JP2001111282A - Electromagnetic wave shield molded product and manufacturing method therefore - Google Patents

Electromagnetic wave shield molded product and manufacturing method therefore

Info

Publication number
JP2001111282A
JP2001111282A JP29286399A JP29286399A JP2001111282A JP 2001111282 A JP2001111282 A JP 2001111282A JP 29286399 A JP29286399 A JP 29286399A JP 29286399 A JP29286399 A JP 29286399A JP 2001111282 A JP2001111282 A JP 2001111282A
Authority
JP
Japan
Prior art keywords
shield
molded product
base material
elastic body
polymer elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29286399A
Other languages
Japanese (ja)
Other versions
JP3630595B2 (en
Inventor
Hitoshi Ando
均 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP29286399A priority Critical patent/JP3630595B2/en
Publication of JP2001111282A publication Critical patent/JP2001111282A/en
Application granted granted Critical
Publication of JP3630595B2 publication Critical patent/JP3630595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide electromagnetic wave shield molded products and its manufacturing method which correspond to high frequency, without deformation due to its making contact with components, etc., and can be set at an appropriate position during assembly and improve the restoration property of shape or compressed permanent deformation, etc., and no largescaled working or facility is needed. SOLUTION: This product is provided with a shielding enclosure 4, which is connected with the ground layer 2 of a printed board 1 and covers an electromagnetic wave generating source 3 and a shield molded article 7 with an approximately U-shaped section engaged with a connection rib 6 for the ground layer 2 of the shielding enclosure. In addition, the shield molded article 7 is composed of a base of 0.025 to 1 mm in thickness with a through-hole and a conductive polymer elastic body which is laminated on both surfaces of a substrate for integration, and a pair of polymer elastic bodies are connected integrally by means of the through-hole of the base. Each of their volume resistivities is set to 0.01 to 5 Ω.cm and Shore hardness to 20 to 70 Hs.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、携帯電話、無線
機、計測器、コンピュータ、又は自動車用の制御機器等
の各種電子機器に使用される電磁波シールド成形品及び
その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic wave shield molded product used for various electronic devices such as a cellular phone, a wireless device, a measuring instrument, a computer, and a control device for an automobile, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】携帯電話、無線機、又はコンピュータ等
の各種電子機器はその動作時に信号発信部や電源部等が
電磁波を輻射するが、この電磁波は、電子部品の誤作動
を惹起したり、正常な機能を低下させるので、シールド
する必要がある。そこで従来においては、図9に示すよ
うに、プリント基板1の表面のグラウンド層2に、内面
に導電層5を備えたシールド筺体4の接続リブ6をシー
ルド用のガスケットや締結具16を介し螺着してグラウ
ンドし、このシールド筺体4にプリント基板1の電子部
品からなる電磁波発生源3を覆わせ、シールド筺体4の
導電層5に矢印で示す不要な電磁波を反射吸収させた
り、減衰させたりしてシールド筺体4内に封じ込め、電
磁波、電波、又は磁場から電子部品を保護するという手
段が採用されている。
2. Description of the Related Art In various electronic devices such as cellular phones, wireless devices, and computers, a signal transmission unit, a power supply unit, and the like radiate electromagnetic waves during operation, and the electromagnetic waves may cause malfunction of electronic components, Shielding is required as it reduces normal function. Therefore, conventionally, as shown in FIG. 9, the connection rib 6 of the shield housing 4 having the conductive layer 5 on the inner surface is screwed to the ground layer 2 on the surface of the printed circuit board 1 via a gasket or a fastener 16 for shielding. The shield case 4 covers the electromagnetic wave generation source 3 made of electronic components of the printed circuit board 1, and the conductive layer 5 of the shield case 4 reflects and absorbs or attenuates unnecessary electromagnetic waves indicated by arrows. Then, the electronic component is sealed in the shield housing 4 to protect the electronic components from electromagnetic waves, radio waves, or magnetic fields.

【0003】しかしながら、近年、電波が高周波化し、
しかも、一電子機器内で複数種の電波を処理する必要性
が生じているので、図9のシールド手段では不十分な場
合がある。例えば同図に示すように、組立時の寸法公差
や組付公差に基づき、プリント基板1とシールド筺体4
との間に僅かな隙間Sが発生すると、この僅かな隙間S
がアンテナとして電波を受信するというアンテナ化現象
が生じる。このアンテナ化現象は、使用電波の周波数が
高周波になればなるほど、短い間隔で発生し、この結
果、電磁波がシールド筺体4の外部に漏れて電子部品に
悪影響を及ぼすこととなる。また、プリント基板1とシ
ールド筺体4とが不連続に接触すると、雑音障害を招く
おそれが少なくない。
However, in recent years, radio waves have become higher in frequency,
Moreover, since it is necessary to process a plurality of types of radio waves in one electronic device, the shielding means of FIG. 9 may not be sufficient in some cases. For example, as shown in the drawing, the printed circuit board 1 and the shield housing 4 are based on dimensional tolerances and assembling tolerances during assembly.
A small gap S is generated between the small gap S
Antenna receives a radio wave as an antenna. This antenna phenomenon occurs at shorter intervals as the frequency of the radio wave used increases, and as a result, electromagnetic waves leak out of the shield housing 4 and adversely affect electronic components. In addition, when the printed circuit board 1 and the shield housing 4 are in discontinuous contact with each other, there is not a small possibility that noise interference will occur.

【0004】このような弊害を解消する方法としては、
電子機器の完成後におけるテスト機の特性確認で認識・
対処するという方法と、設計時からシールド筺体4に電
磁波発生源3を完全にシールドさせるとともに、シール
ド筺体4をプリント基板1のグラウンド層2に確実にグ
ラウンドするという方法があげられる。前者の方法は、
電子機器の機構形状や性能等に弊害が起因するので、弊
害の発生を予め予測することが困難であることを考慮し
たものであるが、最善の方法とは言いがたい。これに対
し、後者の方法は、弊害の発生することがないから、予
測の必要がなく、最善の方法であるといえる。そこで、
後者の方法について、様々な開発研究がなされている。
[0004] As a method of solving such an adverse effect,
Recognition and recognition by testing the characteristics of test equipment after the completion of electronic equipment
There is a method of coping with the problem and a method of completely shielding the electromagnetic wave generating source 3 from the shield housing 4 from the design stage and grounding the shield housing 4 on the ground layer 2 of the printed circuit board 1 without fail. The former method is
Although it is considered that it is difficult to predict the occurrence of the harm because the harm is caused by the mechanism shape and performance of the electronic device, it is not the best method. On the other hand, the latter method does not cause any adverse effects, and thus does not need to be predicted, and can be said to be the best method. Therefore,
Various development studies have been made on the latter method.

【0005】この後者の方法の具体例としては、以下の
(1)、(2)、(3)、(4)、(5)がある。先ず、(1)は、
プレス加工した金属薄板を略パンタグラフ形に折曲加工
して小さなばね部材を形成し、このばね部材をプリント
基板1のグラウンド層2の所定箇所に複数実装溶着する
とともに、この複数のばね部材を介してシールド筺体4
の接続リブ6を接続し、ばね部材の弾性を利用して寸法
公差や組付公差を吸収し、シールド筺体4を確実にグラ
ウンドするという方法である。
A specific example of this latter method is as follows.
There are (1), (2), (3), (4) and (5). First, (1)
The pressed metal sheet is bent into a substantially pantograph shape to form a small spring member, and a plurality of such spring members are mounted and welded to predetermined portions of the ground layer 2 of the printed circuit board 1 and the plurality of spring members are welded through the plurality of spring members. Shield housing 4
The connection rib 6 is connected, and the elasticity of the spring member is used to absorb the dimensional tolerance and the assembly tolerance, so that the shield housing 4 is reliably grounded.

【0006】次いで(2)は、図10に示すように、シー
ルド筺体4の接続リブ6の平面形状に対応させて0.1
mm程度の厚さを有する金属薄板17をプレス加工して
当該金属薄板17には導電塗装を施し、この金属薄板1
7の所定箇所を折曲加工して起伏揺動可能な複数のばね
部材18を形成し、金属薄板17をプリント基板1のグ
ラウンド層2に実装するとともに、この金属薄板17を
介してシールド筺体4の接続リブ6を接続し、ばね部材
18の弾性を利用して寸法公差や組付公差を吸収し、シ
ールド筺体4を確実にグラウンドするという方法であ
る。
Next, (2), as shown in FIG. 10, corresponds to the plane shape of the connection rib 6 of the shield housing 4 by 0.1.
The thin metal plate 17 having a thickness of about mm is press-worked, and a conductive coating is applied to the thin metal plate 17.
7 is bent to form a plurality of spring members 18 which can be undulated and oscillated. The thin metal plate 17 is mounted on the ground layer 2 of the printed circuit board 1, and the shield housing 4 is interposed via the thin metal plate 17. In this method, the dimensional tolerance and the assembly tolerance are absorbed by utilizing the elasticity of the spring member 18 and the shield housing 4 is reliably grounded.

【0007】次いで(3)は、樹脂と導電性カーボンや金
属粒子を配合した導電性エラストマーとを用いて導電性
ゴム弾性体19をシート状に二色成形し、この導電性ゴ
ム弾性体19をシールド筺体4の接続リブ6の平面形状
に対応するよう打ち抜き加工(図11参照)してガスケッ
トとし、この導電性ゴム弾性体19をプリント基板1の
グラウンド層2に実装するとともに、この導電性ゴム弾
性体19を介してシールド筺体4の接続リブ6を接続
し、導電性ゴム弾性体19の弾性を利用して寸法公差や
組付公差を吸収し、シールド筺体4を確実にグラウンド
するという方法である。
Next, (3) two-color molding of the conductive rubber elastic body 19 into a sheet shape using a resin and a conductive elastomer containing conductive carbon and metal particles is performed. A gasket is formed by punching (see FIG. 11) so as to correspond to the planar shape of the connection rib 6 of the shield housing 4. The conductive rubber elastic body 19 is mounted on the ground layer 2 of the printed circuit board 1, and the conductive rubber The connection rib 6 of the shield housing 4 is connected via the elastic body 19, and the elasticity of the conductive rubber elastic body 19 is used to absorb dimensional tolerances and assembly tolerances, and the shield housing 4 is reliably grounded. is there.

【0008】次いで(4)は、プラスチック製のシールド
筺体4の接続リブ6と導電性ゴム弾性体とを一体成形
し、この導電性ゴム弾性体の弾性を利用して寸法公差や
組付公差を吸収し、シールド筺体4を確実にグラウンド
するという方法である。そして(5)は、導電性カーボン
や金属粒子を配合したゴム弾性体の原料をシールド筺体
4の接続リブ6に塗布して乾燥硬化させ、形成した導電
性ゴム弾性体の弾性を利用して寸法公差や組付公差を吸
収し、シールド筺体4を確実にグラウンドするという方
法である。
Next, in (4), the connection rib 6 of the plastic shield housing 4 and the conductive rubber elastic body are integrally formed, and the dimensional tolerance and the assembly tolerance are adjusted by utilizing the elasticity of the conductive rubber elastic body. This is a method of absorbing and reliably grounding the shield housing 4. And (5), a raw material of a rubber elastic body containing conductive carbon and metal particles is applied to the connection rib 6 of the shield housing 4 and dried and cured, and the dimensions are obtained by utilizing the elasticity of the formed conductive rubber elastic body. This is a method of absorbing the tolerance and the assembly tolerance and grounding the shield housing 4 reliably.

【0009】なお、シールド筺体4に電磁波を封じ込め
るためには、特定の体積固有抵抗値(周波数により異な
るものの、一般的には体積固有抵抗値5Ω・cm以下)
を有する導電体でシールド筺体4を囲み、プリント基板
1のグラウンド層2に確実にグラウンドして少なくとも
平均である30〜60dB以上のシールド効果(10〜
30dBは最小限のシールド、60〜90dBは平均以
上、90dB以上は最高のシールド)を得る必要がある
(図12参照)。これを受け、金属薄板17、ばね部材1
8、又は導電性ゴム弾性体19の体積固有抵抗値は、5
Ω・cm以下とされている。
In order to confine the electromagnetic waves in the shield housing 4, a specific volume resistivity (depending on the frequency, but generally not more than 5Ω · cm) is required.
Surrounding the shield housing 4 with a conductor having the following characteristics, and reliably ground the ground layer 2 of the printed circuit board 1 to at least an average shield effect of 30 to 60 dB or more.
(30dB is minimum shield, 60-90dB is above average, 90dB and above is best shield)
(See FIG. 12). In response to this, the metal sheet 17, the spring member 1
8, or the volume resistivity value of the conductive rubber elastic body 19 is 5
Ω · cm or less.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記
(1)、(2)の方法では、運搬時や使用時にばね部材や金
属薄板が他の部品との接触で容易に変形し、簡単に損傷
してしまうという問題がある。また、ばね部材の弾性に
は限界があり、しかも、一定寸法間隔の部分接続なの
で、高周波に十分対応することができないおそれがあ
る。(3)の方法では、導電性ゴム弾性体19の厚さが通
常0.5〜2.5mmなので、平面的な形の保持性が悪
く、組み込み時に導電性ゴム弾性体19を適切な位置に
実装することができないおそれがある。また、導電性ゴ
ム弾性体19には、体積固有抵抗値及び弾性と、圧縮永
久歪み特性(圧縮開放時の形状復元性)という相反する物
性が要求されるので、導電性カーボンや金属粒子の選
定、配合比率の設定がきわめて困難であり、導電性カー
ボンや金属粒子の配合比率いかんでは形状の復元性が悪
化し、使用が不可能になることもある。
SUMMARY OF THE INVENTION
The methods (1) and (2) have a problem that the spring member and the thin metal plate are easily deformed by contact with other parts during transportation or use, and are easily damaged. In addition, the elasticity of the spring member has a limit, and since it is a partial connection with a fixed dimensional interval, it may not be possible to sufficiently cope with high frequencies. In the method (3), since the thickness of the conductive rubber elastic body 19 is usually 0.5 to 2.5 mm, the planar shape holding property is poor, and the conductive rubber elastic body 19 is placed at an appropriate position during assembling. There is a possibility that it cannot be implemented. In addition, since the conductive rubber elastic body 19 is required to have contradictory physical properties such as a volume resistivity and elasticity and a compression set characteristic (shape restoring property upon compression release), selection of conductive carbon and metal particles is required. In addition, it is extremely difficult to set the mixing ratio, and depending on the mixing ratio of the conductive carbon or metal particles, the resilience of the shape is deteriorated and the use may not be possible.

【0011】(4)の方法では、シールド筺体4の接続リ
ブ6と導電性ゴム弾性体とを一体成形するので、理想的
ではあるものの、一体成形用の材料(熱可塑性、熱硬化
性ゴム弾性体)の特性により、圧縮永久歪みが悪化した
り、弾性度に欠けるおそれが考えられる。また、硬度が
高く、コスト的にも問題である。さらに(5)の方法で
は、簡便ではあるものの、シールド筺体4の接続リブ6
にゴム弾性体の原料を吐出機器等を用いて塗布し、乾燥
硬化させるので、作業や設備が大がかりになり、材料管
理や品質管理等にも大きな問題がある。
In the method (4), the connection rib 6 of the shield housing 4 and the conductive rubber elastic body are integrally molded. Therefore, although ideal, the material for the integral molding (thermoplastic, thermosetting rubber elastic body) is used. Depending on the properties of the (body), there is a possibility that the compression set is deteriorated or the elasticity is lacking. In addition, the hardness is high and there is a problem in cost. Further, in the method (5), although simple, the connection rib 6 of the shield housing 4 is not used.
Since the raw material of the rubber elastic body is applied using a discharge device or the like and dried and cured, the operation and equipment become large, and there is a great problem in material management and quality control.

【0012】本発明は、上記問題に鑑みなされたもの
で、部品との接触等で簡単に変形することがなく、高周
波に十分対応することができ、組み込み時に適切な位置
にセットすることができるとともに、十分な形状の復元
性、圧縮永久歪み、弾性度、又は硬度を得ることがで
き、大がかりな作業や設備を特に必要としない電磁波シ
ールド成形品及びその製造方法を提供することを目的と
している。
The present invention has been made in view of the above-mentioned problems, and does not easily deform due to contact with parts, can sufficiently cope with high frequencies, and can be set at an appropriate position when assembled. In addition, an object of the present invention is to provide an electromagnetic wave shield molded product that can obtain sufficient shape resilience, permanent compression set, elasticity, or hardness, and does not particularly require a large-scale operation or equipment, and a method for manufacturing the same. .

【0013】[0013]

【課題を解決するための手段】請求項1記載の発明にお
いては、上記課題を達成するため、基板のグラウンド層
に取り付けられて電磁波発生源を覆うシールド筺体と、
このシールド筺体に設けられるシールド成形品とを含ん
でなるものであって、上記シールド成形品を、0.02
5〜1mmの厚さを有する貫通孔付きの基材と、この基
材の少なくとも片面に一体化される導電性の高分子弾性
体とから構成し、この高分子弾性体の体積固有抵抗値を
0.01〜5Ω・cmとするとともに、該高分子弾性体
のショアA硬度を20〜70Hsとしたことを特徴とし
ている。
According to the first aspect of the present invention, in order to achieve the above object, a shield housing attached to a ground layer of a substrate and covering an electromagnetic wave generation source;
And a shield molded product provided in the shield housing.
A base material with a through hole having a thickness of 5 to 1 mm, and a conductive polymer elastic body integrated with at least one surface of the base material, and a volume resistivity value of the polymer elastic body In addition to 0.01 to 5 Ω · cm, the Shore A hardness of the elastic polymer is 20 to 70 Hs.

【0014】なお、上記シールド成形品を、上記基材
と、この基材の両面にそれぞれ積層される上記高分子弾
性体とから構成してこの一対の高分子弾性体を基材の貫
通孔を介して接続し、上記シールド成形品を断面略U字
形に形成して上記シールド筺体のグラウンド層用の接続
リブに嵌合可能とすることが好ましい。また、上記シー
ルド成形品を、上記基材と、この基材の片面に積層され
る高分子弾性体とから構成して基材の貫通孔と高分子弾
性体の一部とを一体形成し、上記シールド筺体の導電層
に上記シールド成形品を屈曲させて一体形成するととも
に、該導電層に上記高分子弾性体の一部を接触させるこ
とが好ましい。
[0014] The above-mentioned shield molded product is composed of the above-mentioned base material and the above-mentioned polymer elastic bodies laminated on both sides of the base material, respectively. Preferably, the shield molded product is formed to have a substantially U-shaped cross section so that the shield molded product can be fitted to a connection rib for a ground layer of the shield housing. Further, the shield molded product, the base material, and a polymer elastic body laminated on one surface of the base material, integrally formed with a through hole of the base material and a part of the polymer elastic body, It is preferable that the shield molded product is bent and integrally formed with the conductive layer of the shield housing, and a part of the polymer elastic body is brought into contact with the conductive layer.

【0015】また、請求項4記載の発明においては、上
記課題を達成するため、複数の基板間に介在されて電磁
波発生源を囲むフレームと、このフレームに嵌められて
該複数の基板を電気的に導通させるシールド成形品とを
含んでなるものであって、上記シールド成形品を、0.
025〜1mmの厚さを有する貫通孔付きの基材と、こ
の基材の片面に重ねて一体化される導電性の高分子弾性
体とから構成して基材の貫通孔と高分子弾性体の一部と
を一体形成し、この高分子弾性体の体積固有抵抗値を
0.01〜5Ω・cmとするとともに、該高分子弾性体
のショアA硬度を20〜70Hsとしたことを特徴とし
ている。
According to the present invention, in order to achieve the above object, a frame interposed between a plurality of substrates and surrounding an electromagnetic wave generation source, and the plurality of substrates fitted to the frame to electrically connect the plurality of substrates. And a shield molded product that is electrically connected to the shield molded product.
A base material having a through hole having a thickness of 025 mm to 1 mm, and a conductive polymer elastic body which is integrated by being superposed on one surface of the base material; And a volume elastic resistance value of the polymer elastic body is set to 0.01 to 5 Ω · cm, and a Shore A hardness of the polymer elastic body is set to 20 to 70 Hs. I have.

【0016】さらに、請求項5記載の発明においては、
上記課題を達成するため、0.025〜1mmの厚さを
有する基材に貫通孔を設け、この基材の少なくとも片面
に導電性の高分子弾性体を設け、これら基材と高分子弾
性体とを一体化して基材の貫通孔と高分子弾性体の一部
とを一体形成するとともに、所定の形に屈曲してシール
ド成形品を成形し、このシールド成形品を形成する上記
高分子弾性体の体積固有抵抗値を0.01〜5Ω・cm
とし、かつ高分子弾性体のショアA硬度を20〜70H
sとすることを特徴としている。
Further, in the invention according to claim 5,
In order to achieve the above object, a through hole is provided in a base material having a thickness of 0.025 to 1 mm, and a conductive polymer elastic body is provided on at least one surface of the base material. To form a shield molded product by bending into a predetermined shape while forming a through hole of the base material and a part of the polymer elastic body, and forming the shield molded product. The volume resistivity of the body is 0.01 to 5Ωcm
And the Shore A hardness of the elastic polymer is 20 to 70H
s.

【0017】ここで、特許請求の範囲における基板とし
ては、プリント基板、電磁波シールドプリント配線板、
フレキシブル基板、又はビルドアップ配線板等があげら
れる。シールド筺体やフレームは、プラスチック製でも
良いし、そうでなくても良い。シールド成形品の横断面
形状、換言すれば、平面形状は、グラウンド層やシール
ド筺体の形に応じ、適宜変更することができる。また、
基材の貫通孔は、単数複数いずれでも良く、丸孔でも良
いし、幅1mm以下の直線的なスリット等からなる溝孔
等とすることもできる。さらに、断面略U字形には、C
字形、U字形、コ字形、又はこれらに類似する形が含ま
れる。
Here, the substrate in the claims includes a printed circuit board, an electromagnetic wave shield printed wiring board,
Examples include a flexible substrate or a build-up wiring board. The shield housing and frame may or may not be made of plastic. The cross-sectional shape of the shield molded product, in other words, the planar shape, can be appropriately changed according to the shape of the ground layer and the shield housing. Also,
The through-hole in the substrate may be any one or more of a plurality of holes, may be a round hole, or may be a slot made of a linear slit or the like having a width of 1 mm or less. In addition, the substantially U-shaped cross section has C
Included are U-shaped, U-shaped, and similar shapes.

【0018】請求項1記載の発明によれば、シールド筺
体にシールド成形品を設け、このシールド成形品を基板
のグラウンド層に接続して接地すれば、シールド筺体が
不要な電磁波を反射吸収したり、減衰させたりしてシー
ルド筺体内に封じ込め、電磁波、電波、磁場から携帯電
話、無線機、計測器、コンピュータ、又は自動車用の制
御機器やその電子部品等を有効に保護することができ
る。請求項2記載の発明によれば、シールド筺体の接続
リブにシールド成形品を嵌め入れ、このシールド成形品
をプリント基板のグラウンド層に固定して接地すれば、
シールド筺体の導電層が不要な電磁波を反射吸収した
り、減衰させたりしてシールド筺体内に封じ込め、電磁
波等から電子部品等を有効に保護できる。この際、基板
とシールド筺体との間に弾性を有するシールド成形品が
介在し、隙間がある場合にはそれを埋める。
According to the first aspect of the present invention, if a shield molded article is provided in the shield housing and this shield molded article is connected to the ground layer of the substrate and grounded, the shield casing reflects and absorbs unnecessary electromagnetic waves. It can be attenuated and enclosed in a shielded housing to effectively protect a mobile phone, a wireless device, a measuring instrument, a computer, or a control device for an automobile or its electronic components from an electromagnetic wave, a radio wave, and a magnetic field. According to the second aspect of the invention, if the shield molded product is fitted into the connection rib of the shield housing, and the shield molded product is fixed to the ground layer of the printed circuit board and grounded,
The conductive layer of the shield housing reflects and attenuates or attenuates unnecessary electromagnetic waves and seals them in the shield housing, so that electronic components and the like can be effectively protected from electromagnetic waves and the like. At this time, a shield molded product having elasticity is interposed between the substrate and the shield housing, and if there is a gap, it is filled.

【0019】請求項4記載の発明によれば、フレームに
シールド成形品を嵌め入れ、このシールド成形品を備え
たフレームを複数のプリント基板の間に介在させ、かつ
導通させれば、電磁波等から携帯電話、無線機、計測
器、コンピュータ、又は自動車用の制御機器やその電子
部品等を有効に保護することができる。この際、複数の
基板の間に弾性を有するシールド成形品が介在し、隙間
がある場合にはそれを埋める。
According to the fourth aspect of the present invention, if a shield molded product is fitted into a frame, and the frame provided with the shield molded product is interposed between a plurality of printed circuit boards and made conductive, electromagnetic wave and the like can be prevented. It is possible to effectively protect a mobile phone, a wireless device, a measuring instrument, a computer, or a control device for a vehicle and its electronic components. At this time, an elastic shield molded product is interposed between the plurality of substrates, and if there is a gap, it is filled.

【0020】[0020]

【発明の実施の形態】以下、図面を参照して本発明の好
ましい実施形態を説明すると、本実施形態における電磁
波シールド成形品は、図1ないし図4に示すように、プ
リント基板1のグラウンド層2に接続されて複数の電磁
波発生源3を覆うシールド筺体4と、このシールド筺体
4の接続リブ6に嵌合するシールド成形品7とを備え、
このシールド成形品7を、屈曲可能な基材8と、この基
材8の表裏両面にそれぞれ積層接着して一体化される導
電性の高分子弾性体10とから構成している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described below with reference to the drawings. As shown in FIG. 1 to FIG. 2, a shield housing 4 that covers the plurality of electromagnetic wave sources 3 and a shield molded product 7 that fits into the connection ribs 6 of the shield housing 4.
The shield molded product 7 is composed of a bendable base material 8 and a conductive polymer elastic body 10 which is laminated and bonded to both the front and back surfaces of the base material 8, respectively.

【0021】プリント基板1は、図1に示すように、表
面の外周にグラウンド層2が所定の回路パターンでパタ
ーニングされ、電子部品からなる複数の電磁波発生源3
が実装されている。シールド筺体4は、図1に示すよう
に、例えば衝撃強度、耐熱性、意匠性等に優れるAB
S、PC、PA、PES、TPEI等の成形材料や金属
板を使用して断面略E字形の箱形に区画成形され、全内
面に電磁波シールド材料からなる薄い導電層5が蒸着
法、スパッタリング法、又はめっき法等により成膜され
ている。このシールド筺体4の区画壁は接続リブ6とさ
れ、この接続リブ6は、一般に0.2〜2mm程度の幅
に成形されている。また、シールド成形品7は、図2に
示すように、例えば平面略日字形に区画成形されるとと
もに、下向きに開口した断面略U字形に成形されてい
る。
As shown in FIG. 1, a printed circuit board 1 has a ground layer 2 patterned on a surface of the printed circuit board 1 in a predetermined circuit pattern, and a plurality of electromagnetic wave sources 3 made of electronic components.
Has been implemented. As shown in FIG. 1, the shield housing 4 is made of, for example, AB which is excellent in impact strength, heat resistance, design, etc.
Using a molding material such as S, PC, PA, PES, or TPEI, or a metal plate, it is sectioned into a box shape having a substantially E-shaped cross section, and a thin conductive layer 5 made of an electromagnetic wave shielding material is formed on the entire inner surface by vapor deposition or sputtering. Or a film is formed by a plating method or the like. The partition wall of the shield housing 4 is a connection rib 6, and the connection rib 6 is generally formed to have a width of about 0.2 to 2 mm. Further, as shown in FIG. 2, the shield molded product 7 is formed into, for example, a substantially rectangular shape in a plan view, and is formed into a substantially U-shaped cross section that opens downward.

【0022】基材8は、例えば寸法安定性、電気的性
質、軽量性等に優れるPEN等の成形材料を用いて0.
025〜0.2mmの厚さを有する加圧加熱可能なフィ
ルム状に成形され、直径1mm以下の貫通孔9が規則的
に複数並べて穿孔形成されている。基材8の成形材料と
しては、PENの他に、電子機器の発熱に耐えられるP
ET、PC、PP、PA、PPS等を用いることもでき
るが、汎用性やコスト等の観点からPENが最適であ
る。また、これ以外に基材8の材料として、0.025
〜1mm、好ましくは0.3〜1mmの厚さを有し、シ
ールド筺体4の接続リブ6に対応する形の金属薄板を用
いることも可能である。
The substrate 8 is made of a molding material such as PEN which is excellent in dimensional stability, electrical properties, lightness and the like.
It is formed into a pressurized and heatable film having a thickness of 025 to 0.2 mm, and a plurality of through-holes 9 having a diameter of 1 mm or less are regularly arranged and formed. As a molding material for the base material 8, in addition to PEN, P
ET, PC, PP, PA, PPS, etc. can be used, but PEN is most suitable from the viewpoint of versatility and cost. In addition, as a material of the base material 8, 0.025
It is also possible to use a thin metal plate having a thickness of 11 mm, preferably 0.3-1 mm and corresponding to the connection rib 6 of the shield housing 4.

【0023】高分子弾性体10は、熱可塑性樹脂、熱硬
化性樹脂、エラストマーと導電性粒子とを混合して用い
ることにより0.1〜1mm、好ましくは0.2〜0.
8mmの厚さを有する屈曲可能な断面板形に成形され、
基材8の複数の貫通孔9を介して一体的に導通接続され
ている。熱可塑性樹脂としては、EPDM、IIR、B
R、NBR、U、F、IR等があげられ、熱硬化性樹脂
としては、スチレン系やポリエスエテル系樹脂等が該当
する。但し、耐熱性、圧縮永久歪み特性、硬度範囲、導
電性の付与等を考慮すると、シリコーンゴムが好適であ
る。
The polymer elastic body 10 is formed by mixing a thermoplastic resin, a thermosetting resin, an elastomer and conductive particles, and is used in an amount of 0.1 to 1 mm, preferably 0.2 to 0.1 mm.
Molded into a bendable cross-section plate having a thickness of 8 mm,
Conductive connection is made integrally through a plurality of through holes 9 in the base material 8. As the thermoplastic resin, EPDM, IIR, B
Examples thereof include R, NBR, U, F, and IR. Examples of the thermosetting resin include a styrene-based resin and a polyester-based resin. However, silicone rubber is preferred in consideration of heat resistance, compression set characteristics, hardness range, conductivity, and the like.

【0024】導電性粒子としては、銀粒子、ニッケル粒
子、炭素繊維粒子等を使用することができる。但し、酸
化による抵抗値の変化の観点から、各種の低抵抗炭素繊
維粒子と金属系粒子とを併用することが望ましい。代表
的な例としては、炭素繊維粒子,ケッチンブラックEC
−DJ500(ライオン株式会社製)があげられる。
As the conductive particles, silver particles, nickel particles, carbon fiber particles and the like can be used. However, from the viewpoint of a change in resistance value due to oxidation, it is desirable to use various low-resistance carbon fiber particles in combination with metal-based particles. Typical examples are carbon fiber particles, Ketchin Black EC
-DJ500 (manufactured by Lion Corporation).

【0025】各高分子弾性体10は、十分なシールド効
果を得るために体積固有抵抗値が0.01〜5Ω・cm
に設定され、ショアA硬度が20〜70Hsの範囲とさ
れる。この高分子弾性体10に弾性を付与する手段とし
ては、各種エラストマーの発泡や導電材の配合重量部数
の調整等があげられる。ショアA硬度は、20〜70H
sの範囲なら自由であるが、安定性を向上させるため、
30〜50Hsの範囲が最適である。
Each polymer elastic body 10 has a volume specific resistance of 0.01 to 5 Ω · cm in order to obtain a sufficient shielding effect.
And the Shore A hardness is in the range of 20 to 70 Hs. Means for imparting elasticity to the polymer elastic body 10 include foaming of various elastomers and adjustment of the blending weight of the conductive material. Shore A hardness is 20-70H
Although it is free within the range of s, in order to improve stability,
The range of 30 to 50 Hs is optimal.

【0026】次に、図4(a)、(b)、(c)、(d)、
(e)、(f)、(g)に基づいてシールド成形品7の製造方
法等について説明すると、先ず、0.025〜1mmの
厚さを有する基材8を用意し、この基材8の厚さ方向に
複数の貫通孔9を打ち抜き金型や針等を使用して並べ設
ける(図4(a)参照)。こうして基材8に貫通孔9を設け
たら、基材8の両面に導電性の高分子弾性体10の原材
料をラミネートや接着等によりそれぞれ重ね設け(図4
(b)参照)、これらを加圧加熱成形機(プレス成形機)の
金型12に型締めして加圧加熱(図4(c)参照)し、基材
8と一対の高分子弾性体10とを一体化して基材8の複
数の貫通孔9と各高分子弾性体10の一部11とを一体
形成する(図4(d)参照)。
Next, FIGS. 4 (a), (b), (c), (d),
(e), (f), and (g), a method of manufacturing the shield molded product 7 will be described. First, a base material 8 having a thickness of 0.025 to 1 mm is prepared. A plurality of through holes 9 are arranged in the thickness direction using a punching die, a needle, or the like (see FIG. 4A). After the through holes 9 are provided in the base material 8, the raw materials of the conductive polymer elastic body 10 are provided on both surfaces of the base material 8 by laminating, bonding, or the like (FIG. 4).
(see FIG. 4 (b)), these are clamped in a mold 12 of a press and heat forming machine (press forming machine), pressurized and heated (see FIG. 4 (c)), and a base material 8 and a pair of polymer elastic bodies are pressed. Then, the plurality of through holes 9 of the base material 8 and the portions 11 of the respective polymer elastic bodies 10 are integrally formed (see FIG. 4D).

【0027】上記作業の際、ポリエステルフィルムとウ
レタン系ゴム等のように、基材8と高分子弾性体10と
の一体成形が困難な場合には、予め基材8にプライマ処
理を施すと作業の効率化を図ることができる。また、金
型12を用いた加圧加熱法により、基材8と一対の高分
子弾性体10とを180℃程度で一体化しても良いが、
なんらこれに限定されるものではない。例えば、基材8
と一対の高分子弾性体10とを射出成形機の金型12A
で一体化し、生産性、品質安定性、及び応用性等を向上
させるようにしても良い(図5参照)。また、図示しない
バンバリーミキサ等で一体化することも可能である。
In the above operation, if it is difficult to integrally form the base material 8 and the elastic polymer 10 like a polyester film and a urethane rubber, it is necessary to perform a primer treatment on the base material 8 in advance. Efficiency can be improved. Further, the base material 8 and the pair of polymer elastic bodies 10 may be integrated at about 180 ° C. by a pressure heating method using the mold 12,
It is not limited to this. For example, the base material 8
And a pair of polymer elastic bodies 10 in a mold 12A of an injection molding machine.
To improve productivity, quality stability, applicability, etc. (see FIG. 5). It is also possible to integrate them with a Banbury mixer (not shown) or the like.

【0028】次いで、シールド筺体4の接続リブ6の平
面形状に対応するよう凹凸に切削加工された絞り金型1
3に、上記作業で得られた一応のシールド成形品7を型
締めしてセットし、このシールド成形品7を加圧加熱し
ながら平面日字形で断面略U字形に絞り成形(図4(e)
参照)し、その後、このシールド成形品7の不要な端部
や縁等を打ち抜き法等で適宜除去すれば、所定の形に屈
曲したシールド成形品7を得ることができる(図4(f)
参照)。この際、シールド成形品7は、シールド筺体4
の接続リブ6の寸法の100%〜130%の寸法範囲で
断面略U字形に絞り成形される。
Next, the drawing die 1 which is cut into irregularities so as to correspond to the planar shape of the connection rib 6 of the shield housing 4.
In FIG. 3, the tentative shield molded product 7 obtained by the above operation is clamped and set, and the shield molded product 7 is drawn and formed into a flat U-shaped cross section in a flat Japanese character shape while heating under pressure (FIG. 4 (e)). )
Then, if unnecessary ends and edges of the shield molded product 7 are appropriately removed by a punching method or the like, the shield molded product 7 bent into a predetermined shape can be obtained (FIG. 4F).
reference). At this time, the shield molded product 7 is
Is drawn into a substantially U-shaped cross section in a size range of 100% to 130% of the size of the connection rib 6 of FIG.

【0029】シールド成形品7を製造したら、このシー
ルド成形品7をシールド筺体4の全接続リブ6に跨ぐよ
う嵌入(図4(g)参照)し、シールド成形品7をプリント
基板1のグラウンド層2に抵抗値が低くなるよう面接触
状態に固定してグラウンドすれば、シールド筺体4の導
電層5が不要な電磁波を反射吸収したり、減衰させたり
してシールド筺体4内に漏れなく封じ込め、電磁波、電
波、又は磁場から電子部品をきわめて有効に保護するこ
とができる。シールド筺体4の固定には、図示しない締
結具16やクランプ部材等を用いることができる。この
際、プリント基板1とシールド筺体4との間に弾性を有
するシールド成形品7が安定した状態で介在し、隙間S
を吸収して埋めるので、僅かな隙間Sが発生したり、プ
リント基板1とシールド筺体4とが不連続に接触したり
するのを有効に防止することが可能になる。
After manufacturing the shield molded product 7, the shield molded product 7 is fitted over all the connection ribs 6 of the shield housing 4 (see FIG. 4 (g)), and the shield molded product 7 is connected to the ground layer of the printed circuit board 1. 2, if the ground is fixed to the surface contact state so that the resistance value becomes low, the conductive layer 5 of the shield housing 4 reflects and attenuates or attenuates unnecessary electromagnetic waves and is sealed in the shield housing 4 without leakage. Electronic components can be protected very effectively from electromagnetic waves, radio waves, or magnetic fields. For fixing the shield housing 4, a fastener 16 or a clamp member (not shown) can be used. At this time, the shield molded product 7 having elasticity is interposed between the printed board 1 and the shield housing 4 in a stable state, and the gap S
Is absorbed and filled, it is possible to effectively prevent the occurrence of a small gap S and the discontinuous contact between the printed circuit board 1 and the shield housing 4.

【0030】上記構成によれば、他の部品との接触で容
易に変形するばね部材や金属薄板を省略したり、露出さ
せることがないので、位置ずれ、変形、損傷を有効に抑
制防止することができるとともに、低い圧接力で安定し
た導通性を得ることができる。また、高分子弾性体10
を使用するので、弾性を著しく向上させることができ、
しかも、組み込み時に屈曲した高分子弾性体10の体積
固有抵抗値が0.01〜5Ω・cmであり、一定寸法間
隔の部分接続ではなく、接触面積が大幅に拡大している
ので、携帯電話等で使用する高周波に十分対応すること
が可能になる。また、シールド筺体4の接続リブ6にシ
ールド成形品7を小スペースで嵌入するので、実装性、
作業の効率化、及び取扱の容易化を図ることが可能にな
る。
According to the above configuration, the spring member and the thin metal plate which are easily deformed by contact with other parts are not omitted or exposed, so that displacement, deformation and damage can be effectively suppressed and prevented. And stable conductivity can be obtained with a low pressure contact force. In addition, the polymer elastic body 10
The use of can greatly improve the elasticity,
Moreover, the volume elastic resistance value of the polymer elastic body 10 bent at the time of installation is 0.01 to 5 Ω · cm, and the contact area is greatly increased instead of the partial connection at a fixed dimensional interval. It is possible to sufficiently cope with the high frequency used in the method. Also, since the shield molded product 7 is fitted into the connection rib 6 of the shield housing 4 in a small space, the mounting property is improved.
It is possible to improve the work efficiency and facilitate the handling.

【0031】また、基材8に高分子弾性体10を重ね設
けるので、平面的な形の保持性も良く、組み込み時にお
けるシールド成形品7の適切な実装が大いに期待でき
る。また、高分子弾性体10としてシリコーンゴム等を
使用すれば、圧縮永久歪み、耐熱性、耐寒性、耐薬品
性、耐候性、耐オゾン性、電気的性質、硬度、及びコス
トの点で実に良好な結果を得ることができる。さらに、
シールド筺体4の接続リブ6にゴム弾性体の原料を吐出
機器等で塗布して乾燥硬化する必要性もないから、作業
や設備が大幅に簡素化し、大がかりになることもない。
さらにまた、二色成形法やディスペンス法により導電性
ゴム弾性体19を製造する場合とは異なり、製品製造時
の部品搬送を伴わない高品質で安価なシールド成形品7
を提案することができる。
Further, since the polymer elastic body 10 is superposed on the base material 8, the planar shape can be well maintained, and the proper mounting of the shield molded product 7 at the time of assembling can be greatly expected. Also, if silicone rubber or the like is used as the polymer elastic body 10, it is quite good in terms of compression set, heat resistance, cold resistance, chemical resistance, weather resistance, ozone resistance, electrical properties, hardness, and cost. Results can be obtained. further,
Since there is no need to apply a rubber elastic material to the connection rib 6 of the shield housing 4 with a discharge device or the like and to dry and cure the material, work and equipment are greatly simplified, and no large scale is required.
Furthermore, unlike the case where the conductive rubber elastic body 19 is manufactured by a two-color molding method or a dispensing method, a high-quality and inexpensive shield molded product 7 that does not involve the transport of parts during product manufacture.
Can be suggested.

【0032】次に、図6及び図7は本発明の他の実施形
態を示すもので、この場合には、シールド成形品7を、
屈曲可能な基材8と、この基材8の片面に積層される導
電性の高分子弾性体10とから構成し、基材8の複数の
貫通孔9に高分子弾性体10の一部11をそれぞれ嵌め
入れて一体成形し、金属製のシールド筺体4の全導電層
5にシールド成形品7を対応するよう屈曲させて一体成
形するとともに、導電層5に高分子弾性体10の一部1
1を接触させて導通性を確保するようにしている。その
他の部分については、上記実施形態と略同様であるので
説明を省略する。
FIGS. 6 and 7 show another embodiment of the present invention. In this case, the shield molded product 7 is
The base material 8 includes a flexible base material 8 and a conductive polymer elastic body 10 laminated on one surface of the base material 8. Are fitted into each other, and are integrally molded. The shield molded product 7 is bent to correspond to all the conductive layers 5 of the metal shield housing 4 to be integrally molded, and a part 1 of the polymer elastic body 10 is formed in the conductive layer 5.
1 are brought into contact with each other to ensure conductivity. The other parts are substantially the same as those in the above-described embodiment, and a description thereof will be omitted.

【0033】本実施形態においても上記実施形態と同様
の作用効果が期待でき、しかも、シールド筺体4の接続
リブ6にシールド成形品7を嵌入する必要性が全くない
ので、実装性、作業の効率化、及び取扱の容易化をさら
に向上させることができるのは明らかである。また、シ
ールド筺体4の軽量化も期待できる。
In this embodiment, the same operation and effect as those in the above embodiment can be expected. Further, since there is no need to insert the shield molded product 7 into the connection rib 6 of the shield housing 4, mounting efficiency and work efficiency are reduced. Obviously, the simplicity and ease of handling can be further improved. In addition, a reduction in the weight of the shield housing 4 can be expected.

【0034】次に、図8は第二の発明の実施形態を示す
もので、この場合には、一対のプリント基板1間に介在
されて複数の電磁波発生源3を包囲するプラスチック製
で平面枠形のフレーム15と、このフレーム15の前後
左右にそれぞれ嵌合されて一対のプリント基板1を電気
的に導通させる断面略U字形のシールド成形品7とを備
え、各シールド成形品7を、0.025〜1mmの厚さ
を有し、フレーム15に接触する複数の貫通孔9付きの
基材8と、この基材8の片面に積層接着して一体化さ
れ、一対のプリント基板1のグラウンド層2や電極部等
の導通部に圧接する導電性の高分子弾性体10とから構
成する。その他の部分については、上記実施形態と略同
様であるので説明を省略する。
FIG. 8 shows a second embodiment of the present invention. In this case, a plastic flat frame which surrounds a plurality of electromagnetic wave sources 3 interposed between a pair of printed circuit boards 1 is shown. And a shield molded product 7 having a substantially U-shaped cross section, which is fitted to the front, rear, left and right sides of the frame 15 and electrically connects the pair of printed circuit boards 1 to each other. A base material 8 having a thickness of 0.25 to 1 mm and having a plurality of through holes 9 in contact with the frame 15, and being laminated and integrated on one surface of the base material 8, and integrated with the ground of the pair of printed circuit boards 1. And a conductive polymer elastic body 10 which is in pressure contact with a conductive portion such as the layer 2 or an electrode portion. The other parts are substantially the same as those in the above-described embodiment, and a description thereof will be omitted.

【0035】本実施形態においても上記実施形態と同様
の作用効果が期待でき、しかも、プリント基板1を複数
枚使用する場合でも、変形や損傷を有効に抑制防止する
ことができるとともに、低い圧接力で安定した電気的接
続を得ることができる。また、一定寸法間隔の部分接続
ではないから、十分高周波に対処することが可能にな
る。さらに、フレーム15に小さなシールド成形品7を
嵌入するので、実装性、作業の効率化、及び取扱の容易
化が大いに期待できる。
In this embodiment, the same function and effect as those of the above embodiment can be expected. Further, even when a plurality of printed circuit boards 1 are used, deformation and damage can be effectively suppressed and prevented, and a low pressing force can be obtained. And a stable electrical connection can be obtained. In addition, since the partial connection is not performed at a fixed interval, it is possible to sufficiently cope with a high frequency. Further, since the small shield molded product 7 is fitted into the frame 15, mounting efficiency, work efficiency, and ease of handling can be greatly expected.

【0036】[0036]

【実施例】以下、本発明に係る電磁波シールド成形品の
実施例を比較例と共に説明し、評価検討する。 実施例1 先ず、0.1mmの厚さを有する基材8を用意し、この
基材8に直径0.5mmの貫通孔9と位置合わせ孔とを
打ち抜き金型で複数並べ設けた。基材8としては、厚さ
0.1mmのポリエスエルフィルムシート,ルミラー
(東レ株式会社製)を使用した。また、複数の貫通孔9は
3mm間隔とした。こうして基材8に貫通孔9を設けた
ら、射出成形機の金型12Aに基材8をインサートして
型締めし、液状反応型シリコーンゴムKE1940−3
0(信越化学工業株式会社製)に導電性カーボンケッチン
ブラック(ライオン株式会社製)を20材料部数含有させ
た導電性の高分子弾性体10の原材料を射出し、基材8
と一対の高分子弾性体10とを一体成形して基材8の複
数の貫通孔9と各高分子弾性体10の一部11とを一体
形成した。この際の成形条件は、射出圧15MPa、射
出温度120℃、射出時間40sとした。
EXAMPLES Examples of the electromagnetic wave shield molded product according to the present invention will be described below along with comparative examples, and evaluation and examination will be made. Example 1 First, a base material 8 having a thickness of 0.1 mm was prepared, and a plurality of through-holes 9 having a diameter of 0.5 mm and alignment holes were provided in the base material 8 by a punching die. As the base material 8, a 0.1 mm thick polyester film sheet, Lumirror
(Manufactured by Toray Industries, Inc.). Further, the plurality of through holes 9 were set at intervals of 3 mm. When the through holes 9 are provided in the base material 8 in this manner, the base material 8 is inserted into the mold 12A of the injection molding machine and clamped, and the liquid reaction type silicone rubber KE1940-3 is formed.
0 (manufactured by Shin-Etsu Chemical Co., Ltd.) and 20 parts by mass of conductive carbon ketchin black (manufactured by Lion Corporation) are injected with the raw material of the conductive polymer elastic body 10,
And a pair of polymer elastic bodies 10 were integrally formed to integrally form the plurality of through holes 9 of the base material 8 and a part 11 of each polymer elastic body 10. The molding conditions at this time were an injection pressure of 15 MPa, an injection temperature of 120 ° C., and an injection time of 40 s.

【0037】次いで、シールド筺体4の接続リブ6の平
面形に対応するよう凹凸に切削加工された深さ1.5m
mの絞り金型13に、上記作業で得られた一応のシール
ド成形品7を型締めしてセットし、このシールド成形品
7を加圧加熱しながら断面略U字形に絞り成形した。成
形条件は、成形温度120℃、成形時間20sとした。
そしてその後、シールド成形品7の不要な端部や縁等を
打ち抜き法等で適宜除去して仕上げ、所定の形に屈曲し
たシールド成形品7を得た。このシールド成形品7は、
全体の厚さが0.7mm、各高分子弾性体10の厚さが
0.3mmであり、プリント基板1とシールド筺体4と
の間で0.3mm加圧組み込みを想定した場合の抵抗値
が2Ωである。
Next, a depth of 1.5 m, which is cut into irregularities so as to correspond to the planar shape of the connection rib 6 of the shield housing 4.
The shield molded product 7 obtained in the above operation was clamped and set in a draw mold 13 of m, and the shield molded product 7 was drawn and formed into a substantially U-shaped cross section while heating under pressure. The molding conditions were a molding temperature of 120 ° C. and a molding time of 20 s.
After that, unnecessary ends, edges, and the like of the shield molded product 7 were appropriately removed by a punching method or the like and finished to obtain a shield molded product 7 bent into a predetermined shape. This shield molded product 7
The total thickness is 0.7 mm, the thickness of each polymer elastic body 10 is 0.3 mm, and the resistance value when assuming a 0.3 mm press-fit between the printed circuit board 1 and the shield housing 4 is 2Ω.

【0038】実施例2 先ず、0.1mmの厚さを有する上記基材8を用意し、
この基材8にプライマーC(信越化学工業株式会社製)を
使用してプライマ処理を施し、室温下で30分間風乾さ
せた後、直径0.7mmの貫通孔9を打ち抜き金型で複
数並べ設けた。この際、複数の貫通孔9は5mm間隔と
した。基材8に貫通孔9を設けたら、基材8の両面に導
電性の高分子弾性体10の原材料をそれぞれ重ね設け、
これらを加圧加熱成形機の金型12に型締めして加圧加
熱し、基材8と一対の高分子弾性体10とを一体化して
基材8の複数の貫通孔9と各高分子弾性体10の一部1
1とを一体形成した。
Example 2 First, the base material 8 having a thickness of 0.1 mm was prepared.
The base material 8 was subjected to a primer treatment using Primer C (manufactured by Shin-Etsu Chemical Co., Ltd.), air-dried at room temperature for 30 minutes, and a plurality of through-holes 9 having a diameter of 0.7 mm were provided in a punching die. Was. At this time, the plurality of through holes 9 were set at intervals of 5 mm. After the through holes 9 are provided in the base material 8, the raw materials of the conductive polymer elastic body 10 are respectively provided on both surfaces of the base material 8,
These are clamped in a mold 12 of a press and heat molding machine, heated under pressure, and the base material 8 and a pair of polymer elastic bodies 10 are integrated to form a plurality of through holes 9 in the base material 8 and each polymer. Part 1 of elastic body 10
And 1 were integrally formed.

【0039】高分子弾性体10としては、シリコーンゴ
ムコンパウンドKE941U銀粒子とカーボンEC−D
J50(ライオンアクゾ株式会社製)を3対7の比率でシ
リコーンゴムコンパウンドに対し、5材料部数混練し、
規定の厚さにシーティング裁断したものを用いた。成形
条件は、成形温度180℃、成形時間4minである。
As the polymer elastic body 10, silicone rubber compound KE941U silver particles and carbon EC-D
J50 (manufactured by Lion Akzo Co., Ltd.) was kneaded at a ratio of 3: 7 with respect to the silicone rubber compound in an amount of 5 material parts,
Sheets cut to the specified thickness were used. The molding conditions are a molding temperature of 180 ° C. and a molding time of 4 minutes.

【0040】次いで、シールド筺体4の接続リブ6の平
面形に対応するよう凹凸に切削加工された深さ1.3m
mの絞り金型13に、上記作業で得られた一応のシール
ド成形品7を型締めしてセットし、このシールド成形品
7を加圧加熱しながら断面略U字形に絞り成形した。成
形条件は、成形温度130℃、成形時間30sとした。
そしてその後、シールド成形品7の不要な端部や縁等を
打ち抜き法等で適宜除去して仕上げ、所定の形に屈曲し
たシールド成形品7を得た。実施例1、実施例2で得ら
れたシールド成形品7と、図10、図11に示す比較例
とを試験し、その結果を表1にまとめた。
Next, a depth of 1.3 m, which is cut into irregularities so as to correspond to the planar shape of the connection rib 6 of the shield housing 4.
The shield molded product 7 obtained in the above operation was clamped and set in a draw mold 13 of m, and the shield molded product 7 was drawn and formed into a substantially U-shaped cross section while heating under pressure. The molding conditions were a molding temperature of 130 ° C. and a molding time of 30 s.
After that, unnecessary ends, edges, and the like of the shield molded product 7 were appropriately removed by a punching method or the like and finished to obtain a shield molded product 7 bent into a predetermined shape. The shield molded product 7 obtained in Example 1 and Example 2 and the comparative example shown in FIGS. 10 and 11 were tested, and the results are summarized in Table 1.

【0041】[0041]

【表1】 [Table 1]

【0042】表1からも明らかなように、北米向けモデ
ル(デジタルTDMA/アナログデュアルバンド)に組み
込み、組み込み作業性や通信障害を確認したところ、実
施例1、2で得られたシールド成形品7は、ばね部材1
8や導電性ゴム弾性体19に比べ、きわめて良好な組み
込み作業性と輸送時の形状保持性とを得ることができ
た。さらに、電磁波の障害も発生せず、良好な通信結果
を得ることもできた。これに対し、テスト機に組み込ん
だ比較例はばね部材18と二色成形した導電性ゴム弾性
体19であるが、導電性ゴム弾性体19は、組み込み時
にねじれが発生したと見られ、しかも、プリント基板1
からの開放時には変形した。
As is apparent from Table 1, the shield molded product 7 obtained in Examples 1 and 2 was confirmed by incorporating it into a model for North America (digital TDMA / analog dual band) and confirming the workability of installation and communication failure. Is a spring member 1
As compared with No. 8 and the conductive rubber elastic body 19, very good workability in assembling and shape retention during transportation could be obtained. In addition, no interference of electromagnetic waves occurred, and good communication results could be obtained. On the other hand, the comparative example incorporated in the tester is the conductive rubber elastic body 19 formed by two-color molding with the spring member 18, and the conductive rubber elastic body 19 is considered to have twisted at the time of assembling. Printed circuit board 1
At the time of opening from, it was deformed.

【0043】[0043]

【発明の効果】以上のように本発明によれば、シールド
成形品が他部品等との接触等で簡単に変形することがな
く、高周波に十分対応することもでき、しかも、組み込
み時にシールド成形品を適切な位置にセットすることが
できるという効果がある。また、十分な形状復元性、圧
縮永久歪み、弾性度、又は硬度を得ることもでき、大が
かりな作業や設備を省略することが可能になる。
As described above, according to the present invention, the shield molded product does not easily deform due to contact with other parts or the like, and can sufficiently cope with high frequencies. There is an effect that the article can be set at an appropriate position. In addition, sufficient shape resilience, permanent compression set, elasticity, or hardness can be obtained, and large-scale operations and equipment can be omitted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電磁波シールド成形品の実施形態
を示す断面説明図である。
FIG. 1 is an explanatory sectional view showing an embodiment of an electromagnetic wave shield molded product according to the present invention.

【図2】本発明に係る電磁波シールド成形品の実施形態
を示す斜視図である。
FIG. 2 is a perspective view showing an embodiment of an electromagnetic wave shield molded product according to the present invention.

【図3】本発明に係る電磁波シールド成形品の実施形態
を示す部分断面説明図である。
FIG. 3 is a partial cross-sectional explanatory view showing an embodiment of an electromagnetic wave shield molded product according to the present invention.

【図4】本発明に係る電磁波シールド成形品の製造方法
の実施形態を示す説明図で、(a)図は基材に貫通孔を並
設した状態を示す断面説明図、(b)図は基材の両面に導電
性の高分子弾性体の原材料をそれぞれ重ね設けた状態を
示す断面説明図、(c)図は金型に型締めして加圧加熱した
状態を示す断面説明図、(d)図は基材と高分子弾性体とを
一体化した状態を示す断面説明図、(e)図はシールド成形
品を加圧加熱しながら断面略U字形に絞り成形した状態
を示す断面説明図、(f)図は所定の形に屈曲したシールド
成形品を示す断面説明図、(g)図はシールド筺体の接続
リブにシールド成形品を嵌入する状態を示す断面説明図
である。
FIG. 4 is an explanatory view showing an embodiment of a method for manufacturing an electromagnetic wave shield molded product according to the present invention. FIG. 4 (a) is a cross-sectional explanatory view showing a state in which through holes are juxtaposed in a base material, and FIG. Cross-sectional explanatory view showing a state in which the raw material of the conductive polymer elastic body is provided on both sides of the base material, respectively, (c) diagram is a cross-sectional explanatory view showing a state where the mold is clamped and heated under pressure, ( FIG. d) is a cross-sectional explanatory view showing a state in which the base material and the polymer elastic body are integrated, and (e) is a cross-sectional explanatory view showing a state in which the shield molded product is drawn and formed into a substantially U-shaped cross section while being heated under pressure. FIG. 1 (f) is a cross-sectional explanatory view showing a shield molded product bent into a predetermined shape, and FIG. 2 (g) is a cross-sectional explanatory diagram showing a state where the shield molded product is fitted into a connection rib of a shield housing.

【図5】本発明に係る電磁波シールド成形品の実施形態
における基材と高分子弾性体とを射出成形法で一体化す
る状態を示す断面説明図である。
FIG. 5 is an explanatory cross-sectional view showing a state in which a base and an elastic polymer are integrated by an injection molding method in an embodiment of the electromagnetic wave shield molded product according to the present invention.

【図6】本発明に係る電磁波シールド成形品の他の実施
形態を示す部分断面説明図である。
FIG. 6 is a partial cross-sectional explanatory view showing another embodiment of the molded product of the electromagnetic wave shield according to the present invention.

【図7】本発明に係る電磁波シールド成形品の他の実施
形態を示す断面説明図である。
FIG. 7 is an explanatory sectional view showing another embodiment of the molded product of the electromagnetic wave shield according to the present invention.

【図8】本発明の第二の発明に係る電磁波シールド成形
品の実施形態を示す斜視説明図である。
FIG. 8 is an explanatory perspective view showing an embodiment of an electromagnetic shield molded product according to the second invention of the present invention.

【図9】従来の電磁波シールド手段を示す断面図であ
る。
FIG. 9 is a sectional view showing a conventional electromagnetic wave shielding means.

【図10】従来の電磁波シールド用の金属薄板を示す斜
視説明図である。
FIG. 10 is a perspective explanatory view showing a conventional thin metal plate for electromagnetic wave shielding.

【図11】従来の電磁波シールド用の導電性ゴム弾性体
を示す斜視説明図である。
FIG. 11 is a perspective view showing a conventional conductive rubber elastic body for electromagnetic wave shielding.

【図12】シールド効果と体積固有抵抗値との関係を示
す説明図である。
FIG. 12 is an explanatory diagram showing a relationship between a shielding effect and a volume specific resistance value.

【符号の説明】[Explanation of symbols]

1 プリント基板(基板) 2 グラウンド層 3 電磁波発生源 4 シールド筺体 5 導電層 6 接続リブ 7 シールド成形品 8 基材 9 貫通孔 10 高分子弾性体 11 高分子弾性体の一部 S 隙間 DESCRIPTION OF SYMBOLS 1 Printed circuit board (board) 2 Ground layer 3 Electromagnetic wave generation source 4 Shield housing 5 Conductive layer 6 Connection rib 7 Shield molded product 8 Base material 9 Through hole 10 Polymer elastic body 11 Part of polymer elastic body S Gap

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板のグラウンド層に取り付けられて電
磁波発生源を覆うシールド筺体と、このシールド筺体に
設けられるシールド成形品とを含んでなる電磁波シール
ド成形品であって、 上記シールド成形品を、0.025〜1mmの厚さを有
する貫通孔付きの基材と、この基材の少なくとも片面に
一体化される導電性の高分子弾性体とから構成し、この
高分子弾性体の体積固有抵抗値を0.01〜5Ω・cm
とするとともに、該高分子弾性体のショアA硬度を20
〜70Hsとしたことを特徴とする電磁波シールド成形
品。
1. An electromagnetic shield molded product comprising: a shield housing attached to a ground layer of a substrate and covering an electromagnetic wave generation source; and a shield molded product provided in the shield housing. A base material having a through hole having a thickness of 0.025 to 1 mm, and a conductive polymer elastic body integrated on at least one surface of the base material, and a volume resistivity of the polymer elastic body The value is 0.01-5Ωcm
And the Shore A hardness of the elastic polymer is 20
An electromagnetic wave shield molded product characterized by having a pressure of 70 to 70 Hs.
【請求項2】 上記シールド成形品を、上記基材と、こ
の基材の両面にそれぞれ積層される上記高分子弾性体と
から構成してこの一対の高分子弾性体を基材の貫通孔を
介して接続し、上記シールド成形品を断面略U字形に形
成して上記シールド筺体のグラウンド層用の接続リブに
嵌合可能とした請求項1記載の電磁波シールド成形品。
2. The shield molded article is composed of the base material and the polymer elastic bodies laminated on both sides of the base material, respectively, and the pair of polymer elastic bodies is formed through a through hole of the base material. 2. The electromagnetic shield molded product according to claim 1, wherein the shield molded product is formed to have a substantially U-shaped cross section so as to be fitted to a connection rib for a ground layer of the shield housing.
【請求項3】 上記シールド成形品を、上記基材と、こ
の基材の片面に積層される高分子弾性体とから構成して
基材の貫通孔と高分子弾性体の一部とを一体形成し、上
記シールド筺体の導電層に上記シールド成形品を屈曲さ
せて一体形成するとともに、該導電層に上記高分子弾性
体の一部を接触させた請求項1記載の電磁波シールド成
形品。
3. The shield molded product is composed of the base material and a polymer elastic body laminated on one surface of the base material, and a through hole of the base material and a part of the polymer elastic body are integrated. 2. The electromagnetic wave shield molded product according to claim 1, wherein the shield molded product is bent and integrally formed with the conductive layer of the shield housing, and a part of the polymer elastic body is brought into contact with the conductive layer.
【請求項4】 複数の基板間に介在されて電磁波発生源
を囲むフレームと、このフレームに嵌められて該複数の
基板を電気的に導通させるシールド成形品とを含んでな
る電磁波シールド成形品であって、 上記シールド成形品を、0.025〜1mmの厚さを有
する貫通孔付きの基材と、この基材の片面に重ねて一体
化される導電性の高分子弾性体とから構成して基材の貫
通孔と高分子弾性体の一部とを一体形成し、この高分子
弾性体の体積固有抵抗値を0.01〜5Ω・cmとする
とともに、該高分子弾性体のショアA硬度を20〜70
Hsとしたことを特徴とする電磁波シールド成形品。
4. An electromagnetic wave shield molded product comprising a frame interposed between a plurality of substrates and surrounding an electromagnetic wave generation source, and a shield molded product fitted to the frame and electrically conducting the plurality of substrates. The shield molded product is composed of a base material having a through hole having a thickness of 0.025 to 1 mm, and a conductive polymer elastic body which is integrated on one surface of the base material. The through-hole of the base material and a part of the polymer elastic body are formed integrally with each other to have a volume resistivity value of 0.01 to 5 Ω · cm of the polymer elastic body. Hardness 20-70
An electromagnetic wave shield molded product characterized by Hs.
【請求項5】 0.025〜1mmの厚さを有する基材
に貫通孔を設け、この基材の少なくとも片面に導電性の
高分子弾性体を設け、これら基材と高分子弾性体とを一
体化して基材の貫通孔と高分子弾性体の一部とを一体形
成するとともに、所定の形に屈曲してシールド成形品を
成形し、このシールド成形品を形成する上記高分子弾性
体の体積固有抵抗値を0.01〜5Ω・cmとし、かつ
高分子弾性体のショアA硬度を20〜70Hsとするこ
とを特徴とする電磁波シールド成形品の製造方法。
5. A through-hole is provided in a base material having a thickness of 0.025 to 1 mm, a conductive polymer elastic body is provided on at least one surface of the base material, and the base material and the polymer elastic body are connected to each other. Integrally forming the through hole of the base material and a part of the polymer elastic body, and bending the molded article into a predetermined shape to form a shield molded article. A method for producing a molded electromagnetic wave shield, wherein the volume resistivity is 0.01 to 5 Ω · cm, and the Shore A hardness of the elastic polymer is 20 to 70 Hs.
JP29286399A 1999-10-14 1999-10-14 Electromagnetic wave shield molding Expired - Fee Related JP3630595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29286399A JP3630595B2 (en) 1999-10-14 1999-10-14 Electromagnetic wave shield molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29286399A JP3630595B2 (en) 1999-10-14 1999-10-14 Electromagnetic wave shield molding

Publications (2)

Publication Number Publication Date
JP2001111282A true JP2001111282A (en) 2001-04-20
JP3630595B2 JP3630595B2 (en) 2005-03-16

Family

ID=17787358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29286399A Expired - Fee Related JP3630595B2 (en) 1999-10-14 1999-10-14 Electromagnetic wave shield molding

Country Status (1)

Country Link
JP (1) JP3630595B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003039580A (en) * 2001-07-31 2003-02-13 Inoac Corp Conductive sheet and method for manufacturing the same
JP2009525930A (en) * 2006-02-07 2009-07-16 レクサム ヘルスケア パッケイジング インコーポレイテッド Lid and package using induction seal and RFID tag
JP2017521876A (en) * 2015-05-21 2017-08-03 シャオミ・インコーポレイテッド Circuit protection structure and electronic device
CN108575081A (en) * 2017-03-14 2018-09-25 景硕科技股份有限公司 Screening arrangement of electromagnetism interference and preparation method thereof
WO2020262218A1 (en) * 2019-06-26 2020-12-30 住友理工株式会社 Box-type electronic unit and method for manufacturing same
WO2022035171A1 (en) * 2020-08-11 2022-02-17 삼성전자 주식회사 Electronic device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003039580A (en) * 2001-07-31 2003-02-13 Inoac Corp Conductive sheet and method for manufacturing the same
JP2009525930A (en) * 2006-02-07 2009-07-16 レクサム ヘルスケア パッケイジング インコーポレイテッド Lid and package using induction seal and RFID tag
JP2017521876A (en) * 2015-05-21 2017-08-03 シャオミ・インコーポレイテッド Circuit protection structure and electronic device
CN108575081A (en) * 2017-03-14 2018-09-25 景硕科技股份有限公司 Screening arrangement of electromagnetism interference and preparation method thereof
CN108575081B (en) * 2017-03-14 2019-08-16 景硕科技股份有限公司 Screening arrangement of electromagnetism interference and preparation method thereof
WO2020262218A1 (en) * 2019-06-26 2020-12-30 住友理工株式会社 Box-type electronic unit and method for manufacturing same
WO2022035171A1 (en) * 2020-08-11 2022-02-17 삼성전자 주식회사 Electronic device

Also Published As

Publication number Publication date
JP3630595B2 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
US5847317A (en) Plated rubber gasket for RF shielding
KR100753570B1 (en) Electromagnetic interference shield and method of making the same
JP3703976B2 (en) Shielded PC card
US20090084600A1 (en) Nano coating for emi gaskets
US20080080160A1 (en) Emi shielding assemblies
JP2004511915A (en) Composite corrugated gasket for low closing force EMI shielding
KR20100135294A (en) Integrated antenna and emi shielding support member for portable communications terminals
AU7092098A (en) A shielding housing and a method of producing a shielding housing
US9888562B2 (en) Electromagnetic interference shielding and strain relief structures for coupled printed circuits
JP2001111282A (en) Electromagnetic wave shield molded product and manufacturing method therefore
NL1036864C2 (en) Circuit board having isolation cover and assembling method thereof.
JP2898603B2 (en) Circuit board shield mechanism
JP3347668B2 (en) Shield soft packing and electronic device having the same
KR100935184B1 (en) Method for manufacturing cushion gasket for shielding electromagnetic wave and cushion gasket produced by the same
CN1717969A (en) Shield box and shield method
JP2001187968A (en) Gasket for electric and electronic apparatus
WO2002052916A1 (en) Emi and rfi containment enclosure for electronic devices
KR100657051B1 (en) EMI shielding case for printed circuit board and manufacturing method for EMI shielding case
WO2014049920A1 (en) Electromagnetic wave propagation system and electromagnetic wave interface connector
JP2004186554A (en) Shield box and shielding method
JP2004311642A (en) Cabinet and fixing structure of shield box
JP2004311499A (en) Shield box and its mounting structure
KR100480869B1 (en) Electronic shield for wireless telephone
KR100748593B1 (en) Heat adhesive conductive elastomer gasket and Method for the same
JP5257326B2 (en) Portable terminal

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040726

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Effective date: 20041214

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20101224

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20101224

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20131224

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20131224

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees