JP2001118599A - Secondary cell of nonaqueous electroyte solution - Google Patents

Secondary cell of nonaqueous electroyte solution

Info

Publication number
JP2001118599A
JP2001118599A JP29859799A JP29859799A JP2001118599A JP 2001118599 A JP2001118599 A JP 2001118599A JP 29859799 A JP29859799 A JP 29859799A JP 29859799 A JP29859799 A JP 29859799A JP 2001118599 A JP2001118599 A JP 2001118599A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
weight
battery
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29859799A
Other languages
Japanese (ja)
Other versions
JP4505897B2 (en
Inventor
Takeshi Osawa
剛 大澤
Takeshi Matsubara
猛 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP29859799A priority Critical patent/JP4505897B2/en
Publication of JP2001118599A publication Critical patent/JP2001118599A/en
Application granted granted Critical
Publication of JP4505897B2 publication Critical patent/JP4505897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide prolonged of service life of a secondary cell of nonaqueous electrolyte solution. SOLUTION: In a secondary cell 1 of nonaqueous electrolyte solution is constituted by dissolving electrolyte salt in nonaqueous solvent comprising a positive pole 2 consisted of combination, including lithium and negative pole 3 consisted of a carbon material that can dope or de-dope lithium, and alcohol is added as an added agent agent to the nonaqueous electrolyte solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年、地球環境汚染および地球温暖化の
問題について、世界各国で関心が高まってきている。こ
のような問題に対して大きな効果を発揮すると考えられ
ている高性能電気自動車や駆動源としてガソリンによる
エンジンと電気によるモータとを適宜切り換えて走行す
る、いわゆるハイブリッド自動車の普及がその対策の一
つとして要請されている。かかる要請に伴い、これらの
駆動源となるモータに使用する高性能二次電池の開発が
進められている。
2. Description of the Related Art In recent years, interest in global environmental pollution and global warming has been increasing around the world. One of the countermeasures is the widespread use of high-performance electric vehicles, which are thought to exert a significant effect on such problems, and the spread of so-called hybrid vehicles, which run as appropriate by switching between a gasoline-powered engine and an electric-powered motor as a drive source. Has been requested. In response to such demands, the development of high-performance secondary batteries used for motors serving as these driving sources has been promoted.

【0003】上述した二次電池としては、リチウム含有
化合物を正極に用い、リチウムをドープしかつ脱ドープ
することが可能な負極材料を負極に用いられてなる非水
電解液二次電池が挙げられる。これは、軽量かつ高容量
であるため、携帯電話やノート型パーソナルコンピュー
タ等の携帯用電子機器の駆動用電源として実用化され、
普及している。このため、高性能電気自動車やハイブリ
ッド自動車の駆動用電源としてもその実用化が期待され
ている。
The above-mentioned secondary battery includes a non-aqueous electrolyte secondary battery in which a lithium-containing compound is used for a positive electrode and a negative electrode material capable of doping and undoping lithium is used for a negative electrode. . Because of its light weight and high capacity, it has been put to practical use as a power supply for driving portable electronic devices such as mobile phones and notebook personal computers.
Widespread. Therefore, it is expected to be put to practical use as a drive power source for high-performance electric vehicles and hybrid vehicles.

【0004】電気自動車やハイブリッド自動車の駆動用
電源として用いられる二次電池には、軽量でしかも高容
量であること、さらに耐久性が高く長寿命であることが
要求される。また、自動車の駆動には駆動源たるモータ
に非常に大きい電流を供給する必要があるため、その電
源として用いられる二次電池は大電流での放電が可能な
こと、すなわち高出力であることが求められる。
A secondary battery used as a power source for driving an electric vehicle or a hybrid vehicle is required to be lightweight, have a high capacity, and have high durability and a long life. Also, driving a car requires supplying a very large current to the motor as a drive source, so the secondary battery used as the power source must be capable of discharging a large current, that is, it must have a high output. Desired.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
非水電解液二次電池は、長時間にわたって使用すると、
徐々に内部抵抗が上昇するため、その出力が次第に低下
するという問題がある。このような非水電解液二次電池
の出力の低下は、携帯用電子機器の駆動電源として用い
る場合には、実用上大きな支障とはならないが、電気自
動車やハイブリッド自動車等の高出力が求められる用途
において駆動用電源として用いる場合にはモータに必要
な電流を供給し得なくなるという重大な問題がある。こ
のため、非水電解液二次電池に対しては、電気自動車や
ハイブリッド自動車の駆動用電源として用いる場合、高
出力を維持しつつ長時間にわたって使用可能とするため
に、内部抵抗の上昇を抑えることが必要となる。
However, when the conventional non-aqueous electrolyte secondary battery is used for a long time,
Since the internal resistance gradually increases, there is a problem that the output gradually decreases. Such a decrease in the output of the non-aqueous electrolyte secondary battery does not pose a significant problem in practical use when used as a drive power source for portable electronic devices, but high output is required for electric vehicles and hybrid vehicles. When used as a drive power supply in applications, there is a serious problem that a necessary current cannot be supplied to the motor. Therefore, when a non-aqueous electrolyte secondary battery is used as a power source for driving an electric vehicle or a hybrid vehicle, the internal resistance is suppressed from rising in order to maintain a high output and to be usable for a long time. It is necessary.

【0006】そこで、本発明は、長時間にわたって使用
した場合に生じる内部抵抗の上昇を抑制した非水電解液
二次電池を提供することを目的とするものである。
Accordingly, an object of the present invention is to provide a non-aqueous electrolyte secondary battery that suppresses an increase in internal resistance that occurs when the battery is used for a long time.

【0007】[0007]

【課題を解決するための手段】本発明の非水電解液二次
電池は、リチウム含有化合物よりなる正極と、リチウム
をドープかつ脱ドープすることが可能な炭素材料より成
る負極とを有するもので、非水溶媒に電解質塩が溶解さ
れてなる非水電解液を有してなり、非水電解液には、多
価アルコールが添加剤として含有させるものとする。
A non-aqueous electrolyte secondary battery according to the present invention has a positive electrode made of a lithium-containing compound and a negative electrode made of a carbon material capable of doping and undoping lithium. And a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent. The non-aqueous electrolyte contains a polyhydric alcohol as an additive.

【0008】本発明の非水電解液二次電池によれば、非
水電解液に多価アルコールを添加剤として含有させるこ
とにより、負極電極の表面層にLiアルコラートのごと
くの化合物が形成され、これにより炭酸リチウムの形成
を抑制し、長時間にわたって使用した場合に生じる内部
抵抗の上昇が抑制される。
According to the non-aqueous electrolyte secondary battery of the present invention, a compound such as Li alcoholate is formed on the surface layer of the negative electrode by adding a polyhydric alcohol as an additive to the non-aqueous electrolyte. This suppresses the formation of lithium carbonate and suppresses an increase in internal resistance that occurs when used for a long time.

【0009】[0009]

【発明の実施の形態】以下、本発明に係る非水電解液二
次電池について、その一例を示し説明するが本発明は、
以下に示す例に限定されるものではない。すなわち、本
発明の非水電解液二次電池は、以下に説明するような円
筒形状を呈する電池に限定されるものではなく、他の形
状、例えば角型、コイン型、ボタン型等を呈する電池で
あってもよい。また、本発明の非水電解液二次電池にお
いては、例えば過充電等の異常時に電池の内圧上昇に応
じて電池内で電流を遮断する電流遮断機構を設けて安全
性の向上を図る構造とするものであってもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a non-aqueous electrolyte secondary battery according to the present invention will be described with reference to an example.
It is not limited to the examples shown below. That is, the non-aqueous electrolyte secondary battery of the present invention is not limited to a battery having a cylindrical shape as described below, but a battery having another shape, for example, a square shape, a coin shape, a button shape, or the like. It may be. Further, the non-aqueous electrolyte secondary battery of the present invention has a structure for improving safety by providing a current interrupting mechanism for interrupting current in the battery in response to an increase in internal pressure of the battery when an abnormality such as overcharge occurs. May be used.

【0010】図1に、本発明の非水電解液二次電池1の
一例の概略斜視図を示す。図1に示すように、非水電解
液二次電池1は、正極活物質を含有する正極塗料が塗布
されてなる正極2と、負極活物質を含有する負極塗料が
塗布されてなる負極3と、これら正極2と、負極3との
間に介在されるセパレータ4とが積層され、かつ渦巻状
に巻回された状態で、非水電解液とともに円筒状の金属
製電池缶5内に収納され、この電池缶5の開口部に金属
製の蓋体6をかしめ付けて密閉されて構成される。
FIG. 1 is a schematic perspective view of an example of the non-aqueous electrolyte secondary battery 1 of the present invention. As shown in FIG. 1, a nonaqueous electrolyte secondary battery 1 includes a positive electrode 2 coated with a positive electrode paint containing a positive electrode active material, and a negative electrode 3 coated with a negative electrode paint containing a negative electrode active material. The separator 4 interposed between the positive electrode 2 and the negative electrode 3 is stacked and spirally wound and stored in a cylindrical metal battery can 5 together with the non-aqueous electrolyte. The battery can 5 is sealed by caulking a metal lid 6 to the opening.

【0011】図1に示す非水電解液二次電池1において
は、正極2および負極3は正極リード7および負極リー
ド8によってそれぞれ電池缶5または蓋体6に接続さ
れ、これら電池缶5または蓋体6と正極リード7または
負極リード8とを介して外部から導通される。
In the non-aqueous electrolyte secondary battery 1 shown in FIG. 1, the positive electrode 2 and the negative electrode 3 are connected to a battery can 5 or a lid 6 by a positive electrode lead 7 and a negative electrode lead 8, respectively. Conduction is conducted from outside through the body 6 and the positive electrode lead 7 or the negative electrode lead 8.

【0012】非水電解液二次電池1においては、正極2
に使用する正極活物質として、リイチウム含有化合物が
用いられる。リチウム含有化合物としては、Lix MO
2 (式中Mは1種類以上の遷移金属を表し、xは、0.
05≦x≦1.10である。)で表されるリチウム遷移
金属複合酸化物が挙げられ、なかでもLiCoO2 、L
iNiO2 、LiMn2 4 等が好ましい。このような
リチウム遷移金属複合酸化物は、例えばリチウム、コバ
ルト、ニッケル、マンガンの炭素塩、硝酸塩、酸化物、
水酸化物等を出発原料とし、これらを組成に応じた量で
混合し、600℃〜1000℃の温度範囲で焼成するこ
とにより得られる。
In the non-aqueous electrolyte secondary battery 1, the positive electrode 2
Lithium-containing compounds are used as the positive electrode active material used in the above. As the lithium-containing compound, Li x MO
2 (where M represents one or more transition metals, and x represents 0.
05 ≦ x ≦ 1.10. )), Among which LiCoO 2 , L
iNiO 2 and LiMn 2 O 4 are preferred. Such lithium transition metal composite oxides, for example, lithium, cobalt, nickel, manganese carbon salts, nitrates, oxides,
A hydroxide or the like is used as a starting material, these are mixed in an amount according to the composition, and the mixture is fired in a temperature range of 600 ° C to 1000 ° C.

【0013】負極3に使用する負極活物質としては、炭
素材料が用いられる。炭素材料としては、リチウムをド
ープし、かつ脱ドープすることが可能なものであればよ
く、。2000℃以下の比較的低い温度で焼成して得ら
れる低結晶炭素材料や、結晶化しやすい原料を3000
℃近くの高温で処理した人造黒鉛等の高結晶性炭素材料
が用いられる。また、炭素材料としては、上述したもの
の他に、例えば熱分解炭素類、コークス類、黒鉛類、ガ
ラス状炭素類、有機高分子化合物焼成体(フラン樹脂等
を適当な温度で焼成し炭素化したもの)、炭素繊維、活
性炭等を使用する。
As the negative electrode active material used for the negative electrode 3, a carbon material is used. Any carbon material may be used as long as it is capable of doping and undoping lithium. A low-crystalline carbon material obtained by firing at a relatively low temperature of 2000 ° C. or less,
A highly crystalline carbon material such as artificial graphite that has been treated at a high temperature close to ℃ is used. As the carbon material, in addition to those described above, for example, pyrolytic carbons, cokes, graphites, glassy carbons, and organic polymer compound fired bodies (furan resins and the like are fired and carbonized at an appropriate temperature). ), Carbon fiber, activated carbon, etc.

【0014】非水電解液は、有機溶媒と、この有機溶媒
に溶解した電解質と、多価アルコールを添加剤として加
えて調整されてなる。
The non-aqueous electrolyte is prepared by adding an organic solvent, an electrolyte dissolved in the organic solvent, and a polyhydric alcohol as additives.

【0015】有機溶媒としては、特に限定されるもので
はないが、例えばエチレンカーボネートやプロピレンカ
ーボネート等の環状カーボネート、ジメチルカーボネー
トやジエチルカーボネート等の鎖状カーボネート、γ−
ブチロラクトンやγ−バレロラクトン等の環状エステ
ル、酢酸エチルやプロピオン酸メチル等の鎖状エステ
ル、テトラヒドロフランや、1,2−ジメトキシエタン
等のエーテル等を挙げることができる。上述した有機溶
媒は、1種を単独で使用しても、また2種以上を混合し
て使用してもよい。
The organic solvent is not particularly restricted but includes, for example, cyclic carbonates such as ethylene carbonate and propylene carbonate; chain carbonates such as dimethyl carbonate and diethyl carbonate;
Examples thereof include cyclic esters such as butyrolactone and γ-valerolactone, chain esters such as ethyl acetate and methyl propionate, and ethers such as tetrahydrofuran and 1,2-dimethoxyethane. One of the above organic solvents may be used alone, or two or more of them may be used as a mixture.

【0016】上述した有機溶媒に溶解される電解質とし
ては、溶媒に溶解し、かつイオン導電性を示すリチウム
塩であれば、特に限定されるものではなく、例えばLi
PF 6 、LiBF4 、LiClO4 、LiCF3
4 、LiN(CF3 SO2 2、LiC(CF3 SO
2 3 等を挙げることができる。上述した電解質は、1
種を単独で使用しても、また2種以上を混合して使用し
てもよい。
The electrolyte dissolved in the above-mentioned organic solvent is
Lithium dissolved in a solvent and exhibiting ionic conductivity
The salt is not particularly limited as long as it is, for example, Li
PF 6, LiBFFour, LiClOFour, LiCFThreeS
OFour, LiN (CFThreeSOTwo)Two, LiC (CFThreeSO
Two)ThreeAnd the like. The above-mentioned electrolyte is 1
The seeds can be used alone or as a mixture of two or more.
You may.

【0017】また、添加剤として選ばれる多価アルコー
ルとしては、エチレングリコール、ジエチレングリコー
ル、トリエチレングリコール、プロピレングリコール、
グリセリン、ペンタエリトリトール等を挙げることがで
きる。なお、本発明の非水電解液二次電池に適用する添
加剤の多価アルコールは、上記の例に限定されるもので
はなく、従来公知の多価アルコールを適宜用いることが
できる。
Further, polyhydric alcohols selected as additives include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol,
Glycerin, pentaerythritol and the like can be mentioned. In addition, the polyhydric alcohol as an additive applied to the nonaqueous electrolyte secondary battery of the present invention is not limited to the above example, and a conventionally known polyhydric alcohol can be appropriately used.

【0018】非水電解液には、上述した添加剤である多
価アルコールを、非水電解液に対して0.01〔重量
%〕〜0.5〔重量%〕含有させることが好ましく、さ
らには、0.03〔重量%〕〜0.2〔重量%〕含有さ
せることが、より好ましい。
The non-aqueous electrolyte preferably contains the above-mentioned additive polyhydric alcohol in an amount of 0.01 to 0.5% by weight based on the non-aqueous electrolyte. Is more preferably contained in an amount of 0.03 [% by weight] to 0.2 [% by weight].

【0019】本発明の非水電解液二次電池1は、上述し
たような多価アルコールを添加剤として非水電解液に含
有させることにより、長時間使用による内部抵抗の上昇
を抑制し、高出力二次電池の長寿命化が達成される。こ
れは、多価アルコールを添加することにより、負極電極
の表面層に、Liアルコラートのような化合物が形成さ
れ、これにより、炭酸リチウムの形成を抑制し、内部抵
抗上昇を抑制するためである。
The non-aqueous electrolyte secondary battery 1 of the present invention contains the above-mentioned polyhydric alcohol as an additive in the non-aqueous electrolyte, thereby suppressing an increase in internal resistance due to long-term use. A longer life of the output secondary battery is achieved. This is because a compound such as Li alcoholate is formed on the surface layer of the negative electrode by adding the polyhydric alcohol, thereby suppressing the formation of lithium carbonate and suppressing an increase in internal resistance.

【0020】本発明に係る非水電解液二次電池につい
て、以下に具体的な(実施例1〜9)および(比較例1
〜6)を示して説明する。なお、本発明は以下の例に限
定されるものではない。
With respect to the non-aqueous electrolyte secondary battery according to the present invention, specific examples (Examples 1 to 9) and (Comparative Example 1)
6) will be described. The present invention is not limited to the following examples.

【0021】先ず、正極を以下にようにして作製した。
正極集電体となる厚さ20μmのアルミニウム箔に、正
極活物質となるLiMn2 4 の粉末を90重量部、導
電助剤となる黒鉛粉末6重量部、および結着剤となるポ
リフッ化ビニリデン4重量部の混合物を、N−メチル−
2−ピロリドンに分散したスラリーを塗布し、乾燥後、
ローラープレス機によりプレスして帯状の正極とした。
First, a positive electrode was prepared as follows.
90 parts by weight of a LiMn 2 O 4 powder as a positive electrode active material, 6 parts by weight of a graphite powder as a conductive additive, and polyvinylidene fluoride as a binder, on a 20 μm thick aluminum foil as a positive electrode current collector 4 parts by weight of the mixture are mixed with N-methyl-
After applying the slurry dispersed in 2-pyrrolidone and drying,
A belt-shaped positive electrode was formed by pressing with a roller press.

【0022】また、負極を以下のようにして作製した。
正極集電体となる厚さ15μmの銅箔に、負極活物質と
なる黒鉛粉末を90重量部および結着剤となるポリフッ
化ビニリデン10重量部の混合物を、N−メチル−2−
ピロリドンに分散したスラリーを塗布し、乾燥後、ロー
ラープレス機によりプレスして帯状の負極とした。
Further, a negative electrode was produced as follows.
A mixture of 90 parts by weight of graphite powder as a negative electrode active material and 10 parts by weight of polyvinylidene fluoride as a binder was added to a 15-μm-thick copper foil as a positive electrode current collector.
The slurry dispersed in pyrrolidone was applied, dried, and then pressed by a roller press to obtain a strip-shaped negative electrode.

【0023】上述のようにして作製した正極と負極と
を、厚さが25μm程度の微多孔性ポリプロピレンを、
セパレータとして介在させて積層し、多数回巻回するこ
とで、渦巻式電極体とした。この渦巻式電極体の上下両
面に絶縁板を配置してニッケル鍍金を施した鉄製の電池
缶内に収納し、正極、負極の集電を行うため、正極集電
体からアルミニウム製正極リードを導出して鉄製の蓋体
に、負極集電体からニッケル製負極リードを導出して電
池缶に溶接した。
The positive electrode and the negative electrode produced as described above were mixed with microporous polypropylene having a thickness of about 25 μm,
A spiral electrode body was formed by laminating and interposing as a separator and winding a number of times. Insulating plates are placed on the upper and lower surfaces of this spiral electrode body, housed in a nickel-plated iron battery can, and an aluminum positive electrode lead is derived from the positive electrode current collector to collect the positive and negative electrodes. Then, a nickel negative electrode lead was led out from the negative electrode current collector to an iron lid, and was welded to a battery can.

【0024】電池缶内には、非水電解液として、LiP
6 を、1〔M〕の濃度で溶解したエチレンカーボネー
ト/ジエチルカーボネート(1/1〔vol%〕)に、
(表1)に示す各種添加剤を(表1)の含有量となるよ
うに添加した物を注入した。そして、それぞれ電池缶と
蓋体とを封口ガスケットを介してかしめ付けることで蓋
体を固定し、直径18〔mm〕、高さ65〔mm〕の円
筒型電池を作製した。
The battery can contains LiP as a non-aqueous electrolytic solution.
F 6 was dissolved in ethylene carbonate / diethyl carbonate (1/1 [vol%]) dissolved at a concentration of 1 [M],
The various additives shown in (Table 1) were added so as to have the content of (Table 1). Then, the battery can and the lid were each caulked via a sealing gasket to fix the lid, thereby producing a cylindrical battery having a diameter of 18 mm and a height of 65 mm.

【0025】なお、本発明の非水電解液二次電池の非水
電解液に添加する多価アルコールは、下記(表1)にお
いて示す例に限定されず、従来公知のいかなるものも、
これらに代えて適用することができ、また、これらの混
合物であってもよい。このとき、2種類以上の多価アル
コールを添加剤として使用する場合には、合計の重量%
値が、0.01〜0.5〔重量%〕であることが必要で
ある。
The polyhydric alcohol to be added to the non-aqueous electrolyte of the non-aqueous electrolyte secondary battery of the present invention is not limited to the examples shown in the following (Table 1).
It can be applied instead of these, or a mixture thereof. At this time, when two or more polyhydric alcohols are used as additives, the total weight%
The value needs to be 0.01 to 0.5 [% by weight].

【0026】[0026]

【表1】 [Table 1]

【0027】(実施例1)〜(実施例5) 非水電解液に、添加剤としてジエチレングリコールを、
それぞれ0.1〔重量%〕、0.01〔重量%〕、0.
03〔重量%〕、0.2〔重量%〕、0.5〔重量%〕
添加し、上記方法により円筒型電池を作製した。 (実施例6)非水電解液に、添加剤としてエチレングリ
コールを、0.1〔重量%〕添加し、実施例1と同様の
方法で円筒型電池を作製した。 (実施例7)非水電解液に、添加剤としてトリエチレン
グリコールを、0.1〔重量%〕添加し、実施例1と同
様の方法で円筒型電池を作製した。 (実施例8)非水電解液に、添加剤としてプロピレング
リコールを、0.1〔重量%〕添加し、実施例1と同様
の方法で円筒型電池を作製した。 (実施例9)非水電解液に、添加剤としてグリセリン
を、0.1〔重量%〕添加し、実施例1と同様の方法で
円筒型電池を作製した。
(Examples 1 to 5) Diethylene glycol as an additive was added to a non-aqueous electrolyte.
0.1% by weight, 0.01% by weight, 0.1% by weight, respectively.
03 [% by weight], 0.2 [% by weight], 0.5 [% by weight]
And a cylindrical battery was produced by the above method. Example 6 0.1% by weight of ethylene glycol was added to a non-aqueous electrolyte as an additive, and a cylindrical battery was manufactured in the same manner as in Example 1. (Example 7) Triethylene glycol was added as an additive to a non-aqueous electrolyte at 0.1% by weight, and a cylindrical battery was manufactured in the same manner as in Example 1. (Example 8) To a non-aqueous electrolyte, propylene glycol was added as an additive in an amount of 0.1% by weight, and a cylindrical battery was manufactured in the same manner as in Example 1. Example 9 A cylindrical battery was manufactured in the same manner as in Example 1 except that 0.1% by weight of glycerin was added as an additive to the nonaqueous electrolyte.

【0028】(比較例1)非水電解液に、添加剤を添加
しないで、その他の条件は実施例1と同様の方法で円筒
型電池を作製した。 (比較例2)非水電解液に、添加剤として1−プロパノ
ールを、0.1〔重量%〕添加し、実施例1と同様の方
法で円筒型電池を作製した。 (比較例3)非水電解液に、添加剤として2−エトキシ
エタノールを、0.1〔重量%〕添加し、実施例1と同
様の方法で円筒型電池を作製した。 (比較例4)非水電解液に、添加剤として2−(2−エ
トキシエトキシ)エタノールを、0.1〔重量%〕添加
し、実施例1と同様の方法で円筒型電池を作製した。 (比較例5)非水電解液に、添加剤としてジエチレング
リコールを0.005〔重量%〕添加し、実施例1と同
様の方法で円筒型電池を作製した。 (比較例6)非水電解液に、添加剤としてジエチレング
リコールを0.8〔重量%〕添加し、実施例1と同様の
方法で円筒型電池を作製した。
Comparative Example 1 A cylindrical battery was manufactured in the same manner as in Example 1 except that no additive was added to the nonaqueous electrolyte. Comparative Example 2 0.1-% by weight of 1-propanol was added as an additive to a non-aqueous electrolyte, and a cylindrical battery was manufactured in the same manner as in Example 1. Comparative Example 3 0.1% by weight of 2-ethoxyethanol was added as an additive to a non-aqueous electrolyte, and a cylindrical battery was manufactured in the same manner as in Example 1. Comparative Example 4 0.1% by weight of 2- (2-ethoxyethoxy) ethanol as an additive was added to a non-aqueous electrolyte solution, and a cylindrical battery was manufactured in the same manner as in Example 1. (Comparative Example 5) To a non-aqueous electrolyte, 0.005 [wt%] of diethylene glycol was added as an additive, and a cylindrical battery was produced in the same manner as in Example 1. Comparative Example 6 0.8% by weight of diethylene glycol was added as an additive to a non-aqueous electrolyte, and a cylindrical battery was manufactured in the same manner as in Example 1.

【0029】上述のようにして作製した(実施例1〜
9)および(比較例1〜6)の円筒型電池について、初
期容量〔mAh〕、初期内部抵抗〔mΩ〕、長期使用後
の内部抵抗上昇量〔mΩ〕について、それぞれ測定し
た。
Fabricated as described above (Examples 1 to 3)
For the cylindrical batteries of 9) and (Comparative Examples 1 to 6), the initial capacity [mAh], the initial internal resistance [mΩ], and the increase in internal resistance [mΩ] after long-term use were measured.

【0030】なお、初期容量は、各実施例、各比較例の
円筒型電池を充電電圧4.2〔V〕、充電電流1000
〔mA〕、充電時間2.5〔時間〕という条件で充電を
行った後、放電電流500〔mA〕、終止電圧2.75
〔V〕という条件で、放電を行い、放電時の容量を初期
容量とした。
The initial capacity was determined by charging the cylindrical batteries of each example and each comparative example with a charge voltage of 4.2 [V] and a charge current of 1000 [V].
After charging the battery under the conditions of [mA] and a charging time of 2.5 [hours], a discharging current of 500 [mA] and a cut-off voltage of 2.75 were obtained.
The discharge was performed under the condition [V], and the capacity at the time of discharge was defined as the initial capacity.

【0031】初期内部抵抗は、初期容量測定後の各実施
例、各比較例の円筒型電池で充電電圧4.2〔V〕、充
電電流1000〔mA〕、充電時間2.5〔時間〕とい
う条件で充電を行った後、測定した内部抵抗を初期内部
抵抗とした。
The initial internal resistance is as follows: charge voltage of 4.2 [V], charge current of 1000 [mA] and charge time of 2.5 [hour] for the cylindrical batteries of each of the examples and comparative examples after the measurement of the initial capacity. After charging under the conditions, the measured internal resistance was defined as the initial internal resistance.

【0032】長期使用後の内部抵抗上昇量は、初期内部
抵抗測定後の各実施例、および各比較例の円筒型電池を
充電電圧4.2〔V〕、充電電流1000〔mA〕、充
電時間2.5〔時間〕という条件で充電、放電電流50
0〔mA〕、終止電圧2.75〔V〕という条件で放電
を1000サイクル繰り返し行い、さらに充電電圧4.
2〔V〕、充電電流1000〔mA〕、充電時間2.5
〔時間〕という条件で充電を行った後、測定した内部抵
抗を長期使用後の内部抵抗とした。こうして測定した長
期使用後の内部抵抗から初期内部抵抗を差し引いて長期
使用後の内部抵抗上昇量とした。
The amount of increase in the internal resistance after long-term use was determined by measuring the charging voltage of 4.2 [V], the charging current of 1000 [mA], and the charging time of the cylindrical batteries of each of the examples after the initial internal resistance measurement and the comparative examples. Charge and discharge current 50 under the condition of 2.5 [hours]
Under the conditions of 0 [mA] and a final voltage of 2.75 [V], the discharge was repeated 1000 cycles, and the charging voltage was further increased to 4.
2 [V], charging current 1000 [mA], charging time 2.5
After charging under the condition of [time], the measured internal resistance was taken as the internal resistance after long-term use. The initial internal resistance was subtracted from the thus measured internal resistance after long-term use to obtain the amount of increase in internal resistance after long-term use.

【0033】なお、内部抵抗の測定は、LCRメータ
(国洋電気工業社製 KC−523C)を用いて、1
〔kHz〕でのインピーダンスを測定することにより行
った。測定結果は、(表1)に示す通りである。
The internal resistance was measured using an LCR meter (KC-523C manufactured by Kokuyo Electric Industries Co., Ltd.).
The measurement was performed by measuring the impedance at [kHz]. The measurement results are as shown in (Table 1).

【0034】(表1)に示すように、(実施例1)〜
(実施例9)、すなわち、ジエチレングリコール、エチ
レングリコール、トリエチレングリコール、プロピレン
グリコール、グリセリンを例とした多価アルコールを、
非水電解液に添加剤として使用した円筒型電池において
は、添加剤を使用しなかった(比較例1)や、1価のア
ルコールを使用した(比較例2)〜(比較例4)に比較
して、長期使用後の内部抵抗上昇量が小さく、優れた内
部抵抗上昇抑制効果があることを示している。すなわ
ち、非水電解液に添加剤を添加しなかった(比較例1)
は、内部抵抗上昇量が大きく、また、1価アルコールを
添加剤として使用した(比較例2)〜(比較例4)にお
いても、内部抵抗上昇量が比較的大きくなり、内部抵抗
上昇抑制効果は小さいことがわかる。
As shown in Table 1, (Example 1)
(Example 9) That is, a polyhydric alcohol such as diethylene glycol, ethylene glycol, triethylene glycol, propylene glycol, or glycerin was
In the cylindrical battery used as an additive in the non-aqueous electrolyte, the additive was not used (Comparative Example 1), or compared with the case where a monohydric alcohol was used (Comparative Example 2) to (Comparative Example 4). Thus, the internal resistance increase after long-term use is small, indicating that there is an excellent internal resistance increase suppression effect. That is, no additive was added to the non-aqueous electrolyte (Comparative Example 1).
Has a large increase in internal resistance, and also in the case of using a monohydric alcohol as an additive (Comparative Example 2) to (Comparative Example 4), the internal resistance rise amount is relatively large, and the internal resistance rise suppression effect is It turns out that it is small.

【0035】また、(実施例1)〜(実施例9)、すな
わち、ジエチレングリコール、エチレングリコール、ト
リエチレングリコール、プロピレングリコール、グリセ
リンを例とした多価アルコールを、非水電解液に添加剤
として、0.01〜0.5〔重量%〕添加した円筒型電
池においては、長期使用後の内部抵抗上昇量が小さく、
初期容量〔mAh〕も高く、優れた電池特性を有するこ
とがわかる。これに対し、添加剤として多価アルコール
であるジエチレングリコールを0.005〔重量%〕添
加した円筒型電池である(比較例5)においては、内部
抵抗上昇量が比較的大きくなり、内部抵抗上昇抑制効果
が充分に得られないことがわかる。また、添加剤として
多価アルコールであるジエチレングリコールを0.8
〔重量%〕添加した円筒型電池である(比較例6)にお
いては、初期容量が(実施例1)〜(実施例9)に比較
して低下していることがわかる。よって、非水電解液二
次電池においては、非水電解液に添加剤として多価アル
コールを、0.01〜0.5〔重量%〕添加することに
より、優れた電池特性が得られることがわかった。
Further, (Example 1) to (Example 9), that is, polyhydric alcohols such as diethylene glycol, ethylene glycol, triethylene glycol, propylene glycol, and glycerin were added to the non-aqueous electrolyte as additives. In the cylindrical battery to which 0.01 to 0.5 [% by weight] is added, the internal resistance rise after long-term use is small,
It can be seen that the initial capacity [mAh] is high and the battery has excellent battery characteristics. On the other hand, in the cylindrical battery (Comparative Example 5) to which 0.005% by weight of diethylene glycol, which is a polyhydric alcohol, was added as an additive, the internal resistance increase was relatively large, and the internal resistance increase was suppressed. It can be seen that the effect is not sufficiently obtained. As an additive, diethylene glycol, which is a polyhydric alcohol, is added in an amount of 0.8%.
It can be seen that the initial capacity of the cylindrical battery (Comparative Example 6) to which [wt%] was added was lower than that of (Example 1) to (Example 9). Therefore, in a non-aqueous electrolyte secondary battery, excellent battery characteristics can be obtained by adding a polyhydric alcohol to the non-aqueous electrolyte as an additive in an amount of 0.01 to 0.5% by weight. all right.

【0036】次に、図2に、非水電解液に添加剤とし
て、ジエチレングリコールを0.01〜0.8〔重量
%〕、エチレングリコールを0.1〔重量%〕、プロピ
レングリコールを0.1〔重量%〕、トリエチレングリ
コールを0.1〔重量%〕、グリセリンを0.1〔重量
%〕、プロパノールを0.1〔重量%〕、エトキシエタ
ノールを0.1〔重量%〕、エトキシエトキシエタノー
ルを0.1〔重量%〕、それぞれ添加した場合と、添加
剤を添加しなかった場合の円筒型電池について、上述と
同様の条件により、内部抵抗上昇量〔mΩ〕を測定した
場合の相対値の図を示した。この測定結果に基づいて
も、非水電解液二次電池においては、非水電解液に添加
剤として多価アルコールを、0.01〜0.5〔重量
%〕添加すること、更に好ましくは、0.03〜0.2
〔重量%〕添加することにより、優れた電池特性が得ら
れることが明確になった。
Next, FIG. 2 shows that 0.01 to 0.8% by weight of diethylene glycol, 0.1% by weight of ethylene glycol, and 0.1% by weight of propylene glycol were added to the nonaqueous electrolyte as additives. [Wt%], triethylene glycol 0.1 [wt%], glycerin 0.1 [wt%], propanol 0.1 [wt%], ethoxyethanol 0.1 [wt%], ethoxyethoxy When the internal resistance rise [mΩ] was measured under the same conditions as above for the cylindrical batteries in which 0.1% by weight of ethanol was added, and the case where no additive was added, respectively. The figure of the value was shown. Based on this measurement result, in the nonaqueous electrolyte secondary battery, a polyhydric alcohol is added to the nonaqueous electrolyte as an additive in an amount of 0.01 to 0.5% by weight, more preferably, 0.03-0.2
[Weight%] It has become clear that excellent battery characteristics can be obtained by the addition.

【0037】[0037]

【発明の効果】本発明の非水電解液二次電池によれば、
非水電解液に多価アルコールを添加剤として含有させる
ことにより、長時間にわたって使用した場合に生じる内
部抵抗の上昇が抑制され、電池の長寿命化を図ることが
できた。
According to the non-aqueous electrolyte secondary battery of the present invention,
By including a polyhydric alcohol as an additive in the non-aqueous electrolyte, an increase in internal resistance that occurs when the non-aqueous electrolyte is used for a long time was suppressed, and the life of the battery was prolonged.

【0038】また、本発明によれば、非水電解液に多価
アルコールを添加剤として、0.01〜0.5〔重量
%〕添加することにより、初期容量が大きく、長時間に
わたって使用した場合に生じる内部抵抗の上昇が抑制さ
れた優れた電池特性を有する非水電解液二次電池が得ら
れた。
According to the present invention, the initial capacity is large and the nonaqueous electrolyte is used for a long time by adding 0.01 to 0.5% by weight of a polyhydric alcohol as an additive to the nonaqueous electrolyte. A non-aqueous electrolyte secondary battery having excellent battery characteristics in which a rise in internal resistance caused in such a case was suppressed was obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非水電解液二次電池の一例の概略斜視
図を示す。
FIG. 1 is a schematic perspective view of an example of a non-aqueous electrolyte secondary battery of the present invention.

【図2】非水電解液への添加剤の添加量と、内部抵抗上
昇量との関係図を示す。
FIG. 2 is a graph showing the relationship between the amount of additive added to a non-aqueous electrolyte and the amount of increase in internal resistance.

【符号の説明】[Explanation of symbols]

1 非水電解液二次電池、2 正極、3 負極、4 セ
パレータ、5 電池缶、6 蓋体、7 正極リード、8
負極リード
1 Non-aqueous electrolyte secondary battery, 2 positive electrode, 3 negative electrode, 4 separator, 5 battery can, 6 lid, 7 positive electrode lead, 8
Negative electrode lead

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ05 AJ06 AK03 AL06 AL07 AL08 AM02 AM03 AM04 AM05 AM07 BJ02 BJ14 DJ08 EJ11 HJ01 HJ10  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H029 AJ05 AJ06 AK03 AL06 AL07 AL08 AM02 AM03 AM04 AM05 AM07 BJ02 BJ14 DJ08 EJ11 HJ01 HJ10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有化合物よりなる正極と、 リチウムをドープかつ脱ドープすることが可能な炭素材
料より成る負極とを有し、 非水溶媒に電解質塩が溶解されてなる非水電解液を有し
てなる非水電解液二次電池であって、 上記非水電解液は、多価アルコールを添加剤として含有
してなることを特徴とする非水電解液二次電池。
1. A non-aqueous electrolyte having a positive electrode made of a lithium-containing compound and a negative electrode made of a carbon material capable of being doped with and dedoped with lithium, wherein an electrolyte salt is dissolved in a non-aqueous solvent. A non-aqueous electrolyte secondary battery comprising: a non-aqueous electrolyte secondary battery comprising: a polyhydric alcohol as an additive.
【請求項2】 上記多価アルコールの添加量が、0.0
1〜0.5〔重量%〕であることを特徴とする請求項1
に記載の非水電解液二次電池。
2. The amount of the polyhydric alcohol added is 0.0
2. The method according to claim 1, wherein the amount is 1 to 0.5% by weight.
3. The non-aqueous electrolyte secondary battery according to 1.
【請求項3】 上記多価アルコールは、エチレングリコ
ール、ジエチレングリコール、トリエチレングリコー
ル、プロピレングリコール、グリセリン、ペンタエリト
リトールのうちの、少なくとも一つ以上を含むことを特
徴とする請求項1に記載の非水電解液二次電池。
3. The non-aqueous solution according to claim 1, wherein the polyhydric alcohol contains at least one of ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, glycerin, and pentaerythritol. Electrolyte secondary battery.
JP29859799A 1999-10-20 1999-10-20 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4505897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29859799A JP4505897B2 (en) 1999-10-20 1999-10-20 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29859799A JP4505897B2 (en) 1999-10-20 1999-10-20 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2001118599A true JP2001118599A (en) 2001-04-27
JP4505897B2 JP4505897B2 (en) 2010-07-21

Family

ID=17861804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29859799A Expired - Fee Related JP4505897B2 (en) 1999-10-20 1999-10-20 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4505897B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268094A (en) * 2004-03-19 2005-09-29 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution and lithium ion secondary battery, as well as fluorine containing ester compound
JP2011086391A (en) * 2009-10-13 2011-04-28 Asahi Kasei Chemicals Corp Nonaqueous electrolyte solution
WO2016097847A1 (en) * 2014-12-19 2016-06-23 Toyota Jidosha Kabushiki Kaisha Method of manufacturing nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN112074983A (en) * 2018-05-29 2020-12-11 株式会社村田制作所 Electrolyte for lithium ion secondary battery and lithium ion secondary battery

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130073A (en) * 1983-01-17 1984-07-26 Nippon Telegr & Teleph Corp <Ntt> Electrolyte for lithic battery
JPS6041773A (en) * 1983-08-17 1985-03-05 Hitachi Maxell Ltd Organic electrolyte battery
JPH02284358A (en) * 1989-04-25 1990-11-21 Matsushita Electric Ind Co Ltd Organic electrolyte cell
JPH05159787A (en) * 1991-12-06 1993-06-25 Hitachi Maxell Ltd Organic electrolyte battery
JPH09199172A (en) * 1996-01-18 1997-07-31 Sony Corp Nonaqueous electrolyte secondary battery
JPH1131530A (en) * 1997-07-09 1999-02-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2000058114A (en) * 1998-07-31 2000-02-25 Sanyo Electric Co Ltd Nonaqueous battery electrolyte and secondary battery using the same
JP2000067913A (en) * 1998-06-08 2000-03-03 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2000149988A (en) * 1998-09-10 2000-05-30 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2000260469A (en) * 1999-03-09 2000-09-22 Ngk Insulators Ltd Lithium secondary battery
JP2000331887A (en) * 1999-03-17 2000-11-30 Mitsubishi Chemicals Corp Electrolyte solution for electrochemical capacitor and electrochemical capacitor using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130073A (en) * 1983-01-17 1984-07-26 Nippon Telegr & Teleph Corp <Ntt> Electrolyte for lithic battery
JPS6041773A (en) * 1983-08-17 1985-03-05 Hitachi Maxell Ltd Organic electrolyte battery
JPH02284358A (en) * 1989-04-25 1990-11-21 Matsushita Electric Ind Co Ltd Organic electrolyte cell
JPH05159787A (en) * 1991-12-06 1993-06-25 Hitachi Maxell Ltd Organic electrolyte battery
JPH09199172A (en) * 1996-01-18 1997-07-31 Sony Corp Nonaqueous electrolyte secondary battery
JPH1131530A (en) * 1997-07-09 1999-02-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2000067913A (en) * 1998-06-08 2000-03-03 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2000058114A (en) * 1998-07-31 2000-02-25 Sanyo Electric Co Ltd Nonaqueous battery electrolyte and secondary battery using the same
JP2000149988A (en) * 1998-09-10 2000-05-30 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2000260469A (en) * 1999-03-09 2000-09-22 Ngk Insulators Ltd Lithium secondary battery
JP2000331887A (en) * 1999-03-17 2000-11-30 Mitsubishi Chemicals Corp Electrolyte solution for electrochemical capacitor and electrochemical capacitor using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268094A (en) * 2004-03-19 2005-09-29 Mitsubishi Chemicals Corp Nonaqueous electrolytic solution and lithium ion secondary battery, as well as fluorine containing ester compound
JP4586388B2 (en) * 2004-03-19 2010-11-24 三菱化学株式会社 Nonaqueous electrolyte, lithium ion secondary battery, and fluorine-containing ester compound
JP2011086391A (en) * 2009-10-13 2011-04-28 Asahi Kasei Chemicals Corp Nonaqueous electrolyte solution
WO2016097847A1 (en) * 2014-12-19 2016-06-23 Toyota Jidosha Kabushiki Kaisha Method of manufacturing nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2016119198A (en) * 2014-12-19 2016-06-30 トヨタ自動車株式会社 Manufacturing method of non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR20170085123A (en) * 2014-12-19 2017-07-21 도요타 지도샤(주) Method of manufacturing nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN107112510A (en) * 2014-12-19 2017-08-29 丰田自动车株式会社 Manufacture the method and rechargeable nonaqueous electrolytic battery of rechargeable nonaqueous electrolytic battery
KR101934440B1 (en) 2014-12-19 2019-01-03 도요타 지도샤(주) Method of manufacturing nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
DE112015005643B4 (en) * 2014-12-19 2020-10-22 Toyota Jidosha Kabushiki Kaisha Method of manufacturing a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery
CN112074983A (en) * 2018-05-29 2020-12-11 株式会社村田制作所 Electrolyte for lithium ion secondary battery and lithium ion secondary battery
JPWO2019230533A1 (en) * 2018-05-29 2021-06-17 株式会社村田製作所 Lithium-ion secondary battery electrolyte and lithium-ion secondary battery
JP7056734B2 (en) 2018-05-29 2022-04-19 株式会社村田製作所 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP4505897B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
US7736807B2 (en) Non-aqueous electrolytic solution secondary battery
JP4608735B2 (en) Non-aqueous electrolyte secondary battery charging method
US20070003838A1 (en) Energy device
JP4968225B2 (en) Non-aqueous electrolyte battery
JP2003077458A (en) Lithium secondary battery electrode and lithium secondary battery
KR20090013025A (en) Non-aqueous electrolyte secondary battery
JP4489207B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JP2001126766A (en) Nonaqueous electrolyte secondary battery
JP4125420B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP6051537B2 (en) Lithium secondary battery
JP2010186689A (en) Nonaqueous electrolyte secondary battery
JP5205863B2 (en) Non-aqueous electrolyte secondary battery
WO2005104289A1 (en) Nonaqueous electrolyte solution for battery and nonaqueous electrolyte battery using same
JP2001057233A (en) Non-aqueous electrolyte secondary battery
JP4560854B2 (en) Nonaqueous electrolyte secondary battery
JP2002151154A (en) Lithium secondary battery
JP2008198499A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary battery using it
JP2002203608A (en) Nonaqueous secondary battery for car use
JP4505897B2 (en) Non-aqueous electrolyte secondary battery
KR20080029480A (en) Lithium secondary battery, and hybrid capacitor
JP2001052760A (en) Charging method of nonaqueous electrolyte secondary battery
JP2008016316A (en) Nonaqueous electrolyte secondary battery
US20040081891A1 (en) Nonaqueous electrolyte secondary cell
JP6003086B2 (en) Lithium secondary battery
JP4501177B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees