JPH07330487A - Production of oxide thin film - Google Patents

Production of oxide thin film

Info

Publication number
JPH07330487A
JPH07330487A JP13958594A JP13958594A JPH07330487A JP H07330487 A JPH07330487 A JP H07330487A JP 13958594 A JP13958594 A JP 13958594A JP 13958594 A JP13958594 A JP 13958594A JP H07330487 A JPH07330487 A JP H07330487A
Authority
JP
Japan
Prior art keywords
oxide
thin film
single crystal
semiconductor substrate
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13958594A
Other languages
Japanese (ja)
Other versions
JP2889492B2 (en
Inventor
Keiichi Nashimoto
恵一 梨本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP13958594A priority Critical patent/JP2889492B2/en
Publication of JPH07330487A publication Critical patent/JPH07330487A/en
Application granted granted Critical
Publication of JP2889492B2 publication Critical patent/JP2889492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To provide a process for producing oxide thin films capable of easily forming an epitaxial or orientable oxide buffer layer on a single crystal semiconductor substrate. CONSTITUTION:The surface of the single crystal semiconductor substrate is subjected to a passivation treatment, by which a passivation layer consisting of an extremely thin film contg. the elements different from the elements constituting the semiconductor is formed and thereafter or further, after the passivation layer is partially sublimated, the epitaxial or orientable oxide buffer layer is grown in vapor phase on the surface of the single crystal semiconductor substrate. The epitaxial or oxide ferroelectric thin film is grown in vapor phase or solid phase on the formed oxide buffer layer. Production of elements, such as high-performance non-volatile memories, capacitors or optical modulation elements on the semiconductor substrate is possible according to this invention.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体単結晶基板上に
エピタキシャルまたは配向性の酸化物バッファ層を成膜
する方法に関し、さらに、半導体単結晶基板上にエピタ
キシャルまたは配向性の強誘電体等の薄膜を形成する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an epitaxial or oriented oxide buffer layer on a semiconductor single crystal substrate, and further to an epitaxial or oriented ferroelectric substance on the semiconductor single crystal substrate. The present invention relates to a method for forming a thin film.

【0002】[0002]

【従来の技術】従来、酸化物強誘電体薄膜は、強誘電体
のもつ強誘電性、圧電性、焦電性、電気光学効果等の多
くの性質により不揮発性メモリーを始めとして、表面弾
性波素子、赤外線焦電素子、音響光学素子、電気光学素
子等多くの応用が期待されている。これらの応用のう
ち、薄膜光導波路構造での低光損失化と単結晶並みの分
極特性や電気光学効果を得るために、単結晶薄膜の作製
が不可欠である。そのため、BaTiO3 、PbTiO
3 、Pb1-x Lax (Zr1-y Tiy 1-x/4 3(P
LZT)、LiNbO3 、KNbO3 、Bi4 Ti3
12等のエピタキシャル強誘電体薄膜を、Rf−マグネト
ロン・スパッタリング、イオン・ビーム・スパッタリン
グ、レーザー・アブレーション、有機金属化学蒸着(M
OCVD)等の方法によって、酸化物単結晶基板上に形
成することがしばしば行われている。
2. Description of the Related Art Conventionally, an oxide ferroelectric thin film has a surface acoustic wave such as a non-volatile memory due to many properties of a ferroelectric material such as ferroelectricity, piezoelectricity, pyroelectricity and electro-optical effect. Many applications such as elements, infrared pyroelectric elements, acousto-optical elements, and electro-optical elements are expected. Among these applications, the production of single-crystal thin films is indispensable in order to achieve low optical loss in thin-film optical waveguide structures and polarization characteristics and electro-optical effects comparable to single crystals. Therefore, BaTiO 3 , PbTiO 3
3 , Pb 1-x La x (Zr 1-y Ti y ) 1-x / 4 O 3 (P
LZT), LiNbO 3 , KNbO 3 , Bi 4 Ti 3 O
Epitaxial ferroelectric thin films such as 12 are subjected to Rf-magnetron sputtering, ion beam sputtering, laser ablation, metalorganic chemical vapor deposition (M
The oxide single crystal substrate is often formed by a method such as OCVD.

【0003】しかしながら、半導体素子との集積化のた
めには半導体基板上に強誘電体薄膜を作製することが必
要である。半導体基板上への強誘電体薄膜のエピタキシ
ャル成長は、高成長温度、半導体と強誘電体との間の相
互拡散、半導体の酸化等のために困難である。また、G
aAs基板上に強誘電体薄膜を形成する場合についてみ
ると、これに関する報告は極めて数少ないが、PLZT
がGaAs成長した際には、PbのGaAsへの拡散が
検出されることが知られており、また、GaAsは40
0℃以上では表面のAsが減少し、690℃以上ではA
4 雰囲気なしではAsとGaの一層づつの昇華が始ま
ることが知られている。これらの理由により、GaAs
基板上への強誘電体薄膜のエピタキシャル成長は困難で
ある。これらの理由のため、低温で半導体上でエピタキ
シャル成長させ、強誘電体薄膜のエピタキシャル成長を
助け、且つ拡散バリアとしても働く半導体のためのキャ
ッピング層が必要である。さらに、強誘電体と半導体と
の間に絶縁体を形成したFET素子においては、強誘電
体の分極時の半導体からの電荷の注入を防ぐことがで
き、強誘電体の分極状態を維持するバリア層が必要であ
る。また、強誘電体の屈折率は一般にGaAsやSiよ
りも小さいが、強誘電体よりも小さい屈折率をもつバッ
ファ層が得られれば、半導体レーザー光を強誘電体薄膜
光導波路中に閉じ込めることが可能になり、光変調素子
の半導体レーザー上への作製や光集積回路をSi半導体
集積回路上に作製することが可能になる。
However, it is necessary to form a ferroelectric thin film on a semiconductor substrate for integration with a semiconductor element. Epitaxial growth of a ferroelectric thin film on a semiconductor substrate is difficult due to high growth temperature, mutual diffusion between the semiconductor and the ferroelectric, oxidation of the semiconductor, and the like. Also, G
Regarding the case of forming a ferroelectric thin film on an aAs substrate, there are very few reports on this, but PLZT
It is known that the diffusion of Pb into GaAs is detected when GaAs grows.
At 0 ℃ or higher, the surface As decreases, and at 690 ℃ or higher, A
It is known that sublimation of As and Ga starts one by one without s 4 atmosphere. For these reasons, GaAs
Epitaxial growth of a ferroelectric thin film on a substrate is difficult. For these reasons, there is a need for a capping layer for semiconductors that grows epitaxially on semiconductors at low temperatures, assists in epitaxial growth of ferroelectric thin films, and also acts as a diffusion barrier. Further, in an FET element in which an insulator is formed between a ferroelectric substance and a semiconductor, it is possible to prevent injection of charges from the semiconductor during polarization of the ferroelectric substance, and to maintain a polarization state of the ferroelectric substance. Layers are needed. Further, the refractive index of the ferroelectric substance is generally smaller than that of GaAs or Si, but if a buffer layer having a smaller refractive index than the ferroelectric substance is obtained, the semiconductor laser light can be confined in the ferroelectric thin film optical waveguide. This makes it possible to fabricate an optical modulator on a semiconductor laser and an optical integrated circuit on a Si semiconductor integrated circuit.

【0004】これに対し、Si(100)単結晶上にM
gAl2 4 (100)もしくはMgO(100)をバ
ッファ層としてエピタキシャル成長した基板上に強誘電
体化合物をエピタキシャル成長することが特開昭61−
185808号公報に示されているが、Si(100)
とMgO(100)との結晶学的関係は明らかにはされ
ていない。事実、その後の研究において、(100)配
向性のMgOがSi(100)単結晶上に作製された場
合、MgOは(100)面がSi(100)面に平行で
あるだけで、面内方位はランダムな配向性多結晶MgO
であることが明らかにされている(P.Tiwari
他,J.Appl.Phys.69,8358(199
1))。事実、MgOの(100)面は電気的に中性で
あり低エネルギーであるために、多結晶薄膜でも(10
0)の配向性をとりやすいことが知られている。したが
って、MgOをエピタキシャル成長させるためには、半
導体基板表面の特別な処理が必要であると考えられる。
On the other hand, M on Si (100) single crystal
It is possible to epitaxially grow a ferroelectric compound on a substrate that has been epitaxially grown using gAl 2 O 4 (100) or MgO (100) as a buffer layer.
As disclosed in Japanese Patent No. 185808, Si (100)
The crystallographic relationship between MgO (100) and MgO (100) has not been clarified. In fact, in a subsequent study, when MgO with (100) orientation was produced on a Si (100) single crystal, MgO only showed that the (100) plane was parallel to the Si (100) plane. Is a randomly oriented polycrystalline MgO
(P. Tiwari
J. J. et al. Appl. Phys. 69, 8358 (199
1)). In fact, since the (100) plane of MgO is electrically neutral and has low energy, even in a polycrystalline thin film (10
It is known that the orientation of (0) is easily obtained. Therefore, it is considered that a special treatment on the surface of the semiconductor substrate is required to epitaxially grow MgO.

【0005】本発明者等は、MgOを単結晶半導体基板
上へエピタキシャル成長させることをすでに提案し(特
開平5−327034号公報)、更にそのMgOバッフ
ァ層を用いて半導体基板上へエピタキシャルまたは配向
性の強誘電体薄膜を作製することをすでに提案した(特
開平5−327034号公報および特願平5−1638
91号)。この際の結晶学的関係は、例えば、GaAs
(100)上のBaTiO3 については、BaTiO3
(001)//MgO(100)//GaAs(100)、
面内方位BaTiO3 [010]//MgO[001]//
GaAs[001]であることを本発明者等は明らかに
している。
The present inventors have already proposed to epitaxially grow MgO on a single crystal semiconductor substrate (Japanese Patent Laid-Open No. 327034/1993), and further use the MgO buffer layer to epitaxially or orient it on the semiconductor substrate. It has already been proposed to prepare the ferroelectric thin film of Japanese Patent Application Laid-Open No. 5-327034 and Japanese Patent Application No. 5-1638.
91). The crystallographic relationship at this time is, for example, GaAs.
For BaTiO 3 on (100), BaTiO 3
(001) // MgO (100) // GaAs (100),
In-plane orientation BaTiO 3 [010] // MgO [001] //
The present inventors have clarified that it is GaAs [001].

【0006】[0006]

【発明が解決しようとする課題】しかしながら、単結晶
半導体基板、特に、GaAsにおいては、その前処理方
法の違いによって、成長させたMgOの配向性が大きく
影響を受けることが、本発明者等のその後の研究によっ
て明らかとなった。そして形成されるMgO薄膜は、し
ばしば多結晶のものとなり、エピタキシャルまたは配向
性のものとはならない場合が生じ、その改善が求められ
ている。このため、MgO成長直前のGaAs表面を検
討したところ、GaAs基板表面は単純に自然酸化膜エ
ッチングによって取り除けばよいのではなく、酸化膜等
を不動態化層として適当な状態で付与すること、すなわ
ち、GaAs表面は不動態化状態、GaAsのみの状
態、そしてそれらの中間状態に大きく分けられ、これら
の状態を制御することが重要であることが分かった。し
たがって、本発明の目的は、単結晶半導体基板にエピタ
キシャルまたは配向性の酸化物バッファー層を容易に、
かつ、再現性よく形成することができる酸化物薄膜の作
製方法を提供することにある。本発明の他の目的は、エ
ピタキシャルまたは配向性の酸化物薄膜をバッファ層と
して用い、半導体単結晶上にエピタキシャルまたは配向
性の酸化物強誘電体薄膜を形成する方法を提供すること
にある。
However, in the case of a single crystal semiconductor substrate, especially GaAs, the orientation of grown MgO is greatly affected by the difference in the pretreatment method. Subsequent research has revealed. The formed MgO thin film often becomes polycrystalline and may not be epitaxial or oriented, and its improvement is demanded. Therefore, when the GaAs surface immediately before the growth of MgO was examined, it was found that the GaAs substrate surface should not be simply removed by natural oxide film etching, but that an oxide film or the like should be provided as a passivation layer in an appropriate state. , The surface of GaAs is roughly divided into a passivated state, a state of GaAs only, and an intermediate state thereof, and it was found that it is important to control these states. Therefore, an object of the present invention is to easily form an epitaxial or oriented oxide buffer layer on a single crystal semiconductor substrate,
Another object of the present invention is to provide a method for producing an oxide thin film that can be formed with good reproducibility. Another object of the present invention is to provide a method for forming an epitaxial or oriented oxide ferroelectric thin film on a semiconductor single crystal by using an epitaxial or oriented oxide thin film as a buffer layer.

【0007】[0007]

【課題を解決するための手段】本発明者等は、単結晶半
導体基板の表面処理方法について鋭意検討した結果、本
発明を完成するに至った。本発明の酸化物薄膜の作製方
法は、単結晶半導体基板表面を不動態化処理して、該半
導体を構成する元素と異なる元素を含む超薄膜よりなる
不動態化層を形成した後、該単結晶半導体基板表面にエ
ピタキシャルまたは配向性の酸化物バッファ層を気相成
長させることを特徴とする。本発明の酸化物薄膜の他の
作製方法は、単結晶半導体基板表面を不動態化処理し
て、該半導体を構成する元素と異なる元素を含む超薄膜
よりなる不動態化層を形成し、該不動態化層を部分的に
昇華した後、該単結晶半導体基板表面にエピタキシャル
または配向性の酸化物バッファ層を気相成長させること
を特徴とする。本発明の酸化物薄膜のさらに他の作製方
法は、上記のようにして形成された酸化物バッファ層の
上にエピタキシャルまたは配向性の酸化物薄膜を気相成
長または固相成長させることを特徴とする。
The present inventors have completed the present invention as a result of extensive studies on the surface treatment method for a single crystal semiconductor substrate. The method for producing an oxide thin film of the present invention comprises the step of passivating the surface of a single crystal semiconductor substrate to form a passivation layer made of an ultrathin film containing an element different from the element constituting the semiconductor, It is characterized in that an epitaxial or oriented oxide buffer layer is vapor-phase grown on the surface of the crystalline semiconductor substrate. In another method for producing an oxide thin film of the present invention, the surface of a single crystal semiconductor substrate is passivated to form a passivation layer made of an ultrathin film containing an element different from an element constituting the semiconductor, After partially sublimating the passivation layer, an epitaxial or oriented oxide buffer layer is vapor-phase grown on the surface of the single crystal semiconductor substrate. Yet another method for producing an oxide thin film of the present invention is characterized in that an epitaxial or oriented oxide thin film is vapor-phase grown or solid-phase grown on the oxide buffer layer formed as described above. To do.

【0008】本発明において、単結晶半導体基板として
は、単体半導体であるSi、Ge、ダイアモンド、III-
V系の化合物半導体であるAlAs、AlSb、Al
P、GaAs、GaSb、InP、InAs、InS
b、AlGaP、AlInP、AlGaAs、AlIn
As、AlAsSb、GaInAs、GaInSb、G
aAsSb、InAsSb、II−VI系の化合物半導体で
あるZnS、ZnSe、ZnTe、CdSe、CdT
e、HgSe、HgTe、CdSより選ばれる(10
0)または(111)方位を持つものが使用される。
In the present invention, the single crystal semiconductor substrate may be a single semiconductor such as Si, Ge, diamond or III-.
VAs compound semiconductors such as AlAs, AlSb, Al
P, GaAs, GaSb, InP, InAs, InS
b, AlGaP, AlInP, AlGaAs, AlIn
As, AlAsSb, GaInAs, GaInSb, G
aAsSb, InAsSb, II-VI based compound semiconductors ZnS, ZnSe, ZnTe, CdSe, CdT
e, HgSe, HgTe, CdS (10
Those with a 0) or (111) orientation are used.

【0009】上記の半導体単結晶基板は、酸化物バッフ
ア層を設ける前に、不動態化(パッシベーション)処理
を行う。不動態化処理は、半導体単結晶基板を溶剤洗浄
した後、硫酸等の溶液によってエッチングを行い、脱イ
オン水で洗浄することによって行うことができる。ま
た、半導体単結晶基板を酸素雰囲気にさらすことによっ
て行うこともできる。それによって、半導体単結晶基板
表面に酸化物の超薄膜が不動態化層として形成される。
また、不動態化は、次のようにして行うこともできる。
例えば、GaAs単結晶基板に、モレキュラービームエ
ピタキシ(MBE)によりSb(アンチモン)層を形成
したり、或いは硫化アンモニウム等で処理することによ
り、表面構造は現在検討中であるが、不動態化層を形成
することができる。また、例えばSi単結晶基板を、H
F系溶液により処理して、Si表面ダングリング・ボン
ドのHによる不動態化層の形成が有効である。これら不
動態化処理によって不動態層を形成することにより、半
導体単結晶基板表面は化学的に安定化され、表面の化学
的変化や表面構造の変化を防ぐことが可能になる。
The above-mentioned semiconductor single crystal substrate is subjected to passivation treatment before the oxide buffer layer is provided. The passivation treatment can be performed by cleaning the semiconductor single crystal substrate with a solvent, etching with a solution such as sulfuric acid, and then cleaning with deionized water. Alternatively, the semiconductor single crystal substrate can be exposed to an oxygen atmosphere. As a result, an ultrathin oxide film is formed as a passivation layer on the surface of the semiconductor single crystal substrate.
The passivation can also be performed as follows.
For example, although a Sb (antimony) layer is formed on a GaAs single crystal substrate by molecular beam epitaxy (MBE), or is treated with ammonium sulfide or the like, the surface structure is currently under study, but a passivation layer is formed. Can be formed. Also, for example, a Si single crystal substrate is
It is effective to form a passivation layer by H of Si surface dangling bond by treating with an F-based solution. By forming the passivation layer by these passivation treatments, the surface of the semiconductor single crystal substrate is chemically stabilized, and it becomes possible to prevent chemical changes on the surface and changes in the surface structure.

【0010】上記のようにして不動態化処理により形成
された不動態化層は、所望により部分的に昇華させるこ
とができる。例えば、GaAs単結晶基板について、不
動態化層の部分的昇華はRHEED(表面電子線回折)
によって、基板面からのパターンが、不動態化層による
ハロー・パターンからブロードなストリーク・パターン
(GaAs表面によるパターンとは異なる)への変化に
よって確認できる。なお、部分的昇華の程度は、このス
トリーク・パターンを示す状態が望ましく、この状態に
おけるGaAs表面の構造の詳細は、未だ明らかではな
いが、不動態化層ともGaAs表面とも異なるものであ
る。
The passivation layer formed by the passivation treatment as described above can be partially sublimated if desired. For example, for a GaAs single crystal substrate, partial sublimation of the passivation layer is RHEED (surface electron diffraction)
Thus, the pattern from the substrate surface can be confirmed by the change from the halo pattern due to the passivation layer to the broad streak pattern (different from the pattern due to the GaAs surface). The degree of partial sublimation is preferably in a state of showing this streak pattern, and the details of the structure of the GaAs surface in this state are different from those of the passivation layer and the GaAs surface, although it is not clear yet.

【0011】次いで、上記のように処理された半導体単
結晶基板上に、(100)または(111)方位をもつ
エピタキシャルまたは配向性酸化物バッファ層を形成す
る。酸化物バッファ層としては、MgAl2 4(スピ
ネル)やMgOよりなるものが好ましく、特にMgOが
好ましい。これら酸化物バッファ層は、電子ビーム蒸
着、フラッシュ蒸着、イオン・プレーティング、Rf−
マグネトロン・スパッタリング、イオン・ビーム・スパ
ッタリング、レーザー・アブレーション、モレキュラー
・ビーム・エピタキシ−(MBE)、化学気相成長法
(CVD)、プラズマCVD、有機金属化学蒸着(MO
CVD)等より選ばれる気相成長法により形成すること
ができる。
Next, an epitaxial or oriented oxide buffer layer having a (100) or (111) orientation is formed on the semiconductor single crystal substrate treated as described above. The oxide buffer layer is preferably made of MgAl 2 O 4 (spinel) or MgO, and MgO is particularly preferable. These oxide buffer layers are formed by electron beam evaporation, flash evaporation, ion plating, Rf-
Magnetron sputtering, ion beam sputtering, laser ablation, molecular beam epitaxy (MBE), chemical vapor deposition (CVD), plasma CVD, metalorganic chemical vapor deposition (MO)
It can be formed by a vapor phase growth method selected from CVD, etc.

【0012】上記のようにして形成されたエピタキシャ
ルまたは配向性MgOバッファ層上に、酸化物強誘電体
薄膜をエピタキシャルまたは配向性成長させて、本発明
の酸化薄膜を作製することができる。すなわち、MgO
バッファ層上に、(100)、(001)または(11
1)方位をもつABO3 型酸化物強誘電体薄膜をエピタ
キシャルまたは配向性成長させる。酸化物強誘電体薄膜
を構成する材料は、ABO3 において、AがLi、K、
Mg、Sr、Ba、La、PbおよびBiのいずれかま
たは複数より選ばれ、BがTi、Zr、NbおよびTa
のいずれかまたは複数より選ばれる化合物であって、具
体的には、例えば、BaTiO3 、PbTiO3 、Pb
1-x Lax (Zr1-y Tiy 1-x/4 3 (PZT、P
LT、PLZT)、Pb(Mg1/3 Nb2/3 )O3 、K
NbO3 、LiNbO3 、LiTaO3 等に代表される
強誘電体およびこれらの置換誘導体より選ばれる。これ
ら酸化物強誘電体薄膜は、電子ビーム蒸着、フラッシュ
蒸着、イオン・プレーティング、Rf−マグネトロン・
スパッタリング、イオン・ビーム・スパッタリング、レ
ーザー・アブレーション、モレキュラー・ビーム・エピ
タキシ−(MBE)、化学気相成長法(CVD)、プラ
ズマCVD、有機金属化学蒸着(MOCVD)等より選
ばれる気相成長法により、或いは、これら気相成長法を
用いて低温にて得られるアモルファス薄膜またはゾルゲ
ル法などによって得られるアモルファス薄膜の結晶化に
よる固相成長法により形成することができる。
On the epitaxial or oriented MgO buffer layer formed as described above, an oxide ferroelectric thin film can be epitaxially or oriented grown to produce the oxide thin film of the present invention. That is, MgO
On the buffer layer, (100), (001) or (11
1) Epitaxial or orientationally grown ABO 3 type oxide ferroelectric thin film having orientation. The material forming the oxide ferroelectric thin film is ABO 3 in which A is Li, K,
It is selected from one or more of Mg, Sr, Ba, La, Pb and Bi, and B is Ti, Zr, Nb and Ta.
A compound selected from any one or more of the above, and specifically, for example, BaTiO 3 , PbTiO 3 , Pb
1-x La x (Zr 1-y Ti y ) 1-x / 4 O 3 (PZT, P
LT, PLZT), Pb (Mg 1/3 Nb 2/3 ) O 3 , K
It is selected from ferroelectrics typified by NbO 3 , LiNbO 3 , LiTaO 3 and the like and substituted derivatives thereof. These oxide ferroelectric thin films include electron beam evaporation, flash evaporation, ion plating, Rf-magnetron
By a vapor deposition method selected from sputtering, ion beam sputtering, laser ablation, molecular beam epitaxy (MBE), chemical vapor deposition (CVD), plasma CVD, metal organic chemical vapor deposition (MOCVD), etc. Alternatively, it can be formed by a solid phase growth method by crystallization of an amorphous thin film obtained at a low temperature using these vapor phase growth methods or an amorphous thin film obtained by a sol-gel method or the like.

【0013】上記のようにして作製される本発明の酸化
物薄膜において、酸化物強誘電体薄膜、酸化物バッファ
層、および単結晶半導体基板の結晶方位の関係は、酸化
物強誘電体薄膜(001)//酸化物バッファ層(10
0)//単結晶半導体基板(100)、酸化物強誘電体薄
膜(100)//酸化物バッファ層(100)//単結晶半
導体基板(100)、酸化物強誘電体薄膜(111)//
酸化物バッファ層(111)//単結晶半導体基板(10
0)、または強誘電体薄膜(111)//酸化物バッファ
層(111)//単結晶半導体基板(111)である。
In the oxide thin film of the present invention produced as described above, the relationship between the crystal orientations of the oxide ferroelectric thin film, the oxide buffer layer, and the single crystal semiconductor substrate is as follows. 001) // oxide buffer layer (10
0) // single crystal semiconductor substrate (100), oxide ferroelectric thin film (100) // oxide buffer layer (100) // single crystal semiconductor substrate (100), oxide ferroelectric thin film (111) / /
Oxide buffer layer (111) // single crystal semiconductor substrate (10
0) or a ferroelectric thin film (111) // oxide buffer layer (111) // single crystal semiconductor substrate (111).

【0014】[0014]

【実施例】【Example】

実施例1 GaAs基板へのエピタキシャル層の形成を、MgOタ
ーゲットを用いて電子ビーム蒸着法によって行った。G
aAs基板(立方晶、ジンク・ブレンド構造、a=5.
653オングストローム)として、n型、(100)±
0.2°、15×15mmのウエハーを用いた。これら
の基板は溶剤洗浄の後、H2 SO4 系の溶液にて表面の
エッチングを行った。次に、この基板を脱イオン水でリ
ンスを行うことにより、基板表面にGaAs酸化物の超
薄膜を形成し、表面の不動態化(パッシベーション)を
行った。この後、窒素気流下でのエタノールによるスピ
ン乾燥を行った。スピン乾燥後に基板を直ちにデポジシ
ョン・チャンバーに導入し、250〜450℃に加熱し
て100〜1000オングストロームのMgOの成膜を
行った。X線回折によって解析すると、成膜したMgO
(立方晶、NaCl構造、a=4.213オングストロ
ーム)は広い範囲の条件にて(100)面単一配向のエ
ピタキシャル膜となっていることが確認された。MgO
とGaAsの面内結晶方位の関係を同定するために、X
線回折ファイ・スキャンを行った。立方晶において(1
00)面に対して45°の角度をもっている(202)
面についてのファイ・スキャンでは、MgO(100)
/GaAs(100)のMgOに対して90°の回転周
期をもつシャープなピークを示し、その位置はGaAs
のピーク位置に一致していた。これらのことより、Mg
OとGaAsとの結晶学的関係は格子不整が25.5%
となるにもかかわらず、MgOとGaAsの結晶方位の
関係は、MgO(100)//GaAs(100)、面内
方位MgO[001]//GaAs[001]であること
が分かった。エピタキシャルMgOと半導体の界面を高
分解能透過型電子顕微鏡にて観察すると、MgO(10
0)−GaAs(100)界面では、MgO:GaA=
4:3の格子整合による二次元超格子が形成されてお
り、界面には二次層等の生成はなく、急峻な界面となっ
ていた。4:3の格子整合を考えると、MgO:GaA
s=4:3では0.7%となり、大きな格子不整合をも
つにもかかわらず膜内応力が緩和されて、MgO[00
1]//GaAs[001]のエピタキシャル成長が実現
されたと考えられる。
Example 1 An epitaxial layer was formed on a GaAs substrate by an electron beam evaporation method using a MgO target. G
aAs substrate (cubic crystal, zinc blend structure, a = 5.
653 angstroms), n-type, (100) ±
A 0.2 °, 15 × 15 mm wafer was used. The surfaces of these substrates were washed with a solvent and then the surfaces were etched with a H 2 SO 4 based solution. Next, this substrate was rinsed with deionized water to form an ultrathin film of GaAs oxide on the substrate surface and passivated the surface. Then, spin drying with ethanol was performed under a nitrogen stream. After spin-drying, the substrate was immediately introduced into the deposition chamber and heated to 250 to 450 ° C. to deposit 100 to 1000 Å of MgO film. When analyzed by X-ray diffraction, the formed MgO
It was confirmed that (cubic crystal, NaCl structure, a = 4.213 angstrom) was an epitaxial film having a (100) plane unidirectional orientation under a wide range of conditions. MgO
In order to identify the relationship between the in-plane crystallographic orientation of GaAs and GaAs, X
Line diffraction phi scan was performed. In the cubic system (1
It has an angle of 45 ° to the (00) plane (202)
In the phi scan of the surface, MgO (100)
/ GaAs (100) shows a sharp peak with a rotation period of 90 ° with respect to MgO, and its position is GaAs.
It coincided with the peak position of. From these things, Mg
The crystallographic relationship between O and GaAs has a lattice mismatch of 25.5%.
However, it was found that the relationship between the crystal orientations of MgO and GaAs is MgO (100) // GaAs (100) and the in-plane orientation MgO [001] // GaAs [001]. When observing the interface between the epitaxial MgO and the semiconductor with a high resolution transmission electron microscope, MgO (10
At the 0) -GaAs (100) interface, MgO: GaA =
A two-dimensional superlattice was formed by 4: 3 lattice matching, and no secondary layer or the like was formed at the interface, resulting in a steep interface. Considering 4: 3 lattice matching, MgO: GaA
When s = 4: 3, it becomes 0.7%, and the stress in the film is relaxed despite having a large lattice mismatch, and MgO [00
It is considered that the epitaxial growth of 1] // GaAs [001] was realized.

【0015】実施例2 実施例1と同様にして、基板表面にGaAs表面の不動
態化とスピン乾燥を行った後、基板を直ちにデポジショ
ン・チャンバーに導入し、バックグランド圧力、580
℃にて短時間加熱して表面の不動態化層を部分的に昇華
し、続いて450℃に加熱して100〜1000オング
ストロームのMgOの成膜を行った。X線回折によって
解析すると、成膜したMgOは、基板が(100)面で
あるにもかかわらず(111)面単一配向膜となってい
ることが分かった。
Example 2 In the same manner as in Example 1, the GaAs surface was passivated and spin-dried on the substrate surface, then the substrate was immediately introduced into the deposition chamber, and the background pressure was set at 580.
The surface passivation layer was partially sublimated by heating at 0 ° C for a short time, and subsequently heated at 450 ° C to form a MgO film of 100 to 1000 angstrom. When analyzed by X-ray diffraction, it was found that the formed MgO was a (111) -plane single orientation film even though the substrate was a (100) -plane.

【0016】比較例1 比較例として、デポジション・チャンバーに表面を不動
態化したGaAs基板を導入した後、600℃、バック
グランド圧力にて加熱を行ってGaAs表面の不動態層
の脱離(昇華)をはかり、続いて350℃にてMgOの
成膜を行った。この場合には、MgOは多結晶薄膜しか
得られなかった。GaAs酸化物表面層を取り除き、G
aAs表面とすると多結晶MgOしか得られない理由
は、GaAs表面の再構成構造の変化による影響が大き
いためと考えられる。
Comparative Example 1 As a comparative example, a GaAs substrate having a passivated surface was introduced into a deposition chamber and then heated at 600 ° C. at a background pressure to release the passivation layer on the GaAs surface ( Sublimation), and subsequently, MgO film was formed at 350 ° C. In this case, only a polycrystalline thin film of MgO was obtained. Remove the GaAs oxide surface layer,
The reason why only polycrystalline MgO can be obtained with the aAs surface is considered to be that the change in the reconstructed structure of the GaAs surface has a large influence.

【0017】実施例3 6×6mmのn型GaAs(100)±0.2°基板を
溶剤を溶剤洗浄の後、H2 SO4 系の溶液にて表面エッ
チングを行った。次に、この基板を脱イオン水でリンス
を行うことにより、基板表面に酸化物の超薄膜を形成
し、表面の不動態化(パッシペーション)を行った。こ
の後、窒素流下でエタノールによりスピン乾燥を行っ
た。スピン乾燥後に基板を直ちにデポジション・チャン
バーに導入し、600℃、バックグランド圧力にて加熱
を行ってGaAs表面の不動態化層の全面的脱離(昇
華)をはかった。続いて、5×10-6〜1×10-4To
rrのO2 を導入し、このO2 雰囲気に不動態化層が脱
離されたGaAs基板表面をさらすことにより、再びG
aAs酸化物の超薄膜で覆い、気相酸化による不動態化
処理の効果を検討した。続いて、直ちに250〜450
℃にて40〜400オングストロームのMgOの成膜を
行った。成膜は、ターゲット表面をUVレーザー・パル
スにより瞬間的に加熱し蒸着を行うエキシマ・レーザー
・デポジション法によって行った。レーザーはXeCl
エキシマ・レーザー(波長308nm)を用いた。ター
ゲットとしては、MgOは波長308nmに吸収を持た
ないために、金属Mgを用いた。MgOは10eV以上
の高い結合エネルギーを持っているため、O2 を成膜中
に導入することによって成膜を行い、それによりMgは
容易に酸化された。X線回折によって解析すると、成膜
したMgOは(100)面単一配向の良質なエピタキシ
ャル膜となり、MgOとGaAsの結晶学的関係は、や
はりMgO(100)//GaAs(100)、内面方位
MgO[001]//GaAs[001]であることが分
かった。エピタキシャルMgO薄膜に成長に続いて、B
aTiO3 の成膜を行った。成膜は、ターゲット表面を
UVレーザー・パルスにより瞬間的に加熱し蒸着を行う
エキシマ・レーザー・デポジション法によって行った。
レーザーはXeClエキシマ・レーザー(波長308n
m)を用いた。ターゲットとしてBaTiO3 を用い
た。600〜800℃、1×10-4〜1×10-2Tor
rO2 の条件でMgOバッファ層上へその場成長した膜
厚500〜2000オングストロームのBaTiO
3 は、全てエピタキシャル成長をしていた。X線回折パ
ターンとファイ・スキャンによって同定したBaTiO
3 とMgO/GaAsの結晶方位の関係は、BaTiO
3 (001)//MgO(100)//GaAs(10
0)、BaTiO3 [010]//MgO[001]//G
aAs[001]であった。走査型電子顕微鏡によって
観察したBaTiO3 の表面は、極めて平滑であった。
さらに原子間力顕微鏡によってBaTiO3 の表面を1
×1μm2 の範囲について観察すると、光学研磨をした
ガラスなみの平滑性を持っていることが分かった。この
ことから形成されたBaTiO3 膜は、その表面平滑性
においては、光導波路として良好な低光減衰特性につな
がるものと期待される。また、Cr/2000オングス
トローム−BaTiO3 /400オングストローム−M
gO/GaAsのキャパシター構造において、BaTi
3 の分極特性を測定すると、この構造によるP−E特
性は、ヒステリシス・ループを示し、BaTiO3 は構
造解析によって推定したように、分極軸が単結晶GaA
s基板に垂直に配向した強誘電相(正方晶)であること
が分かった。
Example 3 A 6 × 6 mm n-type GaAs (100) ± 0.2 ° substrate was washed with a solvent and then surface-etched with a H 2 SO 4 type solution. Next, this substrate was rinsed with deionized water to form an ultrathin oxide film on the substrate surface, and passivation of the surface was performed. Then, spin drying was performed with ethanol under a nitrogen flow. After spin-drying, the substrate was immediately introduced into the deposition chamber and heated at 600 ° C. at the background pressure to achieve total desorption (sublimation) of the passivation layer on the GaAs surface. Subsequently, 5 × 10 −6 to 1 × 10 −4 To
By introducing O 2 of rr and exposing the surface of the GaAs substrate from which the passivation layer has been desorbed to this O 2 atmosphere, G
The effect of passivation treatment by vapor phase oxidation was examined by covering with an ultra-thin film of aAs oxide. Then immediately 250-450
A MgO film having a thickness of 40 to 400 angstrom was formed at a temperature of ℃. The film formation was performed by an excimer laser deposition method in which the target surface was instantaneously heated by a UV laser pulse for vapor deposition. Laser is XeCl
An excimer laser (wavelength 308 nm) was used. As the target, metallic Mg was used because MgO has no absorption at a wavelength of 308 nm. Since MgO has a high binding energy of 10 eV or more, the film was formed by introducing O 2 during the film formation, whereby Mg was easily oxidized. When analyzed by X-ray diffraction, the formed MgO becomes a high-quality epitaxial film with a single orientation of the (100) plane, and the crystallographic relationship between MgO and GaAs is MgO (100) // GaAs (100) It was found to be MgO [001] // GaAs [001]. Following the growth of an epitaxial MgO thin film, B
A film of aTiO 3 was formed. The film formation was performed by an excimer laser deposition method in which the target surface was instantaneously heated by a UV laser pulse for vapor deposition.
The laser is a XeCl excimer laser (wavelength 308n
m) was used. BaTiO 3 was used as a target. 600-800 ° C, 1 × 10 -4 -1 × 10 -2 Tor
BaTiO 3 having a film thickness of 500 to 2000 angstroms grown in situ on the MgO buffer layer under the condition of rO 2.
All 3 were epitaxially grown. BaTiO identified by X-ray diffraction pattern and Phi scan
The relationship between the crystal orientation of 3 and MgO / GaAs is BaTiO 3.
3 (001) // MgO (100) // GaAs (10
0), BaTiO 3 [010] // MgO [001] // G
It was aAs [001]. The surface of BaTiO 3 observed by a scanning electron microscope was extremely smooth.
Furthermore, the surface of BaTiO 3 is examined by atomic force microscopy.
Observing in the range of × 1 μm 2 , it was found that it had a smoothness like that of optically polished glass. The BaTiO 3 film thus formed is expected to lead to good low optical attenuation characteristics as an optical waveguide in terms of surface smoothness. In addition, Cr / 2000 angstrom -BaTiO 3/400 angstrom -M
In the capacitor structure of gO / GaAs, BaTi
When the polarization characteristics of O 3 are measured, the PE characteristics due to this structure show a hysteresis loop, and BaTiO 3 has a polarization axis of single crystal GaA as estimated by structural analysis.
It was found to be a ferroelectric phase (tetragonal crystal) oriented perpendicular to the s substrate.

【0018】以上の実施例では、電子ビーム蒸着および
エキシマ・レーザー・デポジション法を用いたが、成膜
プロセスはこれに限定されるものではなく、Rf−マグ
ネトロン・スパッタリング、イオン・ビーム・スパッタ
リング、フラッシュ蒸着、イオン・プレーティング、モ
レキュラー・ビーム・エピタキシ(MBE)、イオン化
クラスタ−・ビーム・エピタキシ、化学気相成長法(C
VD)、有機金属化学気相成長法(MOCVD)、プラ
ズマCVD等の気相成長法が同様に有効である。また、
以上の実施例では、GaAsの不動態化(パッシベーシ
ョン)を酸化物の薄層によって行ったが、この他にSb
(アンチモン)や硫化アンモニウム等による不動態化が
同様に有効であった。上記実施例3で得られる酸化物強
誘電体薄膜、酸化物バッファ層および単結晶半導体基板
の結晶方位の関係は、酸化物強誘電体薄膜(001)//
酸化物バッファ層(100)//単結晶半導体基板(10
0)であったが、その他の結晶方位の関係として、酸化
物強誘電体薄膜(100)//酸化物バッファ層(10
0)//単結晶半導体基板(100)、酸化物強誘電体薄
膜(111)//酸化物バッファ層(111)//単結晶半
導体基板(100)、または酸化物強誘電体薄膜(11
1)//酸化物バッファ層(111)//単結晶半導体基板
(111)のものも同様に作製することができる。
Although the electron beam evaporation and the excimer laser deposition method are used in the above embodiments, the film forming process is not limited to this, and Rf-magnetron sputtering, ion beam sputtering, Flash evaporation, ion plating, molecular beam epitaxy (MBE), ionization cluster-beam epitaxy, chemical vapor deposition (C
VD), metal organic chemical vapor deposition (MOCVD), plasma CVD, and other vapor phase growth methods are similarly effective. Also,
In the above examples, the passivation of GaAs was performed by a thin oxide layer.
Passivation with (antimony) or ammonium sulfide was also effective. The relationship between the crystal orientations of the oxide ferroelectric thin film, the oxide buffer layer, and the single crystal semiconductor substrate obtained in Example 3 is as follows.
Oxide buffer layer (100) // Single crystal semiconductor substrate (10
0), but other crystal orientation relationships include oxide ferroelectric thin film (100) // oxide buffer layer (10).
0) // single crystal semiconductor substrate (100), oxide ferroelectric thin film (111) // oxide buffer layer (111) // single crystal semiconductor substrate (100), or oxide ferroelectric thin film (11)
1) // Oxide buffer layer (111) // single crystal semiconductor substrate (111) can be similarly prepared.

【0019】[0019]

【発明の効果】本発明の酸化物薄膜の作製方法により、
酸化物強誘電体薄膜のエピタキシャル成長を助け、かつ
拡張バリアとしても働く酸化物バッファ層を、如何なる
単結晶半導体上にでも、容易に形成することができるか
ら、本発明により、半導体単結晶基板上にエピタキシャ
ルまたは配向性の酸化物強誘電体薄膜を形成することが
でき、高性能の不揮発性メモリーやキャパシター、また
は光変調素子等の素子を半導体基板上に作製することが
可能になる。さらに、本発明によれば、酸化物強誘電体
薄膜の配向が制御できるために、大きな残留分極値や良
好な光学特性等を得ることができる。また、酸化物強誘
電体の屈折率は一般に半導体よりも小さいが、酸化物強
誘電体よりも小さい屈折率を持つ酸化物バッファ層によ
って、半導体レーザー光を強誘電体薄膜光導波路中に閉
じ込めることが可能になり、光変調素子のGaAs系半
導体レーザー上への作製や光集積回路をSi半導体集積
回路上に作製することも可能になる。
According to the method for producing an oxide thin film of the present invention,
Since an oxide buffer layer that assists the epitaxial growth of an oxide ferroelectric thin film and that also functions as an expansion barrier can be easily formed on any single crystal semiconductor, the present invention enables the formation of an oxide buffer layer on a semiconductor single crystal substrate. An epitaxial or oriented oxide ferroelectric thin film can be formed, and a high-performance nonvolatile memory, a capacitor, or a device such as a light modulation device can be manufactured on a semiconductor substrate. Furthermore, according to the present invention, since the orientation of the oxide ferroelectric thin film can be controlled, it is possible to obtain a large remanent polarization value and good optical characteristics. In addition, the refractive index of oxide ferroelectrics is generally smaller than that of semiconductors, but the semiconductor laser light is confined in the ferroelectric thin film optical waveguide by an oxide buffer layer having a smaller refractive index than oxide ferroelectrics. It becomes possible to manufacture the optical modulator on the GaAs semiconductor laser and the optical integrated circuit on the Si semiconductor integrated circuit.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C30B 33/08 9261−4G H01L 21/314 A 21/316 X Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C30B 33/08 9261-4G H01L 21/314 A 21/316 X

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 単結晶半導体基板表面を不動態化処理し
て、該半導体を構成する元素と異なる元素を含む超薄膜
よりなる不動態化層を形成した後、該単結晶半導体基板
表面にエピタキシャルまたは配向性の酸化物バッファ層
を気相成長させることを特徴とする酸化物薄膜の作製方
法。
1. A passivation treatment is performed on the surface of a single crystal semiconductor substrate to form a passivation layer made of an ultrathin film containing an element different from an element constituting the semiconductor, and then the surface is epitaxially grown on the surface of the single crystal semiconductor substrate. Alternatively, a method for manufacturing an oxide thin film, which comprises vapor-phase growing an oriented oxide buffer layer.
【請求項2】 単結晶半導体基板表面を不動態化処理し
て、該半導体を構成する元素と異なる元素を含む超薄膜
よりなる不動態化層を形成した後、該単結晶半導体基板
表面にエピタキシャルまたは配向性の酸化物バッファ層
を気相成長させ、形成された酸化物バッファ層の上にエ
ピタキシャルまたは配向性の酸化物強誘電体薄膜を気相
成長または固相成長させることを特徴とする酸化物薄膜
の作製方法。
2. A single crystal semiconductor substrate surface is passivated to form a passivation layer composed of an ultrathin film containing an element different from an element constituting the semiconductor, and then epitaxially formed on the single crystal semiconductor substrate surface. Or an oxide characterized by vapor-depositing an oriented oxide buffer layer and vapor-phase or solid-phase growing an epitaxial or oriented oxide ferroelectric thin film on the formed oxide buffer layer. Method for manufacturing thin film.
【請求項3】 単結晶半導体基板表面を不動態化処理し
て、該半導体を構成する元素と異なる元素を含む超薄膜
よりなる不動態化層を形成し、該不動態化層を部分的に
昇華した後、該単結晶半導体基板表面にエピタキシャル
または配向性の酸化物バッファ層を気相成長させること
を特徴とする酸化物薄膜の作製方法。
3. A passivation treatment is performed on the surface of a single crystal semiconductor substrate to form a passivation layer made of an ultrathin film containing an element different from an element constituting the semiconductor, and the passivation layer is partially formed. After the sublimation, an epitaxial or oriented oxide buffer layer is vapor-phase-grown on the surface of the single crystal semiconductor substrate to prepare an oxide thin film.
【請求項4】 単結晶半導体基板が、GaAs基板であ
る請求項1ないし請求項3のいずれかに記載の酸化物薄
膜の作製方法。
4. The method for producing an oxide thin film according to claim 1, wherein the single crystal semiconductor substrate is a GaAs substrate.
【請求項5】 酸化物バッファ層がMgOよりなる請求
項1ないし請求項4のいずれかに記載の酸化物薄膜の作
製方法。
5. The method for producing an oxide thin film according to claim 1, wherein the oxide buffer layer is made of MgO.
JP13958594A 1994-05-31 1994-05-31 Preparation method of oxide thin film Expired - Fee Related JP2889492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13958594A JP2889492B2 (en) 1994-05-31 1994-05-31 Preparation method of oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13958594A JP2889492B2 (en) 1994-05-31 1994-05-31 Preparation method of oxide thin film

Publications (2)

Publication Number Publication Date
JPH07330487A true JPH07330487A (en) 1995-12-19
JP2889492B2 JP2889492B2 (en) 1999-05-10

Family

ID=15248697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13958594A Expired - Fee Related JP2889492B2 (en) 1994-05-31 1994-05-31 Preparation method of oxide thin film

Country Status (1)

Country Link
JP (1) JP2889492B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993544A (en) * 1998-03-30 1999-11-30 Neocera, Inc. Non-linear optical thin film layer system
JP2000278084A (en) * 1999-03-24 2000-10-06 Yamaha Corp Surface acoustic wave element
EP1109212A2 (en) * 1999-12-17 2001-06-20 Motorola, Inc. Semiconductor structure having a crystalline alkaline earth metal silicon nitride/oxide interface with silicon
EP1108805A1 (en) * 1999-12-17 2001-06-20 Motorola, Inc. Method for fabricating a semiconductor structure having a stable crystalline interface with silicon
WO2010058805A1 (en) * 2008-11-20 2010-05-27 Ricoh Company, Ltd. Manufacturing method, surface-emitting laser device, surface-emitting laser array, optical scanner, and image forming apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993544A (en) * 1998-03-30 1999-11-30 Neocera, Inc. Non-linear optical thin film layer system
JP2000278084A (en) * 1999-03-24 2000-10-06 Yamaha Corp Surface acoustic wave element
EP1109212A2 (en) * 1999-12-17 2001-06-20 Motorola, Inc. Semiconductor structure having a crystalline alkaline earth metal silicon nitride/oxide interface with silicon
EP1108805A1 (en) * 1999-12-17 2001-06-20 Motorola, Inc. Method for fabricating a semiconductor structure having a stable crystalline interface with silicon
US6291319B1 (en) 1999-12-17 2001-09-18 Motorola, Inc. Method for fabricating a semiconductor structure having a stable crystalline interface with silicon
EP1109212A3 (en) * 1999-12-17 2004-03-24 Motorola, Inc. Semiconductor structure having a crystalline alkaline earth metal silicon nitride/oxide interface with silicon
WO2010058805A1 (en) * 2008-11-20 2010-05-27 Ricoh Company, Ltd. Manufacturing method, surface-emitting laser device, surface-emitting laser array, optical scanner, and image forming apparatus
JP2010267946A (en) * 2008-11-20 2010-11-25 Ricoh Co Ltd Manufacturing method, surface-emitting laser device, surface-emitting laser array, optical scanner, and image forming apparatus
US8416822B2 (en) 2008-11-20 2013-04-09 Ricoh Company, Ltd. Manufacturing method, surface-emitting laser device, surface-emitting laser array, optical scanner, and image forming apparatus
US8630325B2 (en) 2008-11-20 2014-01-14 Ricoh Company, Ltd. Manufacturing method, surface-emitting laser device, surface-emitting laser array, optical scanner, and image forming apparatus

Also Published As

Publication number Publication date
JP2889492B2 (en) 1999-05-10

Similar Documents

Publication Publication Date Title
US5514484A (en) Oriented ferroelectric thin film
US5776621A (en) Oriented ferroelectric thin film element
JP2924574B2 (en) Oriented ferroelectric thin film device
US5323023A (en) Epitaxial magnesium oxide as a buffer layer on (111) tetrahedral semiconductors
EP0661754B1 (en) Structure comprising a ferroelectric crystal thin film, its production method and a device using said structure
US7020374B2 (en) Optical waveguide structure and method for fabricating the same
US5888296A (en) Method for making a ferroelectric semiconductor device and a layered structure
JP3047316B2 (en) Epitaxial ferroelectric thin film device and method for producing the same
US6750067B2 (en) Microelectronic piezoelectric structure and method of forming the same
US6069368A (en) Method for growing high-quality crystalline Si quantum wells for RTD structures
US20020006733A1 (en) Multilayer thin film and its fabrication process as well as electron device
JP2864912B2 (en) Oriented ferroelectric thin film
US11561421B2 (en) Systems and methods for integrating a-axis oriented barium titanate thin films on silicon (001) via strain control
JP3095944B2 (en) Method for producing oxide crystal thin film and thin film element
WO2002009159A2 (en) Thin-film metallic oxide structure and process for fabricating same
JP2889492B2 (en) Preparation method of oxide thin film
JPH10120494A (en) Production of ferroelectric thin film
US6482538B2 (en) Microelectronic piezoelectric structure and method of forming the same
JP2889463B2 (en) Oriented ferroelectric thin film device
JPH05327034A (en) Epitaxial magnesium oxide as buffer layer for forming next layer on tetrahedron semiconductor
JPH06151602A (en) Production of oriented ferroelectric thin film
Aizawa et al. Epitaxial growth of BaMgF4 films on Si (100) and (111) substrates: An approach to ferroelectric/semiconductor heterostructures
JP3513532B2 (en) Optical switching element
JPH07133199A (en) Ferroelectric substance thin film having orientation property
US20230197443A1 (en) Epitaxial strontium titanate on silicon

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080219

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees