JP2001104804A - Method of manufacturing for catalyst for cleaning exhaust gas - Google Patents

Method of manufacturing for catalyst for cleaning exhaust gas

Info

Publication number
JP2001104804A
JP2001104804A JP28822799A JP28822799A JP2001104804A JP 2001104804 A JP2001104804 A JP 2001104804A JP 28822799 A JP28822799 A JP 28822799A JP 28822799 A JP28822799 A JP 28822799A JP 2001104804 A JP2001104804 A JP 2001104804A
Authority
JP
Japan
Prior art keywords
catalyst
metal
carrier
metal particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28822799A
Other languages
Japanese (ja)
Inventor
Keiji Miyake
慶治 三宅
Shinji Tsuji
慎二 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP28822799A priority Critical patent/JP2001104804A/en
Publication of JP2001104804A publication Critical patent/JP2001104804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a catalyst for cleaning exhaust gas of NOx occlusion reduction type which is excellent in purifying ratio. SOLUTION: In a method for manufacturing a catalyst decomposing NOx in which particles of a metal selected from a group composed of Pt, Pd, Au, Ag, Rh and Ir are deposited on an inorganic carrier and particles of another metal selected from the group composed of Pt, Pd, Au, Ag, Rh and Ir are laminated on this metallic particles, the inorganic carrier having equipotential point of pH 3 to 10 is used and the metal is laminated on the metallic particles by reductive deposition method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気ガス浄化用触
媒の製造方法に関し、特には、リーン雰囲気でNOX
化性能を向上させた、第1の触媒金属粒子とその上に積
相された第2の金属を備えたNOX 浄化用触媒の製造方
法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a manufacturing method of an exhaust gas purifying catalyst, in particular, improved the NO X purification performance in a lean atmosphere, is Sekisho thereon a first catalytic metal particles the method of manufacturing of the NO X purification catalyst with a second metal.

【0002】[0002]

【従来の技術】近年、地球保護の観点より、排気規制及
び燃費規制が世界的に年々強化されつつある。この対応
策として、内燃機関においては、燃費向上の有効な手段
としてリーンバーンエンジンが開発され、その排気ガス
浄化触媒として、従来の三元触媒にリーン雰囲気でNO
X を吸蔵する機能を付加させたNOX 吸蔵還元型三元触
媒が開発されている。
2. Description of the Related Art In recent years, from the viewpoint of protecting the earth, emission regulations and fuel consumption regulations have been strengthened worldwide every year. As a countermeasure, in an internal combustion engine, a lean burn engine has been developed as an effective means of improving fuel efficiency.
The NO X storage reduction three-way catalyst obtained by adding a function of occluding X have been developed.

【0003】この触媒を用いるリーンバーンエンジン
は、燃料を、常時は空燃比(A/F)がリーン(酸素過
剰)の条件で燃焼させ、一時的にストイキ(理論空燃
比)〜リッチ(燃料過剰)の条件で燃焼させる。排気ガ
ス中のHCやCOは、リーン条件下で酸化雰囲気と触媒
の作用により効率的に燃焼除去され、一方、NOX はリ
ーン条件下では吸蔵材に捕捉され、それが一時的なスト
イキ〜リッチ条件下において放出され、還元雰囲気と触
媒の作用により還元浄化される。
[0003] In a lean burn engine using this catalyst, fuel is normally burned under the condition that the air-fuel ratio (A / F) is lean (excessive oxygen), and the fuel is temporarily stored between stoichiometric (stoichiometric air-fuel ratio) and rich (excess fuel). Burn under the conditions of HC and CO in the exhaust gas is efficiently burned and removed by the action of an oxidizing atmosphere and the catalyst under lean conditions, whereas, NO X is trapped by the occluding material under lean conditions, it temporary stoichiometric-rich It is released under conditions and reduced and purified by the action of the reducing atmosphere and the catalyst.

【0004】これらの燃焼条件とNOX 吸蔵還元型三元
触媒の作用により、全体として、燃費が向上すると同時
に排気ガス中のHC、CO、NOX が効率よく浄化され
ることができる。このような空燃比制御とNOX 吸蔵材
を組み合わせたリーンバーンシステムは、従来の三元触
媒と理論空燃比付近での排気ガス比較し、燃費の向上と
CO、HC、NOX の総発生量を削減する課題につい
て、一定の成功を収めている。
[0004] By the action of these combustion conditions and the NO X storage reduction three-way catalyst, as a whole, it is possible to HC simultaneously exhaust gas when fuel is increased, CO, NO X can be efficiently purified. Lean burn system combining such air-fuel ratio control and the NO X storage material, and the exhaust gas compared with around a conventional three-way catalyst and the stoichiometric air-fuel ratio, improved fuel economy and CO, HC, total generation amount of the NO X Has had some success with regard to the challenge of reducing.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、さらな
る燃費向上のためには、空燃比制御として、ストイキ〜
リッチの割合を少なくしてリーン燃焼時間を長くする必
要がある。この場合、吸蔵還元型触媒には一定の飽和N
X 吸蔵量があるため、その飽和吸蔵量を越えると必然
的にNOX 浄化率が低下するという問題が生じる。
However, in order to further improve the fuel efficiency, the stoichiometric air-fuel ratio control is required.
It is necessary to increase the lean burn time by reducing the rich ratio. In this case, a certain amount of saturated N
Since O X storage amount is a problem that it exceeds its saturation occlusion amount inevitably NO X purification rate is lowered.

【0006】この問題を解決するため、本発明者らは、
リーン条件下での金属粒子上の吸着酸素量を減らすこと
でリーン条件下での触媒金属粒子のNOX 浄化性能を向
上させるといった思想から、特開平11−156193
号公報において、触媒金属粒子の上に別な金属の相を積
相させた触媒を提案している。この触媒構成によれば、
触媒金属粒子と金属相の電子状態の違いから、触媒金属
粒子と金属相の表面の電子状態が変化してNOX 浄化性
能が向上することが分かっている。本発明は、このよう
な金属相が積相した触媒を、安定かつ経済的に製造する
方法を提供することを目的とする。
To solve this problem, the present inventors
From the idea of reducing the amount of adsorbed oxygen on metal particles under lean conditions to improve the NO x purification performance of catalytic metal particles under lean conditions, see Japanese Patent Application Laid-Open No. H11-156193.
Japanese Patent Application Publication No. JP-A-2005-115139 proposes a catalyst in which another metal phase is accumulated on catalytic metal particles. According to this catalyst configuration,
A difference in electronic state of the catalytic metal particles and the metal phase, NO X purification performance electronic state of the surface of the catalytic metal particles and the metal phase is changed is known to improve. An object of the present invention is to provide a method for stably and economically producing such a catalyst in which metal phases are accumulated.

【0007】[0007]

【課題を解決するための手段】上記目的は、無機物担体
上に、Pt,Pd,Au,Ag,Rh及びIrからなる
群より選択された金属粒子を担持し、前記金属粒子の上
にPt,Pd,Au,Ag,Rh及びIrからなる群よ
り選択されかつ前記担持された金属粒子と異なる金属を
積相させるNOX 浄化用触媒の製造方法であって、前記
金属粒子の上への前記金属の積相を還元析出法によって
行い、かつ前記無機物担体として等電位点がpH3〜1
0の無機物担体を用いることを特徴とするNOX 浄化用
触媒の製造方法によって達成される。
The object of the present invention is to support a metal particle selected from the group consisting of Pt, Pd, Au, Ag, Rh and Ir on an inorganic carrier, and put Pt, Pt, on the metal particle. pd, Au, Ag, an Rh and is selected from the group consisting of Ir and the supported production process of the NO X purification catalyst for Sekisho the different metal metal particles, the metal onto the metal particles And the equipotential point of the inorganic carrier is pH 3-1.
The present invention is attained by a method for producing a catalyst for purifying NO X , characterized by using an inorganic carrier of zero.

【0008】本発明でいう「積相」とは、金属粒子の一
部の表面上に別な金属が相として存在することを意味
し、金属粒子と別な金属の間に中間的な組成が存在して
もよいが、金属の相として、金属粒子の相と、その金属
粒子の上に別な金属の相の双方の相が存在する状態をい
う。好ましくは、第1金属の粒子の上に、それよりも微
細な複数の第2金属の粒子が存在する。
The term “accumulated phase” in the present invention means that another metal exists as a phase on a part of the surface of the metal particle, and an intermediate composition exists between the metal particle and the other metal. Although it may exist, it refers to a state in which both a metal particle phase and another metal phase exist on the metal particle as the metal phase. Preferably, a plurality of finer second metal particles are present on the first metal particles.

【0009】[0009]

【発明の実施の形態】本発明の方法において、先ず、等
電位点がpH3〜10の適切な無機物担体を選択する。
かかる要件を満たす無機物担体の材料は、排気ガス浄化
雰囲気に耐えることができる材料であって、等電位点が
pH3〜10の材料である。具体的には、アルミナ、シ
リカ、ジルコニア、シリカ−アルミナ、ゼオライト等の
無機酸化物、炭化ケイ素や窒化ケイ素等の無機非酸化物
等の適切な耐久性を有する材料の中で、等電位点がpH
3〜10の材料が選択される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the method of the present invention, first, a suitable inorganic carrier having an equipotential point of pH 3 to 10 is selected.
The material of the inorganic carrier satisfying such requirements is a material that can withstand an exhaust gas purification atmosphere and has an equipotential point of pH 3 to 10. Specifically, among materials having appropriate durability such as inorganic oxides such as alumina, silica, zirconia, silica-alumina, zeolite, and inorganic non-oxides such as silicon carbide and silicon nitride, the equipotential point is pH
Three to ten materials are selected.

【0010】本発明における等電位点は、無機物担体の
等電位点を意味し、例えば、JISR6129(197
6)の方法にしたがって測定することができる。無機物
担体のpHが3未満、あるいは10を超える場合、本発
明の積相型触媒のリーン雰囲気でのNOX 浄化性能が低
くなる。
The equipotential point in the present invention means an equipotential point of an inorganic carrier, for example, JISR6129 (197)
It can be measured according to the method of 6). When the pH of the inorganic carrier is less than 3 or more than 10, the NO x purification performance of the stacked phase catalyst of the present invention in a lean atmosphere becomes low.

【0011】次に、この無機物担体上に、Pt,Pd,
Au,Ag,Rh及びIrからなる群より選択された第
1の金属粒子を担持させる。この第1の金属粒子を担持
させる方法は、金属粒子を担体上に分散させることがで
きる任意の方法でよく、限定されるものではないが、担
体の酸点・塩基点への吸着、イオン交換法、還元析出法
等が望ましい方法である。
Next, Pt, Pd,
The first metal particles selected from the group consisting of Au, Ag, Rh and Ir are supported. The method of supporting the first metal particles may be any method capable of dispersing the metal particles on the carrier, and is not limited, but is not limited to adsorption to an acid point / base point of the carrier, ion exchange. Method, reduction precipitation method and the like are desirable methods.

【0012】第1金属の粒子は、平均粒子径が40nm
以下であることが好ましい。平均粒子径が40nm以下
であると、比表面積を大きくして浄化性能が高くなるの
で好ましいが、次に第2の金属の積相を第1の金属粒子
の上に形成するにおいて、溶液中の金属イオンは、曲率
の小さい部位に還元析出する、即ち、かかる微細な金属
粒子を核生成サイトとしてその部位に還元析出する性向
があるので、平均粒子径が40nm以下の場合に望まし
い金属積相が得られ易い利益もある。より好ましくは、
30nm以下である。無機物担体に対する第1金属の担
持量は特に限定されず、従来の通りでよい。
The particles of the first metal have an average particle diameter of 40 nm.
The following is preferred. An average particle diameter of 40 nm or less is preferable because the specific surface area is increased and the purification performance is improved. However, in forming the accumulated phase of the second metal on the first metal particles, Metal ions are reduced and precipitated at a site having a small curvature, that is, since there is a tendency that such fine metal particles are reduced and precipitated at the site as a nucleation site, a desirable metal phase is obtained when the average particle diameter is 40 nm or less. Some benefits are easy to obtain. More preferably,
It is 30 nm or less. The amount of the first metal carried on the inorganic carrier is not particularly limited, and may be the same as in the related art.

【0013】次に、前記無機物担体の上に担持させた第
1の金属粒子の上に、Pt,Pd,Au,Ag,Rh及
びIrからなる群より選択された第1の金属粒子以外の
第2の金属を積相させる。この積相によって触媒金属粒
子上の表面電子状態が変化して、NOX 浄化性能が向上
する。本発明において、この工程は還元析出法によって
行う。本発明でいう還元析出法は、水溶液中で金属イオ
ンを生成する金属塩の水溶液に還元剤を添加し、金属イ
オンを還元することによって不溶性にすることで、その
金属塩の金属を析出させる方法をいう。
Next, on the first metal particles supported on the inorganic carrier, second metal particles other than the first metal particles selected from the group consisting of Pt, Pd, Au, Ag, Rh and Ir are placed. The two metals are phase-stacked. Changing the surface electronic states on catalytic metal particles by the product phase, improves NO X purification performance. In the present invention, this step is performed by a reduction precipitation method. The reduction precipitation method referred to in the present invention is a method of adding a reducing agent to an aqueous solution of a metal salt that generates metal ions in an aqueous solution, and reducing the metal ions to make them insoluble, thereby precipitating a metal of the metal salt. Say.

【0014】具体的には、限定されるものではないが、
上記の第1の金属粒子を担持した無機酸化物担体を浸し
た水に、第2の金属のPt,Pd,Au,Ag,Rh又
はIrの水溶性金属塩及び還元剤を添加し、好ましく
は、穏やかな攪拌下に置くことによって行うことができ
る。
Specifically, although not limited,
A water-soluble metal salt of a second metal such as Pt, Pd, Au, Ag, Rh or Ir and a reducing agent are added to water impregnated with the inorganic oxide carrier supporting the first metal particles. Can be performed by placing under gentle agitation.

【0015】水溶性金属塩としては、限定されるもので
はないが、硝酸Pd、酢酸Pd、塩化Pd、硫酸Pd、
硝酸Rh、塩化Rh、塩化Ir、硝酸Ag、塩化Ag、
硫酸Ag、塩化白金酸、白金ジニトロジアンミン、塩化
金酸が例示される。還元剤としては、チオ硫酸ナトリウ
ム、チオ硫酸カリウム、チオ硫酸アンモニウム、メタ重
亜硫酸ナトリウム、メタ重亜硫酸カリウム、メタ重亜硫
酸アンモニウム、NaBH4 が例示される。
The water-soluble metal salt includes, but is not limited to, Pd nitrate, Pd acetate, Pd chloride, Pd sulfate,
Rh nitrate, Rh chloride, Ir chloride, Ag nitrate, Ag chloride,
Examples include Ag sulfate, chloroplatinic acid, platinum dinitrodiammine, and chloroauric acid. As the reducing agent, sodium thiosulfate, potassium thiosulfate, ammonium thiosulfate, sodium metabisulfite, potassium metabisulfite, ammonium metabisulfite, NaBH 4 is exemplified.

【0016】積相された第2の金属は、第1の金属粒子
の表面の少なくとも10%以上を被覆することが好まし
く、また、第2の金属の重量割合は、第1の金属に対し
て、0.1〜15wt%が好ましく、より好ましくは0.
5〜5wt%である。第2金属が0.1wt%未満では積相
の効果がなく、15wt%を超えると金属粒子が巨大粒子
を形成して浄化性能が低下するからである。
Preferably, the deposited second metal covers at least 10% or more of the surface of the first metal particles, and the weight ratio of the second metal to the first metal is , 0.1 to 15% by weight, more preferably 0.1 to 15% by weight.
5 to 5% by weight. If the amount of the second metal is less than 0.1% by weight, the effect of the accumulated phase is not obtained. If the amount of the second metal exceeds 15% by weight, the metal particles form giant particles and the purification performance is reduced.

【0017】また、この還元析出は、水溶液のpHを6
〜9の範囲にして行うことが好ましい。pHがこの範囲
外であると、担体の酸点や塩基点に吸着したり、中和沈
殿する金属イオンの量が増加するため、第1の金属粒子
への積相量が減少し、結果として、得られる合金触媒の
浄化性能が小さくなるためである。
Further, the reduction precipitation is carried out by adjusting the pH of the aqueous solution to 6
It is preferable to carry out in the range of from 9 to 9. When the pH is out of this range, the amount of metal ions adsorbed on the acid or base sites of the carrier or neutralized and precipitated increases, so that the amount of accumulated phase on the first metal particles decreases, and as a result, This is because the purification performance of the obtained alloy catalyst becomes small.

【0018】この還元析出の際、無機物担体が等電位点
pH3〜10であることが必要なことを見出した。理由
は明らかではないが、担体の等電位点が水溶液のイオン
雰囲気に担体自体が影響を及ぼすので、無機物担体の等
電位点pHが3〜10の範囲にあるとき、水溶性金属塩
と水溶性還元剤のイオン反応による金属の積相が安定に
行われるものと考えられる。
It has been found that the inorganic carrier needs to have an equipotential point of pH 3 to 10 during the reduction precipitation. Although the reason is not clear, the carrier itself affects the ionic atmosphere of the aqueous solution at the isopotential point of the carrier, so when the equipotential point pH of the inorganic carrier is in the range of 3 to 10, the water-soluble metal salt and the water-soluble It is considered that the metal accumulation phase by the ionic reaction of the reducing agent is performed stably.

【0019】このようにして得られた無機物担体上に第
1の金属粒子とその上に積相された第2の金属を備えた
触媒は、モノリス上に堆積させたモノリス型、あるいは
顆粒状にしたペレット型の触媒として排気ガス浄化に使
用することができる。
The thus obtained catalyst comprising the first metal particles and the second metal deposited on the inorganic carrier on the inorganic carrier is formed into a monolithic or granular form deposited on a monolith. It can be used for exhaust gas purification as a pellet type catalyst.

【0020】[0020]

【実施例】実施例1 Pt(NO2 2 (NH3 2 を9.98×10-2wt%
溶解した水溶液に、等電位点pH8.0のγ−Al2
3 粉末を添加し、3時間攪拌した後、大気中で120℃
×24時間の乾燥を行った。乾燥の後、大気中で300
℃×2時間の熱処理を行い、1.80wt%Pt/Al2
3 粉末を得た。この1.80wt%Pt/Al2 3
末を4.69wt%分散させた60℃のイオン交換水にH
AuCl4 ・4H2 O(2.04×10-2wt%)、Na
2 2 3 ・5H2 O(9.40×10-2wt%)、Na
2 2 3 (2.41×10-1wt%)、C6 7 NaO
6 (9.45×10-1wt%)を添加し、24時間攪拌し
ながらAuを還元析出させた。
EXAMPLE 1 Example 1 Pt (NOTwo)Two(NHThree)Two9.98 × 10-2wt%
Γ-Al having an equipotential point of pH 8.0 was added to the dissolved aqueous solution.TwoO
ThreeAfter adding the powder and stirring for 3 hours, in the air at 120 ° C.
Drying was performed for 24 hours. After drying, 300
C. x 2 hours heat treatment, 1.80 wt% Pt / AlTwo
OThreeA powder was obtained. This 1.80 wt% Pt / AlTwoOThreepowder
Powder in ion-exchanged water at 60 ° C.
AuClFour・ 4HTwoO (2.04 × 10-2wt%), Na
TwoSTwoO Three・ 5HTwoO (9.40 × 10-2wt%), Na
TwoSTwoOThree(2.41 × 10-1wt%), C6H7NaO
6(9.45 × 10-1wt%) and stir for 24 hours.
The Au was reduced and precipitated while doing so.

【0021】この還元析出の後、ろ過し、60℃のイオ
ン交換水で洗浄を行った。洗浄した粉末を大気中で12
0℃×2時間の乾燥を行った。乾燥の後、大気中で50
0℃×2時間の熱処理を行い、担体が等電位点pH8.
0のγ−Al2 3 、重量比がPt:Au=9:1、P
tとAuの合計量が2wt%の(Pt−Au)Al2 3
触媒Aを得た。
After this reductive precipitation, the precipitate was filtered and treated at 60 ° C.
Washing was performed with exchanged water. Washed powder in air
Drying was performed at 0 ° C. × 2 hours. After drying, 50
A heat treatment at 0 ° C. × 2 hours is performed so that the carrier has an isoelectric point pH of 8.
Γ-Al of 0TwoOThree, Weight ratio Pt: Au = 9: 1, P
(Pt-Au) Al in which the total amount of t and Au is 2 wt%TwoO Three
Catalyst A was obtained.

【0022】実施例2 担体に等電位点pH3.9のSiO2 とAl2 3 の複
合酸化物(SiO2 /Al2 3 モル比=18.3)を
用いた以外は、触媒Aと同様な方法で、担体が等電位点
pH3.9のSiO2 /Al2 3 複合酸化物、重量比
がPt:Au=9:1、PtとAuの合計量が2wt%の
(Pt−Au)/SiO2 /Al2 3触媒Bを得た。
Example 2 Catalyst A was used except that a composite oxide of SiO 2 and Al 2 O 3 having an equipotential point of pH 3.9 (SiO 2 / Al 2 O 3 molar ratio = 18.3) was used as a carrier. In the same manner, (Pt-Au) in which the carrier is a SiO 2 / Al 2 O 3 composite oxide having an equipotential point of pH 3.9, the weight ratio is Pt: Au = 9: 1, and the total amount of Pt and Au is 2 wt% ) / SiO 2 / Al 2 O 3 catalyst B was obtained.

【0023】実施例3 Pt(NO2 2 (NH3 2 を1.74×10-2wt%
溶解した水溶液に、等電位点pH8.0のγ−Al2
3 粉末を添加し、3時間攪拌した後、大気中で120℃
×24時間の乾燥を行った。乾燥の後、大気中で300
℃×2時間の熱処理を行い、1.99wt%Pt/Al2
3 粉末を得た。この1.99wt%Pt/Al2 3
末を4.76wt%分散させた60℃のイオン交換水にH
AuCl4 ・4H2 O(9.99×10-4wt%)、Na
2 2 3 ・5H2 O(4.80×10-3wt%)、Na
2 2 3 (1.22×10-2wt%)、C6 7 NaO
6 (4.79×10-2wt%)を添加した以外は、触媒A
と同様な方法で、担体が等電位点pH8.0のγ−Al
2 3 、重量比がPt:Au=995:1、PtとAu
の合計量が2wt%の(Pt−Au)Al2 3 触媒Cを
得た。
Example 3 Pt (NOTwo)Two(NHThree)TwoIs 1.74 × 10-2wt%
Γ-Al having an equipotential point of pH 8.0 was added to the dissolved aqueous solution.TwoO
ThreeAfter adding the powder and stirring for 3 hours, in the air at 120 ° C.
Drying was performed for 24 hours. After drying, 300
Heat treatment for 2 hours at 1.degree. C. and 1.99 wt% Pt / AlTwo
OThreeA powder was obtained. This 1.99 wt% Pt / AlTwoOThreepowder
Powder in 60 ° C. ion-exchanged water in which 4.76 wt%
AuClFour・ 4HTwoO (9.99 * 10-Fourwt%), Na
TwoSTwoO Three・ 5HTwoO (4.80 × 10-3wt%), Na
TwoSTwoOThree(1.22 × 10-2wt%), C6H7NaO
6(4.79 × 10-2wt%), except that catalyst A
In the same manner as in the above, the carrier is γ-Al having an isoelectric point of pH 8.0.
TwoOThree, The weight ratio is Pt: Au = 995: 1, Pt and Au
(Pt-Au) Al with a total amount of 2 wt%TwoOThreeCatalyst C
Obtained.

【0024】実施例4 担体に等電位点pH3.9のSiO2 とAl2 3 の複
合酸化物(SiO2 /Al2 3 モル比=18.3)を
用いた以外は、触媒Cと同様な方法で、担体が等電位点
pH3.9のSiO2 /Al2 3 複合酸化物、重量比
がPt:Au=995:5、PtとAuの合計量が2wt
%の(Pt−Au)/SiO2 /Al23 触媒Dを得
た。
Example 4 A catalyst C was used except that a composite oxide of SiO 2 and Al 2 O 3 having an equipotential point of pH 3.9 (SiO 2 / Al 2 O 3 molar ratio = 18.3) was used as a carrier. In a similar manner, the carrier is a SiO 2 / Al 2 O 3 composite oxide having an equipotential point of pH 3.9, the weight ratio is Pt: Au = 995: 5, and the total amount of Pt and Au is 2 wt.
Yield% of (Pt-Au) / SiO 2 / Al 2 O 3 catalyst D.

【0025】実施例5 担体に等電位点pH5.5のTiO2 とSiO2 の複合
酸化物(SiO2 含有量=4.1wt%)を用いた以外
は、触媒Cと同様な方法で、担体が等電位点pH5.5
のTiO2 /SiO2 の複合酸化物、重量比がPt:A
u=995:5、PtとAuの合計量が2wt%の(Pt
−Au)/TiO2 /SiO2 触媒Eを得た。
Example 5 A carrier was prepared in the same manner as in Catalyst C except that a composite oxide of TiO 2 and SiO 2 having an equipotential point of pH 5.5 (SiO 2 content = 4.1 wt%) was used. Has an equipotential point of pH 5.5
TiO 2 / SiO 2 composite oxide, weight ratio of Pt: A
u = 995: 5, and the total amount of Pt and Au is 2 wt% (Pt
-Au) / to give a TiO 2 / SiO 2 catalyst E.

【0026】実施例6 担体に等電位点pH6.2のTiO2 粉末(アナターゼ
型)を用いた以外は、触媒Cと同様な方法で、担体が等
電位点pH6.2のTiO2 、重量比がPt:Au=9
95:5、PtとAuの合計量が2wt%の(Pt−A
u)/TiO2 触媒Fを得た。
[0026] Except for using a TiO 2 powder isoelectric point pH6.2 (anatase) in Example 6 carriers, the catalyst C and similar methods, TiO 2, the weight ratio of carrier isoelectric point pH6.2 Is Pt: Au = 9
95: 5, the total amount of Pt and Au being 2 wt% (Pt-A
u) / TiO 2 catalyst F was obtained.

【0027】比較例1 担体に等電位点pH1.5のSiO2 粉末を用いた以外
は、触媒Aと同様な方法で、担体が等電位点pH1.5
のSiO2 、重量比がPt:Au=9:1、PtとAu
の合計量が2wt%の(Pt−Au)/SiO2 触媒Gを
得た。
COMPARATIVE EXAMPLE 1 Except that SiO 2 powder having an equipotential point of pH 1.5 was used as the carrier, the carrier was treated with an isoelectric point of pH 1.5 in the same manner as in Catalyst A.
SiO 2 , weight ratio Pt: Au = 9: 1, Pt and Au
(Pt-Au) / SiO 2 catalyst G having a total amount of 2 wt% was obtained.

【0028】比較例2 担体に等電位点pH12.5のMgO粉末を用いた以外
は、触媒Aと同様な方法で、担体が等電位点pH12.
5のMgO、重量比がPt:Au=9:1、PtとAu
の合計量が2wt%の(Pt−Au)/MgO触媒Hを得
た。
COMPARATIVE EXAMPLE 2 A carrier was used in the same manner as in Catalyst A except that MgO powder having an equipotential point of pH 12.5 was used as the carrier.
5, MgO with a weight ratio of Pt: Au = 9: 1, Pt and Au
(Pt-Au) / MgO catalyst H having a total amount of 2 wt% was obtained.

【0029】−排気ガス浄化性能の評価− 表1に示す触媒について、リーン相当モデルガス(A/
F=30)として以下のガス組成とガス空間速度とし、
500℃から100℃への降温評価とし、降温速度は1
0℃/min として排気ガス浄化性能を評価した。 ガス組成:1000ppmCO+667ppmC3 6
+250ppmNO+7.3%O2 +6.7%CO2
5%H2 O (残余:N2 ) ガス空間速度:150000h-1 下記の(1) 式で定義するNOX の最大浄化率を表1に示
す。 浄化率=〔(入ガス濃度−出ガス濃度)÷入ガス濃度〕×100 …(1)
-Evaluation of exhaust gas purification performance- For the catalysts shown in Table 1, lean equivalent model gas (A /
F = 30) and the following gas composition and gas space velocity,
The temperature was evaluated from 500 ° C to 100 ° C, and the rate of temperature decrease was 1
The exhaust gas purification performance was evaluated at 0 ° C./min. Gas composition: 1000 ppm CO + 667 ppm C 3 H 6
+250 ppm NO + 7.3% O 2 + 6.7% CO 2 +
5% H 2 O (residual: N 2 ) Gas hourly space velocity: 150,000 h -1 Table 1 shows the maximum purification rate of NO X defined by the following equation (1). Purification rate = [(incoming gas concentration-outgoing gas concentration) / incoming gas concentration] x 100 ... (1)

【0030】[0030]

【表1】 [Table 1]

【0031】表1に示した評価結果より、実施例1〜6
はいずれも50%以上という良好なNOX 浄化性能を示
すのにに対して、比較例7と8は、かなり劣ったNOX
浄化性能を示している。これらの相違は、担体の等電位
点の相違によるものと考えられる。
Based on the evaluation results shown in Table 1, Examples 1 to 6
Relative to exhibit good NO X purification performance of any more than 50%, Comparative Example 7 and 8, quite inferior NO X
This shows the purification performance. It is considered that these differences are due to differences in the equipotential points of the carriers.

【0032】[0032]

【発明の効果】本発明の方法によれば、第1の触媒金属
粒子とその上に積相された第2の金属を備え、浄化率に
優れたNOX 還元触媒を、還元析出法によって安定に製
造することができる。
According to the method of the present invention, comprises a second metal that is Sekisho thereon a first catalytic metal particles, a good NO X reduction catalyst purification rate, stabilized by reductive deposition method Can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】担体の等電位点とNOX 浄化率の関係を示すグ
ラフである。
FIG. 1 is a graph showing a relationship between an equipotential point of a carrier and a NO X purification rate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/10 ZAB F01N 3/28 301C 3/28 301 301P B01D 53/36 102H Fターム(参考) 3G091 AA12 AA17 AB05 BA39 FB10 GA01 GA06 GA16 GB01W GB01X GB05W GB06W GB07W GB13X GB15X GB16X 4D048 AA06 AB03 BA03X BA06X BA07X BA30X BA31Y BA33Y BA34X BA41X BB01 4G069 AA03 AA08 AA09 AA12 BA01A BA01B BA03A BA03B BA04A BA04B BB02A BB02B BB04A BB04B BC32A BC33A BC33B BC71A BC72A BC74A BC75A BC75B CA02 CA03 CA10 CA13 DA06 EE01 FA02 FB45──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01N 3/10 ZAB F01N 3/28 301C 3/28 301 301P B01D 53/36 102H F-term (Reference) 3G091 AA12 AA17 AB05 BA39 FB10 GA01 GA06 GA16 GB01W GB01X GB05W GB06W GB07W GB13X GB15X GB16X 4D048 AA06 AB03 BA03X BA06X BA07X BA30X BA31Y BA33Y BA34X BA41X BB01 4G069 AA03 AA08 AA09 AA12 BA01A BA01B BA03A BA03B BA04A BA04B BB02A BB02B BB04A BB04B BC32A BC33A BC33B BC71A BC72A BC74A BC75A BC75B CA02 CA03 CA10 CA13 DA06 EE01 FA02 FB45

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 無機物担体上に、Pt,Pd,Au,A
g,Rh及びIrからなる群より選択された金属粒子を
担持し、前記金属粒子の上にPt,Pd,Au,Ag,
Rh及びIrからなる群より選択されかつ前記担持され
た金属粒子と異なる金属を積相させるNOX 浄化用触媒
の製造方法であって、前記金属粒子の上への前記金属の
積相を還元析出法によって行い、かつ前記無機物担体と
して等電位点がpH3〜10の無機物担体を用いること
を特徴とするNOX 浄化用触媒の製造方法。
1. Pt, Pd, Au, A on an inorganic carrier
carrying metal particles selected from the group consisting of g, Rh and Ir, and having Pt, Pd, Au, Ag,
A is selected from the group consisting of Rh and Ir and the supported production process of the NO X purification catalyst for Sekisho the different metal metal particles, reducing precipitation of the product phase of the metal onto the metal particles done by law, and the production method of the NO X purification catalyst isoelectric point is characterized by using the inorganic carrier pH3~10 as the mineral support.
JP28822799A 1999-10-08 1999-10-08 Method of manufacturing for catalyst for cleaning exhaust gas Pending JP2001104804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28822799A JP2001104804A (en) 1999-10-08 1999-10-08 Method of manufacturing for catalyst for cleaning exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28822799A JP2001104804A (en) 1999-10-08 1999-10-08 Method of manufacturing for catalyst for cleaning exhaust gas

Publications (1)

Publication Number Publication Date
JP2001104804A true JP2001104804A (en) 2001-04-17

Family

ID=17727488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28822799A Pending JP2001104804A (en) 1999-10-08 1999-10-08 Method of manufacturing for catalyst for cleaning exhaust gas

Country Status (1)

Country Link
JP (1) JP2001104804A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090841A3 (en) * 2009-01-21 2010-10-21 Nanostellar, Inc. Palladium-gold catalyst synthesis
EP2982432A1 (en) 2014-08-08 2016-02-10 Toyota Jidosha Kabushiki Kaisha Nox storage reduction catalyst and production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090841A3 (en) * 2009-01-21 2010-10-21 Nanostellar, Inc. Palladium-gold catalyst synthesis
US8415269B2 (en) 2009-01-21 2013-04-09 WGCH Technology Limited Palladium-gold catalyst synthesis
EP2982432A1 (en) 2014-08-08 2016-02-10 Toyota Jidosha Kabushiki Kaisha Nox storage reduction catalyst and production method thereof

Similar Documents

Publication Publication Date Title
JP3061399B2 (en) Diesel engine exhaust gas purification catalyst and purification method
JPH10235192A (en) Catalyst for cleaning exhaust gas
JPH0653229B2 (en) Exhaust gas purification catalyst
JP2002177781A (en) Exhaust gas cleaning catalyst
JP5582671B2 (en) Exhaust gas purification catalyst, exhaust gas purification catalyst recovery method, and exhaust gas purification catalyst system
JPH08281107A (en) Catalyst for purifying exhaust gas
JP3409894B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2002361083A (en) Exhaust gas cleaning catalyst for internal combustion engine, method of producing the same and claening apparatus
JPH05237390A (en) Catalyst for purification of exhaust gas
JPH08131830A (en) Catalyst for purification of exhaust gas
JPH0884911A (en) Catalyst for decomposing nitrogen oxide and method for purifying diesel engine exhaust using the same
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JPH08281106A (en) Catalyst for purifying exhaust gas and its production
JPH0768176A (en) Catalyst for purification of exhaust gas from diesel engine
JP4275801B2 (en) Exhaust gas purification catalyst
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2001104804A (en) Method of manufacturing for catalyst for cleaning exhaust gas
JPS63116742A (en) Catalyst for purifying exhaust gas
JPH11123331A (en) Catalyst for cleaning exhaust gas
JPH0640964B2 (en) Exhaust gas purification catalyst manufacturing method
JPH08323205A (en) Exhaust gas purifying catalyst and its production
JP4106762B2 (en) Exhaust gas purification catalyst device and purification method
JP4380880B2 (en) Exhaust gas purification catalyst
JP2002177788A (en) Exhaust gas cleaning catalyst and its manufacturing method
JP3861823B2 (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071113