JP2001114519A - Porous titania, catalyst by using the same and method for production thereof - Google Patents

Porous titania, catalyst by using the same and method for production thereof

Info

Publication number
JP2001114519A
JP2001114519A JP2000176520A JP2000176520A JP2001114519A JP 2001114519 A JP2001114519 A JP 2001114519A JP 2000176520 A JP2000176520 A JP 2000176520A JP 2000176520 A JP2000176520 A JP 2000176520A JP 2001114519 A JP2001114519 A JP 2001114519A
Authority
JP
Japan
Prior art keywords
solution
titanium alkoxide
solvent
porous titania
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000176520A
Other languages
Japanese (ja)
Inventor
Yasuyuki Oki
泰行 沖
Hironobu Koike
宏信 小池
Yoshiaki Takeuchi
美明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2000176520A priority Critical patent/JP2001114519A/en
Publication of JP2001114519A publication Critical patent/JP2001114519A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a porous titania showing an excellent catalyst activity in uses such as a denitration, etc., and a catalyst by using the same, and to provide a method for producing the same. SOLUTION: This porous titania having the anatase type crystal structure, 3-10 nm crystallite diameter, >=60% anatase crystallization ratio, >=10 m2/g BET specific surface area, >=0.05 cm3/g total void volume and >=0.02 cm3/g void volume of voids having >=1 nm void radius, is obtained by dissolving a titanium alkoxide with a solvent to obtain the titanium alkoxide solution, adding a mixed solvent consisting of water and a solvent to the titanium alkoxide solution for hydrolyzing, then polymerizing to obtain a polymer solution, and burning the polymer solution in the presence of a fatty acid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多孔質チタニア、
それを用いた触媒およびその製造方法に関するものであ
る。詳細には脱硝、有機物の酸化、ダイオキシンの分
解、また、有機溶剤や農薬、界面活性剤等の分解除去等
に適用する場合に、優れた活性を示す多孔質チタニア、
それを用いた触媒およびその製造方法に関するものであ
る。
The present invention relates to a porous titania,
The present invention relates to a catalyst using the same and a method for producing the same. Specifically, when applied to denitration, oxidation of organic matter, decomposition of dioxin, and decomposition and removal of organic solvents, pesticides, surfactants, and the like, porous titania showing excellent activity,
The present invention relates to a catalyst using the same and a method for producing the same.

【0002】[0002]

【従来の技術】ごみ焼却炉の排ガスに含まれる窒素酸化
物を除去するための脱硝触媒としてチタニア系触媒が知
られている。以前より、チタニア系触媒については、長
期間の触媒活性の保持を目的に、各種改良法が提案され
ている。例えば、特開平5−184923号公報には、
チタンアルコキシドとバナジウム化合物等との混合アル
コキシド溶液を加水分解しゲル化させるゾルゲル法によ
り作製したアモルファス繊維を熱処理し、アナターゼ型
酸化チタンと酸化バナジウムの結晶を析出させることに
よってチタニア系触媒が得られることが記載されてい
る。
2. Description of the Related Art A titania catalyst is known as a denitration catalyst for removing nitrogen oxides contained in exhaust gas from a refuse incinerator. Various improvements have been proposed for titania-based catalysts for the purpose of maintaining the catalytic activity for a long time. For example, JP-A-5-184923 discloses that
A titania-based catalyst can be obtained by heat-treating amorphous fibers made by the sol-gel method of hydrolyzing and gelling a mixed alkoxide solution of titanium alkoxide and a vanadium compound to precipitate crystals of anatase-type titanium oxide and vanadium oxide. Is described.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特開平
5−184923号公報記載のチタニア系触媒は活性が
低く、脱硝性能が低いという問題があった。
However, the titania-based catalyst described in JP-A-5-184923 has a problem that its activity is low and its denitration performance is low.

【0004】本発明の目的は、脱硝などの用途において
優れた触媒活性を示す多孔質チタニア、それを用いた触
媒およびその製造方法を提供することにある。
An object of the present invention is to provide a porous titania exhibiting excellent catalytic activity in applications such as denitration, a catalyst using the same, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明者等は、多孔質チ
タニアの触媒活性の向上について検討した結果、本発明
を完成するに至った。
Means for Solving the Problems The present inventors have studied the improvement of the catalytic activity of porous titania, and have completed the present invention.

【0006】即ち、本発明は、アナターゼ型の結晶構造
を有し、その結晶子径が3nm〜10nm、アナターゼ
結晶化率が60%以上、BET比表面積が10m2/g
以上、全細孔容積が0.05cm3/g以上、1nm以
上の細孔半径を有する細孔の容積が0.02cm3/g
以上であることを特徴とする多孔質チタニアを提供する
ものである。
That is, the present invention has an anatase type crystal structure, a crystallite size of 3 nm to 10 nm, an anatase crystallization ratio of 60% or more, and a BET specific surface area of 10 m 2 / g.
As described above, the volume of pores having a pore radius of 0.05 cm 3 / g or more and a pore radius of 1 nm or more is 0.02 cm 3 / g.
The present invention provides a porous titania characterized by the above.

【0007】本発明は、前記の多孔質チタニアを成形し
てなる触媒を提供するものである。
The present invention provides a catalyst obtained by molding the above-mentioned porous titania.

【0008】また、本発明は、チタンアルコキシドを溶
媒に溶解させてチタンアルコキシド溶液を得、該チタン
アルコキシド溶液に水と溶媒とからなる混合溶液を添加
して加水分解し、重合させて重合体溶液を得、該重合体
溶液を脂肪酸存在下で焼成することを特徴とする前記の
多孔質チタニアの製造方法を提供するものである。
Further, the present invention provides a titanium alkoxide solution obtained by dissolving a titanium alkoxide in a solvent, adding a mixed solution comprising water and a solvent to the titanium alkoxide solution, hydrolyzing and polymerizing the solution. And calcining the polymer solution in the presence of a fatty acid.

【0009】[0009]

【発明の実施の形態】以下に本発明を更に詳細に説明す
る。チタニアはTiO2なる組成式を有し、結晶構造が
アナターゼ型、ルチル型および非晶質のものが知られて
いる。本発明の多孔質チタニアは、その中でもアナター
ゼ型の結晶構造を有するものであり、ここでは、X線回
折法によりアナターゼの(101)面のピークの半価幅
とピーク位置を求め、Scherrerの式により算出されるア
ナターゼ結晶子径が3nm以上10nm以下であること
を要件とする。アナターゼ結晶子径は5nm以上である
こと、また、9nm以下であることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. Titania has a composition formula of TiO 2 , and its anatase type, rutile type and amorphous crystal structures are known. Among them, the porous titania of the present invention has an anatase type crystal structure. Here, the half width and the peak position of the (101) plane peak of anatase are determined by X-ray diffraction, and the Scherrer equation is used. It is required that the anatase crystallite diameter calculated by the above is 3 nm or more and 10 nm or less. The anatase crystallite diameter is preferably 5 nm or more, and more preferably 9 nm or less.

【0010】本発明の多孔質チタニアを特定する第2の
要件は、アナターゼ結晶化率である。ここでのアナター
ゼ結晶化率は、チタニアのアナターゼ型結晶への相転移
の程度およびアナターゼ型結晶の成長の程度を表す指標
であり、X線回折法によりアナターゼの(101)面の
ピーク面積を求め、算出することができる。本発明で
は、アナターゼ結晶化率が60%以上であることを要件
とする。アナターゼ結晶化率は65%以上、さらには7
0%以上であり、また、95%以下、さらには90%以
下であることが好ましい。本発明による多孔質チタニア
は、そのアナターゼ結晶化率が60%未満であると、た
とえ、上で説明したアナターゼ結晶子径が3nm〜10
nmの範囲内のものであっても、触媒として十分な活性
を示すことが困難となる。
The second requirement for specifying the porous titania of the present invention is the anatase crystallization rate. The anatase crystallization rate is an index indicating the degree of phase transition of titania to anatase-type crystal and the degree of growth of anatase-type crystal, and the peak area of the (101) plane of anatase is determined by X-ray diffraction. , Can be calculated. In the present invention, it is required that the anatase crystallization rate be 60% or more. The anatase crystallization rate is 65% or more, and even 7
It is preferably at least 0%, at most 95%, more preferably at most 90%. When the porous titania according to the present invention has an anatase crystallization ratio of less than 60%, for example, the anatase crystallite size described above is 3 nm to 10 nm.
Even in the range of nm, it is difficult to exhibit sufficient activity as a catalyst.

【0011】本発明の多孔質チタニアを特定する他の要
件は、BET比表面積、全細孔容積および1nm以上の
細孔半径を有する細孔の容積である。本発明では、BE
T比表面積が10m2/g以上、全細孔容積が0.05
cm3/g以上および1nm以上の細孔半径を有する細
孔の容積が0.02cm3/g以上であることを要件と
する。BET比表面積は180m2/g以上、さらには
200m2/gであること、全細孔容積は0.2cm3
g以上であること、また、1nm以上の細孔半径を有す
る細孔の容積は0.2cm3/g以上であることが好ま
しい。BET比表面積が10m2/g未満、全細孔容積
が0.05cm3/g未満または1nm以上の細孔半径
を有する細孔の容積が0.02cm3/g未満である
と、優れた活性を示す多孔質チタニアを得ることが困難
となる。なお、BET比表面積、全細孔容積および1n
m以上の細孔半径を有する細孔の容積は、窒素ガスを用
いる連続容量法により測定することができる。
Other requirements for specifying the porous titania of the present invention are the BET specific surface area, the total pore volume, and the volume of pores having a pore radius of 1 nm or more. In the present invention, BE
T specific surface area of 10 m 2 / g or more, total pore volume of 0.05
It is required that the volume of pores having a pore radius of not less than cm 3 / g and not less than 1 nm is not less than 0.02 cm 3 / g. The BET specific surface area is 180 m 2 / g or more, further 200 m 2 / g, and the total pore volume is 0.2 cm 3 / g.
g or more, and the volume of pores having a pore radius of 1 nm or more is preferably 0.2 cm 3 / g or more. When the BET specific surface area is less than 10 m 2 / g and the total pore volume is less than 0.05 cm 3 / g or the volume of pores having a pore radius of 1 nm or more is less than 0.02 cm 3 / g, excellent activity is obtained. Is difficult to obtain. The BET specific surface area, total pore volume and 1n
The volume of pores having a pore radius of not less than m can be measured by a continuous volume method using nitrogen gas.

【0012】本発明の多孔質チタニアは前記のアナター
ゼの結晶子径、BET比表面積、全細孔容積および1n
m以上の細孔半径を有する細孔の容積についての要件を
満足することに加え、その細孔半径に対する細孔容積の
分布曲線において、細孔半径1nm以上30nm以下、
好ましくは1nm以上10nm以下の範囲に極大値を示
す細孔構造を有するものであることが好ましい。特に、
多孔質チタニアの形状が繊維状である場合には、この細
孔構造を有することによって、繊維状多孔質チタニアは
触媒活性に優れるとともに、十分な引張強度を有する。
この繊維状多孔質チタニアは、通常、引張強度が約0.
1GPa以上であり、繊維径が約2μm〜約50μmで
ある。
The porous titania of the present invention comprises a crystallite size, a BET specific surface area, a total pore volume and an
m, and in addition to satisfying the requirements for the volume of pores having a pore radius of at least m, a distribution curve of the pore volume with respect to the pore radius shows a pore radius of 1 nm to 30 nm,
Preferably, it has a pore structure showing a maximum value in a range of 1 nm or more and 10 nm or less. In particular,
When the porous titania has a fibrous shape, by having this pore structure, the fibrous porous titania has excellent catalytic activity and sufficient tensile strength.
This fibrous porous titania usually has a tensile strength of about 0.5.
1 GPa or more, and the fiber diameter is about 2 μm to about 50 μm.

【0013】また、多孔質チタニアには、脱硝用途等で
公知の触媒成分が含まれていてもよい。触媒成分として
は、V、W、Al、As、Ni、Zr、Mo、Ru、M
g、Ca、Fe、CrおよびPt等の元素が挙げられ
る。
The porous titania may contain a catalyst component known for denitration applications and the like. The catalyst components include V, W, Al, As, Ni, Zr, Mo, Ru, M
Elements such as g, Ca, Fe, Cr and Pt are listed.

【0014】本発明による多孔質チタニアは、成形して
球状、リング状、ハニカム状、シート状のような各種形
状にすることによって、脱硝触媒の他、有機物の酸化、
ダイオキシンの分解または水中の有機溶剤、農薬もしく
は界面活性剤の分解除去等に好適な触媒となる。
The porous titania according to the present invention is formed into various shapes such as a spherical shape, a ring shape, a honeycomb shape, and a sheet shape, so that, in addition to the denitration catalyst, the oxidation of organic substances,
It is a suitable catalyst for decomposing dioxin or decomposing and removing organic solvents, pesticides or surfactants in water.

【0015】本発明による特定のアナターゼの結晶子
径、結晶化率、BET比表面積を有し、かつ全細孔容積
および1nm以上の細孔半径を有する細孔の容積が特定
量である多孔質チタニアは、例えば、チタンアルコキシ
ドを溶媒に溶解させてチタンアルコキシド溶液を得、該
チタンアルコキシド溶液に水と溶媒とからなる混合溶液
を添加して加水分解し、重合させて重合体溶液を得、該
重合体溶液を脂肪酸存在下で焼成する方法で得ることが
できる。
According to the present invention, there is provided a porous material having a specific anatase crystallite size, a crystallization ratio, a BET specific surface area, and a specific volume of pores having a total pore volume and a pore radius of 1 nm or more. Titania is obtained, for example, by dissolving a titanium alkoxide in a solvent to obtain a titanium alkoxide solution, adding a mixed solution of water and a solvent to the titanium alkoxide solution, hydrolyzing and polymerizing to obtain a polymer solution, It can be obtained by a method in which the polymer solution is calcined in the presence of a fatty acid.

【0016】本発明の多孔質チタニアを製造するときに
用いるチタンアルコキシドとしては、下記式(I) Ti(OR14 (I) 〔式(I)中、R1は炭素数が1〜4のアルキルを表
す。〕で示されるチタンアルコキシドがあり、例えば、
チタンテトラメトキシド、チタンテトラエトキシド、チ
タンテトラn−プロポキシド、チタンテトライソプロポ
キシド、チタンテトラn−ブトキシド、チタンテトラs
ec−ブトキシド、チタンテトラtert−ブトキシド
が挙げられる。中でも、チタンテトライソプロポキシド
の適用が好ましい。式(I)におけるR1が炭素数5以上
のアルキルであるものの場合、得られる多孔質チタニア
の機械的強度が低くなることがある。
The titanium alkoxide used for producing the porous titania of the present invention is represented by the following formula (I): Ti (OR 1 ) 4 (I) [wherein R 1 has 1 to 4 carbon atoms. Represents an alkyl. There is a titanium alkoxide represented by, for example,
Titanium tetramethoxide, titanium tetraethoxide, titanium tetra n-propoxide, titanium tetraisopropoxide, titanium tetra n-butoxide, titanium tetra s
ec-butoxide and titanium tetra-tert-butoxide. Among them, application of titanium tetraisopropoxide is preferred. When R 1 in the formula (I) is an alkyl having 5 or more carbon atoms, the resulting porous titania may have low mechanical strength.

【0017】用いる溶媒としては、チタンアルコキシド
を溶解する各種溶媒が適用でき、例えばアルコール類、
エーテル類、芳香族炭化水素類がある。アルコール類
は、下記式(II) R2OH (II) 〔式(II)中、R2は炭素数が1〜4のアルキルを表
す。〕で示されるものがあり、具体例としてはエタノー
ル、イソプロピルアルコール等が挙げられる。エーテル
類としては、テトラヒドロフラン、ジエチルエーテル等
がある。チタンアルコキシドを溶解するのに用いる溶媒
と、加水分解のときに添加する水と溶媒とからなる混合
溶液の調製に用いる溶媒は同種のものであることが好ま
しい。チタンアルコキシドを溶解するために用いる溶媒
の量は、通常、チタンアルコキシド1モルに対し0.5
モル〜50モルの範囲である。
As the solvent to be used, various solvents for dissolving the titanium alkoxide can be used. For example, alcohols,
There are ethers and aromatic hydrocarbons. The alcohol is represented by the following formula (II) R 2 OH (II) [wherein R 2 represents alkyl having 1 to 4 carbon atoms. And specific examples include ethanol, isopropyl alcohol and the like. Ethers include tetrahydrofuran, diethyl ether and the like. It is preferable that the solvent used for dissolving the titanium alkoxide and the solvent used for preparing a mixed solution consisting of water and the solvent added during the hydrolysis are of the same type. The amount of the solvent used for dissolving the titanium alkoxide is usually 0.5 to 1 mol of the titanium alkoxide.
Moles to 50 moles.

【0018】また、用いる脂肪酸としては、下記式(II
I) R3COOH (III) 〔式(III)中、R3は水素または飽和もしくは不飽和の
炭化水素残基を表す。〕で示されるものが挙げられる。
飽和脂肪酸の具体例としては、ギ酸、酢酸、プロピオン
酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント
酸、カプリル酸、ペラルゴン酸、カプリン酸、ウンデシ
ル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペン
タデシル酸、パルミチン酸、ヘプタデシル酸、イソステ
アリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグ
ノセリン酸、セロチン酸、ヘプタコサン酸、モンタン
酸、メリシン酸、ラクセル酸等が挙げられる。不飽和脂
肪酸の具体例としては、アクリル酸、クロトン酸、イソ
クロトン酸、ウンデシレン酸、オレイン酸、エライジン
酸、セトレイン酸、エルカ酸、ブラシジン酸、ソルビン
酸、リノール酸、リノレン酸、アラキドン酸、プロピオ
ール酸、ステアロール酸等が挙げられる。中でも、式
(III)で示され、R3が炭素数8以上の飽和または不飽
和の炭化水素残基である脂肪酸の適用が推奨される。重
合体溶液中の脂肪酸の量は、その種類により異なり一義
的ではないが、通常、重合体溶液の調製のために用いる
チタンアルコキシド1モルに対して0.01モル以上、
好ましくは0.05モル以上であり、0.5モル以下、
好ましくは0.3モル以下である。脂肪酸の量が0.0
1モルより少ない場合には、優れた活性を示す多孔質チ
タニアが得られないことがある。脂肪酸の量が0.5モ
ルより多いと多孔質チタニアの機械的強度が低くなるこ
とがある。脂肪酸は焼成に際して重合体溶液中に所定量
存在していればよく、例えば、チタンアルコキシド溶液
に脂肪酸を添加する方法、または重合体溶液に脂肪酸を
添加する方法で存在させればよい。。
The fatty acid used is represented by the following formula (II)
I) R 3 COOH (III) [In the formula (III), R 3 represents hydrogen or a saturated or unsaturated hydrocarbon residue. ] Are exemplified.
Specific examples of saturated fatty acids include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecylic acid, lauric acid, tridecylic acid, myristic acid, Examples include pentadecylic acid, palmitic acid, heptadecylic acid, isostearic acid, nonadecanoic acid, arachinic acid, behenic acid, lignoceric acid, serotinic acid, heptacosanoic acid, montanic acid, melissic acid, and lacceric acid. Specific examples of unsaturated fatty acids include acrylic acid, crotonic acid, isocrotonic acid, undecylenic acid, oleic acid, elaidic acid, setreic acid, erucic acid, brassic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid, propiolic acid , Stearic acid and the like. Among them, it is recommended to use a fatty acid represented by the formula (III), wherein R 3 is a saturated or unsaturated hydrocarbon residue having 8 or more carbon atoms. The amount of the fatty acid in the polymer solution varies depending on the type and is not unique, but is usually 0.01 mol or more based on 1 mol of titanium alkoxide used for preparing the polymer solution.
Preferably it is 0.05 mol or more, and 0.5 mol or less,
Preferably it is at most 0.3 mol. If the amount of fatty acids is 0.0
If the amount is less than 1 mol, porous titania exhibiting excellent activity may not be obtained. If the amount of the fatty acid is more than 0.5 mol, the mechanical strength of the porous titania may decrease. The fatty acid may be present in a predetermined amount in the polymer solution at the time of baking, and may be present, for example, by a method of adding a fatty acid to a titanium alkoxide solution or a method of adding a fatty acid to a polymer solution. .

【0019】本発明による繊維状である多孔質チタニア
について以下に詳しく説明する。この繊維状多孔質チタ
ニアは、チタンアルコキシドを溶媒に溶解させて得られ
るチタンアルコキシド溶液に水と溶媒とからなる混合溶
液を添加して加水分解し、重合させて、該チタンアルコ
キシド溶液に重合体を生成させる工程(以下、工程と
いう。)、該重合体を該重合体が可溶な有機溶媒に溶解
させて重合体溶液を得る工程(以下、工程とい
う。)、紡糸液としての該重合体溶液を紡糸して前駆体
繊維を得る工程(以下、工程という。)、該前駆体繊
維を焼成する工程(以下、工程という。)からなる製
造方法で得ることができる。
The fibrous porous titania according to the present invention will be described in detail below. This fibrous porous titania is obtained by dissolving a titanium alkoxide in a solvent, adding a mixed solution comprising water and a solvent to a titanium alkoxide solution, hydrolyzing and polymerizing the polymer, and forming a polymer in the titanium alkoxide solution. Producing (hereinafter referred to as "step"), dissolving the polymer in an organic solvent in which the polymer is soluble to obtain a polymer solution (hereinafter referred to as "step"), and the polymer solution as a spinning solution (Hereinafter referred to as a step) by spinning the precursor fiber, and a step of firing the precursor fiber (hereinafter referred to as a step).

【0020】工程は、前記式(I)で示されるチタン
アルコキシドを溶媒に溶解させて得られるチタンアルコ
キシド溶液に水と溶媒との混合溶液を添加してチタンア
ルコキシドを加水分解し、重合させる方法で行うことが
できる。チタンアルコキシドを溶解するのに用いる溶媒
や、加水分解のときに添加する混合溶液の調製に用いる
溶媒には、チタンアルコキシドを溶解することが可能な
各種溶媒が適用でき、例えばアルコール類、エーテル
類、芳香族炭化水素類がある。アルコール類は、前記式
(II)で示される。混合溶液は、水濃度が約1重量%〜
約50重量%であり、その添加量は、通常、原料として
用いるチタンアルコキシド1モルに対してH2O換算で
1.5モル〜4モルの範囲である。
The step is carried out by a method of adding a mixed solution of water and a solvent to a titanium alkoxide solution obtained by dissolving the titanium alkoxide represented by the formula (I) in a solvent, hydrolyzing the titanium alkoxide, and polymerizing the mixture. It can be carried out. Various solvents capable of dissolving titanium alkoxide can be applied to the solvent used for dissolving the titanium alkoxide and the solvent used for preparing the mixed solution to be added at the time of hydrolysis, for example, alcohols, ethers, There are aromatic hydrocarbons. The alcohol is represented by the formula (II). The mixed solution has a water concentration of about 1% by weight or more.
It is about 50% by weight, and its addition amount is usually in the range of 1.5 mol to 4 mol in terms of H 2 O per mol of titanium alkoxide used as a raw material.

【0021】工程では、窒素のような不活性ガス雰囲
気下で、チタンアルコキシドを溶媒に溶解させて得られ
るチタンアルコキシド溶液に、水と溶媒との混合溶液を
添加して加水分解し、重合させることが好ましい。ま
た、前記式(III)で示される脂肪酸を添加するときに
は、例えば、脂肪酸をチタンアルコキシド溶液に所定量
添加する方法で行うことができる。ただし、脂肪酸の量
が0.5モルより多くなると、十分な引張強度を有する
繊維状多孔質チタニアを得ることが困難となる。
In the step, a mixed solution of water and a solvent is added to a titanium alkoxide solution obtained by dissolving the titanium alkoxide in a solvent under an atmosphere of an inert gas such as nitrogen, followed by hydrolysis and polymerization. Is preferred. When the fatty acid represented by the formula (III) is added, for example, a method of adding a predetermined amount of the fatty acid to the titanium alkoxide solution can be performed. However, when the amount of the fatty acid is more than 0.5 mol, it is difficult to obtain a fibrous porous titania having a sufficient tensile strength.

【0022】また、触媒成分を添加するときには、例え
ば、チタンアルコシキド溶液に、V、W、Al、As、
Ni、Zr、Mo、Ru、Mg、Ca、Fe、Crおよ
びPtの元素またはその化合物等を添加する。その化合
物としては、バナジウムアルコキシド、バナジルアルコ
キシド、トリエトキシバナジル、バナジウムアセチルア
セトネート、塩化バナジウム、塩化バナジルのようなバ
ナジウム化合物、タングステンアルコキシド、塩化タン
グステンのようなタングステン化合物、アルキルアルミ
ニウム、アルミニウムアルコキシドのようなアルミニウ
ム化合物、塩化ヒ素のようなヒ素化合物、ニッケルアル
コキシド、塩化ニッケルのようなニッケル化合物、ジル
コニウムアルコキシド、ジルコニウムアセチルアセトネ
ート、ジルコニウムブトキシアセチルアセトネート、ジ
ルコニウムテトラブトキシドのようなジルコニウム化合
物、モリブデンオキシアセチルアセトネート、塩化モリ
ブデンのようなモリブデン化合物、塩化ルテニウムのよ
うなルテニウム化合物、マグネシウムアルコキシド、マ
グネシウムアセチルアセトネート、塩化マグネシウムの
ようなマグネシウム化合物、カルシウムアルコキシド、
塩化カルシウムのようなカルシウム化合物、鉄アルコキ
シド、鉄アセチルアセトネート、塩化鉄のような鉄化合
物、クロムアルコキシド、クロムアセチルアセトネート
のようなクロム化合物、白金アセチルアセトネート、塩
化白金のような白金化合物等が挙げられる。ここで、バ
ナジウムアルコキシドは、バナジウムメトキシド、バナ
ジウムエトキシド、バナジウムn−プロポキシド、バナ
ジウムイソプロポキシド、バナジウムn−ブトキシド、
バナジウムsec−ブトキシドおよびバナジウムter
t−ブトキシド等を総称し、他の金属アルコキシドにつ
いても同様である。触媒成分の添加量は、その用途によ
って異なるが、例えば脱硝用途では、得られるチタニア
質触媒に対して酸化物換算で0.001重量%〜50重
量%である。触媒成分の添加は、焼成に際して重合体溶
液に所定量の触媒成分を存在させることができる方法で
行えばよく、例えば、チタンアルコキシド溶液に添加す
る方法、または重合体溶液に添加する方法がある。
When the catalyst component is added, for example, V, W, Al, As,
Elements of Ni, Zr, Mo, Ru, Mg, Ca, Fe, Cr and Pt or compounds thereof are added. Examples of the compound include vanadium alkoxide, vanadyl alkoxide, triethoxy vanadyl, vanadium acetylacetonate, vanadium chloride, vanadium compound such as vanadyl chloride, tungsten alkoxide, tungsten compound such as tungsten chloride, alkyl aluminum, and aluminum alkoxide. Aluminum compounds, arsenic compounds such as arsenic chloride, nickel alkoxide, nickel compounds such as nickel chloride, zirconium alkoxide, zirconium acetylacetonate, zirconium butoxyacetylacetonate, zirconium compounds such as zirconium tetrabutoxide, molybdenum oxyacetylacetonate , Molybdenum compounds such as molybdenum chloride, ruthenium such as ruthenium chloride Um compounds, magnesium alkoxides, magnesium acetylacetonate, magnesium compounds such as magnesium chloride, calcium alkoxides,
Calcium compounds such as calcium chloride, iron compounds such as iron alkoxide, iron acetylacetonate and iron chloride, chromium compounds such as chromium alkoxide and chromium acetylacetonate, platinum compounds such as platinum acetylacetonate and platinum chloride, etc. Is mentioned. Here, vanadium alkoxide is vanadium methoxide, vanadium ethoxide, vanadium n-propoxide, vanadium isopropoxide, vanadium n-butoxide,
Vanadium sec-butoxide and vanadium ter
The term generically refers to t-butoxide and the like, and the same applies to other metal alkoxides. The amount of the catalyst component to be added varies depending on the application. For example, in the denitration application, the amount is 0.001% by weight to 50% by weight in terms of oxide based on the obtained titania catalyst. The catalyst component may be added by a method that allows a predetermined amount of the catalyst component to be present in the polymer solution at the time of calcination. For example, there is a method of adding to a titanium alkoxide solution or a method of adding to a polymer solution.

【0023】工程において、チタンアルコキシド溶液
中に生成した重合体が析出する場合は、溶媒を除去また
は一部除去した後、紡糸液の濃度調整に移ればよい。一
方、チタンアルコキシド溶液中に生成した重合体が析出
しない場合は、そのまま紡糸液の濃度調整に移ればよ
い。
In the case where the polymer formed in the titanium alkoxide solution precipitates in the step, the solvent may be removed or partially removed, and then the concentration of the spinning solution may be adjusted. On the other hand, when the produced polymer does not precipitate in the titanium alkoxide solution, the concentration of the spinning solution may be directly adjusted.

【0024】また、工程のチタンアルコキシド溶液の
加水分解、重合に際しては、水と溶媒との混合溶液を添
加するとともに、チタンアルコキシド溶液を還流させ、
添加する混合溶液に含まれる溶媒の量と同量の溶媒を留
出させながら行うことが好ましい。このような方法で加
水分解、重合を行うことによって、加水分解し、重合さ
せた後のチタンアルコキシド溶液中のチタン濃度の低下
を抑制することができる。
In the hydrolysis and polymerization of the titanium alkoxide solution in the step, a mixed solution of water and a solvent is added, and the titanium alkoxide solution is refluxed.
It is preferable to carry out the reaction while distilling out the same amount of solvent as the amount of the solvent contained in the mixed solution to be added. By performing hydrolysis and polymerization by such a method, it is possible to suppress a decrease in titanium concentration in the titanium alkoxide solution after hydrolysis and polymerization.

【0025】工程は、窒素ガスのような不活性ガス雰
囲気中で、工程で得られる重合体を該重合体が可溶な
有機溶媒に溶解させる方法で行うことができる。有機溶
媒は、多孔質チタニアの製造で使用する脂肪酸を溶解す
るものであればよく、エタノール、イソプロピルアルコ
ールのようなアルコール類、テトラヒドロフラン、ジエ
チルエーテルのようなエーテル類、ベンゼン、トルエン
のような芳香族炭化水素類が挙げられる。また、前記式
(III)で示される脂肪酸や上で示した触媒成分は、工
程にて添加することも可能であり、例えば、重合体溶
液に所定量の脂肪酸を添加する方法や重合体溶液に所定
量の触媒成分を添加する方法で行うことができる。
The step can be carried out in an atmosphere of an inert gas such as nitrogen gas by a method in which the polymer obtained in the step is dissolved in an organic solvent in which the polymer is soluble. The organic solvent may be any as long as it dissolves fatty acids used in the production of porous titania, and includes alcohols such as ethanol and isopropyl alcohol, ethers such as tetrahydrofuran and diethyl ether, and aromatics such as benzene and toluene. And hydrocarbons. In addition, the fatty acid represented by the formula (III) and the catalyst component shown above can be added in a step, for example, a method of adding a predetermined amount of a fatty acid to a polymer solution, or a method of adding a polymer solution. It can be performed by a method of adding a predetermined amount of a catalyst component.

【0026】工程では、工程で得られる重合体を有
機溶媒に溶解させて重合体溶液を調製した後、重合体溶
液を加熱または減圧によって有機溶媒を除去して重合体
溶液を濃縮し、重合体濃度が50重量%〜80重量%で
ある紡糸液を調製することが好ましい。得られる紡糸液
の40℃における粘度は、通常、10ポイズ(1Pa・
s)〜2000ポイズ(200Pa・s)、好ましくは
20ポイズ(2Pa・s)〜1500ポイズ(150P
a・s)である。
In the step, after the polymer obtained in the step is dissolved in an organic solvent to prepare a polymer solution, the polymer solution is removed by heating or reducing the pressure of the organic solvent, and the polymer solution is concentrated. It is preferable to prepare a spinning solution having a concentration of 50% by weight to 80% by weight. The viscosity of the obtained spinning solution at 40 ° C. is usually 10 poise (1 Pa ·
s) to 2000 poise (200 Pa · s), preferably 20 poise (2 Pa · s) to 1500 poise (150 P)
a · s).

【0027】工程は、工程で得られる紡糸液をノズ
ル押し出し紡糸、遠心紡糸、吹き出し紡糸のような各種
紡糸方法で行うことができる。得られる前駆体繊維に
は、回転するローラーや高速の空気流等により延伸を施
してもよい。
The step can be performed by various spinning methods such as nozzle extrusion spinning, centrifugal spinning, and blow spinning of the spinning solution obtained in the step. The obtained precursor fiber may be stretched by a rotating roller or a high-speed air stream.

【0028】工程は、工程で得られる前駆体繊維を
200〜900℃で焼成する方法で行うことができる。
また、前駆体繊維には、その焼成前または焼成時に、水
蒸気処理を施すことが好ましい。水蒸気処理は、恒温恒
湿器、焼成炉等を用いて行えばよく、通常、水蒸気処理
の温度は70℃以上、好ましくは85℃以上であり、3
00℃以下が適当であり、水蒸気分圧は0.3気圧
(0.03MPa)以上、好ましくは0.5気圧(0.
05MPa)以上であり、接触時間は30分以上、好ま
しくは1時間以上、さらに好ましくは5時間以上であ
る。焼成時に水蒸気処理を行うときには、焼成炉に水蒸
気を吹き込む方法または水を噴霧する方法により、所定
の湿度を保持しながら昇温速度を調節して処理を行って
もよい。この場合、前駆体繊維は70〜300℃の間で
0.3気圧(0.03MPa)以上の水蒸気分圧を有す
る雰囲気に少なくとも30分以上保持されていればよ
く、その後は低い水蒸気分圧の雰囲気で焼成されてもよ
い。
The step can be performed by firing the precursor fiber obtained in the step at 200 to 900 ° C.
Further, the precursor fiber is preferably subjected to a steam treatment before or during the firing. The steam treatment may be performed using a thermo-hygrostat, a baking furnace, or the like. Usually, the temperature of the steam treatment is 70 ° C. or higher, preferably 85 ° C. or higher.
The temperature is suitably not more than 00 ° C., and the partial pressure of water vapor is not less than 0.3 atm (0.03 MPa), preferably 0.5 atm (0.
05 MPa) or more, and the contact time is 30 minutes or more, preferably 1 hour or more, and more preferably 5 hours or more. When performing steam treatment at the time of baking, the treatment may be performed by adjusting the temperature rising rate while maintaining a predetermined humidity by a method of blowing steam into a baking furnace or a method of spraying water. In this case, the precursor fibers need only be maintained in an atmosphere having a water vapor partial pressure of 0.3 atm (0.03 MPa) or more between 70 and 300 ° C. for at least 30 minutes or more, and thereafter, a low water vapor partial pressure. It may be fired in an atmosphere.

【0029】本発明の多孔質チタニアの製造に際して
は、活性水素を有する化合物をチタンアルコキシド溶液
に添加してもよい。また、ケイ素化合物をチタンアルコ
キシド溶液または紡糸液に添加してもよい。活性水素を
有する化合物としては、下記式(IV) R4COCH2COR5 (IV) 〔式(IV)中、R4は炭素数1〜4のアルキルまたはア
ルコキシ、R5は炭素数1〜4のアルキルまたはアルコ
キシを表す。〕で示されるβ−ジケトン化合物またはサ
リチル酸アルキルエステルが好ましい。β−ジケトン化
合物としては、アセト酢酸エチル、アセト酢酸イソプロ
ピルが好ましく、サリチル酸アルキルエステルとして
は、サリチル酸エチル、サリチル酸メチルが好ましい。
活性水素を有する化合物の添加量は、チタンアルコキシ
ド1モルに対して0.05モル以上、好ましくは0.1
モル以上であり、1.9モル以下、さらには1.0モル
以下が適当である。ケイ素化合物としては、下記式
(V) Sinn-1(OR62n+2 (V) 〔式(V)中、R6は炭素数1〜4のアルキルを表し、n
は1以上の数を表す。〕で示されるアルキルシリケート
が好ましい。中でも、式(V)のR6がエチルかつnが4
〜6であるものの適用が推奨される。
In producing the porous titania of the present invention, a compound having active hydrogen may be added to the titanium alkoxide solution. Further, a silicon compound may be added to the titanium alkoxide solution or the spinning solution. Examples of the compound having active hydrogen include a compound represented by the following formula (IV): R 4 COCH 2 COR 5 (IV) [In the formula (IV), R 4 is alkyl or alkoxy having 1 to 4 carbon atoms, and R 5 is 1 to 4 carbon atoms. Represents alkyl or alkoxy. The preferred are β-diketone compounds or alkyl salicylates represented by the formula: As the β-diketone compound, ethyl acetoacetate and isopropyl acetoacetate are preferable, and as the salicylic acid alkyl ester, ethyl salicylate and methyl salicylate are preferable.
The amount of the compound having active hydrogen is 0.05 mol or more, preferably 0.1 mol, per 1 mol of titanium alkoxide.
Mol or more, and suitably 1.9 mol or less, more preferably 1.0 mol or less. As the silicon compound, in the following formula (V) Si n O n- 1 (OR 6) 2n + 2 (V) [Formula (V), R 6 represents an alkyl having 1 to 4 carbon atoms, n
Represents one or more numbers. ] Are preferred. Among them, R 6 in the formula (V) is ethyl and n is 4
A recommendation of ~ 6 is recommended.

【0030】[0030]

【発明の効果】本発明の多孔質チタニアは、優れた脱硝
作用を示し、触媒として用いることによって脱硝を効率
的に行うことができる。また、本発明による触媒を適用
すれば、脱硝、有機物の酸化、ダイオキシンの分解また
は水中の有機溶剤、農薬もしくは界面活性剤の分解除去
等を効率的に行うことができる。また、本発明の多孔質
チタニアやそれを用いる触媒によれば、触媒の必要設置
面積を低減させ、脱硝装置等の排ガス処理装置を小型化
することができる。
The porous titania of the present invention exhibits an excellent denitration action, and can be efficiently denitrated by using it as a catalyst. Further, when the catalyst according to the present invention is applied, denitration, oxidation of organic substances, decomposition of dioxins, decomposition and removal of organic solvents, pesticides or surfactants in water, and the like can be efficiently performed. Further, according to the porous titania of the present invention and the catalyst using the same, the required installation area of the catalyst can be reduced, and the exhaust gas treatment device such as a denitration device can be downsized.

【0031】本発明の製造方法によれば、前記の多孔質
チタニアを簡易に製造することができる。
According to the production method of the present invention, the porous titania can be easily produced.

【0032】[0032]

【実施例】以下に実施例により本発明を詳細に説明する
が、本発明はかかる実施例により制限を受けるものでは
ない。尚、本発明において、多孔質チタニアのアナター
ゼ結晶子径、アナターゼ結晶化率、BET比表面積、細
孔容積は以下の方法により求めた。実施例では繊維状で
ある多孔質チタニアについて示す。
The present invention will be described in detail with reference to the following examples, but the present invention is not limited by the examples. In the present invention, the anatase crystallite diameter, anatase crystallization ratio, BET specific surface area, and pore volume of porous titania were determined by the following methods. In the examples, fibrous porous titania is shown.

【0033】アナターゼ結晶子径: 多孔質チタニアを
乳鉢にて粉砕した後、X線回折装置RAD−IIA(理学
電機製)でX線回折スペクトルを測定し、(101)面
のピークの半価幅β(ラジアン)と(101)面のピー
ク位置θ(ラジアン)を求め、下式により結晶子径L
(nm)を算出した。 L=K・λ/(β・cosθ) 〔式中、KはScherrer定数0.94、λ(nm)は測定
X線波長(CuKα線:0.15406nm)を表
す。〕
Anatase crystallite diameter: After crushing porous titania in a mortar, an X-ray diffraction spectrum was measured with an X-ray diffractometer RAD-IIA (manufactured by Rigaku Denki), and the half-width of the peak on the (101) plane was measured. β (radian) and the peak position θ (radian) of the (101) plane are obtained, and the crystallite diameter L is calculated by the following equation.
(Nm) was calculated. L = K · λ / (β · cos θ) [where K is a Scherrer constant of 0.94, and λ (nm) represents a measured X-ray wavelength (CuKα ray: 0.15406 nm). ]

【0034】アナターゼ結晶化率: 多孔質チタニアを
乳鉢にて粉砕した後、X線回折装置RAD−IIA(理学
電機製)でX線回折スペクトルを測定し、(101)面
のピークの面積S1を求め、下式により結晶化率A
(%)を算出した。 A=S1/(S2・x) 〔式中、S2は標準試料(商品名:STT−65C−
S、チタン工業製)の(101)面のピークの面積、x
は多孔質チタニア中の全構成元素(酸素を除く。)に対
するチタンのモル分率を表す。〕
Crystallization rate of anatase: After the porous titania was crushed in a mortar, the X-ray diffraction spectrum was measured with an X-ray diffractometer RAD-IIA (manufactured by Rigaku Denki), and the peak area S 1 of the (101) plane was measured. And the crystallization rate A is calculated by the following equation.
(%) Was calculated. A = S 1 / (S 2 · x) [where S 2 is a standard sample (trade name: STT-65C-
S, product of titanium industry), area of peak of (101) plane, x
Represents the molar fraction of titanium with respect to all constituent elements (excluding oxygen) in porous titania. ]

【0035】BET比表面積(m2/g)、全細孔容積
(cm3/g)、1nm以上の細孔半径を有する細孔の
容積(cm3/g): 多孔質チタニアを乳鉢にて粉砕
した後、ガス吸着/脱着アナライザーオムニソープ36
0(COULTER社製)を用い、温度130℃、保持
6時間、真空度6×10-5Torr(8mPa)の条件
で真空脱気し、窒素ガスによる連続容量法にて細孔半径
に対する細孔容積の分布曲線を求め、その分布曲線から
それぞれ算出した。
BET specific surface area (m 2 / g), total pore volume (cm 3 / g), volume of pores having a pore radius of 1 nm or more (cm 3 / g): Porous titania in a mortar After pulverization, gas adsorption / desorption analyzer Omni Soap 36
0 (manufactured by COULTER), deaerated in vacuum under the conditions of a temperature of 130 ° C., a holding time of 6 hours, and a degree of vacuum of 6 × 10 −5 Torr (8 mPa). A volume distribution curve was determined, and each was calculated from the distribution curve.

【0036】また、脱硝試験は、多孔質チタニア0.2
gを内径12mmφのガラス製反応管内に充填高さが5
mmになるように充填した後、NO 100ppm、N
3100ppm、O2 10%、H2O 20%を含有
する200℃の混合ガスを流速1NL/分で流通させて
行い、反応管の入口NO濃度、出口NO濃度をNOx自
動計測器ECL−77A型(柳本製作所製)により測定
し、脱硝率(%)を下式により算出した。脱硝率=(入
口NO濃度−出口NO濃度)/入口NO濃度×100
The denitration test was carried out using porous titania 0.2
g into a glass reaction tube with an inner diameter of 12 mm
mm, NO 100 ppm, N
A mixed gas containing 200 ppm of H 3 , 10% of O 2 , and 20% of H 2 O at 200 ° C. is passed at a flow rate of 1 NL / min, and the NO concentration at the inlet and the NO concentration at the outlet of the reaction tube are measured by a NOx automatic meter ECL-. The measurement was carried out using a model 77A (manufactured by Yanagimoto Seisakusho), and the denitration rate (%) was calculated by the following equation. Denitration rate = (Inlet NO concentration-Outlet NO concentration) / Inlet NO concentration x 100

【0037】実施例1 チタンアルコキシドとしてチタンテトライソプロポキシ
ド(試薬1級、和光純薬工業製)225g、触媒成分と
してバナジウムイソプロポキシド(日亜化学工業製)6
1.9g、およびアセト酢酸エチル(試薬特級、和光純
薬工業製)10.3gを、溶媒としてのイソプロピルア
ルコール(試薬特級、和光純薬工業製)77.8gに溶
解させ、窒素雰囲気下、1時間還流して、チタンアルコ
キシド溶液を調製した。このとき、触媒成分の添加量
は、得られる繊維状多孔質チタニアに対し酸化バンジウ
ム(V25)として27重量%となる量である。また、
アセト酢酸エチルの添加量はチタンテトライソプロポキ
シド1モルに対し0.1モルである。次いで、水32.
7gとイソプロピルアルコール294.9gとを混合し
て水濃度10重量%の混合溶液を調製した。この水の量
はチタンテトライソプロポキシド1モルに対して2.3
0モルである。
Example 1 225 g of titanium tetraisopropoxide (first-class reagent, manufactured by Wako Pure Chemical Industries) as a titanium alkoxide, and vanadium isopropoxide (manufactured by Nichia Corporation) 6 as a catalyst component
1.9 g and 10.3 g of ethyl acetoacetate (special grade reagent, manufactured by Wako Pure Chemical Industries) were dissolved in 77.8 g of isopropyl alcohol (special grade reagent, manufactured by Wako Pure Chemical Industries) as a solvent. After refluxing for an hour, a titanium alkoxide solution was prepared. At this time, the amount of the catalyst component to be added is 27% by weight as vandium oxide (V 2 O 5 ) based on the obtained fibrous porous titania. Also,
The addition amount of ethyl acetoacetate is 0.1 mol per 1 mol of titanium tetraisopropoxide. Then water 32.
7 g and 294.9 g of isopropyl alcohol were mixed to prepare a mixed solution having a water concentration of 10% by weight. The amount of this water is 2.3 per mole of titanium tetraisopropoxide.
0 mol.

【0038】上で得られたチタンアルコキシド溶液を窒
素雰囲気中で還流させると同時に、溶媒を留出させなが
ら、上で得られた混合溶液を撹拌下、添加した。溶媒の
留出速度と混合溶液添加による溶媒の供給速度はほぼ等
しくなるように調整した。混合溶液の添加時間は96分
であった。
The titanium alkoxide solution obtained above was refluxed in a nitrogen atmosphere, and at the same time, the mixed solution obtained above was added with stirring while distilling off the solvent. The solvent distillation rate and the solvent supply rate by the addition of the mixed solution were adjusted to be substantially equal. The addition time of the mixed solution was 96 minutes.

【0039】混合溶液をチタンテトライソプロポキシド
1モルに対して1.80モル添加したとき、チタンアル
コキシド溶液中に重合体の析出が始まり、混合溶液を全
量添加したときにはチタンアルコキシド溶液は重合体ス
ラリーとなった。
When 1.80 mol of the mixed solution was added to 1 mol of titanium tetraisopropoxide, precipitation of the polymer started in the titanium alkoxide solution, and when the whole amount of the mixed solution was added, the titanium alkoxide solution was converted into the polymer slurry. It became.

【0040】得られた重合体スラリーを窒素雰囲気中で
1時間還流した後、そのまま加熱により溶媒を留出さ
せ、重合体スラリー中チタン濃度がTi換算で2.97
×10-3mol/gになるまで濃縮した。
After the obtained polymer slurry was refluxed for 1 hour in a nitrogen atmosphere, the solvent was distilled off by heating, and the titanium concentration in the polymer slurry was 2.97 in terms of Ti.
It concentrated until it became × 10 -3 mol / g.

【0041】濃縮された重合体スラリーに窒素雰囲気中
で有機溶媒としてテトラヒドロフラン(試薬特級、和光
純薬工業製)273gを添加し、1時間還流して重合体
を溶解させた後、脂肪酸としてイソステアリン酸(試
薬、和光純薬工業製)33.8gを加えて1時間還流
し、重合体溶液を得た。
To the concentrated polymer slurry, 273 g of tetrahydrofuran (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) was added as an organic solvent in a nitrogen atmosphere, and the mixture was refluxed for 1 hour to dissolve the polymer. (Reagent, manufactured by Wako Pure Chemical Industries) 33.8 g was added, and the mixture was refluxed for 1 hour to obtain a polymer solution.

【0042】得られた重合体溶液を窒素雰囲気中で孔径
3μmのフッ素樹脂製メンブレンフィルターで濾過した
後、加熱してイソプロピルアルコールとテトラヒドロフ
ランとの混合溶媒を留出させて濃縮し紡糸液247gを
得た。この紡糸液の40℃における粘度は50ポイズ
(5Pa・s)であった。
The obtained polymer solution was filtered through a fluorine resin membrane filter having a pore diameter of 3 μm in a nitrogen atmosphere, and then heated to distill a mixed solvent of isopropyl alcohol and tetrahydrofuran and concentrated to obtain 247 g of a spinning solution. Was. The viscosity of this spinning solution at 40 ° C. was 50 poise (5 Pa · s).

【0043】上で得られた紡糸液を40℃に保持し、2
0kg/cm2(2MPa)の窒素ガスで孔径50μm
のノズルから40℃、相対湿度60%の空気雰囲気中に
押し出し、70m/分の速度で巻き取り、前駆体繊維を
得た。
The spinning solution obtained above was kept at 40 ° C.
0 kg / cm 2 (2 MPa) nitrogen gas with a pore size of 50 μm
Was extruded from a nozzle into an air atmosphere at 40 ° C. and a relative humidity of 60%, and wound up at a speed of 70 m / min to obtain a precursor fiber.

【0044】得られた前駆体繊維を85℃、相対湿度9
5%の恒温恒湿器の中に入れて15時間水蒸気処理した
後、200℃/時で昇温し、350℃の空気中で1時間
焼成して、アナターゼ型結晶構造を有し繊維径15μm
の繊維状多孔質チタニアを得た。得られた繊維状多孔質
チタニアの物性およびそれを用いて脱硝試験をしたとき
の脱硝率を表1に示す。
The obtained precursor fiber was heated at 85 ° C. and a relative humidity of 9
After steam treatment in a 5% constant temperature and humidity chamber for 15 hours, the temperature was increased at 200 ° C./hour, and calcined in air at 350 ° C. for 1 hour to have an anatase crystal structure and a fiber diameter of 15 μm.
Was obtained. Table 1 shows the physical properties of the obtained fibrous porous titania and the denitration rate when a denitration test was performed using the same.

【0045】実施例2 実施例1において、焼成温度350℃を400℃に変え
た以外は同様にして繊維状多孔質チタニアを得た。得ら
れた繊維状多孔質チタニアの物性およびそれを用いて脱
硝試験をしたときの脱硝率を表1に示す。
Example 2 A fibrous porous titania was obtained in the same manner as in Example 1, except that the firing temperature was changed from 350 ° C. to 400 ° C. Table 1 shows the physical properties of the obtained fibrous porous titania and the denitration rate when a denitration test was performed using the same.

【0046】実施例3 実施例1において、焼成温度350℃を300℃に変え
た以外は同様にして繊維状多孔質チタニアを得た。得ら
れた繊維状多孔質チタニアの物性およびそれを用いて脱
硝試験をしたときの脱硝率を表1に示す。
Example 3 A fibrous porous titania was obtained in the same manner as in Example 1, except that the firing temperature was changed from 350 ° C. to 300 ° C. Table 1 shows the physical properties of the obtained fibrous porous titania and the denitration rate when a denitration test was performed using the same.

【0047】実施例4 チタンアルコキシドとしてチタンテトライソプロポキシ
ド(試薬1級、和光純薬工業製)225g、触媒成分と
してバナジウムイソプロポキシド(日亜化学工業製)6
1.9g、およびアセト酢酸エチル(試薬特級、和光純
薬工業製)20.6gを、溶媒としてのイソプロピルア
ルコール(試薬特級、和光純薬工業製)67.5gに溶
解させ、窒素雰囲気下、1時間還流して、チタンアルコ
キシド溶液を調製した。このとき、触媒成分の添加量
は、得られる繊維状多孔質チタニア中の酸化バナジウム
(V25)として27重量%となる量である。また、ア
セト酢酸エチルの添加量はチタンイソプロポキシド1モ
ルに対し0.2モルである。次いで、水35.5gとイ
ソプロピルアルコール320.5gとを混合して水濃度
10重量%の混合溶液を調製した。
Example 4 225 g of titanium tetraisopropoxide (first-class reagent, manufactured by Wako Pure Chemical Industries) as a titanium alkoxide, and vanadium isopropoxide (manufactured by Nichia Chemical Industry) 6 as a catalyst component
1.9 g and 20.6 g of ethyl acetoacetate (special grade reagent, manufactured by Wako Pure Chemical Industries) were dissolved in 67.5 g of isopropyl alcohol (special grade reagent, manufactured by Wako Pure Chemical Industries) as a solvent. After refluxing for an hour, a titanium alkoxide solution was prepared. At this time, the addition amount of the catalyst component is an amount that becomes 27% by weight as vanadium oxide (V 2 O 5 ) in the obtained fibrous porous titania. The addition amount of ethyl acetoacetate is 0.2 mol per 1 mol of titanium isopropoxide. Next, 35.5 g of water and 320.5 g of isopropyl alcohol were mixed to prepare a mixed solution having a water concentration of 10% by weight.

【0048】上で得られたチタンアルコキシド溶液を窒
素雰囲気中で還流させると同時に、溶媒を留出させなが
ら、上で得られた混合溶液を撹拌下、添加した。溶媒の
留出速度と混合溶媒添加による溶媒の供給速度はほぼ等
しくなるように調整した。混合溶媒の添加時間は101
分であった。
The titanium alkoxide solution obtained above was refluxed in a nitrogen atmosphere, and at the same time, the mixed solution obtained above was added with stirring while the solvent was distilled off. The solvent distillation rate and the solvent supply rate by the addition of the mixed solvent were adjusted to be substantially equal. The addition time of the mixed solvent is 101
Minutes.

【0049】混合溶液をチタンテトライソプロポキシド
1モルに対して2.07モル添加したとき、チタンアル
コキシド溶液中に重合体の析出が始まり、混合溶液を全
量添加したときにはチタンアルコキシド溶液は重合体ス
ラリーとなった。
When 2.07 mol of the mixed solution was added to 1 mol of titanium tetraisopropoxide, precipitation of a polymer started in the titanium alkoxide solution. When the entire mixed solution was added, the titanium alkoxide solution was converted into a polymer slurry. It became.

【0050】得られた重合体スラリーを窒素雰囲気中で
1時間還流した後、そのまま加熱により溶媒を留出さ
せ、重合体スラリー中チタン濃度がTi換算で2.85
×10-3mol/gになるまで濃縮した。
After the obtained polymer slurry was refluxed for 1 hour in a nitrogen atmosphere, the solvent was distilled off by heating, and the titanium concentration in the polymer slurry was 2.85 in terms of Ti.
It concentrated until it became × 10 -3 mol / g.

【0051】濃縮された重合体スラリーに窒素雰囲気中
で有機溶媒としてテトラヒドロフラン(試薬特級、和光
純薬工業製)269gを添加し、1時間還流して重合体
を溶解させた後、脂肪酸としてラウリン酸(試薬、和光
純薬工業製)23.8gをテトラヒドロフラン(試薬特
級、和光純薬工業製)23.8gで溶解した溶液として
加え1時間還流し、重合体溶液を得た。
To a concentrated polymer slurry, 269 g of tetrahydrofuran (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) was added as an organic solvent in a nitrogen atmosphere, and the mixture was refluxed for 1 hour to dissolve the polymer. A solution prepared by dissolving 23.8 g of (reagent, Wako Pure Chemical Industries) in 23.8 g of tetrahydrofuran (reagent grade, Wako Pure Chemical Industries) was added and refluxed for 1 hour to obtain a polymer solution.

【0052】得られた重合体溶液を窒素雰囲気中で孔径
3μmのフッ素樹脂製メンブレンフィルターで濾過した
後、加熱してイソプロピルアルコールとテトラヒドロフ
ランとの混合溶媒を留出させて濃縮し紡糸液249gを
得た。この紡糸液の40℃における粘度は50ポイズ
(5Pa・s)であった。
The obtained polymer solution was filtered through a fluorine resin membrane filter having a pore size of 3 μm in a nitrogen atmosphere, and then heated to distill a mixed solvent of isopropyl alcohol and tetrahydrofuran and concentrated to obtain 249 g of a spinning solution. Was. The viscosity of this spinning solution at 40 ° C. was 50 poise (5 Pa · s).

【0053】得られた紡糸液を40℃に保持し、20k
g/cm2(2MPa)の窒素ガスで孔径50μmのノ
ズルから40℃、相対湿度60%の空気雰囲気中に押し
出し、前駆体繊維を得た。
The obtained spinning solution is kept at 40 ° C.
The precursor fiber was extruded from a nozzle having a pore diameter of 50 μm into an air atmosphere at 40 ° C. and a relative humidity of 60% with a nitrogen gas of g / cm 2 (2 MPa) to obtain a precursor fiber.

【0054】得られた前駆体繊維を85℃、相対湿度9
5%の恒温恒湿器の中に入れて15時間水蒸気処理した
後、200℃/時で昇温し、350℃の空気中で1時間
焼成して、アナターゼ型結晶構造を有し繊維径15μm
の繊維状多孔質チタニアを得た。得られた繊維状多孔質
チタニアの物性およびそれを用いて脱硝試験をしたとき
の脱硝率を表1に示す。
The obtained precursor fiber was heated to 85 ° C. and a relative humidity of 9
After steam treatment in a 5% constant temperature and humidity chamber for 15 hours, the temperature was increased at 200 ° C./hour, and calcined in air at 350 ° C. for 1 hour to have an anatase crystal structure and a fiber diameter of 15 μm.
Was obtained. Table 1 shows the physical properties of the obtained fibrous porous titania and the denitration rate when a denitration test was performed using the same.

【0055】比較例1 チタンアルコキシドとしてチタンテトライソプロポキシ
ド(試薬1級、和光純薬工業製)225g、触媒成分と
してバナジウムイソプロポキシド(日亜化学工業製)6
1.9g、およびアセト酢酸エチル(試薬特級、和光純
薬工業製)41.2gを、溶媒としてのイソプロピルア
ルコール(試薬特級、和光純薬工業製)18.1gに溶
解させ、窒素雰囲気下、1時間還流して、チタンアルコ
キシド溶液を調製した。このとき、触媒成分の添加量
は、得られる繊維状多孔質チタニア中の酸化バナジウム
(V25)として27重量%となる量である。また、ア
セト酢酸エチルの添加量はチタンイソプロポキシド1モ
ルに対し0.4モルである。次いで、水30.6gとイ
ソプロピルアルコール275.8gとを混合して水濃度
10重量%の混合溶液を調製した。
Comparative Example 1 225 g of titanium tetraisopropoxide (first-class reagent, manufactured by Wako Pure Chemical Industries) as a titanium alkoxide, and vanadium isopropoxide (manufactured by Nichia Corporation) 6 as a catalyst component
1.9 g and 41.2 g of ethyl acetoacetate (special grade reagent, manufactured by Wako Pure Chemical Industries) were dissolved in 18.1 g of isopropyl alcohol (special grade reagent, manufactured by Wako Pure Chemical Industries) as a solvent. After refluxing for an hour, a titanium alkoxide solution was prepared. At this time, the addition amount of the catalyst component is an amount that becomes 27% by weight as vanadium oxide (V 2 O 5 ) in the obtained fibrous porous titania. The addition amount of ethyl acetoacetate is 0.4 mol per 1 mol of titanium isopropoxide. Next, 30.6 g of water and 275.8 g of isopropyl alcohol were mixed to prepare a mixed solution having a water concentration of 10% by weight.

【0056】上で得られたチタンアルコキシド溶液を窒
素雰囲気中で還流させると同時に、溶媒を留出させなが
ら、上で調製した混合溶液を撹拌下、添加した。次い
で、窒素雰囲気中で1時間リフラックスした後、そのま
ま加熱により溶媒を留出させ、Ti濃度が3.27×1
-3mol/gになるまで濃縮した。
The titanium alkoxide solution obtained above was refluxed in a nitrogen atmosphere, and at the same time, while the solvent was distilled off, the mixed solution prepared above was added with stirring. Next, after refluxing for 1 hour in a nitrogen atmosphere, the solvent was distilled off by heating as it was, and the Ti concentration was 3.27 × 1.
It was concentrated to 0 -3 mol / g.

【0057】濃縮された重合体スラリーに窒素雰囲気中
で有機溶媒としてテトラヒドロフラン(試薬特級、和光
純薬工業製)271gを添加し、1時間還流して重合体
を溶解させた後、1時間還流して重合体溶液を得た。
To a concentrated polymer slurry, 271 g of tetrahydrofuran (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) was added as an organic solvent in a nitrogen atmosphere, and the mixture was refluxed for 1 hour to dissolve the polymer, and then refluxed for 1 hour. Thus, a polymer solution was obtained.

【0058】得られた重合体溶液を窒素雰囲気中で孔径
3μmのフッ素樹脂製メンブレンフィルターで濾過した
後、加熱してイソプロピルアルコールとテトラヒドロフ
ランとの混合溶媒を留出させて濃縮し紡糸液197gを
得た。この紡糸液の40℃における粘度は50ポイズ
(5Pa・s)であった。
The obtained polymer solution was filtered through a fluorine resin membrane filter having a pore size of 3 μm in a nitrogen atmosphere, and then heated to distill a mixed solvent of isopropyl alcohol and tetrahydrofuran and concentrated to obtain 197 g of a spinning solution. Was. The viscosity of this spinning solution at 40 ° C. was 50 poise (5 Pa · s).

【0059】得られた紡糸液を40℃に保持し、20k
g/cm2(2MPa)の窒素ガスで孔径50μmのノ
ズルから40℃相対湿度60%の空気雰囲気中に押し出
し、前駆体繊維を得た。
The obtained spinning solution is kept at 40 ° C.
The precursor fiber was extruded from a nozzle having a pore diameter of 50 μm into an air atmosphere at 40 ° C. and a relative humidity of 60% with a nitrogen gas of g / cm 2 (2 MPa) to obtain a precursor fiber.

【0060】得られた前駆体繊維を85℃、相対湿度9
5%の恒温恒湿器の中に入れて15時間水蒸気処理した
後、200℃/時で昇温し、400℃の空気中で1時間
焼成してアナターゼ型結晶構造を有し繊維径15μmの
繊維状多孔質チタニアを得た。得られた繊維状多孔質チ
タニアの物性およびそれを用いて脱硝試験をしたときの
脱硝率を表1に示す。
The obtained precursor fiber was heated at 85 ° C. and a relative humidity of 9
After steam treatment in a 5% constant temperature and humidity chamber for 15 hours, the temperature was increased at 200 ° C./hour, and calcined in air at 400 ° C. for 1 hour to have an anatase crystal structure and a fiber diameter of 15 μm. A fibrous porous titania was obtained. Table 1 shows the physical properties of the obtained fibrous porous titania and the denitration rate when a denitration test was performed using the same.

【0061】比較例2 比較例1において、焼成温度400℃を300℃に変え
た以外は同様にして繊維状多孔質チタニアを得た。得ら
れた繊維状多孔質チタニアの物性およびそれを用いて脱
硝試験をしたときの脱硝率を表1に示す。
Comparative Example 2 A fibrous porous titania was obtained in the same manner as in Comparative Example 1, except that the firing temperature was changed from 400 ° C. to 300 ° C. Table 1 shows the physical properties of the obtained fibrous porous titania and the denitration rate when a denitration test was performed using the same.

【0062】[0062]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 35/10 301 B01D 53/36 102D 102B (72)発明者 竹内 美明 愛媛県新居浜市惣開町5番1号 住友化学 工業株式会社内 Fターム(参考) 4D048 AA06 AB02 BA01X BA02X BA03X BA07X BA07Y BA08X BA22X BA23X BA23Y BA25X BA26X BA27X BA30X BA32X BA36X BA38X BB08 4G047 CA02 CB06 CB08 CD07 4G069 AA01 AA03 AA08 AA11 BA05A BA05B BA32A BA32C BB06A BB06B BC09A BC10A BC16A BC27A BC50A BC50B BC50C BC51A BC54A BC54B BC54C BC58A BC59A BC60A BC66A BC68A BC70A BC75A BE06A BE06B BE06C BE08A BE08B BE08C CA02 CA03 CA07 CA08 CA10 CA13 DA06 EA03X EA03Y EC02X EC03X EC04X EC05X EC07X EC08X FB66 FC05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) B01J 35/10 301 B01D 53/36 102D 102B (72) Inventor Miaki Takeuchi 5th Sokaicho, Niihama City, Ehime Prefecture No. 1 Sumitomo Chemical Co., Ltd. F-term (reference) 4D048 AA06 AB02 BA01X BA02X BA03X BA07X BA07Y BA08X BA22X BA23X BA23Y BA25X BA26X BA27X BA30X BA32X BA36X BA38X BB08 4G047 CA02 CB06 CB08 BA05 A05 BA08 A01 A08 A08 BC10A BC16A BC27A BC50A BC50B BC50C BC51A BC54A BC54B BC54C BC58A BC59A BC60A BC66A BC68A BC70A BC75A BE06A BE06B BE06C BE08A BE08B BE08C CA02 CA03 CA07 CA08 CA10 CA13 DA06 EA03X EA03 EC04 EC05 EC03 EC05

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 アナターゼ型の結晶構造を有し、その結
晶子径が3nm〜10nm、アナターゼ結晶化率が60
%以上、BET比表面積が10m2/g以上、全細孔容
積が0.05cm3/g以上、1nm以上の細孔半径を
有する細孔の容積が0.02cm3/g以上であること
を特徴とする多孔質チタニア。
1. An anatase type crystal structure having a crystallite size of 3 nm to 10 nm and an anatase crystallization ratio of 60 nm.
% Or more, BET specific surface area of 10 m 2 / g or more, the total pore volume of 0.05 cm 3 / g or more, volume of pores having the above pore radius 1nm is 0.02 cm 3 / g or more Characterized porous titania.
【請求項2】 BET比表面積が180m2/g以上で
ある請求項1記載の多孔質チタニア。
2. The porous titania according to claim 1, having a BET specific surface area of 180 m 2 / g or more.
【請求項3】 全細孔容積が0.2cm3/g以上であ
り、1nm以上の細孔半径を有する細孔の容積が0.2
cm3/g以上である請求項1または2記載の多孔質チ
タニア。
3. The total pore volume is 0.2 cm 3 / g or more, and the volume of pores having a pore radius of 1 nm or more is 0.2
The porous titania according to claim 1 or 2, which has a density of at least cm 3 / g.
【請求項4】 形状が繊維状である請求項1〜3のいず
れか1項に記載の多孔質チタニア。
4. The porous titania according to claim 1, which is fibrous in shape.
【請求項5】 請求項1〜4のいずれか1項に記載の多
孔質チタニアを成形してなる触媒。
5. A catalyst obtained by molding the porous titania according to claim 1. Description:
【請求項6】 チタンアルコキシドを溶媒に溶解させて
チタンアルコキシド溶液を得、該チタンアルコキシド溶
液に水と溶媒とからなる混合溶液を添加して加水分解
し、重合させて重合体溶液を得、該重合体溶液を脂肪酸
存在下で焼成することを特徴とする請求項1記載の多孔
質チタニアの製造方法。
6. A titanium alkoxide solution is obtained by dissolving a titanium alkoxide in a solvent, a mixed solution comprising water and a solvent is added to the titanium alkoxide solution, and the mixture is hydrolyzed and polymerized to obtain a polymer solution. The method for producing porous titania according to claim 1, wherein the polymer solution is calcined in the presence of a fatty acid.
【請求項7】 チタンアルコキシドを溶媒に溶解させて
チタンアルコキシド溶液を得、該チタンアルコキシド溶
液に水と溶媒とからなる混合溶液を添加して加水分解
し、重合させて重合体溶液を得、該重合体溶液を脂肪酸
存在下で水蒸気処理し、焼成することを特徴とする請求
項1記載の多孔質チタニアの製造方法。
7. A titanium alkoxide solution is obtained by dissolving a titanium alkoxide in a solvent, a mixed solution comprising water and a solvent is added to the titanium alkoxide solution, and the mixture is hydrolyzed and polymerized to obtain a polymer solution. 2. The method for producing porous titania according to claim 1, wherein the polymer solution is subjected to steam treatment in the presence of a fatty acid, followed by firing.
【請求項8】 チタンアルコキシドが、下記式(I) Ti(OR14 (I) 〔式(I)中、R1は炭素数が1〜4のアルキルを表
す。〕で示される請求項6または7記載の方法。
8. A titanium alkoxide represented by the following formula (I): Ti (OR 1 ) 4 (I) wherein R 1 represents alkyl having 1 to 4 carbon atoms. The method according to claim 6 or 7, wherein
【請求項9】 脂肪酸が、下記式(III) R3COOH (III) 〔式(III)中、R3は水素または飽和もしくは不飽和の
炭化水素残基を表す。〕で示される請求項6〜8のいず
れか1項に記載の方法。
9. The fatty acid is represented by the following formula (III): R 3 COOH (III) wherein, in the formula (III), R 3 represents hydrogen or a saturated or unsaturated hydrocarbon residue. The method according to any one of claims 6 to 8, wherein
【請求項10】 チタンアルコキシドを溶媒に溶解させ
て得られるチタンアルコキシド溶液に水と溶媒とからな
る混合溶液を添加して加水分解し、重合させて、該チタ
ンアルコキシド溶液に重合体を生成させる工程、該重
合体を該重合体が可溶な有機溶媒に溶解させて紡糸液を
得る工程、該紡糸液を紡糸して前駆体繊維を得る工程
、該前駆体繊維を焼成する工程からなる方法であっ
て、工程またはにて、脂肪酸を添加することを特徴
とする請求項1記載の多孔質チタニアの製造方法。
10. A step of adding a mixed solution of water and a solvent to a titanium alkoxide solution obtained by dissolving a titanium alkoxide in a solvent, hydrolyzing and polymerizing the mixture, and forming a polymer in the titanium alkoxide solution. Dissolving the polymer in an organic solvent in which the polymer is soluble to obtain a spinning solution, spinning the spinning solution to obtain a precursor fiber, and firing the precursor fiber. The method for producing porous titania according to claim 1, wherein a fatty acid is added in the step or in the step.
【請求項11】 チタンアルコキシドが、式(I)で示
される請求項10記載の方法。
11. The method according to claim 10, wherein the titanium alkoxide is represented by the formula (I).
【請求項12】 脂肪酸が、式(III)で示される請求
項10または11記載の方法。
12. The method according to claim 10, wherein the fatty acid is represented by the formula (III).
【請求項13】 工程またはにて、触媒成分を添加
する請求項10〜12のいずれか1項に記載の方法
13. The method according to claim 10, wherein a catalyst component is added in the step or in the step.
【請求項14】 触媒成分がV、W、Al、As、N
i、Zr、Mo、Ru、Mg、Ca、Fe、Crおよび
Ptから選ばれる請求項13記載の方法。
14. The catalyst component is V, W, Al, As, N
14. The method according to claim 13, wherein the method is selected from i, Zr, Mo, Ru, Mg, Ca, Fe, Cr and Pt.
【請求項15】 工程にて、前駆体繊維に水蒸気処理
を施す請求項10〜14のいずれか1項に記載の方法。
15. The method according to claim 10, wherein, in the step, the precursor fiber is subjected to steam treatment.
JP2000176520A 1999-08-12 2000-06-13 Porous titania, catalyst by using the same and method for production thereof Pending JP2001114519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000176520A JP2001114519A (en) 1999-08-12 2000-06-13 Porous titania, catalyst by using the same and method for production thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22847499 1999-08-12
JP11-228474 1999-12-08
JP2000176520A JP2001114519A (en) 1999-08-12 2000-06-13 Porous titania, catalyst by using the same and method for production thereof

Publications (1)

Publication Number Publication Date
JP2001114519A true JP2001114519A (en) 2001-04-24

Family

ID=26528271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000176520A Pending JP2001114519A (en) 1999-08-12 2000-06-13 Porous titania, catalyst by using the same and method for production thereof

Country Status (1)

Country Link
JP (1) JP2001114519A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030021304A (en) * 2001-09-05 2003-03-15 (주)이앤비코리아 Manufacturing method on transparent anatase type TiO2 sol
WO2004085315A1 (en) * 2003-03-27 2004-10-07 Shiseido Co., Ltd. Porous titanium oxide powder and method for production thereof
JP2005068001A (en) * 2003-08-01 2005-03-17 Catalysts & Chem Ind Co Ltd Fibrous titanium oxide particle, production method therefor, and application of the particle
WO2005033009A1 (en) * 2003-10-01 2005-04-14 Toho Titanium Co., Ltd Titanium dioxide powder and method for production thereof
EP1657219A2 (en) 2004-11-05 2006-05-17 Toda Kogyo Corporation Nanostructural substance
JP2012517896A (en) * 2009-02-16 2012-08-09 ミレニアム・イノーガニック・ケミカルス・インコーポレイテッド Mobil DeNOx catalyst

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030021304A (en) * 2001-09-05 2003-03-15 (주)이앤비코리아 Manufacturing method on transparent anatase type TiO2 sol
WO2004085315A1 (en) * 2003-03-27 2004-10-07 Shiseido Co., Ltd. Porous titanium oxide powder and method for production thereof
EP1616840A1 (en) * 2003-03-27 2006-01-18 Shiseido Co., Ltd. Porous titanium oxide powder and method for production thereof
US7758844B2 (en) 2003-03-27 2010-07-20 Shiseido Company, Ltd. Porous titanium oxide powder and method for production thereof
EP1616840A4 (en) * 2003-03-27 2010-12-22 Shiseido Co Ltd Porous titanium oxide powder and method for production thereof
JP2005068001A (en) * 2003-08-01 2005-03-17 Catalysts & Chem Ind Co Ltd Fibrous titanium oxide particle, production method therefor, and application of the particle
JP4698981B2 (en) * 2003-08-01 2011-06-08 日揮触媒化成株式会社 Fibrous titanium oxide particles, method for producing the same, and uses of the particles
WO2005033009A1 (en) * 2003-10-01 2005-04-14 Toho Titanium Co., Ltd Titanium dioxide powder and method for production thereof
EP1657219A2 (en) 2004-11-05 2006-05-17 Toda Kogyo Corporation Nanostructural substance
JP2006131458A (en) * 2004-11-05 2006-05-25 Toda Kogyo Corp Titanium oxide particle powder and photocatalyst
EP1657219A3 (en) * 2004-11-05 2009-04-01 Toda Kogyo Corporation Nanostructural substance
JP2012517896A (en) * 2009-02-16 2012-08-09 ミレニアム・イノーガニック・ケミカルス・インコーポレイテッド Mobil DeNOx catalyst

Similar Documents

Publication Publication Date Title
US6399540B1 (en) Porous titania, catalyst comprising the porous titania
Arconada et al. Synthesis and photocatalytic properties of dense and porous TiO2-anatase thin films prepared by sol–gel
Ghosh et al. Mesoporous titanium dioxide nanofibers with a significantly enhanced photocatalytic activity
Tian et al. 3D hierarchical flower-like TiO 2 nanostructure: morphology control and its photocatalytic property
AU2001282711B2 (en) Titanium-containing materials
Kominami et al. Hydrolysis of titanium alkoxide in organic solvent at high temperatures: a new synthetic method for nanosized, thermally stable titanium (IV) oxide
Goutailler et al. Low temperature and aqueous sol–gel deposit of photocatalytic active nanoparticulate TiO 2
AU2001282711A1 (en) Titanium-containing materials
Hamadanian et al. Electrospun titanium dioxide nanofibers: Fabrication, properties and its application in photo-oxidative degradation of methyl orange (MO)
US6162759A (en) Method for producing a catalyst component-carrying titania fiber
JP2001114519A (en) Porous titania, catalyst by using the same and method for production thereof
US20040241067A1 (en) Catalyst, method of producing the same and method of treating exhaust gas
Melo et al. Effect of non-ionic surfactant in the solvothermal synthesis of anatase TiO2 nanoplates with a high percentage of exposed {001} facets and its role in the photocatalytic degradation of methylene blue dye
Khunrattanaphon et al. Synthesis and application of novel mesoporous-assembled SrTixZr1− xO3-based nanocrystal photocatalysts for azo dye degradation
Silvestri et al. Doped and undoped anatase-based plates obtained from paper templates for photocatalytic oxidation of NOX
WO2014203996A1 (en) Visible light responsive photocatalyst material
JP4424905B2 (en) Anatase type titania-silica composite, production method thereof and photocatalytic material
JP2004315356A (en) Acicular titanium oxide particulate, method for manufacturing the same and application for the same
Guzmán-Velderrain et al. TiO 2 Films Synthesis over Polypropylene by Sol-Gel Assisted with Hydrothermal Treatment for the Photocatalytic Propane Degradation
Wu et al. Photocatalytic oxidation of gaseous benzene over nanosized TiO2 prepared by solvothermal method
JP2000192336A (en) Titania fiber and its production
Kaleji et al. Fabrication of Nb/V co-doped TiO2 thin films and study of structural, optical and photocatalytic properties
JP2004298728A (en) Catalytic fiber and its manufacturing method
JP2006224000A (en) Method of synthesizing photocatalyst and photocatalyst precursor
Jia et al. Preparation and characterization of Rb-doped TiO 2 powders for photocatalytic applications

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703