JP2001113387A - Solder alloy - Google Patents

Solder alloy

Info

Publication number
JP2001113387A
JP2001113387A JP29784599A JP29784599A JP2001113387A JP 2001113387 A JP2001113387 A JP 2001113387A JP 29784599 A JP29784599 A JP 29784599A JP 29784599 A JP29784599 A JP 29784599A JP 2001113387 A JP2001113387 A JP 2001113387A
Authority
JP
Japan
Prior art keywords
solder
alloy
mass
solder alloy
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29784599A
Other languages
Japanese (ja)
Inventor
Masamoto Tanaka
将元 田中
Michio Endo
道雄 遠藤
Shinichi Terajima
晋一 寺嶋
Hideji Hashino
英児 橋野
Kohei Tatsumi
宏平 巽
Masami Fujishima
正美 藤島
Takashi Nakamori
孝 中森
Takekazu Suzuki
武和 鈴木
Tadashi Sato
匡 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON FIRAA METALS KK
Nippon Steel Corp
Nippon Micrometal Corp
Original Assignee
NIPPON FIRAA METALS KK
Nippon Steel Corp
Nippon Micrometal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON FIRAA METALS KK, Nippon Steel Corp, Nippon Micrometal Corp filed Critical NIPPON FIRAA METALS KK
Priority to JP29784599A priority Critical patent/JP2001113387A/en
Publication of JP2001113387A publication Critical patent/JP2001113387A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a solder alloy in which cracking is less prone to be generated even in the case of being used for the part applied with thermal stress in an electronic apparatus so as to be applied with a temperature cycle, where cracking progresses in the solder joint part by thermal stress as the lapse of a long time, and, finall, its conduction is made inferior. SOLUTION: This solder alloy excellent in fatigue resistance is obtained by adding, by mass, 0.5 to 3.0% Ag, 0.001 to 0.3% Zn, moreover, 0.1 to 2% Sb, further, 0.05 to 0.5% Cu and/or 0.001 to 0.02% Ni to solder having an Sn-Pb eutectic composition of 60 to 70% Sn.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はハンダ合金に関する
ものである。更に詳細には、プリント配線基板にCPU
や電子部品を実装する際に用いられるBGA用ハンダボ
ール合金に関するものであり、温度サイクル等の繰り返
し応力が負荷されることにより金属疲労が起こりやすい
環境において使用される電子部品の微小ハンダ接合部に
適したハンダ合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solder alloy. More specifically, the CPU is mounted on the printed circuit board.
And solder ball alloys for BGA used when mounting electronic components, and are used for soldering micro-parts of electronic components used in environments where metal fatigue is likely to occur due to repeated stress such as temperature cycles. It concerns a suitable solder alloy.

【0002】[0002]

【従来の技術】プリント配線基板等に電子部品を実装す
る際は、一般にSn-Pb共晶周辺(Sn63-Pb37)のハンダ合
金が広く使用されており、昨今急増しているBGA(Ba
ll Grid Array)用ハンダボールにおいても同様なハン
ダ成分が主に使用されている。電子機器に組み込まれた
プリント基板や、BGAが用いられている集積回路素子
基板では、当該装置スウィッチのON/OFFに伴い、
加熱冷却を繰り返すという熱衝撃サイクル環境下に曝さ
れている。
2. Description of the Related Art When mounting electronic components on a printed wiring board or the like, a solder alloy around Sn-Pb eutectic (Sn63-Pb37) is generally widely used, and BGA (Ba
Similar solder components are mainly used in solder balls for (ll Grid Array). In the case of a printed circuit board incorporated in an electronic device or an integrated circuit device substrate using a BGA, the ON / OFF of the device switch causes
It is exposed to a thermal shock cycle environment in which heating and cooling are repeated.

【0003】ハンダ接合部が熱衝撃サイクル環境下に曝
されると、電子部品とプリント基板との熱膨張係数差に
より熱応力が生じる。特に集積回路チップを直接基板に
取り付けるフリップチップ接続等の微小ハンダボール接
続では、Siチップ素子と実装プリント配線基板等を直
接ハンダボールで接続するため、シリコンチップとプリ
ント配線基板の熱膨張係数差は非常に大きく、非常に大
きな熱応力発生によりフリップチップ接続部のハンダに
クッラックが発生し破壊に至る。これは接合部ハンダ材
料の強度が他の被接合部材に比して材料強度的に弱いた
め、熱応力が接合部に集中することによる。
When a solder joint is exposed to a thermal shock cycle environment, a thermal stress is generated due to a difference in thermal expansion coefficient between an electronic component and a printed circuit board. In particular, in micro solder ball connection such as flip chip connection in which an integrated circuit chip is directly mounted on a substrate, since the Si chip element and the mounted printed wiring board are directly connected by solder balls, the difference in thermal expansion coefficient between the silicon chip and the printed wiring board is small. Very large and very large thermal stresses cause cracks in the solder at the flip chip connection, leading to destruction. This is because the thermal stress is concentrated on the joint since the solder material of the joint is weaker in material strength than the other members to be joined.

【0004】従来熱応力によりハンダ接合部が破壊され
やすい部位には、部品リードを湾曲させ熱応力を部品で
緩和するような実装形態設計で対応したり、接合部の電
極パッドを大きくする対応、即ち接合部ハンダ量を増や
し結果として接合部強度を上げる等の対策がなされてき
た。
Conventionally, a solder joint is likely to be broken by thermal stress by using a mounting form design in which a component lead is bent and the thermal stress is relieved by the component, or an electrode pad at the joint is enlarged. That is, measures have been taken such as increasing the amount of solder at the joint and consequently increasing the strength of the joint.

【0005】しかしながら、近年の電子部品の高密度実
装化に伴い、特にノートパソコン、ビデオカメラ、携帯
電話等においては表面実装やBGA実装が進み、基板電
極パッド面積の縮小が急激に進んでいるため、接合部位
のハンダ量を少量化せざるを得ない状況にある。即ち、
ハンダ接合部位の強度は低下している。また、高密度実
装により、高機能・小型化が進んだため情報伝達機器の
携帯化も急速に進展した。加えて経済活動領域が地球規
模に及ぶに至り、従来考えてもいなかった灼熱の砂漠や
極地高地の極寒下等での当該機器が使用される様になっ
ている。このような状況下では、ハンダ接合部が一層厳
しい環境下に曝されることを考慮したハンダ実装設計が
求められており、そのため、ハンダ材料に対する高強度
化並びに耐疲労性向上の要求がより一層高まっている。
上記のハンダ材料への要求に対しては、従来よりSn−
Pb系合金に第三元素を添加する等でハンダ材料の強度
向上が図られてきた。
[0005] However, with the recent high-density mounting of electronic components, surface mounting and BGA mounting have been particularly advanced in notebook personal computers, video cameras, cellular phones and the like, and the area of substrate electrode pads has been rapidly reduced. In this situation, the amount of solder at the joint must be reduced. That is,
The strength of the solder joint is reduced. In addition, due to the high functionality and miniaturization due to the high-density mounting, the portability of information transmission equipment has also rapidly advanced. In addition, the area of economic activity has reached the global scale, and such devices have come to be used in feverish deserts and polar highlands under extremely cold conditions, which have never been considered before. Under such circumstances, there is a demand for a solder mounting design that takes into account the fact that the solder joint is exposed to a more severe environment. Therefore, demands for higher strength and improved fatigue resistance of the solder material are increasing. Is growing.
In response to the above requirements for solder materials, Sn-
The strength of solder materials has been improved by adding a third element to a Pb-based alloy.

【0006】Sn−Pb系合金に第三元素を添加したも
のとして、特開平1-127192号や特開平1-1237095号公報
等では、Sb、In,Ag,Cu,Te,Ni等を添加
し耐疲労性を向上させている。この他にも様々なハンダ
合金が提案されているが、その多くはSn−Pb系合金
へ第三元素を添加することにより、ハンダ組織中のSn
相とPb相の粒界に金属間化合物を析出させ、この化合
物により結晶粒の粗粒化を抑制したり、塑性変形を抑制
するピンニングのピンサイトとして機能させることによ
り、合金の強度、耐クリープ性、耐疲労性を向上させる
ことが試みられている。
[0006] As a Sn-Pb alloy to which a third element is added, Japanese Patent Application Laid-Open Nos. 1-127192 and 1-1237095 disclose Sb, In, Ag, Cu, Te, Ni and the like. Improves fatigue resistance. In addition to these, various solder alloys have been proposed, but most of them have a Sn—Pb-based alloy containing a third element to add Sn in the solder structure.
The intermetallic compound is precipitated at the grain boundary between the Pb phase and the Pb phase, and the compound suppresses coarsening of crystal grains and functions as a pinning pinning for suppressing plastic deformation, thereby increasing the strength and creep resistance of the alloy. Attempts have been made to improve the properties and fatigue resistance.

【0007】[0007]

【発明が解決しようとする課題】ハンダの疲労破壊は接
続部における熱応力がハンダ材料に集中することにより
生じる。即ち、接続部が弾性塑性変形能と接続を保持す
るだけの強度を有し熱応力を吸収し、被接続部材から負
荷される応力を緩和している。ハンダ組織中や結晶粒界
に金属間化合物を分散・析出させると、粒界滑りや破壊
クラック進展の抑制にある程度の効果はあるが、脆く硬
い性質を有する金属間化合物を一定量以上存在させると
ハンダの延展性を阻害し、接続部の応力緩和を低下させ
ることになる。従来の耐疲労ハンダの代表的なものとし
て、 Sn−Pb系合金に第三元素として少量Agを添
加し耐疲労性を向上させたものがこの代表的な例であ
り、Ag3Sn金属間化合物を析出させ粒界滑りを抑制
し耐疲労性を向上させている。しかしながら、 Sn−
Pb系合金に第三元素として少量Agを添加した場合、
Sn−Pb系合金共晶組成(Sn63−Pb37)に比
して強度は約20%程度上がるものの、延びは逆に約2
0%減少し、総合的な耐疲労性の改善代は余り大きくな
い。即ち、プリント配線基板にCPUや電子部品を実装
する際に用いられるBGA用ハンダボール合金等で必要
とされる耐疲労に優れたハンダとは、実装部品を保持す
るための強度と、熱応力等を緩和するための延展性を兼
ね備えたハンダ合金であり、従来そのような強度と延展
性を満足するようなSn−Pb系ハンダ合金は見出され
ていなかった。
[0005] Fatigue fracture of solder is caused by the concentration of thermal stress at the connection portion on the solder material. That is, the connection portion has elastic plastic deformation capability and strength enough to maintain the connection, absorbs thermal stress, and reduces stress applied from the connected member. Dispersing and precipitating intermetallic compounds in the solder structure and at the grain boundaries has some effect in suppressing grain boundary slippage and fracture crack propagation, but when a certain amount of intermetallic compounds having brittle and hard properties is present. This impairs the spreadability of the solder and reduces the stress relaxation at the connection. A typical example of the conventional fatigue-resistant solder is a Sn-Pb-based alloy in which a small amount of Ag is added as a third element to improve the fatigue resistance, and a typical example is an Ag 3 Sn intermetallic compound. Precipitates to suppress grain boundary slip and improve fatigue resistance. However, Sn-
When a small amount of Ag is added as a third element to a Pb-based alloy,
Although the strength is increased by about 20% as compared with the eutectic composition of the Sn-Pb alloy (Sn63-Pb37), the elongation is about 2%.
It is reduced by 0%, and the overall improvement in fatigue resistance is not so large. That is, the solder having excellent fatigue resistance required for a BGA solder ball alloy or the like used when mounting a CPU or an electronic component on a printed wiring board is defined as strength for holding the mounted component, thermal stress and the like. This is a solder alloy having spreadability for alleviating the cracking, and a Sn-Pb-based solder alloy satisfying such strength and spreadability has not been found.

【0008】[0008]

【課題を解決するための手段】本発明者らが、従来のS
n−Pb系合金に少量Agを第三元素として添加し耐疲
労性を向上させたハンダ合金の弱点であった、強度は上
がるが延びがなくなる点の改善に鋭意取り組み、ハンダ
合金の耐疲労特性を向上させる手段を探索した結果、S
n−Pb系合金にZn,Agを同時添加した合金が耐疲
労性を向上させることを見出し、本発明を完成させた。
Means for Solving the Problems The present inventors have proposed a conventional S
We have worked diligently to improve the fatigue strength of solder alloys, in which a small amount of Ag was added as a third element to the n-Pb alloy to improve fatigue resistance. As a result of searching for a means for improving
The inventors have found that an alloy in which Zn and Ag are simultaneously added to an n-Pb-based alloy improves fatigue resistance, and completed the present invention.

【0009】本発明は、Sn60〜70質量%、 Ag
0.5〜3.0質量%、Zn0.001〜0.3質量
%、残部Pb及び不可避不純物からなることを特徴とす
るハンダ合金であり、またはSn60〜70質量%、
Ag0.5〜3.0質量%、Zn0.001〜0.3質
量%、 Sb0.1〜2質量%、残部Pb及び不可避不
純物からなることを特徴とするハンダ合金であり、更に
はSn60〜70質量%、 Ag0.5〜3.0質量
%、 Zn0.001〜0.3質量%、 Sb0.1〜2
質量%と、 Cu0.05〜0.5質量%および/また
はNi0.001〜0.02質量%、残部Pb及び不可
避不純物からなることを特徴とするハンダ合金である。
[0009] The present invention provides a method for producing a steel sheet, comprising: 60 to 70% by mass of Sn;
A solder alloy comprising 0.5 to 3.0% by mass, 0.001 to 0.3% by mass of Zn, the balance Pb and unavoidable impurities, or 60 to 70% by mass of Sn;
Ag is 0.5 to 3.0% by mass, Zn is 0.001 to 0.3% by mass, Sb is 0.1 to 2% by mass, and the balance is Pb and unavoidable impurities. Mass%, Ag 0.5-3.0 mass%, Zn 0.001-0.3 mass%, Sb 0.1-2
It is a solder alloy characterized by being composed of 0.05% to 0.5% by mass of Cu and / or 0.001% to 0.02% by mass of Ni, with the balance being Pb and unavoidable impurities.

【0010】[0010]

【発明の実施の形態】本発明のハンダ合金は、ハンダ凝
固組織中に金属間化合物を析出させる従来タイプの耐疲
労ハンダの弱点であった強度向上に逆比例していた延展
性不足に鑑みてされたものである。即ち、液体状態では
均一に溶融し、固体状態では凝固組織中に過度に金属間
化合物が析出することなく、更にハンダ合金自身が少量
のハンダで実装部品を保持するために必要とする十分な
強度を持ち、熱応力等を緩和するための延展性をSn−
Pb系合金共晶組成並又はそれ以上の展延性を兼ね備え
た、耐疲労性に優れたハンダ合金である。
BEST MODE FOR CARRYING OUT THE INVENTION The solder alloy of the present invention takes into account the lack of ductility, which is inversely proportional to the strength improvement, which is a weak point of the conventional fatigue-resistant solder in which an intermetallic compound is precipitated in a solidified structure of solder. It was done. In other words, it melts uniformly in the liquid state, does not excessively precipitate intermetallic compounds in the solidified structure in the solid state, and has sufficient strength for the solder alloy itself to hold the mounted parts with a small amount of solder. And the ductility for relaxing thermal stress etc. is Sn-
This is a solder alloy having excellent ductility which is equal to or higher than the eutectic composition of a Pb-based alloy and has excellent fatigue resistance.

【0011】本発明の特徴は、 Sn−Pb系合金にZ
n,Agを同時添加した合金、 Sn−Pb系合金にZ
n,Ag、Sbを同時添加した合金、またはSn−Pb
系合金にZn,Ag、 Sb,Cuを同時添加した合金
からわかるるように、微量のZnをAgと共に添加する
ことにより、従来不足していた延展性を損なうことなく
強度を上げ、総合的に耐疲労性を向上させている点にあ
る。本発明におけるハンダ合金成分組成を規定した理由
について以下に説明する。
The feature of the present invention is that Sn—Pb alloy
Alloy with simultaneous addition of n and Ag, Z to Sn-Pb alloy
Alloy with simultaneous addition of n, Ag and Sb, or Sn-Pb
As can be seen from the alloy in which Zn, Ag, Sb, and Cu are simultaneously added to the base alloy, by adding a small amount of Zn together with Ag, the strength can be increased without impairing the previously lacking ductility and comprehensively. The point is that the fatigue resistance is improved. The reason for defining the solder alloy component composition in the present invention will be described below.

【0012】SnはPbと合金化した時、共晶点(Sn
63質量%)で融点が一番低くなる共晶温度(183
℃)をとる。本発明のハンダ合金はプリント配線基板に
CPUや電子部品を実装する際に用いられるBGA用ハ
ンダボール等での接合に適する成分とするためには、S
n60〜70質量%とする必要がある。
When Sn is alloyed with Pb, the eutectic point (Sn
Eutectic temperature (183 mass%) at which the melting point is lowest
° C). In order for the solder alloy of the present invention to be a component suitable for bonding with a BGA solder ball or the like used when mounting a CPU or an electronic component on a printed wiring board, S
n needs to be 60 to 70% by mass.

【0013】AgはSn−Pbハンダ合金に添加する
と、ハンダ凝固時にAg3Sn等の金属間化合物を結晶
粒界等に微細析出し、結晶粒界滑り等を抑制し、疲労破
壊進展を抑制する効果がある。Sn−Pbハンダ合金中
に、0.5質量%より少ない添加量では耐疲労性に顕著
な改善は見られず、また3質量%以上の添加では液相線
温度が上昇し、プリント配線基板にCPUや電子部品を
実装する際に用いられるBGA用ハンダには適さなくな
る。
When Ag is added to a Sn—Pb solder alloy, an intermetallic compound such as Ag 3 Sn is finely precipitated at a crystal grain boundary or the like at the time of solder solidification, thereby suppressing grain boundary slip and the like and suppressing the progress of fatigue fracture. effective. Addition of less than 0.5% by mass in the Sn-Pb solder alloy does not show remarkable improvement in fatigue resistance, and addition of 3% by mass or more raises the liquidus temperature and increases the printed wiring board. It is not suitable for BGA solder used when mounting CPUs and electronic components.

【0014】上記のSn−PbにAgを添加しただけの
ハンダ合金では、強度と展延性の両者を有するハンダと
はならないが、これにZnを同時添加することで両特性
を兼ね備えたハンダとすることができる。
[0014] A solder alloy obtained by simply adding Ag to Sn-Pb does not result in a solder having both strength and ductility, but by simultaneously adding Zn thereto, a solder having both properties can be obtained. be able to.

【0015】Znは、一般にハンダの流動性の低下や酸
化皮膜の形成で仕上がり外観を害するので、有害な元素
とされているが、Agとの複合添加では異なった挙動が
見出された。すなわち、ZnはSn-Pbハンダ合金中
において、Pbには固溶せずSn相には固溶し結晶粒の
微細化や固溶強化により機械強度を向上させるが、同時
に上記したAg−Sn金属間化合物の析出核となり該金
属間化合物を分散析出させハンダ合金の延性、すなわち
耐疲労性を改善する効果を合わせ持っている。Znは
0.001質量%より少ない添加量ではその効果が現れ
ず、一方0.3質量%以上Znを添加するとハンダの流
動性が低下してハンダ付け性が阻害される。したがっ
て、本発明のZn量は0.001〜0.3質量%であ
る。更にハンダ付け性を阻害せず、Agと同時添加して
延性改善により望ましいZn量は0.002〜0.05
質量%である。
[0015] Zn is a harmful element because it generally impairs the finished appearance due to a decrease in the fluidity of the solder and the formation of an oxide film, but Zn has been found to behave differently when added in combination with Ag. That is, in the Sn—Pb solder alloy, Zn does not form a solid solution with Pb but forms a solid solution with the Sn phase to improve the mechanical strength by refining crystal grains and strengthening the solid solution. It acts as a precipitation nucleus of an intermetallic compound and has the effect of dispersing and precipitating the intermetallic compound to improve the ductility of the solder alloy, that is, the fatigue resistance. When Zn is added in an amount of less than 0.001% by mass, the effect is not exhibited. On the other hand, when Zn is added in an amount of 0.3% by mass or more, the fluidity of the solder decreases and the solderability is impaired. Therefore, the Zn content of the present invention is 0.001 to 0.3% by mass. Further, without impairing the solderability, a desirable Zn content for improving ductility by simultaneous addition with Ag is 0.002-0.05.
% By mass.

【0016】上記の合金組成に更にSbを添加すると、
引張り強度等の機械特性改善並びに低温破壊靭性改善等
に効果があるが、量が多くなるとハンダの濡れ性が悪く
なる。SbはSn−Pbハンダ合金において0.1質量
%より添加量が少ないと機械特性・低温破壊靭性に対す
る改善は認められなくなり、一方2質量%以上の添加量
になると濡れ性が悪くなりハンダ付け性が阻害される。
When Sb is further added to the above alloy composition,
It is effective for improving mechanical properties such as tensile strength and low-temperature fracture toughness, but when the amount is large, the wettability of the solder becomes poor. If the amount of Sb is less than 0.1% by mass in the Sn-Pb solder alloy, no improvement in mechanical properties and low-temperature fracture toughness is observed, while if the amount of Sb is more than 2% by mass, wettability deteriorates and solderability becomes poor. Is inhibited.

【0017】本発明では、ハンダ接合部における部品保
持強度や耐クリープ性の更なる向上を求められた場合、
CuやNiを同時に、又は別々に添加しても良い。
In the present invention, when further improvement in component holding strength and creep resistance at a solder joint is required,
Cu and Ni may be added simultaneously or separately.

【0018】この際、CuはSn−Pbハンダ合金中に
おいて、結晶を微細化し、機械的強度を向上させる。し
かしながら、Cuを過剰にSn−Pbハンダ合金に添加
すると、融点が高くなる。CuはSn−Pbハンダ合金
中において、0.05質量%より少ない添加量では機械
的強度改善・耐疲労性改善に効果がなく、一方、0.5
質量%以上のCuを添加すると液相線温度が急激に上昇
し、プリント配線基板にCPUや電子部品を実装する際
に用いられるBGA用ハンダには適さなくなる。
At this time, Cu refines the crystal in the Sn—Pb solder alloy and improves the mechanical strength. However, if Cu is excessively added to the Sn—Pb solder alloy, the melting point increases. Cu is not effective in improving mechanical strength and fatigue resistance in an Sn-Pb solder alloy at an addition amount of less than 0.05% by mass.
If Cu is added in an amount of not less than mass%, the liquidus temperature rises sharply and becomes unsuitable for BGA solder used when mounting CPUs and electronic components on a printed wiring board.

【0019】またその際、NiはSn−Pbハンダ合金
中において、Pb中に固溶し、機械的強度を向上させ
る。しかしながら、NiのPbに対する固溶限が常温で
は約0.02質量%であり、固溶限を超えて過剰にNi
を添加するとSn−Ni金属間化合物が析出し、合金の
延展性を損なうことから、添加 Ni量は0.001〜
0.02質量%が適当である。
At that time, Ni is dissolved in Pb in the Sn—Pb solder alloy to improve the mechanical strength. However, the solid solubility limit of Ni to Pb at room temperature is about 0.02% by mass, and Ni exceeds the solid solubility limit.
Is added, the Sn-Ni intermetallic compound precipitates and the ductility of the alloy is impaired.
0.02% by weight is appropriate.

【0020】本発明のハンダ合金中には、JIS−Z3
282のA級で規定されているような他の成分、Bi:
0.05以下、Fe:0.03以下、Al:0.005
以下、As:0.03以下、Cd:0.005以下等が
不可避元素として混入しても特性に影響を与えることは
ない。これ以外の元素でも、本発明の合金が有する特性
に影響しない程度の量であれば含有していても差し支え
ない。
In the solder alloy of the present invention, JIS-Z3
Other ingredients as defined in Class A of 282, Bi:
0.05 or less, Fe: 0.03 or less, Al: 0.005
Hereinafter, even if As: 0.03 or less and Cd: 0.005 or less are mixed as unavoidable elements, the characteristics are not affected. Other elements may be contained as long as they do not affect the properties of the alloy of the present invention.

【0021】本発明のハンダ合金は、高融点の金属を添
加しているにもかかわらず、液相線温度はSn−Pb共
晶ハンダとほぼ同じであり、プリント配線基板にCPU
や電子部品を実装する際に用いられるBGA用ハンダに
適しているのみならず、ディップハンダ付け、リフロー
ハンダ付け、鏝付け等のあらゆるハンダ付けに対応可能
な、機械的強度及び耐疲労性に優れたハンダ合金であ
る。
The liquidus temperature of the solder alloy of the present invention is almost the same as that of the Sn-Pb eutectic solder, even though a high melting point metal is added.
Not only suitable for BGA solder used when mounting electronic components and electronic components, but also suitable for all soldering such as dip soldering, reflow soldering, ironing, etc., with excellent mechanical strength and fatigue resistance Solder alloy.

【0022】なお、BGA等に用いる微小ハンダボール
として、本発明のハンダ合金成分を有するハンダボール
は好ましい実施の形態である。
It is to be noted that a solder ball having a solder alloy component of the present invention is a preferred embodiment as a micro solder ball used for a BGA or the like.

【0023】[0023]

【実施例】表1に示すハンダ合金を作製し、それぞれに
ついて以下に示すSiチップ部品と基板をハンダ付け
し、それをフリップチップ接続したものを試験片とし
た。試験は、温度サイクル熱衝撃試験を行い、400サ
イクル後のハンダ接合部(64ポイント)の破断率か
ら、耐疲労性を評価した。本評価手法は、Siチップと
ガラスエポキシ樹脂基板という熱膨張係数の大きな部材
に、評価ハンダ合金をφ300μmのボールにしたもの
をフリップチップ接続し評価したものであり、微小量ハ
ンダ合金の疲労特性を評価するに相応しい非常に厳しい
疲労特性評価手法である。
EXAMPLE Solder alloys shown in Table 1 were prepared, and for each of them, the following Si chip parts and a substrate were soldered, and these were flip-chip connected to obtain test pieces. In the test, a temperature cycle thermal shock test was performed, and the fatigue resistance was evaluated from the breaking rate of the soldered joint (64 points) after 400 cycles. In this evaluation method, the evaluation solder alloy was made by flip chip bonding a ball with a diameter of 300 μm of the evaluation solder alloy to a Si chip and a glass epoxy resin substrate with a large coefficient of thermal expansion. This is a very severe fatigue property evaluation method suitable for evaluation.

【0024】[0024]

【表1】 [Table 1]

【0025】Siチップ部品は、Siチップ上にφ20
0μmの電極ランドを周囲に64配置、ピッチ間隔は
0.3mmである。プリント基板は、片面配線のガラス
エポキシ樹脂基板であり、Siチップと同様に配置し、
それらを本発明ハンダ合金のφ300μmのボールでフ
リップチップ接続した。
[0025] The Si chip part is φ20 on the Si chip.
64 0 μm electrode lands are arranged around the periphery, and the pitch interval is 0.3 mm. The printed circuit board is a glass epoxy resin substrate with single-sided wiring, placed in the same way as a Si chip,
These were flip-chip connected with a ball of φ300 μm of the solder alloy of the present invention.

【0026】温度サイクル条件は、−40℃(30分)
〜+125℃(30分)である。
The temperature cycle condition is -40 ° C. (30 minutes)
+ 1 + 125 ° C. (30 minutes).

【0027】評価結果として接合部の破断率を表1に記
載した。表1から、本発明例はいずれも、従来のハンダ
合金に比べ破断率が格段に小さく、耐疲労性に優れてい
ることがわかった。
The results of the evaluation are shown in Table 1 below. From Table 1, it was found that all of the examples of the present invention had remarkably small breaking rates and were excellent in fatigue resistance as compared with conventional solder alloys.

【0028】[0028]

【発明の効果】以上説明した如く、本発明のハンダ合金
は、特に耐疲労性に優れているばかりではなく、ハンダ
自体の強度及び延展性に優れていることから、プリント
配線基板にCPUや電子部品を実装する際に用いられる
BGA用ハンダに特に適している。また更に、液相線温
度はSn−Pb共晶ハンダとほぼ同じであり、ディップ
ハンダ付け、リフローハンダ付け、鏝付け等の既存のあ
らゆるハンダ付けに対応可能という多くの特徴を有して
いる。
As described above, the solder alloy of the present invention not only has excellent fatigue resistance, but also has excellent strength and spreadability of the solder itself. It is particularly suitable for BGA solder used when mounting components. Furthermore, the liquidus temperature is almost the same as that of Sn-Pb eutectic solder, and it has many features that it can be used for all existing soldering such as dip soldering, reflow soldering, and ironing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 将元 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 遠藤 道雄 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 寺嶋 晋一 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 橋野 英児 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 巽 宏平 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 (72)発明者 藤島 正美 埼玉県入間市大字狭山ヶ原158−1 株式 会社日鉄マイクロメタル内 (72)発明者 中森 孝 埼玉県入間市大字狭山ヶ原158−1 株式 会社日鉄マイクロメタル内 (72)発明者 鈴木 武和 千葉県東葛飾郡関宿町元町487 株式会社 日本フィラーメタルズ内 (72)発明者 佐藤 匡 千葉県東葛飾郡関宿町元町487 株式会社 日本フィラーメタルズ内 Fターム(参考) 5E319 BB04 BB08  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masamoto Tanaka 20-1 Shintomi, Futtsu City Nippon Steel Corporation Technology Development Division (72) Inventor Michio Endo 20-1 Shintomi, Futtsu City Nippon Steel Corporation (72) Inventor Shinichi Terashima 20-1 Shintomi, Futtsu City Nippon Steel Corporation Technology Development Headquarters (72) Inventor Eiji Hashino 20-1 Shintomi, Futtsu City Nippon Steel Corporation (72) Inventor Kohei Tatsumi 20-1 Shintomi, Futtsu-shi Nippon Steel Corporation Technology Development Headquarters (72) Inventor Masami Fujishima 158-1, Sayamagahara, Iruma-shi, Saitama Nippon Steel Corporation Inside the Micro Metal (72) Inventor Takashi Nakamori 158-1 Sayamagahara, Iruma City, Saitama Prefecture Inside the Nippon Steel Micro Metal Co., Ltd. Nippon Filler Metals Co., Ltd. (72) Inventor Tadashi Sato 487 Motomachi, Sekijuku-cho, Higashi-Katsushika-gun, Chiba Prefecture F-Term in Nippon Filler Metals Co., Ltd. 5E319 BB04 BB08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Sn60〜70質量%、Ag0.5〜
3.0質量%、Zn0.001〜0.3質量%、残部P
b及び不可避不純物からなることを特徴とするハンダ合
金。
1. 60 to 70 mass% of Sn, 0.5 to Ag
3.0% by mass, Zn 0.001 to 0.3% by mass, balance P
b. A solder alloy comprising b and unavoidable impurities.
【請求項2】 請求項1記載のハンダ合金の組成に、更
に、Sb0.1〜2質量%を含むことを特徴とするハン
ダ合金。
2. The solder alloy according to claim 1, further comprising 0.1 to 2% by mass of Sb.
【請求項3】 請求項1または請求項2記載のハンダ合
金の組成に、更に、Cu0.05〜0.5質量%、およ
び/またはNi0.001〜0.02質量%を含むこと
を特徴とするハンダ合金。
3. The solder alloy composition according to claim 1, further comprising 0.05 to 0.5% by mass of Cu and / or 0.001 to 0.02% by mass of Ni. Solder alloy.
JP29784599A 1999-10-20 1999-10-20 Solder alloy Withdrawn JP2001113387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29784599A JP2001113387A (en) 1999-10-20 1999-10-20 Solder alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29784599A JP2001113387A (en) 1999-10-20 1999-10-20 Solder alloy

Publications (1)

Publication Number Publication Date
JP2001113387A true JP2001113387A (en) 2001-04-24

Family

ID=17851906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29784599A Withdrawn JP2001113387A (en) 1999-10-20 1999-10-20 Solder alloy

Country Status (1)

Country Link
JP (1) JP2001113387A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070088B2 (en) * 2004-03-09 2006-07-04 Texas Instruments Incorporated Method of semiconductor device assembly including fatigue-resistant ternary solder alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070088B2 (en) * 2004-03-09 2006-07-04 Texas Instruments Incorporated Method of semiconductor device assembly including fatigue-resistant ternary solder alloy

Similar Documents

Publication Publication Date Title
JP4152596B2 (en) Electronic member having solder alloy, solder ball and solder bump
EP1399600B1 (en) Compositions, methods and devices for high temperature lead-free solder
TWI233684B (en) Electronic device
JP4144415B2 (en) Lead-free solder
JP4770733B2 (en) Solder and mounted products using it
KR102153273B1 (en) Solder alloy, solder paste, solder ball, resin-embedded solder and solder joint
JP2002307188A (en) PRODUCT USING Zn-Al BASED SOLDER
JP2002301588A (en) Solder foil, semiconductor device and electronic device
JP3796181B2 (en) Electronic member having lead-free solder alloy, solder ball and solder bump
JP2002305213A (en) Solder foil, semiconductor device, and electronic device
JP5030442B2 (en) Lead-free solder alloys, solder balls and electronic components
EP1429884B1 (en) Improved compositions, methods and devices for high temperature lead-free solder
JP2021028078A (en) Solder alloy for lead-free and antimony-free, solder ball, ball grid array, and solder joint
JP5379402B2 (en) Lead-free Sn-Ag solder alloy and solder alloy powder
JP3919106B2 (en) Metal core solder ball of Cu or Cu alloy ball
US7973412B2 (en) Semiconductor device using lead-free solder as die bonding material and die bonding material not containing lead
JP2008221330A (en) Solder alloy
JP2001113387A (en) Solder alloy
JP6370458B1 (en) Lead-free solder alloy and electronic circuit board
JP2002086294A (en) Solder alloy and electronic member having solder ball and solder bump
JP2910527B2 (en) High temperature solder
JP2004031771A (en) Solder junction
JP2005177842A (en) Brazing material, manufacturing method of semiconductor device using the same and semiconductor device
JP2005334955A (en) Solder alloy and solder ball
JP2002018590A (en) Solder alloy, solder ball and electronic member having solder bump

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109