reference for relative angles with a plane including the longest line segment (3) and the second longest line segment (3) among the line segments (3) included in each reinforcing bar (1). 3. The rebar machining specification creating device according to claim 1, further comprising a machining specification creating means (6).
【請求項4】 各鉄筋(1)が含む線分(3)のうちで
最も長い線分(3)を相対角度の基準たる基軸(4)と
する加工仕様作成手段(6)を具備する前記請求項1〜
請求項3のいずれかに記載の鉄筋加工仕様作成装置。
4. A machining specification creating means (6), wherein a longest line segment (3) of the line segments (3) included in each reinforcing bar (1) is used as a base axis (4) as a reference of a relative angle. Claim 1
The rebar processing specification creating device according to claim 3.
【請求項5】 各躯体構成要素内に配設される鉄筋
(1)の通過基準点(2)を、予め登録した各躯体構成
要素の配置データ及び配筋リストデータに基づく三次元
座標を以て設定し、各鉄筋の加工仕様を、隣接する通過
基準点(2,2)の三次元座標から算出される線分
(3)の長さと、隣接する通過基準点(2,2)間の差
分座標を以て出力する加工仕様作成手段(6)を具備し
た鉄筋加工仕様作成装置。
5. A passage reference point (2) of a reinforcing bar (1) disposed in each skeleton component is set using three-dimensional coordinates based on arrangement data of each skeleton component registered in advance and bar arrangement list data. Then, the processing specifications of each reinforcing bar are defined by the length of a line segment (3) calculated from the three-dimensional coordinates of the adjacent passage reference points (2, 2) and the difference coordinates between the adjacent passage reference points (2, 2). A processing specification creating device, comprising: a processing specification creating means (6) for outputting the processing specifications.
【請求項6】 各鉄筋(1)が含む二つの線分(3,
3)と平行な平面を以て前記三次元座標の座標系基準た
る基面(17)とした加工仕様作成手段(6)を具備す
る前記請求項5に記載の鉄筋加工仕様作成装置。
6. Two line segments (3, 3) included in each reinforcing bar (1).
The rebar machining specification creating device according to claim 5, further comprising machining specification creating means (6) that uses a plane parallel to (3) as a base surface (17) as a coordinate system reference for the three-dimensional coordinates.
【請求項7】 各鉄筋(1)が含む線分(3)のうちで
最も長い線分(3)と2番目に長い線分(3)を含む平
面を以て前記三次元座標の座標系基準たる基面(17)
とした加工仕様作成手段(6)を具備する前記請求項5
又は請求項6のいずれかに記載の鉄筋加工仕様作成装
置。
7. A coordinate system reference for the three-dimensional coordinates using a plane including the longest line segment (3) and the second longest line segment (3) among the line segments (3) included in each reinforcing bar (1). Base (17)
6. The method according to claim 5, further comprising:
Or the rebar processing specification creation device according to any one of claims 6 to 7.
JP30252399A 1999-10-25 1999-10-25 Rebar processing specification creation device Expired - Fee Related JP3448528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30252399A JP3448528B2 (en) 1999-10-25 1999-10-25 Rebar processing specification creation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30252399A JP3448528B2 (en) 1999-10-25 1999-10-25 Rebar processing specification creation device

Publications (2)

Publication Number Publication Date
JP2001123664A true JP2001123664A (en) 2001-05-08
JP3448528B2 JP3448528B2 (en) 2003-09-22

Family

ID=17909998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30252399A Expired - Fee Related JP3448528B2 (en) 1999-10-25 1999-10-25 Rebar processing specification creation device

Country Status (1)

Country Link
JP (1) JP3448528B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001331548A (en) * 2000-05-24 2001-11-30 Aakitekku:Kk Preparing device for reinforcing bar working book
JP2016091340A (en) * 2014-11-06 2016-05-23 株式会社ア−キテック Cross-section display system and cross-section display program
CN111889962A (en) * 2020-06-24 2020-11-06 上海市建筑装饰工程集团有限公司 Assembling construction method for large-area multi-curve complex artistic facing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001331548A (en) * 2000-05-24 2001-11-30 Aakitekku:Kk Preparing device for reinforcing bar working book
JP4545883B2 (en) * 2000-05-24 2010-09-15 株式会社ア−キテック Rebar processing book creation device
JP2016091340A (en) * 2014-11-06 2016-05-23 株式会社ア−キテック Cross-section display system and cross-section display program
CN111889962A (en) * 2020-06-24 2020-11-06 上海市建筑装饰工程集团有限公司 Assembling construction method for large-area multi-curve complex artistic facing

Also Published As

Publication number Publication date
JP3448528B2 (en) 2003-09-22

Similar Documents

Publication Publication Date Title
JP6493722B2 (en) 3D graphic generation system and 3D graphic generation method
CN111859494A (en) Building model creating method and device and intelligent terminal
JP3616382B2 (en) Rebar processing specification calculation device
JP2001123664A (en) Preparation device for reinforcing bar machine specification
JP5386237B2 (en) Material information management system
CN111597603A (en) Method and device for intelligently arranging steel bars, storage medium and electronic equipment
JP3067099B2 (en) Bar arrangement design support apparatus and method
JP2008158793A (en) Information generation device for structural analysis for building, information generation method for structural analysis, and information generation program for structural analysis
JP6127331B2 (en) Reinforcement verification support device and program thereof
JP3350500B2 (en) Rebar processing table creation device
JP4648547B2 (en) CAD system for unit building
JP2942457B2 (en) Structural integration system
JP7342642B2 (en) Design support equipment and design support program
JPH11120221A (en) System for sharing object model and recording medium storing program used for realizing the system
JP7384339B1 (en) Allocation program and allocation system
JPH08263541A (en) Three-dimensional model generation system
JP3174871U (en) Surveying information processing equipment
JP2001014364A (en) Drawing editor
JP3001297B2 (en) Drawing equipment for PC parts
JP3001295B2 (en) Drawing equipment for PC parts
JP3848717B2 (en) 3D model generation system
JP3616383B2 (en) Rebar processing table creation device
JP6876523B2 (en) Building construction management support system, building construction management support method, and building construction management support program
JP3087517B2 (en) Instructions for creating fillet surface
JP2008276591A (en) Building information processing system and building information processing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3448528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140704

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees