KR20140094861A - Method of graphene-cnt complex structure for water treatment and membrane using the same - Google Patents

Method of graphene-cnt complex structure for water treatment and membrane using the same Download PDF

Info

Publication number
KR20140094861A
KR20140094861A KR1020130007437A KR20130007437A KR20140094861A KR 20140094861 A KR20140094861 A KR 20140094861A KR 1020130007437 A KR1020130007437 A KR 1020130007437A KR 20130007437 A KR20130007437 A KR 20130007437A KR 20140094861 A KR20140094861 A KR 20140094861A
Authority
KR
South Korea
Prior art keywords
graphene
carbon nanotube
composite structure
nanotube composite
water treatment
Prior art date
Application number
KR1020130007437A
Other languages
Korean (ko)
Other versions
KR101437442B1 (en
Inventor
양우석
김형근
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Priority to KR1020130007437A priority Critical patent/KR101437442B1/en
Publication of KR20140094861A publication Critical patent/KR20140094861A/en
Application granted granted Critical
Publication of KR101437442B1 publication Critical patent/KR101437442B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0211Graphene or derivates thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0072Inorganic membrane manufacture by deposition from the gaseous phase, e.g. sputtering, CVD, PVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0076Pretreatment of inorganic membrane material prior to membrane formation, e.g. coating of metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/145Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing embedded catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0212Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/26Spraying processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/10Catalysts being present on the surface of the membrane or in the pores
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Abstract

Disclosed are a method for manufacturing a graphene-carbon nanotube complex structure for water treatment and a method for manufacturing a membrane using the same. The method for manufacturing a graphene-carbon nanotube complex structure according to an embodiment of the present invention comprises: a first step for synthesizing graphene on the surface of metal powder using a chemical vapor deposition method; a second step for forming a hollow graphene-carbon nanotube complex structure by removing the metal powder and synthesizing a carbon nanotube on the surface of the graphene; a third step for functionalizing metal oxide including Fe_3O_4 and/or Fe^0 on the surface by modifying the surface of the graphene-carbon nanotube; and a fourth step for additionally functionalizing a photocatalyst on the surface.

Description

수처리용 그래핀-카본나노튜브 복합 구조체 제조방법 및 이를 이용한 멤브레인 제조방법{METHOD OF GRAPHENE-CNT COMPLEX STRUCTURE FOR WATER TREATMENT AND MEMBRANE USING THE SAME}TECHNICAL FIELD The present invention relates to a method for manufacturing a graphene-carbon nanotube composite structure for water treatment, and a method for manufacturing a membrane using the same. BACKGROUND ART < RTI ID = 0.0 >

본 발명은 수처리용 구조체 제조방법 및 이를 이용한 멤브레인 제조방법에 관한 것으로, 보다 상세하게는 수처리용 그래핀-카본나노튜브 복합 구조체 제조방법 및 이를 이용한 멤브레인 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a water treatment structure and a membrane manufacturing method using the same, and more particularly, to a method of manufacturing a graphene-carbon nanotube composite structure for water treatment and a membrane manufacturing method using the same.

수중에 용존유기물, 용존무기물(예컨데, 중금속)을 포함한 다양한 오염원이 포함되어 있는 경우에, 각각의 오염원을 제거하기 위하여 이에 맞는 처리방법을 별도로 이용하는 경우에는 수처리 공정이 복잡해지며 높은 비용을 수반하게 된다는 문제점이 있다. 따라서, 최근에는 다양한 오염원을 포함하고 있는 오염수를 동시에 처리하기 위한 연구가 다양하게 모색되고 있다. In the case where various pollutants including dissolved organic matters and dissolved minerals (for example, heavy metals) are contained in the water and separate treatment methods are separately used to remove the respective pollutants, the water treatment process becomes complicated and involves a high cost There is a problem. Therefore, in recent years, there have been various studies for simultaneously treating polluted water containing various pollutants.

일반적으로, 용존유기물의 경우에는 광촉매 활성을 갖는 물질을 사용하여 자외선을 조사하면 상기 유기물에 대하여 산소분자의 흡착이나 탈착을 일으켜 분해를 촉진하므로, 상기와 같은 물질들이 이용되고 있다. Generally, in the case of dissolved organic materials, irradiation with ultraviolet rays using a material having photocatalytic activity promotes decomposition by adsorbing or desorbing oxygen molecules to the organic material, and thus the above materials are used.

또한, 용존무기물의 경우에는 산화철이나 산화 타이타늄 등의 금속 산화물이 중금속 이온과 결합하는 특성이 있으므로, 이러한 금속 산화물 기반의 물질들이 중금속 제거에 이용되고 있다. In the case of dissolved inorganic materials, metal oxides such as iron oxide and titanium oxide have a property of binding with heavy metal ions, and these metal oxide based materials are used for removing heavy metals.

그러나, 상기 광촉매 물질 또는 금속 산화물 물질들을 이용하는 경우에도 비표면적 상에서의 한계가 존재하는 바, 오염원의 제거 효율이 다소 떨어지는 문제가 있었다. 따라서 높은 비표면적을 갖는 구조체를 활용하여 상술한 다양한 오염원들을 제거하기 위한 연구가 진행되고 있는 실정이다.However, even when the photocatalyst material or the metal oxide material is used, there is a limitation on the specific surface area, and there is a problem that the removal efficiency of the contamination source is somewhat low. Therefore, researches have been conducted to remove the various pollutants by utilizing a structure having a high specific surface area.

본 발명의 실시예들은 높은 비표면적과 기계적 강도를 가질 뿐만 아니라, 오염수에 포함되어 있는 용존유기물과 용존무기물을 함께 제거할 수 있는 수처리용 그래핀-카본나노튜브 복합 구조체 제조방법과, 이를 이용한 수처리용 멤브레인 제조방법을 제공하고자 한다.The embodiments of the present invention are directed to a method for manufacturing a graphene-carbon nanotube composite structure for water treatment capable of removing dissolved organic substances and dissolved inorganic substances contained in contaminated water as well as having high specific surface area and mechanical strength, And to provide a method for manufacturing a membrane for water treatment.

본 발명의 일 측면에 따르면, 금속 파우더 표면에 화학기상증착법을 이용하여 그래핀을 합성시키는 1단계; 상기 금속 파우더를 제거하고, 상기 그래핀 표면에 탄소나노튜브를 합성시켜 중공형의 그래핀-탄소나노튜브 복합 구조체를 형성하는 2단계; 및 상기 그래핀-탄소나노튜브 표면을 개질하여 Fe3O4 및/또는 Fe0(영가철)를 포함하는 금속 산화물을 상기 표면에 기능화시키는 3단계; 및 상기 표면에 광촉매를 추가적으로 기능화시키는 4단계를 포함하는 수처리용 그래핀-카본나노튜브 복합 구조체 제조방법이 제공될 수 있다. According to an aspect of the present invention, there is provided a method for manufacturing a metal powder, comprising the steps of: (1) synthesizing graphene on the surface of a metal powder using chemical vapor deposition; Removing the metal powder and synthesizing carbon nanotubes on the graphene surface to form a hollow graphene-carbon nanotube composite structure; And a third step of modifying the surface of the graphene-carbon nanotube to form a metal oxide on the surface, the metal oxide including Fe 3 O 4 and / or Fe 0 (zero valence iron); And a fourth step of further functionalizing the photocatalyst on the surface of the graphene-carbon nanotube composite structure for water treatment.

이 때, 상기 광촉매는 ZnO, WO3, SnO2, ZrO2, TiO2, CdS 또는 ZnS일 수 있다. At this time, the photocatalyst may be ZnO, WO 3 , SnO 2 , ZrO 2 , TiO 2 , CdS or ZnS.

본 발명의 다른 측면에 따르면, 섬유 지지체에 청구항 1 또는 청구항 2에 따른 수처리용 그래핀-카본나노튜브 복합 구조체 제조방법에 의해 제조된 수처리용 그래핀-카본나노튜브 복합 구조체를 스프레이 코팅하는 단계;를 포함하고, 상기 섬유 지지체는 PVDF(폴리비닐리덴 플루오라이드) 섬유 지지체 및/또는 TiO2 섬유 지지체로 이루어지는 수처리용 멤브레인 제조방법이 제공될 수 있다.According to another aspect of the present invention, there is provided a method of manufacturing a water-repellent graphene-carbon nanotube composite structure, comprising the steps of: spray coating a water-based graphene-carbon nanotube composite structure manufactured by the method for manufacturing a water- Wherein the fiber support comprises a PVDF (polyvinylidene fluoride) fiber support and / or a TiO 2 fiber support.

본 발명의 실시예들은 금속 파우더 표면에 그래핀과 탄소나노튜브를 직접 합성하고 상기 금속 파우더를 제거하여 중공형의 그래핀-탄소나노튜브 복합 구조체를 형성하고, 상기 구조체 표면에 금속 산화물 및 광촉매를 기능화시킴으로써 오염수에 포함되어 있는 용존유기물과 용존무기물을 함께 제거할 수 있다. Embodiments of the present invention include a method of directly synthesizing graphene and carbon nanotubes on a surface of a metal powder, removing the metal powder to form a hollow graphene-carbon nanotube composite structure, and forming a metal oxide and a photocatalyst on the surface of the structure By functionalization, dissolved organic substances and dissolved inorganic substances contained in contaminated water can be removed together.

또한, 그래핀-탄소나노튜브 복합 구조체는 비표면적이 크고 기계적 강도가 우수하므로, 오염원의 제거 효율이 뛰어나다.In addition, the graphene-carbon nanotube composite structure has a large specific surface area and excellent mechanical strength, and thus has excellent efficiency of removing contaminants.

도 1은 본 발명의 일 실시예에 따른 수처리용 그래핀-카본나노튜브 복합 구조체 제조방법의 순서도이다.
도 2는 도 1의 수처리용 그래핀-카본나노튜브 복합 구조체에서 표면 기능화 이전의 모습을 촬영한 이미지이다.
1 is a flow chart of a method of manufacturing a graphene-carbon nanotube composite structure for water treatment according to an embodiment of the present invention.
FIG. 2 is an image of the surface of the graphene-carbon nanotube composite structure for water treatment of FIG. 1 taken before surface functionalization.

이하, 첨부된 도면을 참조하여 본 발명의 실시예들에 대하여 구체적으로 설명하도록 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 일 실시예에 따른 수처리용 그래핀-카본나노튜브 복합 구조체 제조방법(이하, 복합 구조체 제조방법)의 순서도이다. 1 is a flowchart of a method for manufacturing a graphene-carbon nanotube composite structure for water treatment (hereinafter, a method for manufacturing a composite structure) according to an embodiment of the present invention.

도 1을 참조하여, 복합 구조체 제조방법의 각 단계에 대하여 구체적으로 설명하도록 한다. Each step of the method for manufacturing a composite structure will be described in detail with reference to FIG.

(1) 1단계(S110)(1) Step 1 (S110)

1단계는 우선 금속 파우더 표면에 화학기상증착법을 이용하여 그래핀(Graphene)을 합성시키는 단계이다. Step 1 is a step of synthesizing graphene on the surface of the metal powder by chemical vapor deposition.

그래핀은 복수개의 탄소원자들이 서로 공유결합으로 연결되어 폴리시클릭 방향족 분자를 형성하는 것으로, 공유결합으로 연결된 탄소원자들은 기본 반복단위로 6원환을 형성하지만 이에 한정되는 것은 아니다. Graphene is formed by connecting a plurality of carbon atoms to each other through a covalent bond to form a polycyclic aromatic molecule. The carbon atoms connected by a covalent bond form a 6-membered ring as the basic repeating unit, but are not limited thereto.

상기 금속 파우더는 그래핀을 화학기상증착법을 이용하여 합성하기 위한 베이스 물질로 기능하는 것으로, 예를 들면 실리콘, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동, 청동, 백동, 스테인리스 스틸 및 Ge로 이루어진 그룹으로부터 선택된 하나 이상의 금속 또는 합금의 파우더 형태일 수 있다. The metal powder functions as a base material for synthesizing graphene by a chemical vapor deposition method. Examples of the metal powder include silicon, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, And may be in the form of a powder of one or more metals or alloys selected from the group consisting of Rh, Si, Ta, Ti, W, U, V, Zr, brass, bronze, white copper, stainless steel and Ge.

또한, 상기 금속 파우더에는 그래핀의 합성(내지 성장)을 용이하게 하기 위해 금속 촉매를 더 포함할 수 있다. 상기 금속 촉매는 상기 금속 파우더와 동일 또는 상이한 재료에 의해 형성될 수 있다. In addition, the metal powder may further include a metal catalyst to facilitate synthesis (or growth) of graphene. The metal catalyst may be formed of the same or different material as the metal powder.

금속 파우더 표면에 그래핀을 형성시키기 위해 이용되는 화학기상증착법은 통상의 것으로, 예로는 고온화학기상증착(RTCVD), 유도결합플라즈마 화학기상증착(ICP-CVD), 저압 화학기상증착(LPCVD), 상압화학기상증착(APCVD), 금속 유기화학기상증착(MOCVD) 또는 화학기상증착(PECVD)등이 있다. The chemical vapor deposition method used to form the graphene on the surface of the metal powder is conventional and includes, for example, high temperature chemical vapor deposition (RTCVD), inductively coupled plasma chemical vapor deposition (ICP-CVD), low pressure chemical vapor deposition (LPCVD) (APCVD), metal organic chemical vapor deposition (MOCVD), or chemical vapor deposition (PECVD).

예컨데, 금속 파우더 표면에 그래핀을 합성하기 위하여, 금속 파우더 표면에 탄소 소스(carbon source)를 포함하는 반응가스를 공급하고 상압에서 열처리 함으로써 그래핀을 합성할 수 있다. 이 때, 상기 열처리 온도는 300℃ 내지 2000℃일 수 있다. 또한, 상기 탄소 소스의 예로는 일산화탄소, 이산화탄소, 메탄, 에탄, 에틸렌, 에탄올, 아세틸렌, 프로판, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로헥산, 벤젠, 톨루엔 등이 있을 수 있다.For example, in order to synthesize graphene on the surface of a metal powder, graphene can be synthesized by supplying a reaction gas containing a carbon source to the surface of the metal powder and heat-treating it at normal pressure. At this time, the heat treatment temperature may be 300 ° C to 2000 ° C. Examples of the carbon source include carbon monoxide, carbon dioxide, methane, ethane, ethylene, ethanol, acetylene, propane, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, benzene and toluene.

(2) 2단계(S120)(2) Step 2 (S120)

2단계는 상기 금속 파우더를 제거하고, 상기 그래핀 표면에 탄소나노튜브(CNT, carbon nano tube)를 합성시키는 단계이다. 그 결과, 중공형의 그래핀-탄소나노튜브 복합 구조체가 형성될 수 있다. Step 2 is a step of removing the metal powder and synthesizing a carbon nanotube (CNT) on the surface of the graphene. As a result, a hollow type graphene-carbon nanotube composite structure can be formed.

상기 금속 파우더를 제거는 에칭용액이 담긴 챔버에 표면에 그래핀이 합성된 금속 파우더를 침지함으로써 이루어질 수 있다. 여기에서 에칭용액은 상기 금속 파우더만을 선택적으로 제거 가능한 용액으로, 예를 들면 불화수소(HF), BOE(Buffered Oxide Etch), 염화 제2철(FeCl3) 용액, 질산 제2철(Fe(NO3)3) 용액이 있다.The removal of the metal powder may be performed by immersing the metal powder in which the graphene is synthesized on the surface of the chamber containing the etching solution. Here, the etching solution is a solution which can selectively remove only the metal powder, for example, hydrogen fluoride (HF), buffered oxide etch (BOE), ferric chloride (FeCl 3 ) solution, ferric nitrate 3 ) 3 ) solution.

상기 금속 파우더를 제거한 후에는, 그래핀 표면에 탄소나노튜브를 합성시킨다. 상기 탄소나노튜브는 탄소로 이루어진 탄소 동소체이며, 하나의 탄소 원자가 다른 탄소 원자와 육각형의 벌집 무늬를 갖도록 결합되어 튜브형태를 이루는 것이다. After the metal powder is removed, carbon nanotubes are synthesized on the surface of the graphene. The carbon nanotube is a carbon isotope composed of carbon, and one carbon atom is combined with another carbon atom to form a hexagonal honeycomb pattern to form a tube.

그래핀 표면에 탄소나노튜브를 합성시키는 방법은 특정되지 않고, 통상적으로 이용되는 다양한 공정을 사용할 수 있다. 예를 들면, 탄소나노튜브의 합성 역시 그래핀 합성과 마찬가지로 화학기상증착법을 이용하여 이루어질 수 있다. The method of synthesizing carbon nanotubes on the surface of graphene is not specified, and various commonly used processes can be used. For example, carbon nanotubes can be synthesized by chemical vapor deposition as in the case of graphene synthesis.

탄소나노튜브의 합성이 완료되면 중공형(hollow sphere)을 갖는 그래핀-탄소나노튜브 복합 구조체가 형성될 수 있다. 도 2에서는 상술한 중공형의 그래핀-탄소나노튜브 복합 구조체의 표면을 촬영한 이미지(SEM)를 나타내었다.When the synthesis of the carbon nanotubes is completed, a graphene-carbon nanotube composite structure having a hollow sphere can be formed. FIG. 2 shows an image (SEM) of the surface of the above-mentioned hollow type graphene-carbon nanotube composite structure.

(3) 3단계(S130)(3) Step 3 (S130)

3단계는 상기 그래핀-탄소나노튜브 표면을 개질하여 Fe3O4 및/또는 Fe0 (영가철, Zero-Valent Iron)를 포함하는 금속 산화물을 상기 표면에 기능화시키는 단계이다. 여기에서 "및/또는"의 의미는 상기 금속 산화물이 Fe3O4를 포함하거나, Fe0를 포함하거나, Fe3O4 및 Fe0를 모두 포함하는(Fe3O4와 FeO가 조합된 경우도 해당함) 것을 의미한다. 물론, Fe3O4 및 Fe0 이외에도 중금속을 제거하기 위한 다른 금속 산화물을 추가적으로 포함할 수도 있다.Step 3 is a step of modifying the surface of the graphene-carbon nanotube surface to form a metal oxide on the surface including Fe 3 O 4 and / or Fe 0 (Zero-Valent Iron). "And / or" means that the metal oxide comprises Fe 3 O 4 , contains Fe 0 , or contains both Fe 3 O 4 and Fe 0 (a combination of Fe 3 O 4 and Fe 2 O This also means that Of course, in addition to Fe 3 O 4 and Fe 0 , other metal oxides for removing heavy metals may be additionally included.

그래핀-탄소나노튜브 표면에 Fe3O4 및/또는 Fe0를 포함하는 금속 산화물을 기능화시키기 위하여 상기 표면을 화학적으로 표면개질 할 필요가 있다. 여기에서 그래핀-탄소나노튜브 표면을 개질한다는 것은 그래핀-탄소나노튜브 표면을 별도의 도펀트(dopant)로 도핑하거나, 인위적으로 표면에 구조적 결함(defect)을 생성되도록 함으로써(예컨데, 산소 플라즈마 처리, UV조사 및 화학적 처리) 상기 표면에 기능성을 부여하는 것을 의미한다. 이러한 표면개질의 구체적인 예로는, 그래핀-탄소나노튜브 표면에 산화과정을 통해 에폭시(epoxy), 수산기(hydroxyl), 카르보닐기(carbonyl) 또는 카르복실산기(carboxylic acid) 등의 다양한 산소 기능기들을 형성시키는 것이 있다. It is necessary to chemically surface-modify the surface of the carbon nanotube so as to functionalize the metal oxide containing Fe 3 O 4 and / or Fe 0 on the surface of the graphene-carbon nanotube. Here, the modification of the surface of the graphene-carbon nanotube may be performed by doping the surface of the graphene-carbon nanotube with a dopant or artificially causing structural defects on the surface (for example, by oxygen plasma treatment , UV irradiation and chemical treatment) to impart functionality to the surface. Specific examples of such surface modification include formation of various oxygen functional groups such as epoxy, hydroxyl, carbonyl or carboxylic acid through the oxidation process on the surface of the graphene-carbon nanotube There is.

Fe3O4 및/또는 Fe0를 포함하는 금속 산화물은 As, Pb, Hg 등의 중금속이 이온 형태로 존재하는 경우에(용존무기물), 상기 중금속들을 흡착시켜 제거하는 기능을 수행하는 것이다. 예컨데, 자철석(magnetite)은 등축정계에 속하는 광물로 자성을 띠고 있으며, Fe3O4 및/또는 Fe0를 화학성분으로 가지고 있다(경우에 따라, Ti, Mn, 인, 마그네슘 등을 함유할 수 있음). 따라서 상기 자철석과 같은 물질을 나노급 크기로 가공하여 중금속 제거에 활용할 수 있다. The metal oxide containing Fe 3 O 4 and / or Fe 0 functions to adsorb and remove the heavy metals when the heavy metals such as As, Pb and Hg are present in the form of ions (dissolved minerals). Magnetite, for example, is a mineral belonging to equiaxed crystals and has magnetic properties such as Fe 3 O 4 and / or Fe 0 (sometimes containing Ti, Mn, phosphorus, magnesium, etc.) has exist). Therefore, the magnetite-like material can be processed into nano-sized magnets and used for removing heavy metals.

Fe3O4 및/또는 Fe0를 포함하는 금속 산화물을 그래핀-탄소나노튜브 표면에 기능화시키는 방법을 구체적으로 설명하면(하기 설명은 Fe3O4를 포함하는 경우에 해당함), 우선 그래핀-탄소나노튜브 복합 구조체를 탈이온수(Delonized Water)와 같은 정제수에 분산시킨 용액에, 0.5 mol 염산과 FeCl2·4H2O를 섞은 제1 용액과, 정제수와 FeCl3·6H2O를 섞은 제2 용액을 질소 분위기에서 주입하고 상기 용액들을 섞은 후에 수산화암모늄을 넣고 충분히 반응시킨다. 다음으로, Fe3O4가 표면에 붙은(기능화된) 그래핀-탄소나노튜브 복합 구조체를 에탄올 및 정제수를 이용하여 세척을 한 뒤에 진공오븐에서 건조시켜 상기 기능화를 완료할 수 있다. 이 때, Fe3O4는 표면 개질에 의해 그래핀-탄소나노튜브 표면에 존재하는 상기 산소 기능기 등과 붙을 수 있다. A method of functionalizing a metal oxide containing Fe 3 O 4 and / or Fe 0 on the surface of a graphene-carbon nanotube will be described in detail (the following explanation is applicable to the case of containing Fe 3 O 4 ) - A solution in which carbon nanotube composite structure is dispersed in purified water such as delonized water is mixed with a first solution of 0.5 mol hydrochloric acid and FeCl 2 .4H 2 O and a second solution of purified water and FeCl 3 .6H 2 O 2 solution is poured in a nitrogen atmosphere, and the solutions are mixed, then ammonium hydroxide is added and reacted sufficiently. Next, the graphene-carbon nanotube composite structure having Fe 3 O 4 on its surface (functionalized) is washed with ethanol and purified water, and then dried in a vacuum oven to complete the functionalization. At this time, Fe 3 O 4 can adhere to the oxygen functional groups existing on the surface of the graphene-carbon nanotube by surface modification.

(4) 4단계(S140)(4) Step 4 (S140)

4단계는 상기 그래핀-탄소나노튜브 표면에 광촉매를 추가적으로 기능화시키는 단계이다. 이 때, 상기 광촉매는 ZnO, WO3, SnO2, ZrO2, TiO2, CdS 또는 ZnS일 수 있으며, 이에 한정되는 것은 아니다. 상기 광촉매는 빛을 에너지원으로 하여 빛이 조사된 것에 의해 화학반응을 촉진시켜 촉매 반응을 진행시키는 물질을 의미하며, 상기 열거된 물질 중에서 화학적으로 안정하고, 광활성이 우수하고, 인체에 무해하다는 장점이 있는 아나타제(anatase) 결정구조의 이산화티탄(TiO2)가 널리 이용되고 있다. 이하에서는, 상기 광촉매가 이산화티탄인 경우를 중심으로 설명하도록 한다. Step 4 is a step of further functionalizing the photocatalyst on the surface of the graphene-carbon nanotube. At this time, the photocatalyst may be ZnO, WO 3 , SnO 2 , ZrO 2 , TiO 2 , CdS or ZnS, but is not limited thereto. The photocatalyst refers to a material that uses light as an energy source to promote a chemical reaction by being irradiated with light to promote a catalytic reaction. The photocatalyst is chemically stable, has excellent optical activity, and is harmless to the human body Titanium dioxide (TiO 2 ) having anatase crystal structure is widely used. Hereinafter, the case where the photocatalyst is titanium dioxide will be mainly described.

이산화티탄을 그래핀-탄소나노튜브 복합 구조체의 표면에 추가적으로 기능화시키는 방법을 구체적으로 설명하면, 우선 이산화티탄 용액을 제조한다. 이산화티탄 용액은 졸-겔 법(Sol-gel process)에 의해 제조될 수 있으며, 예를 들면 TiO2 프리커서 졸 용액으로 Ti(On Bu)4 (Titanium n-butoxide, STREM CHEMICALS社, 98%), 에탄올 및 톨루엔을 사용하고, 1:1(v:v)의 비율을 갖는 에탄올 및 톨루엔에 100Mm Titanium n-butoxide를 혼합하여 제조할 수 있다. A method for further functionalizing titanium dioxide on the surface of the graphene-carbon nanotube composite structure will be described in detail. First, a titanium dioxide solution is prepared. Titanium dioxide solution is a sol-gel method and can be prepared by (Sol-gel process), for example (O n Bu) Ti as TiO 2 precursor sol solution 4 (Titanium n-butoxide, STREM CHEMICALS社, 98% ), Ethanol and toluene, and mixing 100 Mm Titanium n-butoxide in ethanol and toluene having a ratio of 1: 1 (v: v).

다음으로, Fe3O4 및/또는 Fe0를 포함하는 금속 산화물이 표면에 기능화된 그래핀-탄소나노튜브 복합 구조체를 상기 이산화티탄 졸 용액에 넣은 후에, 기계적으로 교반시킴으로써 상기 이산화티탄을 그래핀-탄소 나노튜브 복합 구조체의 표면에 추가적으로 기능화시킬 수 있다. Next, a graphene-carbon nanotube composite structure in which a metal oxide containing Fe 3 O 4 and / or Fe 0 is functionalized on the surface is put into the titanium dioxide sol solution, and then the titanium dioxide is mechanically stirred, - It can be further functionalized on the surface of the carbon nanotube composite structure.

이상과 같은 과정을 거쳐 제조되는 수처리용 그래핀-카본나노튜브 복합 구조체는 금속 파우더 표면에 그래핀과 탄소나노튜브를 직접 합성하고 상기 금속 파우더를 제거하여 중공형의 그래핀-탄소나노튜브 복합 구조체를 형성하고, 상기 구조체 표면에 금속 산화물 및 광촉매를 기능화시킴으로써 오염수에 포함되어 있는 용존유기물과 용존무기물을 함께 제거할 수 있다. 또한, 그래핀-탄소나노튜브 복합 구조체는 비표면적이 크고 기계적 강도가 우수하므로, 오염원의 제거 효율이 뛰어나다는 장점이 있다. The graphene-carbon nanotube composite structure for water treatment, which is manufactured through the above process, directly synthesizes graphene and carbon nanotubes on the surface of the metal powder and removes the metal powder to form a hollow graphene-carbon nanotube composite structure And functionalizing the metal oxide and the photocatalyst on the surface of the structure, the dissolved organic substances and the dissolved inorganic substances contained in the contaminated water can be removed together. In addition, the graphene-carbon nanotube composite structure has a large specific surface area and excellent mechanical strength, which is advantageous in that the contaminant removal efficiency is excellent.

본 발명은 상술한 그래핀-탄소나노튜브 복합 구조체를 포함하는 수처리용 멤브레인 제조방법을 추가적으로 제공할 수 있다. 이하에서는 수처리용 멤브레인 제조방법에 대하여 구체적으로 설명하도록 하며, 앞서 설명한 부분과 중복되는 내용은 생략하도록 한다. The present invention can further provide a method for manufacturing a water treatment membrane including the above-described graphene-carbon nanotube composite structure. Hereinafter, a method of manufacturing a membrane for water treatment will be described in detail, and the contents overlapping with those described above will be omitted.

(5) 수처리용 멤브레인 제조방법(5) Manufacturing method of membrane for water treatment

본 발명의 일 실시예에 따른 수처리용 멤브레인 제조방법은 섬유 지지체에 상술한 그래핀-탄소나노튜브 복합 구조체 제조방법에 의해 제조된 수처리용 그래핀-카본나노튜브 복합 구조체를 스프레이 코팅함으로써 제조될 수 있다. The method for manufacturing a water treatment membrane according to an embodiment of the present invention can be manufactured by spray coating a water-treating graphene-carbon nanotube composite structure manufactured by the above-described method for manufacturing a graphene-carbon nanotube composite structure on a fiber support have.

이 때, 상기 섬유 구조체는 PVDF(폴리비닐리덴 플루오라이드) 섬유 지지체 및/또는 TiO2 섬유 지지체로 이루어질 수 있다. 여기에서 "및/또는"의 의미는 상기 섬유 구조체가 PVDF 섬유 지지체 또는 TiO2 섬유 지지체로 이루어지거나, 상기 섬유 구조체가 PVDF 섬유 지지체 및 TiO2 섬유 지지체가 혼합되어 이루어짐을 말한다. At this time, the fiber structure may be made of a PVDF (polyvinylidene fluoride) fiber support and / or a TiO 2 fiber support. Means that the fiber structure is made of a PVDF fiber support or a TiO 2 fiber support, or the fiber structure is a mixture of a PVDF fiber support and a TiO 2 fiber support.

상기 섬유 구조체는 PVDF 섬유 지지체 및/또는 TiO2 섬유 지지체가 망상구조(network structure)로 형성되는 것으로, 표면에는 그래핀-탄소나노튜브 복합 구조체가 스프레이 코팅될 수 있다. The fibrous structure is formed of a PVDF fibrous support and / or a TiO 2 fibrous support as a network structure, and the surface thereof may be spray coated with a graphene-carbon nanotube composite structure.

PVDF 섬유 지지체의 제조방법을 구체적으로 설명하면, 우선 4:6의 비율로 혼합된 DMAc와 아세톤 용액에 PVDF 분말을 녹인 후에 5ml 주사기(syringe)에 넣어 30분 이상 수직으로 세워두어 잔류하고 있는 기포를 완전히 제거한 후, 전기방사(electro spinning)를 통해 제조할 수 있다. The PVDF fiber support is prepared by dissolving PVDF powder in a DMAc and acetone solution mixed at a ratio of 4: 6 and then putting it in a 5 ml syringe and standing vertically for 30 minutes or longer to remove residual air bubbles After complete removal, it can be prepared by electro spinning.

한편, TiO2 섬유 지지체의 제조방법을 구체적으로 설명하면, TiP(Titanium isopropoxide)에 아세트산과 EtOH를 섞은 후에 10wt% PVP(폴리비닐피롤리돈)/EtOG를 첨가하여 방사용액을 제조한 후에, 전기방사를 통해 TiO2/PVP 나노 섬유를 만들고 이를 500℃에서 4시간 동안 소성하여 TiO2 섬유 지지체를 얻을 수 있다.The method for producing the TiO 2 fiber support will be described in detail. After preparing a spinning solution by adding 10 wt% PVP (polyvinylpyrrolidone) / EtOG after mixing acetic acid and EtOH with TiP (Titanium isopropoxide) TiO 2 / PVP nanofibers are prepared by spinning and baked at 500 ° C. for 4 hours to obtain a TiO 2 fiber support.

상기와 같이 제조되는 섬유 구조체 표면에 그래핀-탄소나노튜브 복합 구조체가 스프레이 코팅되면, 수처리용 멤브레인을 얻을 수 있으며 상기 수처리용 멤브레인은 수처리 시스템에서의 중공사막, 분리막 등으로 다양하게 활용 가능하다. When the graphene-carbon nanotube composite structure is spray-coated on the surface of the fabric structure to be manufactured as described above, a water treatment membrane can be obtained. The water treatment membrane can be variously used as a hollow fiber membrane and a separation membrane in a water treatment system.

이상, 본 발명의 실시예들에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, many modifications and changes may be made by those skilled in the art without departing from the spirit and scope of the invention as defined in the appended claims. The present invention can be variously modified and changed by those skilled in the art, and it is also within the scope of the present invention.

Claims (3)

금속 파우더 표면에 화학기상증착법을 이용하여 그래핀을 합성시키는 1단계;
상기 금속 파우더를 제거하고, 상기 그래핀 표면에 탄소나노튜브를 합성시켜 중공형의 그래핀-탄소나노튜브 복합 구조체를 형성하는 2단계; 및
상기 그래핀-탄소나노튜브 표면을 개질하여 Fe3O4 및/또는 Fe0를 포함하는 금속 산화물을 상기 표면에 기능화시키는 3단계; 및
상기 표면에 광촉매를 추가적으로 기능화시키는 4단계를 포함하는 수처리용 그래핀-카본나노튜브 복합 구조체 제조방법.
A step of synthesizing graphene on the surface of the metal powder by chemical vapor deposition;
Removing the metal powder and synthesizing carbon nanotubes on the graphene surface to form a hollow graphene-carbon nanotube composite structure; And
A third step of modifying the surface of the graphene-carbon nanotube surface to functionalize a metal oxide containing Fe 3 O 4 and / or Fe 0 on the surface; And
And a fourth step of further functionalizing the surface of the graphene-carbon nanotube composite structure for a water treatment.
청구항 1에 있어서,
상기 광촉매는 ZnO, WO3, SnO2, ZrO2, TiO2, CdS 또는 ZnS인 수처리용 그래핀-카본나노튜브 복합 구조체 제조방법.
The method according to claim 1,
Wherein the photocatalyst is ZnO, WO 3 , SnO 2 , ZrO 2 , TiO 2 , CdS or ZnS.
섬유 지지체에 청구항 1 또는 청구항 2에 따른 수처리용 그래핀-카본나노튜브 복합 구조체 제조방법에 의해 제조된 수처리용 그래핀-카본나노튜브 복합 구조체를 스프레이 코팅하는 단계;를 포함하고,
상기 섬유 지지체는 PVDF(폴리비닐리덴 플루오라이드) 섬유 지지체 및/또는 TiO2 섬유 지지체로 이루어지는 수처리용 멤브레인 제조방법.
Carbon nanotube composite structure for water treatment according to claim 1 or 2 by spray-coating a water-treating graphene-carbon nanotube composite structure manufactured by the method for manufacturing a water-treating graphene-carbon nanotube composite structure according to claim 1,
Wherein the fiber support comprises a PVDF (polyvinylidene fluoride) fiber support and / or a TiO 2 fiber support.
KR1020130007437A 2013-01-23 2013-01-23 Method of graphene-cnt complex structure for water treatment and membrane using the same KR101437442B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130007437A KR101437442B1 (en) 2013-01-23 2013-01-23 Method of graphene-cnt complex structure for water treatment and membrane using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130007437A KR101437442B1 (en) 2013-01-23 2013-01-23 Method of graphene-cnt complex structure for water treatment and membrane using the same

Publications (2)

Publication Number Publication Date
KR20140094861A true KR20140094861A (en) 2014-07-31
KR101437442B1 KR101437442B1 (en) 2014-09-11

Family

ID=51740364

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130007437A KR101437442B1 (en) 2013-01-23 2013-01-23 Method of graphene-cnt complex structure for water treatment and membrane using the same

Country Status (1)

Country Link
KR (1) KR101437442B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016086628A1 (en) * 2014-12-06 2016-06-09 苏州大学张家港工业技术研究院 Graphene-polyaniline modified carbon nanotube composite and preparation method therefor
CN106277172A (en) * 2016-10-14 2017-01-04 华北电力大学 A kind of method utilizing graphene film and CNT three-dimensional composite adsorbing heavy metal in water
CN106310974A (en) * 2016-09-09 2017-01-11 大连理工大学 Flexible free-standing carbon molecular sieve@graphene composite membrane and preparation method thereof
CN107497427A (en) * 2017-09-08 2017-12-22 上海戈马环保科技有限公司 A kind of silver/graphite alkene/zinc oxide composite preparation method of degradable formaldehyde
CN108014653A (en) * 2018-01-22 2018-05-11 福州大学 A kind of graphene oxide-semiconductor composite film of illumination enhancing water-oil separating performance
CN109772328A (en) * 2019-01-29 2019-05-21 蚌埠学院 Titanium dioxide/ferroso-ferric oxide/active carbon nanometer waste water treating agent methods for making and using same
WO2019066515A3 (en) * 2017-09-28 2019-05-31 전자부품연구원 Method for producing graphene oxide functionalized with iron oxide
CN111138627A (en) * 2020-01-09 2020-05-12 新疆宏宇志祥工程咨询有限公司 Graphene oxide/carbon nanotube high-strength polyurethane insulation board and preparation method thereof
CN113371902A (en) * 2021-05-13 2021-09-10 西北矿冶研究院 Method for degrading COD

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102223371B1 (en) * 2019-06-11 2021-03-05 광주과학기술원 A method for manufacturing selective amphipathic water treatment membrane using Janus graphene, membrane structure and membrane manufactured by thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101118475B1 (en) * 2010-01-22 2012-03-12 (주)바이오니아 Hydrophilic modified nanoporous films and method of manufacturing composite porous films
WO2012177033A2 (en) * 2011-06-20 2012-12-27 주식회사 엘지화학 Reverse osmosis membrane having superior salt rejection and permeate flow, and method for manufacturing same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016086628A1 (en) * 2014-12-06 2016-06-09 苏州大学张家港工业技术研究院 Graphene-polyaniline modified carbon nanotube composite and preparation method therefor
CN106310974A (en) * 2016-09-09 2017-01-11 大连理工大学 Flexible free-standing carbon molecular sieve@graphene composite membrane and preparation method thereof
CN106277172A (en) * 2016-10-14 2017-01-04 华北电力大学 A kind of method utilizing graphene film and CNT three-dimensional composite adsorbing heavy metal in water
CN107497427A (en) * 2017-09-08 2017-12-22 上海戈马环保科技有限公司 A kind of silver/graphite alkene/zinc oxide composite preparation method of degradable formaldehyde
WO2019066515A3 (en) * 2017-09-28 2019-05-31 전자부품연구원 Method for producing graphene oxide functionalized with iron oxide
CN108014653A (en) * 2018-01-22 2018-05-11 福州大学 A kind of graphene oxide-semiconductor composite film of illumination enhancing water-oil separating performance
CN109772328A (en) * 2019-01-29 2019-05-21 蚌埠学院 Titanium dioxide/ferroso-ferric oxide/active carbon nanometer waste water treating agent methods for making and using same
CN111138627A (en) * 2020-01-09 2020-05-12 新疆宏宇志祥工程咨询有限公司 Graphene oxide/carbon nanotube high-strength polyurethane insulation board and preparation method thereof
CN111138627B (en) * 2020-01-09 2022-04-22 新疆亿元达光电科技有限公司 Graphene oxide/carbon nanotube high-strength polyurethane insulation board and preparation method thereof
CN113371902A (en) * 2021-05-13 2021-09-10 西北矿冶研究院 Method for degrading COD
CN113371902B (en) * 2021-05-13 2022-09-16 西北矿冶研究院 Method for degrading COD

Also Published As

Publication number Publication date
KR101437442B1 (en) 2014-09-11

Similar Documents

Publication Publication Date Title
KR101437442B1 (en) Method of graphene-cnt complex structure for water treatment and membrane using the same
KR101437592B1 (en) Graphene composite membrane for water treatment
Kumar et al. Sustainable synthesis of MOF-5@ GO nanocomposites for efficient removal of rhodamine B from water
Singh et al. Atomic layer deposited (ALD) TiO2 on fibrous nano-silica (KCC-1) for photocatalysis: nanoparticle formation and size quantization effect
Wang et al. Catalyst preparation with plasmas: how does it work?
Li et al. Synergetic effect between adsorption and photodegradation on nanostructured TiO2/activated carbon fiber felt porous composites for toluene removal
US10160659B2 (en) Titanium-dioxide-based double-layer hollow material, preparation method thereof, and application thereof in photocatalytic treatment of hydrogen sulfide
Xu et al. Efficient removal of formaldehyde by nanosized gold on well-defined CeO2 nanorods at room temperature
Huang et al. Fe-species-loaded mesoporous MnO2 superstructural requirements for enhanced catalysis
An et al. Synthesis of carbon nanotube–anatase TiO2 sub-micrometer-sized sphere composite photocatalyst for synergistic degradation of gaseous styrene
JP2019503325A (en) Flexible metal oxide nanofibers prepared by electrospinning, stable nanofiber fabrics produced thereby, and production methods
Zhang et al. A facile one-step synthesis of TiO 2/graphene composites for photodegradation of methyl orange
CN109126893B (en) Titanium oxycarbide-metal organic framework composite material, and preparation method and application thereof
Zhang et al. Fabrication of TiO2 nanofiber membranes by a simple dip-coating technique for water treatment
CN103084160B (en) TiO2 carbon nano tube air purifier material doped with ZnO, and preparation method and use thereof
Magnone et al. Testing and substantial improvement of TiO2/UV photocatalysts in the degradation of Methylene Blue
Liu et al. Synthesis and photocatalytic activity of BiOCl/diatomite composite photocatalysts: Natural porous diatomite as photocatalyst support and dominant facets regulator
Liu et al. Rational design of high-performance continuous-flow microreactors based on gold nanoclusters and graphene for catalysis
Magnone et al. Facile synthesis of TiO2-supported Al2O3 ceramic hollow fiber substrates with extremely high photocatalytic activity and reusability
KR100865737B1 (en) Photocatalyst filter using metal oxide nanofiber, method for fabricating the same and air cleaner using the same
Ateş et al. Fabrication of Al2O3 nanopores/SnO2 and its application in photocatalytic degradation under UV irradiation
WO2013187323A1 (en) Gold cluster catalyst and method for producing same
JP2006096651A (en) Method for manufacturing inorganic oxide material, inorganic oxide material, and carbon-metal compound oxide material
Tao et al. Influence of nitrogen sources on N-doped reduced TiO2 prepared using atmospheric plasma spraying for photocatalytic tetracycline and ciprofloxacin degradation
JP2017170441A (en) Photocatalytic filter for degrading mixed gas efficiently and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180627

Year of fee payment: 5