JPS6041773A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPS6041773A
JPS6041773A JP58150869A JP15086983A JPS6041773A JP S6041773 A JPS6041773 A JP S6041773A JP 58150869 A JP58150869 A JP 58150869A JP 15086983 A JP15086983 A JP 15086983A JP S6041773 A JPS6041773 A JP S6041773A
Authority
JP
Japan
Prior art keywords
electrolyte
lithium
oxide
polypropylene
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58150869A
Other languages
Japanese (ja)
Other versions
JPH0614468B2 (en
Inventor
Kazumi Yoshimitsu
由光 一三
Tatsu Nagai
龍 長井
Kozo Kajita
梶田 耕三
Toshikatsu Manabe
真辺 俊勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP58150869A priority Critical patent/JPH0614468B2/en
Publication of JPS6041773A publication Critical patent/JPS6041773A/en
Publication of JPH0614468B2 publication Critical patent/JPH0614468B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase the charge-and-discharge characteristic of an organic electrolyte battery by adding a compound such as polyethylene glycol or polyethylene oxide to prepare the electrolyte. CONSTITUTION:In preparing electrolyte for an organic electrolyte battery containing lithium or a lithium alloy as a negative active material, at least one compound chosen from the group consisting of polyethylene glycol, polyethylene oxide, polypropylene glycol, polyethylene oxide, polypropylene glycol, polypropylene oxide and an ethyleneoxide-propyleneoxide copolymer is added. Addition of an insufficient amount of such a compound will result in an insufficient effect, while addition of an excessive amount of such a compound will result in a decreased conductivity due to an increased viscosity of the electrolyte. Therefore, the amount of the additive is preferred to be 0.2-8g per 100ml of the electrolyte.

Description

【発明の詳細な説明】 物質とする有機電解質電池の改良に係り、内部抵抗、特
にリチウム界面抵抗の減少をはかり、かつ二次電池とし
ての充放電特性の向」二をはかることを目的とする。
[Detailed Description of the Invention] An object of the present invention is to improve an organic electrolyte battery as a material, to reduce internal resistance, especially lithium interfacial resistance, and to improve charge/discharge characteristics as a secondary battery. .

従来、リチウムまたはリチウム合金をfi極活物質とす
る有機電解質系の二次電池は、充放電可逆性が充分では
なかった。この原因は電析リチウムと電解液とが反応し
て負極の劣化が生じ、また電析リチウムの形態が樹枝状
になり、短絡するためであった。また一次電池でもごリ
チウム表面に水分などとの反応による皮膜が形成され、
この皮膜が内部抵抗を増加させ閉路電圧を低下させる原
因になっていた。
Conventionally, organic electrolyte-based secondary batteries using lithium or lithium alloy as an FI electrode active material have not had sufficient charge/discharge reversibility. The cause of this was that the electrodeposited lithium reacted with the electrolytic solution, resulting in deterioration of the negative electrode, and the form of the electrodeposited lithium became dendritic, resulting in a short circuit. Also, in primary batteries, a film is formed on the surface of lithium due to reaction with moisture, etc.
This film was a cause of increasing internal resistance and decreasing closed circuit voltage.

この発明はー上述した従来技術の欠点を解消するもので
、リチウムまたはリチウム合金を負極活物質とする有機
型)ウ1″質電池において、ポリエチレングリコール、
ポリエチレンオキサイド、ポリプロピレングリコール、
ポリプロピレンオキサイトおよびエチレンオギザイドー
プロピレンオキザイド共重合体よりなる群から選ばれた
少なくとも1種を電解液に添加することにより目的を達
成したものである。
The present invention solves the above-mentioned drawbacks of the prior art, and is intended to provide an organic battery using lithium or a lithium alloy as a negative electrode active material, in which polyethylene glycol,
polyethylene oxide, polypropylene glycol,
The object is achieved by adding at least one member selected from the group consisting of polypropylene oxide and ethylene oxide-propylene oxide copolymer to the electrolytic solution.

本発明におい゛C電解液としては、たとえば1,2一ジ
メトキシコニクン、L2−ジェトキシ]ニタン、プロピ
レンカーボネート、γーブチロラクトン。
In the present invention, the C electrolyte includes, for example, 1,2-dimethoxyconicone, L2-jethoxy]nitane, propylene carbonate, and γ-butyrolactone.

テトラヒドロソラン、2−メチルテ1−ラヒドロフラン
、■、3−ジオキソラン、4−メチル−1,3−ジオキ
ソラン、4,4−ジメチル−1,3−ジオキソラン、4
,5−ジメチル−1,3−ジオキソラン、2−メチル−
1,3−ジオキソラン、2,4−ジメチル−1,3−ジ
オキソラン、(CH30)3 P−〇、(C2ト+ 5
 o) 3 P=O、(C4Its O) 3 P −
〇 、 (C8H,) O) 3 P=O,(CI C
l−12C1120)3P=0などの単独または2種以
上の混合溶媒に、LiClO4、LiPF5、LiBF
4、I、1AsF6、LiSbF6、LiAlCl4、
 LiBID C1,ロ 、 LiB12C112、L
i13(C6H5)4、L i B (p−FCs H
4) 3 CH3、L i B (p−Fe2 H4)
 4などの電1す?質を溶解させた有機電解質系の電解
液が用いられる。
Tetrahydrosolane, 2-methylterahydrofuran, 3-dioxolane, 4-methyl-1,3-dioxolane, 4,4-dimethyl-1,3-dioxolane, 4
, 5-dimethyl-1,3-dioxolane, 2-methyl-
1,3-dioxolane, 2,4-dimethyl-1,3-dioxolane, (CH30)3P-〇, (C2t+5
o) 3 P=O, (C4Its O) 3 P −
〇 , (C8H,) O) 3 P=O, (CI C
l-12C1120) 3P=0 or a mixed solvent of two or more, LiClO4, LiPF5, LiBF
4, I, 1AsF6, LiSbF6, LiAlCl4,
LiBID C1, L, LiB12C112, L
i13(C6H5)4, L i B (p-FCs H
4) 3 CH3, L i B (p-Fe2 H4)
4 etc. Den 1 S? An organic electrolyte solution containing dissolved substances is used.

電解液へのポリエチレングリコール、ポリエチレンオキ
サイド、ポリプロピレングリコール、ポリプロピレンオ
キサイド、エチレンオキサイ・ドープロピレンオキサイ
ド共重合体の添加量は少なずぎると効果が充分に案揮で
きず、また多すぎると電解液の粘度増加による電導度の
低下が生しるので、電解液100 mρあたり0.2 
g〜8gとするのが好ましい。
If the amount of polyethylene glycol, polyethylene oxide, polypropylene glycol, polypropylene oxide, or ethylene oxide/dopropylene oxide copolymer added to the electrolyte is too small, the effect will not be fully exerted, and if it is too large, the viscosity of the electrolyte will increase. 0.2 per 100 mρ of electrolyte, since the conductivity decreases due to the increase in
It is preferable to set it as g-8g.

本発明の有機電解質電池において、負極活物質としては
、リチウム、リチウムとたとえばアルミニウム、水銀、
亜鉛、カドミウムなどとのリチウム合金が用いられ、ま
た正極にi物質としては、たとえば二硫化チタン、二硫
化鉄、硫化第一鉄、硫化第二鉄などの硫化鉄、二酸化マ
ンガン、(C12)工、(C2F):l:などのフッ化
炭素類、二硫化ニオブ、V60B、Cu5V201Dな
どが用いられる。
In the organic electrolyte battery of the present invention, as the negative electrode active material, lithium, lithium and, for example, aluminum, mercury,
Lithium alloys with zinc, cadmium, etc. are used, and i-substances for the positive electrode include iron sulfides such as titanium disulfide, iron disulfide, ferrous sulfide, and ferric sulfide, manganese dioxide, and (C12) metals. , (C2F):l:, niobium disulfide, V60B, Cu5V201D, etc. are used.

つぎに実施例をあげて本発明を説明する。Next, the present invention will be explained with reference to Examples.

実施例I LiB(Csl15)4を1,3−ジオキソランと1.
2−ジノ1−31−ンエタンとの容器1七が75 : 
25のl足台溶媒に0.6モル/l/8解させてなる有
機電解質電解液に、ポリエチレングリコール(平均分子
は20.000)を2.4 g /100 m (l 
)割合で添加しテ?g解させた。このようにしてポリエ
チレングリコールを添加した電解液を用い、対極の影響
を消去するため、第1図に示すようなL i / L 
iモデルセルにより充放電特性を調べた。充放電特性の
測定は電池を1mAの定電流で充放電させ試験極と対極
との間の分極電圧が1v以下のサイクル数を調べること
によって行なわれた。
Example I LiB(Csl15)4 was combined with 1,3-dioxolane and 1.
Container 17 with 2-dino-1-31-ethane 75:
2.4 g/100 m (l) of polyethylene glycol (average molecular weight: 20.000) was added to an organic electrolyte solution prepared by dissolving 0.6 mol/l/8 in 25 l/l footstock solvent.
) Is it added in proportion? g made me understand. Using an electrolytic solution to which polyethylene glycol has been added in this way, in order to eliminate the influence of the counter electrode, L i / L as shown in Fig. 1 is used.
The charge and discharge characteristics were investigated using an i model cell. The charging and discharging characteristics were measured by charging and discharging the battery at a constant current of 1 mA and checking the number of cycles in which the polarization voltage between the test electrode and the counter electrode was 1 V or less.

第1図において、1はポリプロピレン製の押え板で、試
験極2はステンレス鋼製網3にリチウムボイル4を両面
圧着することにより形成され、対極5はステンレス鋼製
網6にリチウムホイル7を両面圧着することにより形成
されている。8は試験極側の集電体リードで、9は対極
側の集電体リードであり、10.11は微孔性ポリプロ
ピレンフィルム、12.13はポリプロピレン不織布で
、14は電解液、15は密閉ガラス容器である。
In FIG. 1, 1 is a polypropylene holding plate, the test electrode 2 is formed by pressing lithium boiling 4 on both sides of a stainless steel net 3, and the counter electrode 5 is formed by pressing lithium foil 7 on both sides of a stainless steel net 6. It is formed by crimping. 8 is a current collector lead on the test electrode side, 9 is a current collector lead on the counter electrode side, 10.11 is a microporous polypropylene film, 12.13 is a polypropylene nonwoven fabric, 14 is an electrolytic solution, and 15 is a sealed It is a glass container.

比較例1 ポリエチレングリコールの添加をしなかったほかは実施
例1と同様の電解液を用い、実施例1と同様のL i 
/ l−iモデルセルにより充放電特性を貨周べた。
Comparative Example 1 The same electrolyte as in Example 1 was used except that polyethylene glycol was not added, and the same Li as in Example 1 was used.
The charging and discharging characteristics were evaluated using the /li model cell.

第1表に比較例1の充放電特性を100としたときの指
数で実施例1の充放電特性を示す。
Table 1 shows the charging and discharging characteristics of Example 1 as an index when the charging and discharging characteristics of Comparative Example 1 are taken as 100.

第 1 表 実施例2 LiB (C611s)4を4−メチル−1,3−ジオ
キソランと1.2−ジメトキシエタンとの容は比が75
 : 25の混合溶媒に0.6モル/p/8解させてな
る電解液に、エチレンオキサイドープし1ピレンオキザ
イト共重合体(平均分子量12,000)を4g/10
0mnの割合で添加して/8解させた。
Table 1 Example 2 LiB (C611s)4 was mixed with 4-methyl-1,3-dioxolane and 1,2-dimethoxyethane at a ratio of 75.
: 4 g/10 of ethylene oxide-doped 1-pyrene oxite copolymer (average molecular weight 12,000) was dissolved in an electrolytic solution of 0.6 mol/p/8 dissolved in a mixed solvent of 25
It was added at a rate of 0 mn to give a solution of /8.

このようにしてエチレンオキザイドーブロビレンオキサ
イド共重合体を添加した電I11¥液を用い、第1図に
示ずようなl−i / L i ′F−デルセルにより
充放電特性を調べた。
Using the electrolyte I11 liquid to which the ethylene oxide dipropylene oxide copolymer was added in this manner, the charge/discharge characteristics were investigated using a l-i/Li'F-del cell as shown in FIG.

比校例2 エチレンオキザイドープロピレンオギザイド共重合体を
添加しなかったほかは実施例2と同様の電解液を用い、
実施例2と同様にL i / L iモデルセルにより
充放電特性を調べた。
Ratio Example 2 The same electrolytic solution as in Example 2 was used except that the ethylene oxide-propylene oxide copolymer was not added.
As in Example 2, the charge/discharge characteristics were investigated using the Li/Li model cell.

第2表に比較例2の充放電特性を100としたときの指
数で実施例2の充放電特性を示す。
Table 2 shows the charging and discharging characteristics of Example 2 as an index when the charging and discharging characteristics of Comparative Example 2 are taken as 100.

第 2 表 実施例3 L i B (p−FCs H4) 3 C113を4
−メチル−1,3−ジオキソランと1,2−ジメトキシ
エタンとの容塑比が75 : 25の混合溶媒に1.0
モル/β熔解させてなる電解液にポリプロピレングリコ
ール(平均分子量4,000 )を1 g / 100
 mρの割合で話力■してン容負?させた。
Table 2 Example 3 L i B (p-FCs H4) 3 C113 to 4
- 1.0 in a mixed solvent of methyl-1,3-dioxolane and 1,2-dimethoxyethane with a plasticity ratio of 75:25.
1 g/100 of polypropylene glycol (average molecular weight 4,000) in the electrolyte solution obtained by melting mol/β
Is your speaking ability as a percentage of mρ? I let it happen.

このようにしてポリプロピレングリコールを添加した電
解液を用い、第1図に示ずようなI、菫/L iモデル
セルにより充放電特性を調べた。
Using the electrolytic solution to which polypropylene glycol was added in this way, the charge and discharge characteristics were investigated using an I, Violet/Li model cell as shown in FIG.

比較例3 ポリプロピレングリコールの添加をしなかったほかは実
施例3と同様の電解液を用い、実施例3と同様にLi/
Liモデルセルにより充放電特性を調べた。
Comparative Example 3 The same electrolyte as in Example 3 was used except that polypropylene glycol was not added, and Li/
The charge and discharge characteristics were investigated using a Li model cell.

第3表に比較例3の充放電特性を100としたときの指
数で実施例3の充放電特性を示す。
Table 3 shows the charging and discharging characteristics of Example 3 as an index when the charging and discharging characteristics of Comparative Example 3 are taken as 100.

第 3 表 第1〜3表に示すように、ポリエチレングリコール、エ
チレンオキサイトープロピレンオキザイド共重合体、ポ
リプロピレングリコールなどの添加により充放電特性が
向」ニジた。
Table 3 As shown in Tables 1 to 3, the addition of polyethylene glycol, ethylene oxide-propylene oxide copolymer, polypropylene glycol, etc. improved the charge-discharge characteristics.

つぎに実施例1〜3と比較例1〜3の複素平面解析図を
第2〜3図に示す。測定は55kllz〜20m112
の範囲で行なわれた。第2図は充放電前を示し、第3図
は10ザイクル充放電後を示す。なお、第2〜3図にお
いて、実施例1はAで、実施例2ばBで、実施例3はC
で、比較例1はUで、比較例2は■で、比較例3はWで
示す。
Next, complex plane analysis diagrams of Examples 1 to 3 and Comparative Examples 1 to 3 are shown in FIGS. 2 to 3. Measurement is 55kllz ~ 20m112
was carried out within the range of FIG. 2 shows the state before charging and discharging, and FIG. 3 shows the state after 10 cycles of charging and discharging. In addition, in FIGS. 2 and 3, Example 1 is A, Example 2 is B, and Example 3 is C.
Comparative Example 1 is indicated by U, Comparative Example 2 is indicated by ■, and Comparative Example 3 is indicated by W.

第2〜3図に示す結果から明らかなように、本発明の実
施例は、比較例に比べてリチウムの界面抵抗、つまり図
の半円の直径に担当する抵抗値が小さくなっていること
から、実施例ではリチウム表面皮膜の生成が少ないこと
がわかる。このことば、これら使用した添加剤がリチウ
ム表面皮1模の除去に効果があるためであると考えられ
る。
As is clear from the results shown in Figures 2 and 3, the interfacial resistance of lithium, that is, the resistance value that is related to the diameter of the semicircle in the figure, is smaller in the example of the present invention than in the comparative example. It can be seen that in Examples, the formation of a lithium surface film is small. It is thought that this is because the additives used are effective in removing the lithium surface skin.

実施例4 実施例1と同様のポリエチレングリコールを添加した電
解液を用い、直径20mm、1刊さ1.6 mmのボタ
ン形電池を組み立てた。電池構成は負極がリチウム、正
極が二硫化チタンを正極活物質とする二硫化チタン合剤
で、セパレータには微孔性ポリプロピレンフィルムとポ
リプロピレン不織布を重ね合わせたものを用い、微孔性
ポリプロピレンフィルムを負極面に対向するように配置
した。
Example 4 Using the same polyethylene glycol-added electrolyte as in Example 1, a button-shaped battery with a diameter of 20 mm and a length of 1.6 mm was assembled. The battery has a negative electrode made of lithium, and a positive electrode made of a titanium disulfide mixture with titanium disulfide as the positive electrode active material.The separator is made of a superimposed layer of microporous polypropylene film and polypropylene nonwoven fabric. It was placed so as to face the negative electrode surface.

比較例4 比較例2と同様の電解液を用いたほかは実施例4と同様
のボタン形電池を組の立てた。
Comparative Example 4 A button-shaped battery was assembled in the same manner as in Example 4, except that the same electrolyte as in Comparative Example 2 was used.

実施例5 実施例2と同様のエチレンオキサイドープロピレンオキ
ザイI共Qj合体が添加された電解液を用いたほかは実
施例4と同様のボタン形電池を組め立てた。
Example 5 A button-shaped battery was assembled in the same manner as in Example 4, except that the same electrolytic solution as in Example 2 to which the ethylene oxide-propylene oxide I co-Qj combination was added was used.

比較例5 比較例2と同様の電解液を用いたほかは実施例5と同様
のボタン形電池を組の立てた。
Comparative Example 5 A button-shaped battery was assembled in the same manner as in Example 5, except that the same electrolyte as in Comparative Example 2 was used.

実施例6 実施例3と同様のポリプロピレングリコールが添加され
た電解液を用いたほかは実施例4と同様のボタン形電池
を組み立てた。
Example 6 A button-shaped battery was assembled in the same manner as in Example 4, except that the same polypropylene glycol-added electrolyte as in Example 3 was used.

比較例6 比較例3と同様の電解液を用いたほかは実施例6と同様
のボタン形電池を組み立てた。
Comparative Example 6 A button-shaped battery similar to that of Example 6 was assembled except that the same electrolyte as that of Comparative Example 3 was used.

」1記のようにして得た実施例4〜6および比較例4〜
6の電池の20°C1300Ωで5秒間放電後の閉路電
圧を測定した。その結果を第4表に示す。
Examples 4 to 6 and Comparative Examples 4 to 6 obtained as described in 1.
The closed circuit voltage of the battery No. 6 was measured after discharging at 20°C and 1300Ω for 5 seconds. The results are shown in Table 4.

第4表 つぎに実施例4〜6および比較例4〜6の電池の20℃
、2にΩ定抵抗で連続放電させたときの放電特性を第4
図に示す。なお、第4図において実施例4の電池ばI)
で、実施例5の電池はEで、実施例6の電池はFで、比
較例4の電池はXで、比較例5の電池はYで、比較例6
の電池はZで示す。
Table 4 shows the temperature of the batteries of Examples 4 to 6 and Comparative Examples 4 to 6 at 20°C.
, 2 shows the discharge characteristics when continuously discharging with a constant Ω resistance.
As shown in the figure. In addition, in FIG. 4, the battery of Example 4 I)
The battery of Example 5 is E, the battery of Example 6 is F, the battery of Comparative Example 4 is X, the battery of Comparative Example 5 is Y, and the battery of Comparative Example 6 is
The battery is indicated by Z.

第4表および第4図に示すように、本発明の電池はいず
れもり1応する比較例の電池に比べて閉路電圧が高く、
かつ放電持続時間が長い。こればポリエチレングリ1−
ル、エチレンオキサイ1゛−プロピレンオキ男・イド共
重合体、ボリプl′、!ピレングリコールなどの添加に
よりリチウム界面の抵抗が低くなったことに基づくもの
であると考えられる。
As shown in Table 4 and FIG. 4, all of the batteries of the present invention have higher closed circuit voltages than the corresponding comparative batteries;
And the discharge duration is long. This is polyethylene green 1-
Ethylene oxide 1゛-propylene oxide copolymer, Volipl',! This is thought to be due to the fact that the resistance of the lithium interface became lower due to the addition of pyrene glycol or the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1.、 i / L iモデルセルを示ず断面
図であり、第2〜3図は実施例1〜3(A−Cで表示)
と比較例1〜3(U−Wで表示)の複素平面IW折図で
、第2図は充放電前の状態を示し、第3図は10ザイク
ル充敢?′Iii&の状態を示す。第4図は実施例4〜
6の電池(1〕〜Zで表示)と比較例4〜6の電池(X
−Zで表示)の放電特性lνIを示ずつ2・・試験極、
 5・・対極、 14・・電解液i図 第2目 レジ人タン人rn> 片3図 レジ人タン人(−′1−)
Figure 1 shows 1. , i/Li model cells are not shown and are cross-sectional views, and Figures 2-3 are Examples 1-3 (indicated by A-C).
and Comparative Examples 1 to 3 (indicated by U-W). Fig. 2 shows the state before charging and discharging, and Fig. 3 shows the state after 10 cycles of charging. 'Iii& state is shown. Figure 4 shows Example 4~
6 batteries (indicated by 1 to Z) and comparative examples 4 to 6 batteries (X
−Z) indicates the discharge characteristic lνI of 2...test electrode,
5...Counter electrode, 14...Electrolyte i figure 2nd person register person rn> Figure 3 person person person tan person (-'1-)

Claims (1)

【特許請求の範囲】[Claims] fil リチウムまたはリチウム合金を負極活物質とす
る有機電解質電池において、電解液にポリエチレングリ
コール、ポリエチレンオキサイド、ポリプロピレングリ
コール、ポリプロピレンオキサイトおよびエチレンオキ
サイド−プロピレンオキサイド共重合体よりなる群から
選ばれた少なくとも1種を添加したことを特徴とする有
機電解質電池。
fil In an organic electrolyte battery using lithium or a lithium alloy as a negative electrode active material, the electrolyte contains at least one member selected from the group consisting of polyethylene glycol, polyethylene oxide, polypropylene glycol, polypropylene oxide, and ethylene oxide-propylene oxide copolymer. An organic electrolyte battery characterized by adding.
JP58150869A 1983-08-17 1983-08-17 Lithium organic secondary battery Expired - Lifetime JPH0614468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58150869A JPH0614468B2 (en) 1983-08-17 1983-08-17 Lithium organic secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58150869A JPH0614468B2 (en) 1983-08-17 1983-08-17 Lithium organic secondary battery

Publications (2)

Publication Number Publication Date
JPS6041773A true JPS6041773A (en) 1985-03-05
JPH0614468B2 JPH0614468B2 (en) 1994-02-23

Family

ID=15506152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58150869A Expired - Lifetime JPH0614468B2 (en) 1983-08-17 1983-08-17 Lithium organic secondary battery

Country Status (1)

Country Link
JP (1) JPH0614468B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118599A (en) * 1999-10-20 2001-04-27 Sony Corp Secondary cell of nonaqueous electroyte solution
JP2011086391A (en) * 2009-10-13 2011-04-28 Asahi Kasei Chemicals Corp Nonaqueous electrolyte solution
WO2013018212A1 (en) * 2011-08-03 2013-02-07 日立ビークルエナジー株式会社 Lithium-ion secondary battery electrolyte and lithium-ion secondary battery using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835874A (en) * 1981-08-27 1983-03-02 Kao Corp Chemical cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835874A (en) * 1981-08-27 1983-03-02 Kao Corp Chemical cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118599A (en) * 1999-10-20 2001-04-27 Sony Corp Secondary cell of nonaqueous electroyte solution
JP4505897B2 (en) * 1999-10-20 2010-07-21 ソニー株式会社 Non-aqueous electrolyte secondary battery
JP2011086391A (en) * 2009-10-13 2011-04-28 Asahi Kasei Chemicals Corp Nonaqueous electrolyte solution
WO2013018212A1 (en) * 2011-08-03 2013-02-07 日立ビークルエナジー株式会社 Lithium-ion secondary battery electrolyte and lithium-ion secondary battery using same

Also Published As

Publication number Publication date
JPH0614468B2 (en) 1994-02-23

Similar Documents

Publication Publication Date Title
ES2962468T3 (en) Pre-lithiation method for anode for secondary battery
CN103794749B (en) Battery, electrode, battery pack, electronic device, and electric vehicle
EP1114481B1 (en) Solid polymer alloy electrolyte in homogeneous state and manufacturing method therefor, and composite electrode, lithium polymer battery and lithium ion polymer battery using the same and manufacturing methods therefor
US6511776B1 (en) Polymer electrolyte battery and polymer electrolyte
US8916291B2 (en) Electrolytic solution and battery
JP3720300B2 (en) Non-aqueous electrolyte battery
US9774030B2 (en) Nonaqueous electrolyte secondary battery and battery pack
EP2772970A1 (en) Battery
US20010041290A1 (en) Lithium polymer secondary battery
CN103367807A (en) Nonaqueous electrolytic solution and lithium ion secondary battery
JP3869775B2 (en) Lithium secondary battery
JP5068449B2 (en) Lithium secondary battery
JPS6041773A (en) Organic electrolyte battery
EP4235874A1 (en) Secondary battery, battery module, battery pack and electric apparatus
CN100411241C (en) Organic electrolyte cell
JPS59108281A (en) Lithium secondary battery
WO2003067688A1 (en) Nonaqueous electrolyte secondary cell
JP2003203675A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary cell
JP6139939B2 (en) Non-aqueous electrolyte secondary battery
Subban et al. Charge–discharge characteristics of LiCoO2/mesocarbon microbeads battery with poly (vinyl chloride)-based composite polymer electrolyte
JPH08124597A (en) Solid electrolytic secondary cell
JPS62139276A (en) Lithium secondary battery
Sun et al. Performance characteristics of lithium-ion cells using in situ polymerized electrolytes
JPH0574464A (en) Sealed lead-acid storage battery
KR20230161427A (en) Secondary batteries and their battery modules, battery packs and electrical devices