JP2000192336A - Titania fiber and its production - Google Patents

Titania fiber and its production

Info

Publication number
JP2000192336A
JP2000192336A JP10362740A JP36274098A JP2000192336A JP 2000192336 A JP2000192336 A JP 2000192336A JP 10362740 A JP10362740 A JP 10362740A JP 36274098 A JP36274098 A JP 36274098A JP 2000192336 A JP2000192336 A JP 2000192336A
Authority
JP
Japan
Prior art keywords
fiber
solution
titania
polymer
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10362740A
Other languages
Japanese (ja)
Inventor
Hironobu Koike
宏信 小池
Yasuyuki Oki
泰行 沖
Yoshiaki Takeuchi
美明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP10362740A priority Critical patent/JP2000192336A/en
Publication of JP2000192336A publication Critical patent/JP2000192336A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Inorganic Fibers (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a titania filament fiber having high photocatalytic activity and provide its production process. SOLUTION: The objective titania fiber having porous circumferential part and dense core part is produced by (1) adding water to a solution produced by dissolving a titanium alkoxide in a solvent to effect the hydrolysis reaction and polymerization reaction and produce a polymer in the solution, (2) dissolving the polymer in an organic solvent capable of dissolving the polymer to obtain a spinning dope, (3) spinning the spinning dope to obtain a precursor fiber, (4) baking the precursor fiber to form a baked fiber and (5) treating the baked fiber with an alkali.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はチタニア繊維および
その製造方法に関する。詳細には、NOxや悪臭物質の
分解除去、汚染河川や湖沼の清浄化など光触媒用途に用
いられるチタニア繊維およびその製造方法に関するもの
である。
The present invention relates to a titania fiber and a method for producing the same. More specifically, the present invention relates to a titania fiber used for photocatalytic applications such as decomposition and removal of NOx and malodorous substances, and purification of polluted rivers and lakes, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、チタニア繊維を製造する方法とし
ては、ポリチタノキサンを含む紡糸液を紡糸して焼成す
る方法(特開平9−276705号公報)等が知られて
いる。前記公知の製造方法において、少なくとも数10
cm以上の長さを有するチタニア繊維を得ることは可能
であり、また焼成温度等を最適化することにより光触媒
活性を有するチタニア繊維を得ることが可能である。し
かしながら、実用的な使用においては、更に高い光触媒
活性を有するチタニア繊維の開発が嘱望されていた。
2. Description of the Related Art Hitherto, as a method for producing titania fiber, a method of spinning and baking a spinning solution containing polytitanoxane (Japanese Patent Application Laid-Open No. 9-276705) and the like are known. In the known manufacturing method, at least several tens
It is possible to obtain titania fibers having a length of not less than cm, and it is possible to obtain titania fibers having photocatalytic activity by optimizing the firing temperature and the like. However, for practical use, the development of titania fibers having higher photocatalytic activity has been desired.

【0003】[0003]

【発明が解決しようとする課題】本発明は、高い光触媒
活性を有するチタニア繊維及びその製造方法を提供する
ことを課題とする。
An object of the present invention is to provide a titania fiber having high photocatalytic activity and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】本発明者等は、チタニア
繊維の光触媒活性は、主に、繊維を活性化するために照
射する励起光が到達する繊維表面の活性に支配されるこ
とに着目し、チタニア繊維表面の光触媒活性を高める方
法について鋭意検討した結果、特定条件下でチタンアル
コキシドを加水分解・重合せしめ、得られた重合物を特
定溶液に溶解し、紡糸液として、紡糸しこれを焼成した
後、アルカリ処理する方法により得られるチタニア繊維
は高い光触媒活性を有することを見出した。また、該方
法により得られるチタニア繊維は特定の構造を有するも
のであって、従来にない高い光触媒活性を有するもので
ある。
The present inventors have noticed that the photocatalytic activity of titania fibers is mainly governed by the activity of the fiber surface to which the excitation light irradiated to activate the fibers reaches. Then, as a result of intensive studies on a method of enhancing the photocatalytic activity of the titania fiber surface, titanium alkoxide was hydrolyzed and polymerized under specific conditions, the obtained polymer was dissolved in a specific solution, and spun as a spinning solution. After baking, the titania fiber obtained by the alkali treatment was found to have high photocatalytic activity. Further, the titania fiber obtained by the method has a specific structure, and has an unprecedented high photocatalytic activity.

【0005】即ち、本発明の第1は、(1)チタンアル
コキシドを溶媒に溶解させた溶液に水分を添加して加水
分解反応および重合反応を行い、該溶液に重合体を生成
させ、(2)該重合体を該重合体が可溶な有機溶媒に溶
解させて紡糸液を得、(3)該紡糸液を紡糸して前駆体
繊維を得、(4)該前駆体繊維を焼成して焼成繊維を
得、(5)該焼成繊維をアルカリ処理することを特徴と
するチタニア繊維の製造方法を提供するにある。
That is, a first aspect of the present invention is to provide (1) a hydrolysis reaction and a polymerization reaction by adding water to a solution in which titanium alkoxide is dissolved in a solvent, to produce a polymer in the solution; ) Dissolving the polymer in an organic solvent in which the polymer is soluble to obtain a spinning solution; (3) spinning the spinning solution to obtain a precursor fiber; and (4) firing the precursor fiber. It is another object of the present invention to provide a method for producing titania fiber, comprising obtaining a fired fiber and (5) subjecting the fired fiber to an alkali treatment.

【0006】本発明の第2は、チタニア繊維において、
該繊維の外周部が多孔質であり、該繊維の内部が緻密質
であることを特徴とするチタニア繊維を提供するにあ
る。
A second aspect of the present invention relates to a titania fiber,
An object of the present invention is to provide a titania fiber, wherein the outer periphery of the fiber is porous and the inside of the fiber is dense.

【0007】[0007]

【発明の実施の形態】以下に本発明をさらに詳細に説明
する。本発明の製造方法の工程(1)は、チタンアルコ
キシドを溶媒に溶解させた溶液(以下、チタンアルコキ
シド溶液と称する。)に水分を添加して加水分解反応お
よび重合反応を行い、該溶液に重合体を生成させる工程
である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. In the step (1) of the production method of the present invention, a hydrolysis reaction and a polymerization reaction are performed by adding water to a solution in which a titanium alkoxide is dissolved in a solvent (hereinafter, referred to as a titanium alkoxide solution), and the solution is subjected to polymerization. This is a step of generating coalescence.

【0008】チタンアルコキシドは、一般式〔1〕Ti
(OR14(但し、式中R1は炭素原子数が1〜4のア
ルキル基を表す)で示される。より具体的にはチタンテ
トラメトキシド、チタンテトラエトキシド、チタンテト
ラn−プロポキシド、チタンテトラiso−プロポキシ
ド、チタンテトラn−ブトキシド、チタンテトラsec
−ブトキシド、チタンテトラtert−ブトキシド等が
挙げられるが、就中R 1がイソプロピル基であるチタン
テトラiso−プロポキシドが挙げられる。一般式
〔1〕のR1の炭素原子数が4を超える場合、生成する
重合体中の残存有機物量が多くなり、得られるチタニア
繊維の機械的強度が低くなる傾向がある。
The titanium alkoxide has the general formula [1] Ti
(OR1)Four(Where R1Represents a group having 1 to 4 carbon atoms.
Represents a alkyl group). More specifically, titanium
Tramethoxide, titanium tetraethoxide, titanium tet
Lan-propoxide, titanium tetra-iso-propoxy
, Titanium tetra n-butoxide, titanium tetra sec
-Butoxide, titanium tetra-tert-butoxide and the like
But especially R 1Is an isopropyl group
Tetra-iso-propoxide. General formula
R of [1]1If the number of carbon atoms in is greater than 4,
The amount of residual organic matter in the polymer increases, resulting in titania
The mechanical strength of the fibers tends to be low.

【0009】溶媒は、チタンアルコキシドを溶解するも
のであればよく、アルコール類、エーテル類、芳香属炭
化水素類等がある。アルコール類は、一般式〔2〕R2
OH(但し、式中R2は炭素原子数が1〜4のアルキル
基を表す)で示されるものであり、具体例としてはエタ
ノール、イソプロピルアルコール等が挙げられる。エー
テル類の具体例としては、テトラヒドロフラン、ジエチ
ルエーテル等がある。チタンアルコキシドに対する溶媒
の量は、加水分解に際しアルコキシドと水が不混和にな
らない程度であればよく、通常、チタンアルコキシド1
モルに対し約0.5モル〜約50モルの範囲である。溶
媒の量が約50モルを超えても特に問題はないが後工程
での重合体の濃縮コストが高くなる。
The solvent may be any one that dissolves the titanium alkoxide, and includes alcohols, ethers, aromatic hydrocarbons and the like. Alcohols are represented by the general formula [2] R 2
OH (wherein R 2 represents an alkyl group having 1 to 4 carbon atoms), and specific examples include ethanol and isopropyl alcohol. Specific examples of ethers include tetrahydrofuran, diethyl ether and the like. The amount of the solvent relative to the titanium alkoxide may be such that the alkoxide and water do not become immiscible during the hydrolysis.
The range is from about 0.5 mole to about 50 mole per mole. There is no particular problem if the amount of the solvent exceeds about 50 mol, but the cost of concentrating the polymer in the subsequent step is increased.

【0010】水分は、チタンアルコキシドを溶解させた
溶媒と同じ溶媒で、水分濃度約1〜約50重量%に希釈
した水分であることが好ましい。水分濃度50重量%を
超える水分を、直接、チタンアルコキシド溶液に添加す
ると、局部的に反応が進行し、後工程の紡糸に際して、
紡糸液に不溶の重合体が析出する場合がある。水分の添
加量は、通常、チタンアルコキシド1モルに対して約
1.5モル〜約4モルの範囲である。
The water is preferably the same solvent as the solvent in which the titanium alkoxide is dissolved and diluted to a water concentration of about 1 to about 50% by weight. When water having a water concentration of more than 50% by weight is directly added to the titanium alkoxide solution, the reaction progresses locally, and during spinning in the subsequent step,
A polymer insoluble in the spinning solution may be precipitated. The amount of water added is usually in the range of about 1.5 mol to about 4 mol per 1 mol of titanium alkoxide.

【0011】本発明の製造方法の実施に際しては、チタ
ンアルコキシドを溶媒に溶解させ、窒素雰囲気等不活性
雰囲気下でリフラックスして、チタンアルコキシド溶液
を調製する。該チタンアルコキシド溶液に、水分を添加
することにより加水分解反応および重合反応を行い、該
溶液に重合体を生成させる。該溶液に生成した重合体が
析出する場合は、溶媒を除去または一部除去した後、紡
糸液の調製に移ればよい。一方、該溶液に生成した重合
体が析出しない場合は、紡糸液の濃度調整に移ればよ
い。工業的な観点からは、チタンアルコキシド溶液の濃
度は高い方が好ましい。従って、チタンアルコキシド溶
液を沸騰下で還流させ、添加する水分に含まれる溶媒の
容量と同じ容量の溶媒を留出させながら、チタンアルコ
キシド溶液へ水分を添加すれば、溶媒量の増加による溶
液中のチタン(Ti)濃度の低下を抑制できるので、工
業的にはこの方法が推奨される。
In carrying out the production method of the present invention, a titanium alkoxide solution is prepared by dissolving titanium alkoxide in a solvent and refluxing under an inert atmosphere such as a nitrogen atmosphere. By adding water to the titanium alkoxide solution, a hydrolysis reaction and a polymerization reaction are performed to generate a polymer in the solution. When the polymer formed in the solution precipitates, the solvent may be removed or partially removed, and then the process may proceed to the preparation of a spinning solution. On the other hand, when the produced polymer does not precipitate in the solution, the procedure may be shifted to the concentration adjustment of the spinning solution. From an industrial viewpoint, it is preferable that the concentration of the titanium alkoxide solution is high. Therefore, refluxing the titanium alkoxide solution under boiling, while distilling the same volume of the solvent contained in the water to be added, while adding water to the titanium alkoxide solution, the amount of solvent in the solution due to the increase in the amount of solvent This method is industrially recommended because a decrease in titanium (Ti) concentration can be suppressed.

【0012】また、本発明の製造方法の実施に際して
は、チタンアルコキシド溶液に活性水素を有する化合物
を添加してもよい。活性水素を有する化合物を適量添加
しておくことによって、チタンアルコキシドの加水分解
反応及び重合反応が制御され、該溶液中に生成した重合
体の有機溶媒への溶解性を向上させることができる。活
性水素を有する化合物を添加する方法の具体例として
は、チタンアルコキシド溶液に活性水素を有する化合物
を添加した後、水分を添加して加水分解および重合反応
を行う方法がある。活性水素を有する化合物を適量添加
しておくことによって、チタンアルコキシドの加水分解
反応および重合反応が制御され、該溶液中に生成した重
合体の有機溶媒への溶解性を向上させることができる。
該活性水素を有する化合物としては、一般式〔3〕R3
COCH2COR4(但し、式中R3,R 4は炭素原子数1
〜4のアルキル基またはアルコキシ基を表す)で示され
るβ−ジケトン化合物またはサリチル酸アルキルエステ
ルが好ましい。より具体的にはβ−ジケトン化合物とし
て、アセト酢酸エチル、アセト酢酸イソプロピルが、ま
たサリチル酸アルキルエステルとしては、サリチル酸エ
チル、サリチル酸メチル等の使用が推奨される。該活性
水素を有する化合物の添加量は、チタンアルコキシド1
モルに対して約0.05〜約1.9モル、好ましくは約
0.1〜約1.0モルである。添加量が約0.05モル
より少ない場合には、添加効果が認められず、また1.
9モルより多い場合には、加水分解と重合反応が抑制さ
れすぎて重合が進行しにくくなり、得られる重合体中の
残存有機物量も多くなり、その結果得られるチタニア繊
維の機械的強度が低くなる場合がある。
In carrying out the production method of the present invention,
Is a compound having active hydrogen in a titanium alkoxide solution
May be added. Add an appropriate amount of compound with active hydrogen
Hydrolysis of titanium alkoxide
The reaction and the polymerization reaction are controlled, and the polymerization formed in the solution
The solubility of the body in an organic solvent can be improved. Activity
As a specific example of a method for adding a compound having a neutral hydrogen,
Is a compound having active hydrogen in a titanium alkoxide solution
After the addition of water, hydrolysis and polymerization
There is a way to do it. Add an appropriate amount of compound with active hydrogen
Hydrolysis of titanium alkoxide
The reaction and the polymerization reaction are controlled, and the
The solubility of the coalesced compound in an organic solvent can be improved.
The compound having an active hydrogen is represented by the general formula [3] RThree
COCHTwoCORFour(Where RThree, R FourIs 1 carbon atom
To 4 alkyl groups or alkoxy groups).
Β-diketone compound or alkyl salicylate
Are preferred. More specifically, a β-diketone compound
And ethyl acetoacetate and isopropyl acetoacetate
Salicylic acid alkyl esters include salicylic acid
The use of chill, methyl salicylate, etc. is recommended. The activity
The amount of the compound having hydrogen is determined by adding titanium alkoxide 1
About 0.05 to about 1.9 moles, preferably about
0.1 to about 1.0 mole. About 0.05 mol
When the amount is smaller, the effect of addition is not recognized.
If the amount is more than 9 mol, hydrolysis and polymerization are inhibited.
Polymerization is difficult to proceed too much, and in the resulting polymer
The amount of residual organic matter also increases, and the resulting titania fiber
The mechanical strength of the fiber may be low.

【0013】本発明の製造方法の工程(2)は、該重合
体を該重合体が可溶な有機溶媒に溶解させて紡糸液を得
る工程である。
Step (2) of the production method of the present invention is a step of dissolving the polymer in an organic solvent in which the polymer is soluble to obtain a spinning solution.

【0014】有機溶媒は、工程(1)で得られた重合体
を溶解するものであればよく、例えばエタノール、イソ
プロピルアルコール等のアルコール類、テトラヒドロフ
ラン、ジエチルエーテル等のエーテル類、ベンゼン、ト
ルエン等の芳香族炭化水素が挙げられる。
The organic solvent may be any as long as it dissolves the polymer obtained in the step (1). Examples thereof include alcohols such as ethanol and isopropyl alcohol, ethers such as tetrahydrofuran and diethyl ether, and benzene and toluene. And aromatic hydrocarbons.

【0015】本発明の製造方法の実施に際しては、該重
合体または該重合体スラりーを、有機溶媒に溶解させて
重合体溶液を調製した後、加熱による有機溶媒除去ある
いは減圧による有機溶媒除去等によって濃縮し、重合体
の濃度が約50重量%〜約80重量%になるように調整
する。また、紡糸液の粘度は、通常約10ポイズ〜約2
000ポイズ、好ましくは約20ポイズ〜約1500ポ
イズの範囲にすればよい。紡糸液の粘度は、重合体の濃
度や紡糸液の温度を調整することにより制御することが
できる。
In practicing the production method of the present invention, the polymer or the polymer slurry is dissolved in an organic solvent to prepare a polymer solution, and then the organic solvent is removed by heating or the organic solvent is removed under reduced pressure. To adjust the concentration of the polymer to be about 50% by weight to about 80% by weight. The spinning solution generally has a viscosity of about 10 poise to about 2 poise.
000 poise, preferably in the range of about 20 poise to about 1500 poise. The viscosity of the spinning solution can be controlled by adjusting the concentration of the polymer and the temperature of the spinning solution.

【0016】本発明の製造方法の工程(3)は、該紡糸
液を紡糸して前駆体繊維を得る工程である。
Step (3) of the production method of the present invention is a step of spinning the spinning solution to obtain precursor fibers.

【0017】紡糸は、特に制限されるものではなく、ノ
ズル押し出し紡糸、遠心紡糸、吹き出し紡糸など公知の
紡糸方法が適用できる。紡糸に際しては、前駆体繊維を
回転するローラーや高速の空気流等により延伸すること
も可能である。また、紡糸にあたり、紡糸雰囲気や吹き
出し空気の温度や湿度を調整することは、安定して良好
な繊維を得るのに望ましい方法である。
The spinning is not particularly limited, and known spinning methods such as nozzle extrusion spinning, centrifugal spinning, and blow spinning can be applied. At the time of spinning, the precursor fiber can be drawn by a rotating roller or a high-speed air stream. In spinning, adjusting the spinning atmosphere and the temperature and humidity of the blown air is a desirable method for stably obtaining good fibers.

【0018】本発明の製造方法の工程(4)は、該前駆
体繊維を焼成して焼成繊維を得る工程である。
Step (4) of the production method of the present invention is a step of firing the precursor fiber to obtain a fired fiber.

【0019】焼成は、特に制限されるものではなく、公
知の方法で行えばよい。焼成温度は、通常、約300℃
〜約1100℃の範囲である。焼成温度が前記範囲を外
れる場合には十分な光触媒活性が得られない場合があ
る。
The firing is not particularly limited, and may be performed by a known method. The firing temperature is usually about 300 ° C
~ 1100 ° C. If the firing temperature is outside the above range, sufficient photocatalytic activity may not be obtained.

【0020】本発明の製造方法の実施に際しては、有機
溶媒等を除く目的で、前記前駆体繊維を焼成前及び/又
は焼成時に水蒸気処理を行ってもよい。水蒸気処理は、
恒温恒湿器、焼成炉等公知の装置を用いて行えばよく、
通常、水蒸気処理の温度は約70℃〜約300℃、好ま
しくは約85℃〜約300℃であり、水蒸気分圧は約
0.3気圧以上、好ましくは約0.5気圧以上であり、
接触時間は30分以上、好ましくは1時間以上、さらに
好ましくは5時間以上である。温度および水蒸気分圧が
高いほど、処理時間は短くなる。処理温度が70℃より
も低い場合、長時間の処理が必要となる。水蒸気分圧が
0.3気圧よりも低い場合も同様に長時間の処理が必要
である。また、焼成時に水蒸気処理を行う場合は、焼成
炉等に水蒸気を吹き込む方法、または水を噴霧する方法
等により所定の湿度を保持しながら、昇温速度を調節し
て処理すればよい。この場合、前駆体繊維が、少なくと
も約70℃〜約300℃の間で0.3気圧以上の水蒸気
分圧を有する雰囲気下で30分以上保持できればよく、
その後は水蒸気分圧を下げて焼成してもよい。
In practicing the production method of the present invention, the precursor fiber may be subjected to a steam treatment before and / or during firing for the purpose of removing an organic solvent and the like. Steam treatment is
What is necessary is just to perform using a well-known apparatus, such as a thermo-hygrostat and a baking furnace,
Typically, the temperature of the steaming is from about 70 ° C. to about 300 ° C., preferably from about 85 ° C. to about 300 ° C., the steam partial pressure is about 0.3 atm or more, preferably about 0.5 atm or more;
The contact time is 30 minutes or more, preferably 1 hour or more, and more preferably 5 hours or more. The higher the temperature and the partial pressure of steam, the shorter the processing time. When the processing temperature is lower than 70 ° C., a long-time processing is required. When the water vapor partial pressure is lower than 0.3 atm, similarly, a long-time treatment is required. In the case of performing steam treatment at the time of sintering, a method of blowing steam into a sintering furnace or the like, or a method of spraying water may be performed while maintaining a predetermined humidity and adjusting a temperature rising rate. In this case, it is sufficient that the precursor fiber can be maintained for at least 30 minutes under an atmosphere having a partial pressure of water vapor of at least 0.3 atm between about 70 ° C. and about 300 ° C.
Thereafter, baking may be performed with a reduced steam partial pressure.

【0021】また、本発明の製造方法の実施に際して、
得られる焼成繊維の機械的強度を高くする目的で、或い
は得られる焼成繊維の結晶形をアナターゼ型にする目的
で、焼成繊維中にシリカを含有させてもよい。シリカを
添加する方法の具体例としては、チタンアルコキシド溶
液にケイ素化合物を添加する方法、チタンアルコキシド
溶液を加水分解・重合反応することで得られた溶液にケ
イ素化合物を添加する方法、または紡糸液にケイ素化合
物を添加する方法等がある。該ケイ素化合物は、チタン
アルコキシド溶液、有機溶媒に均一に混合・分散し得る
ものであれば特に制限されないが、通常、一般式〔4〕
Sinn-1(OR52n+2(但し、式中R5は炭素原子数
1〜4のアルキル基を表し、nは1以上の数を表す)で
表されるアルキルシリケートであることが好ましい。特
に好ましく使用されるアルキルシリケートは、一般式
〔4〕中のR5がエチル基であり、nが4〜6の、エチ
ルシリケートが挙げられる。該ケイ素化合物の添加量
は、焼成後得られるチタニア繊維中のシリカ含有量が約
1〜約40重量%、好ましくは約5〜約30重量%とな
るようにする。シリカ含有量が40重量%を超える場合
は、得られる繊維の機械的強度はもはや高くならないば
かりか、触媒成分の割合が相対的に減少することにより
触媒活性が低下する。
In carrying out the production method of the present invention,
Silica may be contained in the baked fiber for the purpose of increasing the mechanical strength of the obtained baked fiber or for converting the crystal form of the obtained baked fiber to an anatase type. Specific examples of the method of adding silica include a method of adding a silicon compound to a titanium alkoxide solution, a method of adding a silicon compound to a solution obtained by hydrolyzing and polymerizing a titanium alkoxide solution, or a method of adding a silicon compound to a spinning solution. There is a method of adding a silicon compound. The silicon compound is not particularly limited as long as it can be uniformly mixed and dispersed in a titanium alkoxide solution and an organic solvent.
Si n O n-1 (OR 5 ) 2n + 2 (where R 5 represents an alkyl group having 1 to 4 carbon atoms, and n represents a number of 1 or more). Is preferred. Particularly preferred alkyl silicates include ethyl silicates wherein R 5 in the general formula [4] is an ethyl group and n is 4 to 6. The amount of the silicon compound added is such that the silica content in the titania fiber obtained after firing is about 1 to about 40% by weight, preferably about 5 to about 30% by weight. If the silica content exceeds 40% by weight, not only the mechanical strength of the resulting fiber is no longer high, but also the catalytic activity is reduced due to the relative decrease in the proportion of the catalyst component.

【0022】本発明の製造方法の工程(5)は、該焼成
繊維をアルカリ処理する工程である。
Step (5) of the production method of the present invention is a step of subjecting the fired fiber to an alkali treatment.

【0023】アルカリ処理は、通常、焼成繊維をアルカ
リ溶液に浸漬する方法、金属製枠体等に焼成繊維を巻回
した後、得られた焼成繊維を巻回してなる部材をアルカ
リ溶液に浸漬する方法、又は該部材にアルカリ溶液を吹
き付ける方法等で行えばよい。用いるアルカリは、例え
ば、水酸化ナトリウム水溶液、水酸化カリウム水溶液等
が挙げられる。また、アルカリの濃度は通常約0.1%
〜約50%、好ましくは約1%〜約10%である。
The alkali treatment is usually carried out by immersing the baked fiber in an alkali solution, winding the baked fiber around a metal frame or the like, and then immersing the member obtained by winding the obtained baked fiber in the alkali solution. It may be performed by a method, a method of spraying an alkaline solution to the member, or the like. Examples of the alkali used include an aqueous solution of sodium hydroxide and an aqueous solution of potassium hydroxide. The concentration of alkali is usually about 0.1%.
To about 50%, preferably about 1% to about 10%.

【0024】アルカリ処理の温度は、用いるアルカリの
種類、濃度等により異なり一義的ではないが、通常約1
0℃〜約150℃、好ましくは約50℃〜約100℃で
あり、時間は約10分以上、好ましくは約30分〜約5
時間である。特に、実用的に十分な機械的強度と高い光
触媒活性を有するチタニア繊維を得られることから、濃
度約1%〜約10%の水酸化ナトリウム水溶液または水
酸化カリウム水溶液を用いて、温度約50℃〜約100
℃で約30分〜約5時間程度アルカリ処理することが好
ましい。
The temperature of the alkali treatment varies depending on the kind and concentration of the alkali used, and is not unique.
0 ° C. to about 150 ° C., preferably about 50 ° C. to about 100 ° C., and the time is about 10 minutes or more, preferably about 30 minutes to about 5 minutes.
Time. In particular, since titania fibers having practically sufficient mechanical strength and high photocatalytic activity can be obtained, an aqueous solution of sodium hydroxide or potassium hydroxide having a concentration of about 1% to about 10% and a temperature of about 50 ° C. ~ About 100
It is preferable to carry out an alkali treatment at a temperature of about 30 minutes to about 5 hours.

【0025】本発明の製造方法の実施に際しては、アル
カリ処理して得られたチタニア繊維を水により洗浄する
ことが好ましく、特に塩酸等の酸により洗浄することが
好ましい。また、必要に応じて、アルカリ処理して得ら
れたチタニア繊維を再焼成してもよいし、または、該繊
維を洗浄した後、再焼成してもよい。
In carrying out the production method of the present invention, the titania fibers obtained by the alkali treatment are preferably washed with water, particularly preferably with an acid such as hydrochloric acid. If necessary, the titania fibers obtained by the alkali treatment may be refired, or the fibers may be washed and then refired.

【0026】本発明の製造方法により得られるチタニア
繊維は、該繊維の外周部が多孔質であり、該繊維の内部
が緻密質である。
In the titania fiber obtained by the production method of the present invention, the outer periphery of the fiber is porous, and the inside of the fiber is dense.

【0027】前記チタニア繊維は、該繊維の外周部が多
孔質であることにより、高い光触媒活性を有するもので
あり、該繊維の内部が緻密質であることにより、繊維と
しての形状を保持するとの特徴を具備するものである。
前記チタニア繊維の外周部の厚さと内部の厚さの割合
は、チタニア繊維の繊維径、所望とする光触媒活性及び
許容される機械的強度等を勘案して適宜調節すればよ
い。外周部の厚さは、通常、約0.1μm以上であり、
好ましくは約0.5μm〜繊維径の約40%、さらに好
ましくは約0.5μm〜繊維径の約30%であることが
好ましい。外周部の厚さが約0.1μm未満の場合は十
分な光触媒活性を有するチタニア繊維を得ることが困難
である。外周部の厚さが厚いほど、得られるチタニア繊
維の光触媒活性は高くなるが、厚さが約1μm以上では
もはや厚さに見合う光触媒活性の向上は得られない。理
由は明らかではないが、光触媒活性を生起させる励起光
は、チタニア繊維の外周部厚さ約1μmまでしか到達し
ないことが関係していると推察される。また、通常、多
孔質である外周部の厚さが厚いほど、得られるチタニア
繊維の機械的強度は低下する傾向にある。尚、本発明に
おいて、チタニア繊維の内部構造(チタニア繊維の外周
部が多孔質であり、該繊維の内部が緻密質であるこ
と。)は、チタニア繊維を適切な元素(適切な元素は、
測定時の妨害を避けるため、チタニア繊維に実質的に含
まれない元素であることが好ましい。以下、単に元素と
する。)により染色して、その元素分布を測定すること
により求めればよい。該元素としてMnを用いた場合の
具体例としては、チタニア繊維を硝酸マンガン水溶液
(Mn10重量%を含む)中に浸漬し、取出して乾燥し
た後、350℃で焼成してマンガンをチタニア繊維に含
浸させ、得られたチタニア繊維の断面(繊維の長さ方向
に対して垂直な断面)のマンガン分布をEDXにより調
べる方法等がある。該元素が存在する部分(例えば、マ
ンガンの線強度がチタンの線強度の0.3倍以上であ
る。)を多孔質とし、存在しない部分(例えば、マンガ
ンの線強度がチタンの線強度の0.3倍未満である。)
を緻密質とする。チタニア繊維の多孔質である外周部の
厚さは、無作為に選んだ繊維5ヶについて前記方法によ
り測定した該元素が存在する部分の厚み(繊維の半径方
向の厚み)の平均値である。
The titania fiber has a high photocatalytic activity due to the porous outer periphery thereof, and the shape of the fiber is maintained because the inside of the fiber is dense. It has features.
The ratio of the thickness of the outer peripheral portion to the inner thickness of the titania fiber may be appropriately adjusted in consideration of the fiber diameter of the titania fiber, desired photocatalytic activity, allowable mechanical strength, and the like. The thickness of the outer peripheral portion is usually about 0.1 μm or more,
It is preferably from about 0.5 μm to about 40% of the fiber diameter, and more preferably from about 0.5 μm to about 30% of the fiber diameter. When the thickness of the outer peripheral portion is less than about 0.1 μm, it is difficult to obtain titania fibers having sufficient photocatalytic activity. The photocatalytic activity of the obtained titania fiber increases as the thickness of the outer peripheral portion increases, but when the thickness is about 1 μm or more, improvement in photocatalytic activity corresponding to the thickness can no longer be obtained. Although the reason is not clear, it is presumed that this is related to the fact that the excitation light for generating the photocatalytic activity reaches only the outer peripheral portion thickness of the titania fiber of about 1 μm. In addition, the mechanical strength of the obtained titania fiber tends to decrease as the thickness of the porous outer peripheral portion increases. In the present invention, the internal structure of the titania fiber (the outer periphery of the titania fiber is porous and the inside of the fiber is dense) is determined by converting the titania fiber into an appropriate element (an appropriate element is
In order to avoid interference during measurement, it is preferable that the element is not substantially contained in the titania fiber. Hereinafter, they are simply referred to as elements. ) May be determined by measuring the element distribution. As a specific example when Mn is used as the element, the titania fiber is immersed in an aqueous solution of manganese nitrate (including Mn 10% by weight), taken out, dried, and fired at 350 ° C. to impregnate the manganese into the titania fiber. Then, there is a method of examining the manganese distribution in the cross section (cross section perpendicular to the fiber length direction) of the obtained titania fiber by EDX. The portion where the element is present (for example, the linear strength of manganese is 0.3 times or more the linear intensity of titanium) is made porous, and the portion where the element is not present (for example, the linear intensity of manganese is 0% of the linear intensity of titanium). Less than 3 times.)
Is dense. The thickness of the porous outer peripheral portion of the titania fiber is an average value of the thickness of the portion where the element exists (radial thickness of the fiber) measured by the above method for five randomly selected fibers.

【0028】前記チタニア繊維の外周部の厚さと内部の
厚さの割合を調節するに際しては、前述した本発明の製
造方法において、アルカリ処理条件等を適宜変えればよ
く、通常、アルカリ濃度を高く、処理温度を高くまたは
処理時間を長くすることにより、得られるチタニア繊維
の多孔質である外周部の厚さを厚くすることが可能であ
る。
In adjusting the ratio of the thickness of the outer peripheral portion to the inner thickness of the titania fiber, in the above-described production method of the present invention, alkali treatment conditions and the like may be appropriately changed. By increasing the treatment temperature or increasing the treatment time, it is possible to increase the thickness of the porous outer peripheral portion of the obtained titania fiber.

【0029】また、本発明のチタニア繊維は、通常、繊
維径が5〜100μmであり、繊維長さが50cm以
上、BET比表面積が10m2/g以上である。繊維径
が5μmより細い場合には、チタニア繊維の内部が緻密
質であっても十分な機械的強度が得られない場合があ
る。理由は詳らかではないが、チタニア繊維の機械的強
度に寄与する内部の緻密質の断面積が減少し、十分な機
械的強度が得られないと推測される。多孔質である外周
部の厚さを一定とした場合、繊維径は太い方が内部の緻
密質の断面積が相対的に増加して、単繊維の機械的強度
が高く成し得るので好ましいが、100μmより太くな
ると繊維としての柔軟性が低下する場合がある。BET
比表面積が10m2/gより小さい場合には、たとえ外
周部が多孔質であっても、十分な光触媒活性が得られな
い場合がある。
The titania fiber of the present invention usually has a fiber diameter of 5 to 100 μm, a fiber length of 50 cm or more, and a BET specific surface area of 10 m 2 / g or more. When the fiber diameter is smaller than 5 μm, sufficient mechanical strength may not be obtained even if the inside of the titania fiber is dense. Although the reason is not clear, it is presumed that the cross-sectional area of the internal dense material contributing to the mechanical strength of the titania fiber decreases, and sufficient mechanical strength cannot be obtained. When the thickness of the porous outer peripheral portion is constant, it is preferable that the fiber diameter is larger because the cross-sectional area of the inner dense material is relatively increased and the mechanical strength of the single fiber can be increased. If the thickness is larger than 100 μm, the flexibility as a fiber may be reduced. BET
When the specific surface area is smaller than 10 m 2 / g, sufficient photocatalytic activity may not be obtained even if the outer peripheral portion is porous.

【0030】さらに、該チタニア繊維は、通常、単繊維
の引張強度は約0.1GPa以上、好ましくは0.3G
Pa以上を有するものである。
Further, the titania fiber usually has a tensile strength of a single fiber of about 0.1 GPa or more, preferably 0.3 GPa or more.
It has Pa or more.

【0031】本発明のチタニア繊維は、NOxや悪臭物
質の分解除去、汚染河川や湖沼の清浄化など光触媒用途
において特に優れた特性を示すものである。尚、本発明
により得られたチタニア繊維は長繊維(少なくとも数1
0cm以上の長さを有する繊維)としては勿論、該繊維
をカットし短繊維としても各種用途に使用することがで
きる。
The titania fibers of the present invention exhibit particularly excellent properties in photocatalytic applications such as decomposition and removal of NOx and malodorous substances, and purification of contaminated rivers and lakes. In addition, the titania fiber obtained by the present invention is a long fiber (at least
Not only as a fiber having a length of 0 cm or more), the fiber can be cut and used as a short fiber for various applications.

【0032】[0032]

【実施例】以下に実施例により本発明をさらに詳細に説
明するが、本発明はかかる実施例により制限を受けるも
のではない。尚、繊維径、引張強度、繊維の結晶形、B
ET比表面積は以下の方法により測定した。 繊維径:試料を光学顕微鏡で観察し、視野中に存在する
繊維20本を無作為に選択して繊維径を測定し、その平
均値を算出して繊維径とした。 引張強度:繊維を単繊維自動引張試験装置(東洋ボール
ドウィン株式会社製、制御部;モデルAMF−C、引張
装置部;TENSILON、UTM−2−20)を用い
て、測定長25mm、引張速度1mm/分で引っ張り、
繊維が破断する強度を引張強度とした。尚測定値は単繊
維30本の引張強度の平均値である。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. In addition, fiber diameter, tensile strength, crystal form of fiber, B
The ET specific surface area was measured by the following method. Fiber diameter: The sample was observed with an optical microscope, 20 fibers present in the visual field were randomly selected, the fiber diameter was measured, and the average was calculated to be the fiber diameter. Tensile strength: The fiber was measured with a single fiber automatic tensile tester (manufactured by Toyo Baldwin Co., Ltd., control unit; model AMF-C, tensile unit; TENSILON, UTM-2-20), measuring length 25 mm, tensile speed 1 mm / Pull in minutes,
The breaking strength of the fiber was defined as the tensile strength. The measured value is the average value of the tensile strength of 30 single fibers.

【0033】繊維の結晶形:繊維を乳鉢にて軽く粉砕
し、X線回折装置(理学電機株式会社製、RAD−II
A)を用いて分析した。 繊維のBET比表面積:繊維を乳鉢にて軽く粉砕し、マ
イクロメトリクス フローソーブII 2300(島津製
作所製)を用いて測定した。
Crystal form of fiber: The fiber is lightly pulverized in a mortar, and X-ray diffractometer (RAD-II, manufactured by Rigaku Corporation)
Analyzed using A). BET specific surface area of fiber: The fiber was lightly pulverized in a mortar and measured using Micrometrics Flowsorb II 2300 (manufactured by Shimadzu Corporation).

【0034】実施例1 チタンイソプロポキシド(商品名:A−1、日本曹達株
式会社製)7.20kgとアセト酢酸エチル(ダイセル
化学株式会社製)1.32kgとをイソプロピルアルコ
ール(試薬特級、和光純薬株式会社製)1.77kgに
溶解させ、窒素雰囲気下、1時間リフラックスして、原
料のアルコール溶液を調製した。前記アセト酢酸エチル
の量はチタンイソプロポキシド1モルに対して0.40
モルである。
Example 1 7.20 kg of titanium isopropoxide (trade name: A-1, manufactured by Nippon Soda Co., Ltd.) and 1.32 kg of ethyl acetoacetate (manufactured by Daicel Chemical Co., Ltd.) were mixed with isopropyl alcohol (reagent grade, sum It was dissolved in 1.77 kg of Kojun Pharmaceutical Co., Ltd., and refluxed for 1 hour under a nitrogen atmosphere to prepare an alcohol solution of a raw material. The amount of the ethyl acetoacetate was 0.40 per mole of titanium isopropoxide.
Is a mole.

【0035】水0.864kgとイソプロピルアルコー
ル(試薬特級、和光純薬株式会社製)7.81kgを混
合し、水分濃度10重量%のアルコール溶液を調製し
た。前記水分の量はチタンアルコキシド1モルに対して
1.90モルである。
0.864 kg of water and 7.81 kg of isopropyl alcohol (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) were mixed to prepare an alcohol solution having a water concentration of 10% by weight. The amount of the water is 1.90 mol per 1 mol of titanium alkoxide.

【0036】原料のアルコール溶液を窒素雰囲気中で加
熱し沸騰下で還流させると同時に、アルコールを留出さ
せながら、水分濃度10重量%のアルコール溶液を撹拌
下、添加した。アルコールの留出速度と添加速度はほぼ
等しくなるように調整し、また添加時間は135分とな
るように調整した。水分を全量添加した時点では、完全
にスラリー状態となった。
The alcohol solution as the raw material was heated in a nitrogen atmosphere and refluxed under boiling, and at the same time, an alcohol solution having a water concentration of 10% by weight was added with stirring while distilling off the alcohol. The distillation rate of the alcohol and the addition rate were adjusted to be substantially equal, and the addition time was adjusted to be 135 minutes. At the time when the entire amount of water was added, a completely slurry state was obtained.

【0037】該スラリーを1時間リフラックスした後、
そのままアルコールを留出させ、全量が7.40kgに
なるまで濃縮した。
After refluxing the slurry for one hour,
The alcohol was distilled off as it was and concentrated until the total amount became 7.40 kg.

【0038】該重合体をテトラヒドロフラン(試薬特
級、和光純薬株式会社製)8.52kgを添加し、溶解
させて重合体溶液Aを調製した。次いで、得られた重合
体溶液Aにエチルシリケート(商品名:エチルシリケー
ト40、多摩化学工業株式会社製)0.893kgを加
えて、1時間リフラックスし、重合体溶液Bを調製し
た。エチルシリケートの添加量は、紡糸、焼成して得ら
れるチタニア繊維中にシリカとして15重量%となる量
である。
To the polymer was added 8.52 kg of tetrahydrofuran (special grade reagent, manufactured by Wako Pure Chemical Industries, Ltd.) and dissolved to prepare a polymer solution A. Next, 0.893 kg of ethyl silicate (trade name: ethyl silicate 40, manufactured by Tama Chemical Industry Co., Ltd.) was added to the obtained polymer solution A, and the mixture was refluxed for 1 hour to prepare a polymer solution B. The amount of ethyl silicate added is such that the titania fiber obtained by spinning and firing becomes 15% by weight as silica.

【0039】該重合体溶液Bを孔径3μmのテフロン製
メンブレンフィルターで濾過した後、加熱してテトラヒ
ドロフランを留出させて濃縮し、紡糸液5.95kgを
得た。この時の紡糸液の粘度は40℃で50ポイズであ
った。
The polymer solution B was filtered through a Teflon membrane filter having a pore size of 3 μm, and then heated to distill off tetrahydrofuran and concentrated to obtain 5.95 kg of a spinning solution. At this time, the viscosity of the spinning solution was 50 poise at 40 ° C.

【0040】40℃の該紡糸液を、20kg/cm2
窒素ガスで、口径50μm、孔数500個のノズルか
ら、40℃、60%RHの空気雰囲気中に押し出し、ゴ
デットローラー、エアーサッカーを用いて、70m/分
の速度で払い落として、前駆体連続繊維Aを得た。
The spinning solution at 40 ° C. was extruded with a nitrogen gas at 20 kg / cm 2 from a nozzle having a diameter of 50 μm and 500 holes into an air atmosphere at 40 ° C. and 60% RH. Was removed at a speed of 70 m / min to obtain a precursor continuous fiber A.

【0041】次いで、得られた前駆体連続繊維Aを70
℃、70%RHの恒温恒湿器に入れて30分間水蒸気処
理を行った後、昇温速度200℃/hr、空気中で90
0℃で30分間焼成して、焼成繊維を得た。得られた焼
成繊維は、繊維径が15μmであり、BET比表面積が
0.2m2/gであり、引張強度が1.4GPaであっ
た。また、XRD分析によれば、該繊維はアナターゼ形
の酸化チタンであり、アナターゼ以外のピークは認めら
れなかった。
Next, the obtained precursor continuous fiber A was mixed with 70
After steaming for 30 minutes in a thermo-hygrostat at 70 ° C. and 70% RH, the temperature was raised at a rate of 200 ° C./hr in air for 90 minutes.
The fiber was fired at 0 ° C. for 30 minutes to obtain a fired fiber. The obtained fired fiber had a fiber diameter of 15 μm, a BET specific surface area of 0.2 m 2 / g, and a tensile strength of 1.4 GPa. According to XRD analysis, the fiber was anatase-type titanium oxide, and no peak other than anatase was observed.

【0042】該焼成繊維500本束を、SUS製金網
(6メッシュ)を丸めて得られる円筒(外径55mm、
高さ90mm)の外側に直接、繊維間に隙間がないよう
に巻回してなる部材Aを得た。巻回した部分の高さは7
0mmであり、巻回に使用した焼成繊維の重量は3.7
gであり、目付けとしては230g/m2であった。
A bundle (500 mm in outer diameter, obtained by rolling a bundle of 500 fired fibers into a SUS wire mesh (6 mesh)) is used.
Thus, a member A was obtained which was wound directly on the outside of a height of 90 mm without any gap between the fibers. The height of the wound part is 7
0 mm, and the weight of the fired fiber used for winding was 3.7.
g, and the basis weight was 230 g / m 2 .

【0043】次いで、焼成繊維をアルカリ処理するため
に、焼成繊維を巻回してなる部材Aを30重量%水酸化
ナトリウム水溶液1Lを入れた容器中に浸漬し、70℃
で5時間処理した。処理後の繊維を巻回してなる部材A
を取出し、水洗した後、550℃で1時間焼成して、光
触媒体Aを得た。
Next, in order to alkali-treat the baked fiber, the member A formed by winding the baked fiber was immersed in a container containing 1 L of a 30% by weight aqueous sodium hydroxide solution, and heated at 70 ° C.
For 5 hours. Member A formed by winding the treated fiber
It was taken out, washed with water, and calcined at 550 ° C. for 1 hour to obtain a photocatalyst A.

【0044】光触媒体Aのチタニア繊維は、BET比表
面積が17.6m2/gであった。該チタニア繊維の内
部構造(チタニア繊維の外周部が多孔質であり、該繊維
の内部が緻密質であること。)を以下の方法により調べ
た。該チタニア繊維を、硝酸マンガン水溶液(Mn10
重量%を含む)中に浸漬し、乾燥した後、350℃で焼
成して、マンガンを該チタニア繊維に含浸させた。得ら
れたチタニア繊維の断面を走査型電子顕微鏡(日立製作
所株式会社製)により観察した結果を図1に示す。ま
た、図1のABB’A’線上をEDX(ケベックス社
製)により分析し、繊維断面のマンガン分布を調べた。
その結果を図2に合わせて示す。図2よりマンガンは外
周部0μm〜1.0μm厚の部分(以下、外周部とす
る。)に存在した。マンガンの線強度はチタン(Ti)
の線強度とほぼ同じであった。図2より、該チタニア繊
維は、繊維の外周部(AB線とB’A’線)は多孔質で
あり、それより内部(BB’線)は緻密質であることが
わかった。
The titania fiber of the photocatalyst A had a BET specific surface area of 17.6 m 2 / g. The internal structure of the titania fiber (the outer periphery of the titania fiber being porous and the inside of the fiber being dense) was examined by the following method. The titania fiber was treated with a manganese nitrate aqueous solution (Mn10
% By weight), dried and fired at 350 ° C. to impregnate the manganese into the titania fibers. FIG. 1 shows the result of observing the cross section of the obtained titania fiber using a scanning electron microscope (manufactured by Hitachi, Ltd.). Further, the line ABB'A 'in FIG. 1 was analyzed by EDX (manufactured by Quebex Corporation) to examine the manganese distribution in the fiber cross section.
The results are shown in FIG. From FIG. 2, manganese was present in the outer peripheral portion having a thickness of 0 μm to 1.0 μm (hereinafter referred to as the outer peripheral portion). Manganese wire strength is titanium (Ti)
Was almost the same as the linear intensity of From FIG. 2, it was found that the titania fiber was porous at the outer periphery (AB line and B′A ′ line) of the fiber, and was denser at the inside (BB ′ line).

【0045】光触媒活性:パイレックス製ガラスセパラ
ブル反応容器(内径9cm×長さ13cm)内に光触媒
体を配置し、光触媒体の円筒の内側に励起光源としてパ
イレックス製冷却管を有する100W高圧水銀ランプ
(ウシオ電機株式会社製)を配置した。実質的に300
nm以上の励起光を光触媒体に照射する。フェノール濃
度20ppmを含む水600mLを上記反応容器に入
れ、空気を200mL/minで吹き込みながら、室温
でフェノールの分解を行った。所定時間励起光を照射
し、分解反応させた後、反応液中のフェノール濃度をガ
スクロマトグラフ分析により測定した。励起光照射4時
間後のフェノール濃度は1ppm以下であった。また、
励起光照射5時間後の反応液について、芳香族に由来す
る吸収スペクトル(210nmおよび270nm)を測
定した結果、吸収スペクトルは検出されず、フェノール
が完全に分解されたことを確認した。
Photocatalytic activity: A 100-W high-pressure mercury lamp having a Pyrex cooling tube as an excitation light source inside a cylinder of the photocatalyst, in which a photocatalyst is placed in a glass-separable reaction vessel made by Pyrex (inner diameter 9 cm × length 13 cm) USHIO INC.). Substantially 300
The photocatalyst is irradiated with excitation light of nm or more. 600 mL of water containing a phenol concentration of 20 ppm was put into the reaction vessel, and phenol was decomposed at room temperature while blowing air at 200 mL / min. After irradiation with excitation light for a predetermined time to cause a decomposition reaction, the phenol concentration in the reaction solution was measured by gas chromatography analysis. The phenol concentration after 4 hours of irradiation with the excitation light was 1 ppm or less. Also,
As a result of measuring the absorption spectra (210 nm and 270 nm) derived from aromatics of the reaction solution 5 hours after the irradiation of the excitation light, no absorption spectrum was detected, and it was confirmed that phenol was completely decomposed.

【0046】実施例2 実施例1と同様にして部材Aを作製し、得られた部材A
を5.6重量%(1N)水酸化カリウム水溶液1Lに浸
漬し、90℃で2時間処理した。次いで、部材Aを水で
洗浄し、2N塩酸に浸漬した後、水で洗浄し、110℃
で乾燥して、光触媒Bを得た。
Example 2 A member A was prepared in the same manner as in Example 1, and the obtained member A
Was immersed in 1 L of a 5.6% by weight (1N) aqueous potassium hydroxide solution and treated at 90 ° C. for 2 hours. Next, the member A was washed with water, immersed in 2N hydrochloric acid, washed with water, and heated at 110 ° C.
To obtain photocatalyst B.

【0047】光触媒体Bのチタニア繊維のBET比表面
積は12.5m2/gであり、かつ十分な機械的強度を
有していた。光触媒体Bのチタニア繊維の内部構造を実
施例1と同様にして調べた結果、該チタニア繊維は、繊
維の外周部0〜0.7μm厚の部分が多孔質であり、そ
れより内部は緻密質であった。
The BET specific surface area of the titania fiber of photocatalyst B was 12.5 m 2 / g, and had sufficient mechanical strength. As a result of examining the internal structure of the titania fiber of the photocatalyst body B in the same manner as in Example 1, the outer portion of the titania fiber having a thickness of 0 to 0.7 μm was porous, and the inside thereof was denser. Met.

【0048】光触媒体Aに変えて光触媒体Bを用いるこ
と以外は、実施例1と同様にしてフェノールの分解を行
った。所定時間励起光を照射し、分解反応させた後、反
応液中のフェノール濃度をガスクロマトグラフ分析によ
り測定した。励起光照射4時間後のフェノール濃度は1
ppm以下であった。また、励起光照射5時間後の反応
液について、芳香族に由来する吸収スペクトル(210
nmおよび270nm)を測定した結果、吸収スペクト
ルは検出されず、フェノールが完全に分解されたことを
確認した。
Phenol was decomposed in the same manner as in Example 1 except that photocatalyst B was used instead of photocatalyst A. After irradiation with excitation light for a predetermined time to cause a decomposition reaction, the phenol concentration in the reaction solution was measured by gas chromatography analysis. The phenol concentration after irradiation with excitation light for 4 hours was 1
ppm or less. In addition, regarding the reaction solution 5 hours after the irradiation with the excitation light, the absorption spectrum derived from aromatics (210
nm and 270 nm), no absorption spectrum was detected, confirming that phenol was completely decomposed.

【0049】比較例1 実施例1で得られた前駆体連続繊維Aを、85℃、95
%RHの恒温恒湿器に入れて5時間水蒸気処理を行った
後、昇温速度200℃/hr、空気中で900℃で30
分間焼成して、焼成繊維を得た。焼成繊維は、繊維径が
15μmであり、BET比表面積が15.3m2/gで
あった。
Comparative Example 1 The precursor continuous fiber A obtained in Example 1 was heated at 85 ° C. and 95
% RH and subjected to steam treatment for 5 hours, and then heated at a rate of 200 ° C./hr in air at 900 ° C. for 30 hours.
After firing for a minute, a fired fiber was obtained. The calcined fiber had a fiber diameter of 15 μm and a BET specific surface area of 15.3 m 2 / g.

【0050】該焼成繊維500本束を、SUS製金網
(6メッシュ)を丸めて得られる円筒(外径55mm、
高さ90mm)の外側に直接、繊維間に隙間がないよう
に巻回してなる部材B(光触媒体Cとする。)を得た。
巻回した部分の高さは70mmであり、巻回に使用した
焼成繊維の重量は3.7gであり、目付けとしては23
0g/m2であった。
A bundle (500 mm in outer diameter, obtained by rolling a bundle of 500 fired fibers into a SUS wire mesh (6 mesh)) is obtained.
A member B (referred to as a photocatalyst C) was obtained by directly winding the fiber (outside a height of 90 mm) such that there was no gap between the fibers.
The height of the wound portion is 70 mm, the weight of the fired fiber used for the winding is 3.7 g, and the basis weight is 23.
It was 0 g / m 2 .

【0051】光触媒体Cのチタニア繊維(前記焼成繊維
に同じ)の内部構造を実施例1と同様にして調べた結
果、該チタニア繊維には、外周部が多孔質であり、かつ
内部が緻密質である実施例1の様な内部構造は見られな
かった。
The internal structure of the titania fiber (same as the above-mentioned fired fiber) of the photocatalyst C was examined in the same manner as in Example 1. As a result, the titania fiber had a porous outer peripheral portion and a dense inner portion. No internal structure as in Example 1 was observed.

【0052】光触媒体Aに変えて光触媒体Cを用いるこ
と以外は、実施例1と同様にしてフェノールの分解を行
った。所定時間励起光を照射し、分解反応させた後、反
応液中のフェノール濃度をガスクロマトグラフ分析によ
り測定した。励起光照射4時間後のフェノール濃度は1
5ppmであった。
Phenol was decomposed in the same manner as in Example 1 except that photocatalyst C was used instead of photocatalyst A. After irradiation with excitation light for a predetermined time to cause a decomposition reaction, the phenol concentration in the reaction solution was measured by gas chromatography analysis. The phenol concentration after irradiation with excitation light for 4 hours was 1
It was 5 ppm.

【0053】[0053]

【発明の効果】以上詳述した如く、本発明の製造方法に
よれば、高い光触媒活性を有するチタニア繊維を工業的
に容易に製造することを可能とするものである。特に、
比表面積が低く高い機械的強度を有する焼成繊維をアル
カリ処理する場合には、高い光触媒活性と十分な機械的
強度とを有するチタニア繊維を得ることを見出したもの
であり、その工業的価値は頗る大である。
As described above in detail, according to the production method of the present invention, titania fibers having high photocatalytic activity can be industrially easily produced. In particular,
When the alkali treatment of the fired fiber having a low specific surface area and high mechanical strength, it has been found that a titania fiber having high photocatalytic activity and sufficient mechanical strength is obtained, and its industrial value is extremely low. Is big.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明にかかるチタニア繊維の断面図。FIG. 1 is a cross-sectional view of a titania fiber according to the present invention.

【図2】 本発明にかかるチタニア繊維断面の元素分布
図。
FIG. 2 is an element distribution diagram of a cross section of a titania fiber according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 美明 愛媛県新居浜市惣開町5番1号 住友化学 工業株式会社内 Fターム(参考) 4G047 CA02 CB06 CC03 CD05 4G069 BA04A BA48A 4L037 AT02 CS17 CS23 FA03 FA05 FA06 FA12 PA46 PF19 PF23 PF24 PS02 PS12 UA14  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Miaki Takeuchi 5-1 Sokai-cho, Niihama-shi, Ehime F-term (reference) in Sumitomo Chemical Co., Ltd. 4G047 CA02 CB06 CC03 CD05 4G069 BA04A BA48A 4L037 AT02 CS17 CS23 FA03 FA05 FA06 FA12 PA46 PF19 PF23 PF24 PS02 PS12 UA14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (1)チタンアルコキシドを溶媒に溶解
させた溶液に水分を添加して加水分解反応および重合反
応を行い、該溶液に重合体を生成させ、(2)該重合体
を該重合体が可溶な有機溶媒に溶解させて紡糸液を得、
(3)該紡糸液を紡糸して前駆体繊維を得、(4)該前
駆体繊維を焼成して焼成繊維を得、(5)該焼成繊維を
アルカリ処理することを特徴とするチタニア繊維の製造
方法。
(1) A solution in which titanium alkoxide is dissolved in a solvent is subjected to a hydrolysis reaction and a polymerization reaction by adding water to produce a polymer in the solution, and (2) the polymer is dissolved in the polymer. The union is dissolved in a soluble organic solvent to obtain a spinning solution,
(3) spinning the spinning solution to obtain a precursor fiber; (4) firing the precursor fiber to obtain a fired fiber; and (5) subjecting the fired fiber to an alkali treatment. Production method.
【請求項2】 チタニア繊維において、該繊維の外周部
が多孔質であり、該繊維の内部が緻密質であることを特
徴とするチタニア繊維。
2. The titania fiber according to claim 1, wherein the outer periphery of the titania fiber is porous, and the inside of the fiber is dense.
【請求項3】 外周部の厚さ0.1μm以上であること
を特徴とする請求項2記載のチタニア繊維。
3. The titania fiber according to claim 2, wherein the outer peripheral portion has a thickness of 0.1 μm or more.
JP10362740A 1998-12-21 1998-12-21 Titania fiber and its production Pending JP2000192336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10362740A JP2000192336A (en) 1998-12-21 1998-12-21 Titania fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10362740A JP2000192336A (en) 1998-12-21 1998-12-21 Titania fiber and its production

Publications (1)

Publication Number Publication Date
JP2000192336A true JP2000192336A (en) 2000-07-11

Family

ID=18477625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10362740A Pending JP2000192336A (en) 1998-12-21 1998-12-21 Titania fiber and its production

Country Status (1)

Country Link
JP (1) JP2000192336A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100424100B1 (en) * 2001-09-26 2004-03-22 오한준 Photocatalytic TiO2 in the form of fiber and manufacturing method thereof
KR100438102B1 (en) * 2002-02-15 2004-07-02 김학용 A ultrafine titanium fiber, and a process of preparing for the same
JP2007261856A (en) * 2006-03-28 2007-10-11 Sumitomo Chemical Co Ltd Method for manufacturing titanium oxide precursor and method for manufacturing titanium oxide
JP2010022963A (en) * 2008-07-22 2010-02-04 Shinetsu Quartz Prod Co Ltd Fibrous photocatalyst article, its manufacturing method, and cleaning apparatus
CN109833856A (en) * 2019-03-18 2019-06-04 杭州同净环境科技有限公司 Photocatalytic fiber material and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100424100B1 (en) * 2001-09-26 2004-03-22 오한준 Photocatalytic TiO2 in the form of fiber and manufacturing method thereof
KR100438102B1 (en) * 2002-02-15 2004-07-02 김학용 A ultrafine titanium fiber, and a process of preparing for the same
JP2007261856A (en) * 2006-03-28 2007-10-11 Sumitomo Chemical Co Ltd Method for manufacturing titanium oxide precursor and method for manufacturing titanium oxide
JP4598704B2 (en) * 2006-03-28 2010-12-15 住友化学株式会社 Method for producing titanium oxide precursor and method for producing titanium oxide
JP2010022963A (en) * 2008-07-22 2010-02-04 Shinetsu Quartz Prod Co Ltd Fibrous photocatalyst article, its manufacturing method, and cleaning apparatus
CN109833856A (en) * 2019-03-18 2019-06-04 杭州同净环境科技有限公司 Photocatalytic fiber material and preparation method thereof
CN109833856B (en) * 2019-03-18 2022-07-26 耐酷时科技有限责任公司 Photocatalytic fiber material and preparation method thereof

Similar Documents

Publication Publication Date Title
US6399540B1 (en) Porous titania, catalyst comprising the porous titania
US6191067B1 (en) Titania fiber, method for producing the fiber and method for using the fiber
WO2011016329A1 (en) Rutile titanium dioxide nanoparticles each having novel exposed crystal plane and method for producing same
Geltmeyer et al. TiO2 functionalized nanofibrous membranes for removal of organic (micro) pollutants from water
Hamadanian et al. Electrospun titanium dioxide nanofibers: Fabrication, properties and its application in photo-oxidative degradation of methyl orange (MO)
KR19990072674A (en) A method for producing a catalyst component-carrying titania fiber
CN106978652B (en) A kind of preparation method of poly-vinegar acid oxygen titanium precursors colloidal sol spinning solution and TiOx nano fiber photocatalyst
KR20140094861A (en) Method of graphene-cnt complex structure for water treatment and membrane using the same
WO2007123114A1 (en) Titania fiber and method for producing titania fiber
KR20020092067A (en) Synthesis of highly active photocatalytic TiO2-sol containing active metals
JP2000192336A (en) Titania fiber and its production
KR100364729B1 (en) Method for preparing Titanium dioxide film on polymer substrate
JPH10325021A (en) Titania fiber and its production
JP5156286B2 (en) Fibrous photocatalyst and purification device
WO2008091053A1 (en) Method of preparation for titania photo-catalyst by oxygen plasma and rapid thermal annealing
JPH115036A (en) Catalytic component carried titania fiber and its production
JP4132285B2 (en) Composite metal oxide and method for producing the same
WO2006030780A1 (en) Process for producing flaky titanium oxide capable of absorbing visible light
JP2001114519A (en) Porous titania, catalyst by using the same and method for production thereof
JP2004161592A (en) Anatase type titania-silica composite and its production method
KR101007887B1 (en) METHOD FOR PREPARING SiO2-TiO2-BASED COMPOSITE INORGANIC FIBERS USING TWO-STEP HEAT-TREATMENT
KR20110089976A (en) Inorganic composite fiber having photocatalytic activity and filter made thereof
JP2000218170A (en) Production of titania fiber for photocatalyst
JP2001278625A (en) Method of producing titanium oxide
Wu et al. Preparation and characterization of Fe3+, La3+ Co-doped Tio2 nanofibers and its photocatalytic activity