JP2001117059A - Optical switching element - Google Patents

Optical switching element

Info

Publication number
JP2001117059A
JP2001117059A JP2000287904A JP2000287904A JP2001117059A JP 2001117059 A JP2001117059 A JP 2001117059A JP 2000287904 A JP2000287904 A JP 2000287904A JP 2000287904 A JP2000287904 A JP 2000287904A JP 2001117059 A JP2001117059 A JP 2001117059A
Authority
JP
Japan
Prior art keywords
thin film
epitaxial
substrate
oriented
ferroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000287904A
Other languages
Japanese (ja)
Other versions
JP3513532B2 (en
Inventor
Keiichi Nashimoto
恵一 梨本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP29762193A external-priority patent/JP3199091B2/en
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2000287904A priority Critical patent/JP3513532B2/en
Publication of JP2001117059A publication Critical patent/JP2001117059A/en
Application granted granted Critical
Publication of JP3513532B2 publication Critical patent/JP3513532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical switching element consisting of a laminated body of aligning thin films which are suitable for the manufacture of electronic elements such as an nonvolatile memory and capacitor, optical modulation elements or the like. SOLUTION: The optical switching element is equipped with a single crystal substrate 1a, a lower electrode 2 consisting of an epitaxial or aligning perovskite ABO3 conductive thin film formed on the substrate, a thin film optical waveguide 3 consisting of an epitaxial or aligning ABO3 ferroelectric material formed on the lower electrode and showing an electro-optic effect when light is introduced, and an upper electrode 4 formed on the thin film optical waveguide. The single crystal substrate has preferably an epitaxial or aligning buffer layer 1' on its surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、不揮発性メモリー
やキャパシター等の電子素子、更には光変調素子などの
作製に適した配向性強誘電体薄膜を有する光スイッチン
グ素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic device such as a nonvolatile memory and a capacitor, and more particularly to an optical switching device having an oriented ferroelectric thin film suitable for manufacturing a light modulation device and the like.

【0002】[0002]

【従来の技術】従来、酸化物強誘電体薄膜は強誘電体の
持つ強誘電性、圧電性、焦電性、電気光学効果等の多く
の性質により、不揮発性メモリーを始めとして、表面弾
性波素子、赤外線焦電素子、音響光学素子、電気光学素
子等、多くの応用が期待されている。これらの応用のう
ち、薄膜光導波路構造での低光損失化と単結晶並みの分
極特性や電気光学効果を得るために単結晶薄膜の作製が
不可欠である。そのため、BaTiO3 、PbTi
3 、Pb1-x Lax (Zr1-y Tiy )O3 (PLZ
T)、LiNbO3 、KNbO3 、Bi4 Ti3 12
のエピタキシャル強誘電体薄膜が、Rf−マグネトロン
・スパッタリング、イオン・ビーム・スパッタリング、
レーザー・アブレーション、有機金属化学蒸着(MOC
VD)等の方法によって、酸化物単結晶基板上に数多く
形成されている。また、半導体素子との集積化のために
は、半導体基板上への強誘電体薄膜の作製が必要であ
る。しかし、半導体基板上への強誘電体薄膜のエピタキ
シャル成長は、高成長温度、半導体と強誘電体との間の
相互拡散、半導体の酸化等のために難しい。
2. Description of the Related Art Conventionally, an oxide ferroelectric thin film has a surface acoustic wave, including non-volatile memory, due to many properties of a ferroelectric such as ferroelectricity, piezoelectricity, pyroelectricity, and electro-optic effect. Many applications are expected, such as devices, infrared pyroelectric devices, acousto-optic devices, and electro-optic devices. Among these applications, it is indispensable to produce a single-crystal thin film in order to reduce the optical loss in the thin-film optical waveguide structure and obtain polarization characteristics and electro-optic effects comparable to those of a single crystal. Therefore, BaTiO 3 , PbTi
O 3 , Pb 1-x La x (Zr 1-y Ti y ) O 3 (PLZ
T), an epitaxial ferroelectric thin film such as LiNbO 3 , KNbO 3 , Bi 4 Ti 3 O 12 is formed by Rf-magnetron sputtering, ion beam sputtering,
Laser ablation, metal organic chemical vapor deposition (MOC
VD) and many other methods are formed on an oxide single crystal substrate. Further, for integration with a semiconductor element, it is necessary to form a ferroelectric thin film on a semiconductor substrate. However, epitaxial growth of a ferroelectric thin film on a semiconductor substrate is difficult due to a high growth temperature, interdiffusion between the semiconductor and the ferroelectric, oxidation of the semiconductor, and the like.

【0003】これらの理由のため、半導体基板上へエピ
タキシャルが低温で成長し、強誘電体薄膜のエピタキシ
ャル成長を助け、かつ拡散バリアとしても働くキャッピ
ング層をバッファ層として半導体基板上に形成すること
が必要である。また、強誘電体の屈折率は一般にGaA
sよりも小さいが、強誘電体よりも小さい屈折率を持つ
バッファ層が得られれば、半導体レーザー光を強誘電体
薄膜光導波路中に閉じ込めることが可能になり、光変調
素子の半導体レーザー上への作製や光集積回路をSi半
導体集積回路上に作製することが可能になる。これに対
し、本発明者は、MgOを半導体(100)基板上へ
(100)エピタキシャル成長させることを既に提案し
た(米国特許出願D/91626,出願日1991.1
1.26.、特願平4−319228号)。この際の結
晶学的関係は、例えばGaAs上のBaTiO3 につい
てはBaTiO3 (001)//MgO(100)//Ga
As(100)、面内方位BaTiO3 [010]//M
gO[001]//GaAs[001]となる構造を作製
することができる。
[0003] For these reasons, it is necessary to form a capping layer on a semiconductor substrate as a buffer layer, which grows on a semiconductor substrate at a low temperature, assists the epitaxial growth of a ferroelectric thin film, and also functions as a diffusion barrier. It is. The refractive index of a ferroelectric is generally GaAs.
If a buffer layer having a refractive index smaller than s but smaller than a ferroelectric can be obtained, the semiconductor laser light can be confined in the ferroelectric thin-film optical waveguide, and the light can be condensed on the semiconductor laser of the light modulation element. And an optical integrated circuit can be manufactured on a Si semiconductor integrated circuit. In contrast, the present inventor has already proposed that MgO be (100) epitaxially grown on a semiconductor (100) substrate (US Patent Application D / 91626, filing date 1991.1).
1.26. And Japanese Patent Application No. 4-319228). The crystallographic relationship at this time is, for example, for BaTiO 3 on GaAs, BaTiO 3 (001) // MgO (100) // Ga
As (100), in-plane orientation BaTiO 3 [010] // M
A structure of gO [001] // GaAs [001] can be manufactured.

【0004】[0004]

【発明が解決しようとする課題】一方、各種の電子部品
に用いられる薄膜電極および薄膜発熱抵抗体としては、
一般に金属が用いられるが、Al,Cr等の金属薄膜は
酸化に弱く、Pd,Ag,Pt等の貴金属薄膜は酸化に
強い反面、コストが高い。また、強誘電体薄膜を用いた
不揮発性メモリーにおいては、Pt等の金属電極を用い
るとスイッチングに伴い強誘電体の疲労がみられる。近
年、酸化物電極が強誘電体薄膜のスイッチング疲労を抑
制することが知られ、例えばJ.Lee等,Appl.
Phys.Lett.,63,27(1993)では、
YBa2 Cu3 x のPb(Zr0. 52Ti0.48)O3
スイッチング疲労への効果が報告されている。しかし、
超伝導体であるYBa2 Cu3 x 薄膜の作製は酸素濃
度のコントロール等の面において容易でない。特開平4
−182393においては、RuO2 等への強誘電体薄
膜の成長が述べられているが、RuO2 はABO3 型強
誘電体との格子整合性が悪く、RuO 2 上の強誘電体薄
膜のエピタキシャル成長は難しい。また、特開昭61−
225711においては、BaPbO3 等の導電性酸化
物の作製が述べられているが、ペースト法による厚膜で
あり、薄膜を必要とする電子素子には不適である。そこ
で、本発明は、上述の問題点に鑑みてなされたものであ
って、不揮発性メモリーやキャパシター等の電子素子、
更には光変調素子などを作製するに適した配向性強誘電
体薄膜を用いた光スイッチング素子を提供することを目
的とする。
On the other hand, various electronic parts
The thin-film electrodes and thin-film heating resistors used for
In general, metal is used, but metal thin films such as Al and Cr
Vulnerable to oxidation, noble metal thin films such as Pd, Ag, Pt
Strong, but expensive. In addition, using a ferroelectric thin film
In a nonvolatile memory, a metal electrode such as Pt is used.
Then, the fatigue of the ferroelectric is observed with the switching. Nearby
Years, oxide electrode suppresses switching fatigue of ferroelectric thin film
For example, J.I. Lee et al., Appl.
Phys. Lett. ,63, 27 (1993)
YBaTwoCuThreeOxPb (Zr0. 52Ti0.48) OThreeof
The effect on switching fatigue has been reported. But,
YBa, a superconductorTwoCuThreeOxOxygen concentration for thin film preparation
It is not easy in terms of degree control. JP 4
In -182393, RuOTwoFerroelectric thin
Although film growth is mentioned, RuOTwoIs ABOThreeType strength
Poor lattice matching with dielectric, RuO TwoUpper ferroelectric thin
Epitaxial growth of the film is difficult. In addition, Japanese Unexamined Patent Publication No.
In 225711, BaPbOThreeConductive oxidation such as
The production of a product is described, but it is a thick film by the paste method.
It is not suitable for an electronic device requiring a thin film. There
Therefore, the present invention has been made in view of the above-mentioned problems.
That is, electronic devices such as nonvolatile memories and capacitors,
Furthermore, oriented ferroelectrics suitable for manufacturing light modulation elements, etc.
Aiming to provide optical switching elements using thin film
Target.

【0005】[0005]

【課題を解決するための手段】本発明者は、不揮発性メ
モリーや光変調素子等の作製に適した配向性強誘電体薄
膜について、鋭意研究を重ねてきたところ、エピタキシ
ャルまたは配向性の強誘電体薄膜をエピタキシャルまた
は配向性の導電性薄膜を利用して形成することによっ
て、強誘電体の大きな残留分極値や大きな電気光学定数
等を得ることができるという知見に基づいて、本発明を
完成したものである。すなわち、本発明の光スイッチン
グ素子は、光が導入されるとともに電気光学効果を奏す
る薄膜光導波路と、前記薄膜光導波路の膜厚方向の上下
に位置し前記膜厚方向に電圧を印加するための上部電極
及び下部電極を備えたものである。この光スイッチング
素子は、さらに単結晶基板を備え、前記下部電極が前記
単結晶基板上に設けられたエピタキシャルまたは配向性
の導電性薄膜であり、前記薄膜光導波路がエピタキシャ
ルまたは配向性の強誘電体薄膜であってもよい。また、
前記基板と前記下部電極の間にエピタキシャルまたは配
向性のバッファ層を設けてもよい。
The inventor of the present invention has conducted intensive studies on an oriented ferroelectric thin film suitable for manufacturing a nonvolatile memory, a light modulation element, and the like. The present invention has been completed based on the knowledge that a ferroelectric substance can obtain a large remanent polarization value or a large electro-optical constant by forming a body thin film using an epitaxial or oriented conductive thin film. Things. That is, the optical switching element of the present invention is a thin-film optical waveguide in which light is introduced and exerts an electro-optical effect, and a thin-film optical waveguide for applying a voltage in the film-thickness direction positioned above and below the film-thickness direction. It has an upper electrode and a lower electrode. The optical switching element further includes a single crystal substrate, the lower electrode is an epitaxial or oriented conductive thin film provided on the single crystal substrate, and the thin film optical waveguide is an epitaxial or oriented ferroelectric substance. It may be a thin film. Also,
An epitaxial or oriented buffer layer may be provided between the substrate and the lower electrode.

【0006】さらに具体的には、本発明の光スイッチン
グ素子は、単結晶基板と、その上に形成されたエピタキ
シャルまたは配向性のペロブスカイトABO3 型導電性
薄膜よりなる下部電極と、該下部電極の上に形成された
エピタキシャルまたは配向性のABO3 型強誘電体より
なる、光の導入により電気光学効果を示す薄膜光導波路
と、該薄膜光導波路の上に設けた上部電極とを具備す
る。単結晶基板は、その表面にエピタキシャルまたは配
向性のバッファ層を有しているのが好ましい。
More specifically, the optical switching element of the present invention comprises a single crystal substrate, a lower electrode made of an epitaxial or oriented perovskite ABO 3 type conductive thin film formed thereon, It comprises a thin film optical waveguide formed of an epitaxial or oriented ABO 3 type ferroelectric formed thereon and exhibiting an electro-optical effect by introducing light, and an upper electrode provided on the thin film optical waveguide. The single crystal substrate preferably has an epitaxial or oriented buffer layer on its surface.

【0007】[0007]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明の光スイッチング素子における配向性薄膜
の積層体は、酸化物であるMgO,MgAl2 4 ,S
rTiO3 ,BaZrO3 ,LaAlO3 ,ZnO,A
2 3 、単体半導体であるSi,Ge,ダイアモン
ド、III −V系の化合物半導体であるAlAs,AlS
b,AlP,GaAs,GaSb,InP,InAs,
InSb,AlGaP,AlInP,AlGaAs,A
lInAs,AlAsSb,GaInAs,GaInS
b,GaAsSb,InAsSb、II−VI系の化合物半
導体であるZnS,ZnSe,ZnTe,CdS,Cd
Se,CdTe,HgSe,HgTe等より選ばれる単
結晶基板上、またはエピタキシャルまたは配向性のバッ
ファ層を表面に持つこれらの単結晶基板上に、エピタキ
シャルまたは配向性のペロブスカイトABO3 型導電性
薄膜よりなる下部電極が形成され、更にその上にエピタ
キシャルまたは配向性のABO3 型強誘電体薄膜よりな
る薄膜光導波路が形成される。この光導波路の上には、
例えば、櫛形の上部電極が設けられる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The laminate of the oriented thin films in the optical switching element of the present invention is composed of oxides of MgO, MgAl 2 O 4 , S
rTiO 3 , BaZrO 3 , LaAlO 3 , ZnO, A
l 2 O 3 , simple semiconductors such as Si, Ge and diamond, and III-V based compound semiconductors such as AlAs and AlS
b, AlP, GaAs, GaSb, InP, InAs,
InSb, AlGaP, AlInP, AlGaAs, A
lInAs, AlAsSb, GaInAs, GaInS
b, GaAsSb, InAsSb, ZnS, ZnSe, ZnTe, CdS, Cd, which are II-VI based compound semiconductors
An epitaxial or oriented perovskite ABO 3 type conductive thin film is formed on a single crystal substrate selected from Se, CdTe, HgSe, HgTe, etc., or on these single crystal substrates having an epitaxial or oriented buffer layer on the surface. A lower electrode is formed, and a thin film optical waveguide made of an epitaxial or oriented ABO 3 type ferroelectric thin film is formed thereon. On top of this optical waveguide,
For example, a comb-shaped upper electrode is provided.

【0008】上記バッファ層としては、MgO,MgA
2 4 等の単層バッファ層、またはPb(Zr0.53
0.47)O3 (PZT)/MgO等の二層以上のバッフ
ァ層を用いることができる。上記ペロブスカイトABO
3 型導電性薄膜としては、BaPbO3 または(Ba
1-2x/m2x/m)(Pb1-4y/n4y/n)O3 で表される酸
化物導電性薄膜が挙げられる。ここで、Cは周期律表I
a族,IIa族およびIII a族より選ばれる少なくとも一
種の原子を表し、Dは周期律表IIb族,IVa族,IVb
族,Va族,Vb族およびVIII族より選ばれる少なくと
も一種の原子を表す。これらの原子のうち、CはLi,
Na,K,Sr,Y,La,Ce,Gdの少なくとも一
つが望ましく、DはSi,Ti,V,Fe,Co,Z
n,Zr,Nb,Sn,Sb,Ta,Biの少なくとも
一つが望ましい。xおよびyは、0<x,y≦1であ
り、mはCの原子価を意味し、nはDの原子価を意味す
る。上記ABO3 型強誘電体薄膜のAは、Li,K,S
r,Ba,La,Pbの少なくとも一つを含み、BはM
g,Ti,Zr,Nb,Taの少なくとも一つを含む。
The buffer layer is made of MgO, MgA
buffer layer such as l 2 O 4 or Pb (Zr 0.53 T
i 0.47 ) Two or more buffer layers such as O 3 (PZT) / MgO can be used. The above perovskite ABO
As the type 3 conductive thin film, BaPbO 3 or (Ba
1-2x / m C 2x / m) (Pb 1-4y / n D 4y / n) conductive oxide thin film represented by O 3 and the like. Where C is the periodic table I
a represents at least one atom selected from group a, group IIa and group IIIa, and D represents group IIb, group IVa or group IVb of the periodic table
And represents at least one atom selected from the group consisting of Group V, Group Va, Group Vb and Group VIII. Of these atoms, C is Li,
At least one of Na, K, Sr, Y, La, Ce, and Gd is desirable, and D is Si, Ti, V, Fe, Co, Z
At least one of n, Zr, Nb, Sn, Sb, Ta, and Bi is desirable. x and y are 0 <x, y ≦ 1, m means the valence of C, and n means the valence of D. A of the ABO 3 type ferroelectric thin film is Li, K, S
r, at least one of Ba, La, and Pb, and B is M
g, at least one of Ti, Zr, Nb, and Ta.

【0009】上記導電性薄膜および強誘電体薄膜は、電
子ビーム蒸着、フラッシュ蒸着、イオン・プレーティン
グ、Rf−マグネトロン・スパッタリング、イオン・ビ
ーム・スパッタリング、レーザー・アブレーション、モ
レキュラー・ビーム・エピタキシー(MBE)、化学蒸
着(CVD)、プラズマCVD、有機金属化学蒸着(M
OCVD)等より選ばれる気相成長法およびゾルゲル法
等のウェット・プロセスのいずれかまたはそれらの複数
の方法により形成される。エピタキシャルまたは配向性
の薄膜成長に影響する要因としては、材料間の格子定数
の差、結晶構造の差、結晶対称性の差、熱膨張係数の
差、表面の静電気的状態の差等が挙げられるが、格子整
合が最も重要な要因の一つである。
The conductive thin film and the ferroelectric thin film are formed by electron beam evaporation, flash evaporation, ion plating, Rf-magnetron sputtering, ion beam sputtering, laser ablation, molecular beam epitaxy (MBE). , Chemical vapor deposition (CVD), plasma CVD, metal organic chemical vapor deposition (M
OCVD) or a wet process such as a sol-gel method or a plurality thereof. Factors affecting epitaxial or oriented thin film growth include differences in lattice constants between materials, differences in crystal structure, differences in crystal symmetry, differences in thermal expansion coefficients, differences in surface electrostatic state, etc. However, lattice matching is one of the most important factors.

【0010】次に、強誘電体層、導電体層および単結晶
基板、更にバッファ層を組合せた本発明の光スイッチン
グ素子に用いられる代表的な配向性薄膜の積層体の例を
幾つか下記の表に掲げる。 1)結晶形が正方晶または立方晶の強誘電体層、立方晶
の導電体層および立方晶の酸化物単結晶基板の結晶構造
および格子定数の関係を表1に示す。
Next, several examples of a typical oriented thin film laminate used in the optical switching element of the present invention, in which a ferroelectric layer, a conductor layer, a single crystal substrate, and a buffer layer are combined, are described below. It is listed in the table. 1) Table 1 shows the relationship between the crystal structure and the lattice constant of a ferroelectric layer having a tetragonal or cubic crystal form, a cubic conductor layer, and a cubic oxide single crystal substrate.

【表1】 [Table 1]

【0011】2)結晶形が六方晶の強誘電体層、立方晶
の導電体層および六方晶または立方晶の酸化物単結晶基
板の結晶構造および格子定数の関係を表2に示す。
2) Table 2 shows the relationship between the crystal structure and the lattice constant of a ferroelectric layer having a hexagonal crystal structure, a cubic conductor layer, and a hexagonal or cubic oxide single crystal substrate.

【表2】 [Table 2]

【0012】3)基板上にバッファ層を形成した強誘電
体層、導電体層および酸化物単結晶基板の結晶構造およ
び格子定数の関係を表3に示す。
3) Table 3 shows the relationship between the crystal structure and the lattice constant of the ferroelectric layer, the conductive layer, and the oxide single crystal substrate each having the buffer layer formed on the substrate.

【表3】 [Table 3]

【0013】4)基板が半導体からなる強誘電体層、導
電体層、バッファ層および半導体単結晶基板の結晶構造
および格子定数の関係を表4に示す。
4) Table 4 shows the relationship between the crystal structure and the lattice constant of the ferroelectric layer, the conductor layer, the buffer layer, and the semiconductor single crystal substrate whose substrate is made of a semiconductor.

【表4】 [Table 4]

【0014】5)バッファ層を二層形成した強誘電体
層、導電体層、第二バッファ層、第一バッファ層および
半導体単結晶基板の結晶構造および格子定数の関係を表
5に示す。
5) Table 5 shows the relationship between the crystal structure and the lattice constant of the ferroelectric layer, the conductor layer, the second buffer layer, the first buffer layer, and the semiconductor single crystal substrate in which two buffer layers are formed.

【表5】 [Table 5]

【0015】[0015]

【実施例】以下に、実施例によって本発明をより具体的
に説明するが、本発明はこれらの実施例に限定されるも
のではない。 実施例1 金属アルコキシドであるBa(OC2 5 2 およびP
b(OC3 7 2 の等モル量を無水の2−メトキシエ
タノールに溶解し、0.5M溶液を得た。この溶液を攪
拌しつつ2時間蒸留し、更に22時間還流してダブル・
アルコキシドBaPb(OC2 4 OCH3 4 を得
た。この前駆体溶液を0.2μmのフィルターに通し
て、MgO(100)単結晶基板へ2000rpmでス
ピンコーティングを行った。以上の操作はすべて窒素雰
囲気中で行った。スピンコーティングの前に、基板は溶
剤洗浄、塩酸によるエッチング、脱イオン水によるリン
スを行い、最後に窒素気流中でエタノールのスピンコー
ティングによって乾燥した。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Example 1 Metal alkoxides Ba (OC 2 H 5 ) 2 and P
An equimolar amount of b (OC 3 H 7 ) 2 was dissolved in anhydrous 2-methoxyethanol to obtain a 0.5 M solution. The solution was distilled for 2 hours with stirring, refluxed for another 22 hours, and
The alkoxide BaPb (OC 2 H 4 OCH 3 ) 4 was obtained. This precursor solution was passed through a 0.2 μm filter, and spin-coated on a MgO (100) single crystal substrate at 2000 rpm. All of the above operations were performed in a nitrogen atmosphere. Prior to spin coating, the substrate was rinsed with solvent, etched with hydrochloric acid, rinsed with deionized water, and finally dried by spin coating with ethanol in a stream of nitrogen.

【0016】スピンコーティングされた基板は、室温に
て脱イオン水中でバブリングした酸素雰囲気中で10℃
/secの速度で急速昇温して300℃に2分間保持し
た後、650℃に30分間保持し、最後に電気炉の電源
を切り冷却した。この結果、MgO上に膜厚0.1μm
のBaPbO3 薄膜が、(110)に配向して結晶化し
たX線回折パターンを示した。得られたBaPbO3
膜の抵抗を四端子法によって測定したところ、薄膜は2
×10-4Ω・cmの低い抵抗値を示した。BaPbO3
はバンド・ギャップが小さいため金属的電気伝導を示す
が、可視光に対してはこのため透明ではない。しかし、
本実施例におけるBaPbO3 薄膜は、アニール温度、
膜厚または組成によっては、可視光に対してある程度の
透明性が観察された。
The spin-coated substrate is heated at 10 ° C. in an oxygen atmosphere bubbled in deionized water at room temperature.
After rapidly raising the temperature at a rate of / sec and maintaining the temperature at 300 ° C. for 2 minutes, the temperature was maintained at 650 ° C. for 30 minutes. Finally, the electric furnace was turned off and cooled. As a result, a film thickness of 0.1 μm
Showed an X-ray diffraction pattern in which the BaPbO 3 thin film was crystallized with (110) orientation. The resistance of the obtained BaPbO 3 thin film was measured by a four-terminal method.
A low resistance value of × 10 −4 Ω · cm was exhibited. BaPbO 3
Has metallic conductivity due to its small band gap, but is not transparent to visible light. But,
The BaPbO 3 thin film in this embodiment has an annealing temperature,
Some transparency to visible light was observed depending on the film thickness or composition.

【0017】次に、上記のBaPbO3 (110)/M
gO(100)基板上に、Pb濃度で0.5MのPb
(Zr0.53Ti0.47)O3 (PZT)の前駆体溶液を2
000rpmでスピンコーティングを行った。この前駆
体溶液は、モル比でPb:Zr:Ti=1.00:0.
53:0.47のPb(CH3 COO)2 、Zr(O -
i-C3 7 4 およびTi(O -i-C3 7 4 を2−
メトキシエタノールに溶解し、6時間蒸留した後、18
時間還流することにより得た。以上の操作はすべて窒素
雰囲気中で行った。スピンコーティングされた基板は、
10℃/secで昇温し、酸素雰囲気中350℃で1分
間熱分解を行った後、基板を650℃で30分間加熱す
ることによりPZT薄膜が結晶化した。得られた配向性
薄膜の積層体は、図1に示すように、酸化物基板1aお
よびBaPbO3 (110)からなる導電体層2上に、
PZT薄膜が(110)に配向した強誘電体層3が形成
されている。更に、このPZT薄膜上にBaPbO3
膜を上記と同じ方法によって再度形成した。このように
して作製したBaPbO3 /PZT/BaPbO3 /M
gO素子を用いて、BaPbO3 を上下部電極として電
圧を印加することによりPZTの分極特性を試験したと
ころ、金属電極と比較して良好なスイッチング特性と疲
労特性を示した。
Next, the above BaPbO 3 (110) / M
0.5M Pb with a Pb concentration of 0.5M on a gO (100) substrate
(Zr 0.53 Ti 0.47 ) O 3 (PZT)
Spin coating was performed at 000 rpm. This precursor solution has a molar ratio of Pb: Zr: Ti = 1.00: 0.
53: 0.47 Pb (CH 3 COO) 2 , Zr (O −
The i-C 3 H 7) 4 and Ti (O -i-C 3 H 7) 4 2-
After dissolving in methoxyethanol and distilling for 6 hours, 18
Obtained by refluxing for hours. All of the above operations were performed in a nitrogen atmosphere. The spin-coated substrate is
After the temperature was raised at 10 ° C./sec and pyrolysis was performed at 350 ° C. for 1 minute in an oxygen atmosphere, the substrate was heated at 650 ° C. for 30 minutes to crystallize the PZT thin film. As shown in FIG. 1, the obtained laminate of the oriented thin film is formed on an oxide substrate 1a and a conductor layer 2 composed of BaPbO 3 (110).
The ferroelectric layer 3 in which the PZT thin film is oriented in (110) is formed. Further, a BaPbO 3 thin film was formed again on the PZT thin film by the same method as described above. BaPbO 3 / PZT / BaPbO 3 / M thus produced
The polarization characteristics of PZT were tested by applying a voltage with BaPbO 3 as the upper and lower electrodes using the gO element. As a result, the switching characteristics and fatigue characteristics were better than those of the metal electrode.

【0018】実施例2 MgO単結晶基板をSrTiO3 (100)単結晶基板
に代えた以外は、実施例1と同様にして、配向性薄膜の
積層体を得た。この薄膜は、図2に示すように、基板1
a上に(100)に配向したBaPbO3 からなる導電
体層2および(001)に配向したPZT薄膜からなる
強誘電体層3が形成されている。実施例1,2のような
エピタキシャルまたは配向性成長する強誘電体、導電体
および酸化物単結晶基板の組合せの例を前記表1に示し
てある。更に、実施例1と同様にして、PZT薄膜上に
BaPbO3 薄膜を再度形成した。このBaPbO3
PZT/BaPbO3 /SrTiO3 素子を用いて、B
aPbO3 を上下部電極として電圧を印加することによ
りPZTの分極特性を試験したところ、実施例1と同様
に、金属電極と比較して良好なスイッチング特性と疲労
特性を示した。
Example 2 A laminate of an oriented thin film was obtained in the same manner as in Example 1 except that the MgO single crystal substrate was replaced with a SrTiO 3 (100) single crystal substrate. This thin film is, as shown in FIG.
A conductive layer 2 made of BaPbO 3 oriented in (100) and a ferroelectric layer 3 made of a PZT thin film oriented in (001) are formed on a. Table 1 shows examples of combinations of ferroelectrics, conductors, and oxide single crystal substrates which are epitaxially or oriented and grown as in Examples 1 and 2. Further, a BaPbO 3 thin film was formed again on the PZT thin film in the same manner as in Example 1. This BaPbO 3 /
Using a PZT / BaPbO 3 / SrTiO 3 element,
When the polarization characteristics of PZT were tested by applying a voltage using aPbO 3 as the upper and lower electrodes, as in Example 1, good switching characteristics and fatigue characteristics were exhibited as compared with the metal electrodes.

【0019】実施例3 原料として、モル比でBa:Sr:Pb=0.8:0.
2:1.0のBa(OC2 5 2 、Sr(OC
2 5 2 およびPb(OC3 7 2 を無水の2−メ
トキシエタノールに溶解し、Pb濃度で0.5Mの溶液
を得た。この溶液を攪拌しつつ2時間蒸留し、更に22
時間還流して複合アルコキシドを得た。この前駆体溶液
を0.2μmのフィルターに通して、(Ba0.8 Sr
0.2 )Pb(OC 2 4 OCH3 4 溶液をAl2 3
(0001)単結晶基板へ2000rpmでスピンコー
ティングを行った。以上の操作はすべて窒素雰囲気中で
行い、スピンコーティングの前に、基板は実施例1と同
様に溶剤洗浄、エッチング、リンス、乾燥を行った。ス
ピンコーティングされた基板は、乾燥した酸素雰囲気中
10℃/secで昇温して300℃に保持した後、65
0℃に保持し、最後に電気炉の電源を切り冷却した。こ
れにより、(111)配向性を持つ(Ba0.8
0.2 )PbO3 薄膜が得られ、この薄膜は5×10-4
Ω・cmの低い抵抗値を示した。
Example 3 As a raw material, a molar ratio of Ba: Sr: Pb = 0.8: 0.
2: 1.0 Ba (OCTwoHFive)Two, Sr (OC
TwoHFive)TwoAnd Pb (OCThreeH7)TwoTo anhydrous 2-meth
Dissolved in Toxiethanol, 0.5M solution with Pb concentration
I got The solution was distilled for 2 hours with stirring and a further 22 hours.
After refluxing for an hour, a complex alkoxide was obtained. This precursor solution
Through a 0.2 μm filter, (Ba0.8Sr
0.2) Pb (OC TwoHFourOCHThree)FourAl solutionTwoOThree
Spin coating on (0001) single crystal substrate at 2000 rpm
I went to the meeting. All of the above operations are performed in a nitrogen atmosphere
And before spin coating, the substrate was the same as in Example 1.
Washing, etching, rinsing and drying were performed in the same manner. S
Pin-coated substrates are placed in a dry oxygen atmosphere
After the temperature was raised at 10 ° C / sec and maintained at 300 ° C, 65
The temperature was kept at 0 ° C., and finally, the electric furnace was turned off and cooled. This
Thereby, (Ba) having (111) orientation is obtained.0.8S
r0.2) PbOThreeA thin film is obtained, which is 5 × 10-Four
It exhibited a low resistance value of Ω · cm.

【0020】次に、原料として所定のモル比のLiOC
2 5 およびNb(OC2 5 5を無水の2−メトキ
シエタノールに溶解し、0.5M溶液を得た。この溶液
を攪拌しつつ2時間蒸留し、更に22時間還流してダブ
ル・アルコキシドを得た。その後、この溶液を0.2μ
mのフィルターに通して、LiNb(OC2 4 OCH
3 6 溶液をAl2 3 (0001)単結晶基板へ20
00rpmでスピンコーティングを行った。以上の操作
はすべて窒素雰囲気中で行い、スピンコーティングの前
に、基板は実施例1と同様に溶剤洗浄、エッチング、リ
ンス、乾燥を行った。(Ba0.8 Sr0.2 )PbO3
立方晶であるが、BaPbO3 の(111)面に対して
は六方晶系強誘電体の(0001)面がその対称性にお
いて等しく、上記スピンコーティングにより、(000
1)配向を持つLiNbO3 薄膜が得られ、LiNbO
3 (0001)/(Ba0.8 Sr0.2 )PbO3 (11
1)/Al2 3 (0001)の薄膜構造を作製するこ
とができた。図3には、実施例1,2と同様の層構造を
有する配向性薄膜の積層体が示されている。このような
強誘電体、導電体および単結晶基板の組合せの例を前記
表2に示してある。
Next, LiOC having a predetermined molar ratio is used as a raw material.
2 H 5 and Nb a (OC 2 H 5) 5 was dissolved in 2-methoxyethanol anhydrous give a 0.5M solution. This solution was distilled for 2 hours while stirring, and refluxed for 22 hours to obtain a double alkoxide. Then, add 0.2μ
m and passed through a filter of LiNb (OC 2 H 4 OCH
3) 6 solution Al 2 O 3 (0001) 20 into the single-crystal substrate
Spin coating was performed at 00 rpm. All the above operations were performed in a nitrogen atmosphere, and the substrate was subjected to solvent washing, etching, rinsing, and drying in the same manner as in Example 1 before spin coating. (Ba 0.8 Sr 0.2 ) PbO 3 is cubic, but the (111) plane of BaPbO 3 has the same symmetry in the (0001) plane of the hexagonal ferroelectric substance. 000
1) A LiNbO 3 thin film having an orientation is obtained, and LiNbO 3
3 (0001) / (Ba 0.8 Sr 0.2 ) PbO 3 (11
1) A thin film structure of / Al 2 O 3 (0001) was produced. FIG. 3 shows a stack of oriented thin films having the same layer structure as in Examples 1 and 2. Table 2 shows examples of such combinations of ferroelectrics, conductors and single crystal substrates.

【0021】実施例4 実施例1と同様にして、PZTの前駆体溶液をSrTi
3 (100)単結晶基板上に2000rpmでスピン
コーティングし、基板を酸素雰囲気中10℃/secで
昇温して350℃で熱分解した後、650℃でアニール
することにより(001)の方位にエピタキシャルなP
ZT薄膜を得た。このPZT薄膜をエピタキシャル・バ
ッファ層として、BaPbO3 を実施例1と同様にして
形成すると、BaPbO3 は(100)の方位にエピタ
キシャルに結晶化した。更に、この上に、実施例1と同
様の方法により膜厚0.35μmの(Pb0.72
0.28)TiO3 (PLT)薄膜を形成することによっ
て、PLT(001)/BaPbO3 (100)/PZ
T(001)/SrTiO3 (100)の多層エピタキ
シャル構造を得た。図4には、表面にバッファ層1′を
有する酸化物基板1a上に導電体層2および強誘電体層
3からなる配向性薄膜の積層体が示されている。このよ
うな強誘電体、導電体、バッファ層および単結晶基板の
組合せの例を前記表3に示してある。
Example 4 In the same manner as in Example 1, the PZT precursor solution was changed to SrTi
The substrate was spin-coated at 2000 rpm on an O 3 (100) single crystal substrate, heated in an oxygen atmosphere at 10 ° C./sec, thermally decomposed at 350 ° C., and annealed at 650 ° C. to obtain the orientation of (001). Epitaxial P
A ZT thin film was obtained. When this PZT thin film was used as an epitaxial buffer layer and BaPbO 3 was formed in the same manner as in Example 1, BaPbO 3 was crystallized epitaxially in the (100) direction. Further, a 0.35 μm-thick (Pb 0.72 L) film was formed thereon in the same manner as in Example 1.
By forming a 0.28 ) TiO 3 (PLT) thin film, PLT (001) / BaPbO 3 (100) / PZ
A multilayer epitaxial structure of T (001) / SrTiO 3 (100) was obtained. FIG. 4 shows a laminate of an oriented thin film composed of a conductor layer 2 and a ferroelectric layer 3 on an oxide substrate 1a having a buffer layer 1 'on the surface. Table 3 shows examples of combinations of such ferroelectrics, conductors, buffer layers, and single-crystal substrates.

【0022】次に、上記PLT表面に櫛形の上部Al電
極を設けることにより、PLT薄膜光導波路にプリズム
・カップリングによりレーザー光を導入した。図5に示
すように、PLT薄膜の上部電極4であるAlと下部電
極2であるBaPbO3 (導電体層)との間に電圧を印
加すると、電気力線5の電気光学効果によるブラッグ反
射により導入されたレーザー光のスイッチングが可能と
なった。この際、下部電極を形成することなくPLTの
表面に対向する櫛形電極4′のみを設けた図6に示す一
般的なコプレーナー型素子に比べて、電極間間隔がPL
Tの膜厚に等しい0.35μmとすることが容易であ
る。
Next, by providing a comb-shaped upper Al electrode on the surface of the PLT, laser light was introduced into the PLT thin film optical waveguide by prism coupling. As shown in FIG. 5, when a voltage is applied between Al, which is the upper electrode 4 of the PLT thin film, and BaPbO 3 (conductor layer), which is the lower electrode 2, Bragg reflection due to the electro-optic effect of the electric flux lines 5 occurs. Switching of the introduced laser light is now possible. At this time, as compared with the general coplanar type element shown in FIG. 6 in which only the comb-shaped electrode 4 'facing the surface of the PLT without forming the lower electrode, the distance between the electrodes is PL.
It is easy to set the thickness to 0.35 μm, which is equal to the thickness of T.

【0023】その結果、PLTの膜厚方向に有効に電圧
を印加することが可能なために駆動電圧が低く、電極間
幅が電極の微細加工技術による制約を受けないために素
子の作製が極めて容易となった。このように、絶縁性の
基板上にエピタキシャル電極薄膜が作製可能なため、エ
ピタキシャル強誘電体薄膜が電極上に作製できる。した
がって、エピタキシャル電極を設けることなくして、従
来絶縁性基板上または絶縁性薄膜上に作製不可能であっ
たキャパシター型電極構造を有する素子の作製が可能と
なった。
As a result, since a voltage can be effectively applied in the thickness direction of the PLT, the driving voltage is low, and the width between the electrodes is not restricted by the fine processing technology of the electrodes. It became easy. Thus, since an epitaxial electrode thin film can be formed on an insulating substrate, an epitaxial ferroelectric thin film can be formed on an electrode. Therefore, an element having a capacitor-type electrode structure that could not be conventionally formed on an insulating substrate or an insulating thin film can be manufactured without providing an epitaxial electrode.

【0024】実施例5 ターゲット表面をUVレーザー・パルスにより瞬間的に
加熱して蒸着するエキシマ・レーザー・デポジション法
によって、GaAs(100)単結晶基板上にエピタキ
シャル・バッファ層を形成した。すなわち、レーザー
は、波長308nmのXeClエキシマ・レーザーを用
い、パルス周期4Hz、パルス長17ns、エネルギー
130mJ(ターゲット表面でのエネルギー密度1.3
J/cm2)の条件とした。ターゲットは金属Mgを用
い、MgOを反応成長させた。GaAs単結晶基板は溶
剤洗浄後、硫酸系の溶液でエッチングを行った。更に、
この基板を脱イオン水とエタノールでリンスし、最後に
窒素気流下でエタノールによるスピン乾燥を行った。ス
ピン乾燥後に、基板を直ちにデポジション・チャンバー
に導入し、350℃に加熱して400オングストロームのエピ
タキシャルMgO(100)バッファ層の成膜を行っ
た。続いて、700℃でMgOバッファ層上へ膜厚10
00オングストロームのBaPbO3 (100)を、更に膜厚
2000オングストロームのBaTiO3 (001)をその場
エピタキシャル成長した。得られた配向性薄膜の積層体
の層構造を図7に示す。この層構造は、表面にバッファ
層1′を有する半導体基板1b上に導電体層(下部電
極)2および強誘電体層(薄膜光導波路)3が形成され
ている。このような強誘電体、導電体、バッファ層およ
び半導体単結晶基板の組合せの例を前記表4に示してあ
る。
Example 5 An epitaxial buffer layer was formed on a GaAs (100) single crystal substrate by an excimer laser deposition method in which the target surface was instantaneously heated and deposited by a UV laser pulse. That is, a XeCl excimer laser having a wavelength of 308 nm is used as the laser, and the pulse period is 4 Hz, the pulse length is 17 ns, and the energy is 130 mJ (the energy density on the target surface is 1.3).
J / cm 2 ). MgO was used as a target, and MgO was reacted and grown. The GaAs single crystal substrate was etched with a sulfuric acid-based solution after washing with a solvent. Furthermore,
This substrate was rinsed with deionized water and ethanol, and finally spin-dried with ethanol under a nitrogen stream. After spin drying, the substrate was immediately introduced into a deposition chamber and heated to 350 ° C. to form a 400 Å epitaxial MgO (100) buffer layer. Subsequently, a film thickness of 10 was formed on the MgO buffer layer at 700 ° C.
In-situ epitaxial growth was performed on 00 Å of BaPbO 3 (100) and further on 2000 Å of BaTiO 3 (001). FIG. 7 shows the layer structure of the obtained laminate of oriented thin films. In this layer structure, a conductor layer (lower electrode) 2 and a ferroelectric layer (thin film optical waveguide) 3 are formed on a semiconductor substrate 1b having a buffer layer 1 'on the surface. Table 4 shows examples of combinations of such ferroelectrics, conductors, buffer layers, and semiconductor single-crystal substrates.

【0025】実施例6 実施例5と同様にして、エキシマ・レーザー・デポジシ
ョン法によってGaAs(100)単結晶基板にエピタ
キシャルMgOバッファ層の成膜を行った。次に、先の
実施例と同様にして、前駆体溶液よりPZT、BaPb
3 、更にPLTを形成することにより、PLT(00
1)/BaPbO3 (100)/PZT(001)/M
gO(100)/GaAs(100)の多層エピタキシ
ャル構造を得た。図8には、表面に第一バッファ層1′
aおよび第二バッファ層1′bを有する半導体基板1b
上に、導電体層(下部電極)2および強誘電体層(薄膜
光導波路)3からなる配向性薄膜の積層体が示されてい
る。このような強誘電体、導電体、第二バッファ層、第
一バッファ層および半導体単結晶基板の組合せの例を前
記表5に示してある。次に、上記PLT表面に櫛形の上
部Al電極を設けることにより、レーザー光を導入し
た。図9に示すように、PLT薄膜導波路に導入された
レーザー光は、PLT薄膜の上部電極4であるAlと下
部電極2であるBaPbO3 (導電体層)との間に電圧
を印加すると、電気力線5の電気光学効果によるブラッ
グ反射によりレーザー光のスイッチングが可能となっ
た。したがって、この素子は実施例4と同様に光導波路
として利用可能である。また、PLTの表面に対向する
櫛形電極4′のみを設けた図10に示す素子に比べて、
PLTの膜厚方向に有効に電圧を印加することが可能な
ために駆動電圧が低く、更に電極間幅が電極の微細加工
による制約を受けないために素子の作製が極めて容易と
なった。
Example 6 In the same manner as in Example 5, an epitaxial MgO buffer layer was formed on a GaAs (100) single crystal substrate by excimer laser deposition. Next, in the same manner as in the previous example, PZT, BaPb
O 3 and PLT to form PLT (00
1) / BaPbO 3 (100) / PZT (001) / M
A multilayer epitaxial structure of gO (100) / GaAs (100) was obtained. FIG. 8 shows that the first buffer layer 1 '
a and a semiconductor substrate 1b having a second buffer layer 1'b
Above, a laminate of an oriented thin film composed of a conductor layer (lower electrode) 2 and a ferroelectric layer (thin film optical waveguide) 3 is shown. Table 5 shows examples of combinations of such ferroelectrics, conductors, second buffer layers, first buffer layers, and semiconductor single crystal substrates. Next, a laser beam was introduced by providing a comb-shaped upper Al electrode on the surface of the PLT. As shown in FIG. 9, when a laser beam introduced into the PLT thin film waveguide is applied with a voltage between Al as the upper electrode 4 and BaPbO 3 (conductor layer) as the lower electrode 2 of the PLT thin film, The switching of the laser light became possible by the Bragg reflection of the electric lines of force 5 due to the electro-optic effect. Therefore, this element can be used as an optical waveguide as in the fourth embodiment. Further, as compared with the device shown in FIG. 10 in which only the comb-shaped electrode 4 'facing the surface of the PLT is provided.
Since a voltage can be effectively applied in the thickness direction of the PLT, the driving voltage is low, and furthermore, the width between the electrodes is not restricted by the fine processing of the electrodes.

【0026】以上の実施例では、ゾルゲル法またはエキ
シマ・レーザー・デポジション法およびそれらの両方法
により成膜したが、成膜プロセスはこれらに限定される
ものではなく、前述したとおり、電子ビーム蒸着、フラ
ッシュ蒸着、Rf−マグネトロン・スパッタリング、イ
オン・ビーム・スパッタリング、イオン・プレーティン
グ、MBE、イオン化クラスター・ビーム・エピタキシ
ー、CVD、MOCVD、プラズマCVD等の気相成長
法およびゾルゲル法以外のウェット・プロセスが、同様
に本発明の光スイッチング素子の作製に有効である。
In the above embodiments, the film was formed by the sol-gel method or the excimer laser deposition method, or both of them. However, the film forming process is not limited to these methods. , Flash evaporation, Rf-magnetron sputtering, ion beam sputtering, ion plating, MBE, ionized cluster beam epitaxy, CVD, MOCVD, plasma CVD, etc., and other wet processes other than the sol-gel method However, it is also effective for manufacturing the optical switching element of the present invention.

【0027】[0027]

【発明の効果】本発明の光スイッチング素子は、電気光
学効果を奏する薄膜の上に対向する電極を設けた従来の
コプレナー型素子(図6)に比べて、電極間間隔を狭く
することができるので、膜厚方向に効果的に電圧を印加
することができる。また、薄膜光導波路を、エピタキシ
ャルまたは配向性の強誘電体薄膜とすることによって、
強誘電体の大きな残留分極値や大きな電気光学定数等を
得ることができる。また、強誘電体と基板との間にエピ
タキシャルまたは配向性の酸化物電極を設けたため、低
電圧駆動が可能な光変調素子や高性能な不揮発性メモリ
ー等のスイッチング素子の作製が可能となる。さらに、
半導体基板へのエピタキシャルまたは配向性の酸化物電
極とそれによるエピタキシャルまたは配向性の強誘電体
薄膜の作製が可能なため、GaAs系半導体レーザー上
へ光変調素子やSi半導体集積回路上に光集積回路を作
製することなどが可能になる。
According to the optical switching element of the present invention, the distance between the electrodes can be reduced as compared with the conventional coplanar element (FIG. 6) in which opposing electrodes are provided on a thin film having an electro-optical effect. Therefore, a voltage can be effectively applied in the film thickness direction. Also, by making the thin film optical waveguide an epitaxial or oriented ferroelectric thin film,
A large remanent polarization value and a large electro-optic constant of the ferroelectric can be obtained. Further, since an epitaxial or oriented oxide electrode is provided between the ferroelectric and the substrate, a switching element such as a light modulation element which can be driven at a low voltage or a high-performance nonvolatile memory can be manufactured. further,
Since it is possible to produce an epitaxial or oriented oxide electrode on a semiconductor substrate and an epitaxial or oriented ferroelectric thin film using the same, an optical modulator on a GaAs semiconductor laser or an optical integrated circuit on a Si semiconductor integrated circuit Can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 MgO(100)基板上にPZT(110)
/BaPbO3 (110)を形成した実施例1の配向性
薄膜の積層体を示す。
FIG. 1. PZT (110) on MgO (100) substrate
2 shows a laminate of the oriented thin film of Example 1 on which / BaPbO 3 (110) was formed.

【図2】 SrTiO3 (100)基板上にPZT(0
01)/BaPbO 3 (100)を形成した実施例2の
配向性薄膜の積層体を示す。
FIG. 2 SrTiOThreePZT (0) on a (100) substrate
01) / BaPbO ThreeExample 2 in which (100) was formed
1 shows a laminate of an oriented thin film.

【図3】 Al2 3 (0001)基板上にLiNbO
3 (0001)/(Ba0.8 Sr0.2 )PbO3 (11
1)を形成した実施例3の配向性薄膜の積層体を示す。
FIG. 3. LiNbO on Al 2 O 3 (0001) substrate
3 (0001) / (Ba 0.8 Sr 0.2 ) PbO 3 (11
1 shows a laminate of the oriented thin film of Example 3 in which 1) was formed.

【図4】 SrTiO3 (100)基板上にエピタキシ
ャルPLT(001)/BaPbO3 (100)/PZ
T(001)を形成した実施例4の多層構造の配向性薄
膜の積層体を示す。
FIG. 4 shows an epitaxial PLT (001) / BaPbO 3 (100) / PZ on a SrTiO 3 (100) substrate.
The laminate of the oriented thin film having a multilayer structure of Example 4 in which T (001) is formed is shown.

【図5】 実施例4の配向性薄膜の積層体のPLT表面
に上部電極を配設した電気光学効果による光スイッチン
グ素子を示す。
FIG. 5 shows an optical switching element based on the electro-optic effect in which an upper electrode is provided on the PLT surface of the laminate of oriented thin films of Example 4.

【図6】 導電体層を設けることなく基板上のPLT表
面に電極を配設した電気光学効果による光スイッチング
素子を示す。
FIG. 6 shows an optical switching element based on the electro-optic effect in which electrodes are provided on the surface of a PLT on a substrate without providing a conductor layer.

【図7】 GaAs(100)基板上にBaTiO
3 (001)/BaPbO3 (100)/MgO(10
0)を形成した実施例5の多層構造の配向性薄膜の積層
体を示す。
FIG. 7: BaTiO 3 on GaAs (100) substrate
3 (001) / BaPbO 3 (100) / MgO (10
5 shows a laminate of the oriented thin film having a multilayer structure of Example 5 in which No. 0) was formed.

【図8】 GaAs(100)基板上のエピタキシャル
PLT(001)/BaPbO3 (100)/PZT
(001)/MgO(100)を形成した実施例6の多
層構造の配向性薄膜の積層体を示す。
FIG. 8 shows an epitaxial PLT (001) / BaPbO 3 (100) / PZT on a GaAs (100) substrate.
13 shows a laminate of a multi-layered oriented thin film of Example 6 in which (001) / MgO (100) was formed.

【図9】 実施例6の配向性薄膜の積層体のPLT表面
に上部電極を配設した電気光学効果による光スイッチン
グ素子を示す。
FIG. 9 shows an optical switching element based on the electro-optic effect in which an upper electrode is provided on the PLT surface of the stack of oriented thin films of Example 6.

【図10】 導電体層を設けることなく基板およびバッ
ファ層上のPLT表面に電極を配設した電気光学効果に
よる光スイッチング素子を示す。
FIG. 10 shows an optical switching element based on the electro-optic effect in which electrodes are arranged on the surface of a PLT on a substrate and a buffer layer without providing a conductor layer.

【符号の説明】[Explanation of symbols]

1a…酸化物基板、1b…半導体基板、1′…バッファ
層、1′a…第一バッファ層、1′b…第二バッファ
層、2…導電体層(下部電極)、3…強誘電体層(薄膜
光導波路)、4…上部電極、4′…櫛形電極、5…電気
力線。
1a ... oxide substrate, 1b ... semiconductor substrate, 1 '... buffer layer, 1'a ... first buffer layer, 1'b ... second buffer layer, 2 ... conductor layer (lower electrode), 3 ... ferroelectric Layer (thin film optical waveguide), 4 ... upper electrode, 4 '... comb-shaped electrode, 5 ... electric lines of force.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光が導入されるとともに電気光学効果を
奏する薄膜光導波路と、前記薄膜光導波路の膜厚方向の
上下に位置し前記膜厚方向に電圧を印加するための上部
電極及び下部電極を備えた光スイッチング素子。
1. A thin-film optical waveguide for introducing light and exhibiting an electro-optical effect, and an upper electrode and a lower electrode positioned above and below the thickness direction of the thin-film optical waveguide for applying a voltage in the thickness direction. An optical switching element comprising:
【請求項2】 請求項1記載の光スイッチング素子にお
いて、さらに単結晶基板を備え、前記下部電極は前記単
結晶基板上に設けられたエピタキシャルまたは配向性の
導電性薄膜であり、前記薄膜光導波路はエピタキシャル
または配向性の強誘電体薄膜であることを特徴とする光
スイッチング素子。
2. The optical switching device according to claim 1, further comprising a single crystal substrate, wherein said lower electrode is an epitaxial or oriented conductive thin film provided on said single crystal substrate, and said thin film optical waveguide. Is an optical switching element characterized by being an epitaxial or oriented ferroelectric thin film.
【請求項3】 請求項2記載の光スイッチング素子にお
いて、前記基板と前記下部電極の間にエピタキシャルま
たは配向性のバッファ層を設けたことを特徴とする光ス
イッチング素子。
3. The optical switching element according to claim 2, wherein an epitaxial or oriented buffer layer is provided between said substrate and said lower electrode.
【請求項4】 下部電極がペロブスカイトABO3 型導
電性薄膜よりなり、誘電体薄膜がペロブスカイトABO
3 型強誘電体よりなる請求項2記載の光スイッチング素
子。
4. The lower electrode is made of a perovskite ABO 3 type conductive thin film, and the dielectric thin film is made of a perovskite ABO.
3. The optical switching element according to claim 2, comprising a type 3 ferroelectric.
JP2000287904A 1993-11-04 2000-09-22 Optical switching element Expired - Fee Related JP3513532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000287904A JP3513532B2 (en) 1993-11-04 2000-09-22 Optical switching element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29762193A JP3199091B2 (en) 1993-11-04 1993-11-04 Stack of oriented thin films
JP2000287904A JP3513532B2 (en) 1993-11-04 2000-09-22 Optical switching element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP29762193A Division JP3199091B2 (en) 1993-11-04 1993-11-04 Stack of oriented thin films

Publications (2)

Publication Number Publication Date
JP2001117059A true JP2001117059A (en) 2001-04-27
JP3513532B2 JP3513532B2 (en) 2004-03-31

Family

ID=32095316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000287904A Expired - Fee Related JP3513532B2 (en) 1993-11-04 2000-09-22 Optical switching element

Country Status (1)

Country Link
JP (1) JP3513532B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7557978B2 (en) 2004-11-02 2009-07-07 Fujitsu Limited Optical element
US8224143B2 (en) 2010-02-05 2012-07-17 Advantest Corporation Substrate structure and manufacturing method
JP2016109856A (en) * 2014-12-05 2016-06-20 Tdk株式会社 Laminate structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7557978B2 (en) 2004-11-02 2009-07-07 Fujitsu Limited Optical element
US8224143B2 (en) 2010-02-05 2012-07-17 Advantest Corporation Substrate structure and manufacturing method
JP2016109856A (en) * 2014-12-05 2016-06-20 Tdk株式会社 Laminate structure

Also Published As

Publication number Publication date
JP3513532B2 (en) 2004-03-31

Similar Documents

Publication Publication Date Title
US5650362A (en) Oriented conductive film and process for preparing the same
TWI284974B (en) Electronic and optical devices and methods of forming these devices
JP4221765B2 (en) Optical integrated oxide device and method for manufacturing optical integrated oxide device
US5753934A (en) Multilayer thin film, substrate for electronic device, electronic device, and preparation of multilayer oxide thin film
KR100296236B1 (en) Polycrystalline ferroelectric capacitor heterostructure employing hybrid electrodes
JP2819067B2 (en) Cubic metal oxide thin films grown epitaxially on silicon
JP2924574B2 (en) Oriented ferroelectric thin film device
JP3310881B2 (en) Laminated thin film, substrate for electronic device, electronic device, and method of manufacturing laminated thin film
JPH06196648A (en) Oriented ferroelectric thin film device
KR100442543B1 (en) Method for manufacturing thin layer of layered superlattice material and electronic device having two thin layer
US6278138B1 (en) Silicon-based functional matrix substrate and optical integrated oxide device
JP3047316B2 (en) Epitaxial ferroelectric thin film device and method for producing the same
US20050162595A1 (en) Optical deflection element and method of producing the same
JP2864912B2 (en) Oriented ferroelectric thin film
JP3199091B2 (en) Stack of oriented thin films
JP3513532B2 (en) Optical switching element
JP4399059B2 (en) Thin film structure
EP0544399A2 (en) Epitaxial magnesium oxide as a buffer layer for formation of subsequent layers on tetrahedral semiconductors
JP2889492B2 (en) Preparation method of oxide thin film
JP3186381B2 (en) Method for producing oriented conductive thin film
JPH07183397A (en) Dielectric thin film element and fabrication thereof
JP2889463B2 (en) Oriented ferroelectric thin film device
KR100795664B1 (en) 001-orientated perovskite film formation method and device having perovskite film
JPH06151602A (en) Production of oriented ferroelectric thin film
JP4506088B2 (en) Manufacturing method of optical element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031128

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees