JP2001098354A - Manufacture of manganese added aluminum alloy die material - Google Patents

Manufacture of manganese added aluminum alloy die material

Info

Publication number
JP2001098354A
JP2001098354A JP27038299A JP27038299A JP2001098354A JP 2001098354 A JP2001098354 A JP 2001098354A JP 27038299 A JP27038299 A JP 27038299A JP 27038299 A JP27038299 A JP 27038299A JP 2001098354 A JP2001098354 A JP 2001098354A
Authority
JP
Japan
Prior art keywords
aluminum alloy
heat treatment
die material
added aluminum
extruded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27038299A
Other languages
Japanese (ja)
Inventor
Mikishige Iharaki
幹成 伊原木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP27038299A priority Critical patent/JP2001098354A/en
Publication of JP2001098354A publication Critical patent/JP2001098354A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing Mn added aluminum alloy extruded die material parts in which deterioration in external appearance due to the occurrence of coarsened crystal grains after heat treatment at the surface of the extruded die material can be prevented. SOLUTION: After an Mn added aluminum alloy extruded die material is subjected, if necessary, to an annealing step, stretch forming is performed. At the recrystallization resultant from subsequent heat treatment such as solution heat treatment, crystal grains are uniformly refined. Then the extruded die material is subjected to stretch leveling and to aging treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大型輸送機の補助
翼(フラップ,エルロン他)の桁(スパー)、補強材
(スティフナ)等や小型輸送機の主翼の桁、補強材、胴
体の縦通材(ストリンガー)、円きょう(フレーム)等
のアルミニウム合金押出型材部品の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to girders (spars) and reinforcing members (stiffeners) of auxiliary wings (flaps, ailerons, etc.) of large transport aircraft, and main wing girders, reinforcing members, and fuselage of small transport vehicles. The present invention relates to a method of manufacturing an aluminum alloy extruded part, such as a passing material (stringer) or a round frame (frame).

【0002】[0002]

【従来の技術】航空機等においては、2000系合金製
の押出型材部品が用いられている。この押出型材部品
は、型との摩擦により歪が蓄積し、その後の熱処理時に
歪が解放され、再結晶現象が起こるが、このとき、図4
に示すように表面層に結晶粒粗大化層を生ずることがよ
く知られている。
2. Description of the Related Art Extruded parts made of 2000 series alloy are used in aircraft and the like. In this extruded die member, strain accumulates due to friction with the mold, the strain is released during the subsequent heat treatment, and a recrystallization phenomenon occurs.
It is well known that a coarse grain layer is formed on the surface layer as shown in FIG.

【0003】そのため押出型材部品の表面に大きな結晶
粒が現われ外観上奇異に見られる。航空機に用いられる
2000系合金の代表としては、表1に示す化学成分範
囲の2024合金及び2219合金があり、以下にそれ
ぞれの合金の特性について説明する。
[0003] For this reason, large crystal grains appear on the surface of the extruded die part, and the appearance is strange. Representative of the 2000 series alloys used in aircraft are the 2024 alloy and the 2219 alloy having the chemical composition ranges shown in Table 1, and the characteristics of each alloy will be described below.

【0004】[0004]

【表1】 [Table 1]

【0005】上記2024合金には、結晶粒粗大化防止
のため、遷移元素マンガン(以下、Mnと記す)が添加
されている。Mnは、Al7 MnあるいはAl20Cu2
Mn 3 として存在するが、析出時のサイズが比較的大き
い。そのため、Cr,Zr添加の場合よりも転位の移動
を止める効果が弱く、再結晶が生じ易く、かつ結晶粒の
粗大化が生じ易い。
[0005] The above-mentioned 2024 alloy has crystal grain coarsening prevention.
Therefore, the transition element manganese (hereinafter referred to as Mn) is added
Have been. Mn is Al7Mn or Al20CuTwo
Mn ThreeExists, but the size during precipitation is relatively large
No. For this reason, the dislocation movement is larger than in the case of adding Cr and Zr.
The effect of stopping crystal is weak, recrystallization is likely to occur, and
Coarsening is likely to occur.

【0006】特に、薄肉の押出型材の場合、厚肉材と比
べて押出時の加工度が高くなるため、その後の熱処理に
より再結晶が生じるとき、全断面にわたり再結晶粗大化
組織を形成することが多い。そのため、Mnが添加され
ている2024合金を使った押出型材部品を表面処理す
ると、粗大に成長した結晶粒が表面に明瞭に現われるよ
うになり、異常な模様として部品の商品価値を落とし、
場合によっては押出型材部品を廃却しなければならない
こともある。
In particular, in the case of a thin extruded material, the degree of processing during extrusion is higher than that of a thick material, so that when recrystallization occurs by a subsequent heat treatment, a coarse recrystallized structure is formed over the entire cross section. There are many. Therefore, when surface treatment is performed on an extruded part made of a 2024 alloy to which Mn is added, coarsely grown crystal grains appear clearly on the surface, and the commercial value of the part is reduced as an abnormal pattern,
In some cases, extruded parts must be scrapped.

【0007】従来の押出型材部品の製造方法において
は、これを防止するため、表面処理前にサンディング等
の工程を設け、この工程で部品表面を荒らして、結晶模
様がわからないようにする必要があった。しかしなが
ら、このようなサンディング工程を追加することは、部
品製造コストの増加が避けられない。
In order to prevent this, in a conventional method of manufacturing an extruded die part, it is necessary to provide a step such as sanding before the surface treatment, and to roughen the surface of the part in this step so that the crystal pattern cannot be seen. Was. However, adding such a sanding step inevitably increases the cost of manufacturing parts.

【0008】[0008]

【発明が解決しようとする課題】Mn添加2000系ア
ルミニウム合金押出型材部品の問題点は、前記のよう
に、熱処理による再結晶時に不均一な粗大化組織が形成
され、これが材料の異常として認識されることにある。
同じ航空用アルミニウム合金でも、Cr又はZrが添加
されている7000系合金では、このような現象は生じ
難いため、上記粗大組織による異常な模様は、関係者に
より一層の不安感を与えるものである。
The problem with the Mn-added 2000-series aluminum alloy extruded part is that, as described above, a non-uniform coarse structure is formed during recrystallization by heat treatment, and this is recognized as a material abnormality. It is to be.
Even in the same aviation aluminum alloy, such a phenomenon is unlikely to occur in a 7000 series alloy to which Cr or Zr is added. Therefore, the abnormal pattern due to the coarse structure gives a further sense of anxiety to those concerned. .

【0009】従来のMn添加2000系アルミニウム合
金を使った押出型材部品の製造においては、上記の問題
点を解消するため、表面処理の前にサンディング工程を
設けていたが、これにより部品製造コストが増加し、収
益悪化をまねいていた。本発明は、上記の課題を解決す
るため、再結晶時に均質微細な結晶組織を形成し、美麗
な表面外観を得ることができる製造方法を提供すること
を課題としている。
In the production of extruded parts made of a conventional Mn-added 2000-based aluminum alloy, a sanding step is provided before surface treatment in order to solve the above-mentioned problems. Increased, leading to lower profits. An object of the present invention is to provide a manufacturing method capable of forming a homogeneous and fine crystal structure during recrystallization and obtaining a beautiful surface appearance in order to solve the above problems.

【0010】[0010]

【課題を解決するための手段】本発明は、Mn添加アル
ミニウム合金押出型材における前記課題を解決するた
め、熱間押出したMn添加アルミニウム合金型材に冷間
加工を施した後、溶体化処理などの熱処理を行うMn添
加アルミニウム合金押出型材の製造方法を提供する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems in the Mn-added aluminum alloy extruded die, the present invention provides a method of subjecting a hot-extruded Mn-added aluminum alloy to cold working, followed by solution treatment. Provided is a method for producing a Mn-added aluminum alloy extruded material to be subjected to heat treatment.

【0011】加工を受けた金属材料が加熱された時、再
結晶と呼ばれる結晶の再生現像が生ずることが知られて
いる。この再結晶現像は加熱温度、保持時間、加熱前の
加工度によって変化することが知られている。即ち、加
工した金属材料が熱処理を受けて再結晶するとき、その
再結晶による結晶の粗大化は、その加熱温度と加工度に
依存し、結晶の粗大化に影響する加熱温度と加工度には
ピークが存在し、それを超えると結晶粒は微細化される
のである。
It is known that when a processed metal material is heated, regenerative development of a crystal called recrystallization occurs. It is known that the recrystallization development changes depending on the heating temperature, the holding time, and the degree of processing before heating. That is, when the processed metal material undergoes a heat treatment and is recrystallized, the coarsening of the crystal due to the recrystallization depends on the heating temperature and the degree of processing. There is a peak, beyond which the grains are refined.

【0012】通常、アルミニウム合金の溶体化処理温度
などの熱処理温度、及び保持時間は熱処理規格として制
定されているため、本発明では冷間機械加工を行うこと
により、熱処理を受けた後の再結晶に際し結晶の粗大化
を防止するのである。
Usually, the heat treatment temperature such as the solution heat treatment temperature of aluminum alloy and the holding time are set as heat treatment standards. Therefore, in the present invention, recrystallization after heat treatment is performed by performing cold machining. At this time, the crystal is prevented from becoming coarse.

【0013】通常の押出型材製造工程では、熱間押出
後、溶体化処理などの熱処理が行われるが、本発明で
は、前記したように熱間押出後、冷間加工を行う工程を
挿入し、溶体化処理などの熱処理時に生ずる再結晶時、
結晶粒が均一微細になるようにコントロールする。これ
により外観上、均質で美麗な表面をもつMn添加アルミ
ニウム合金押出型材を得ることができる。
[0013] In the usual extrusion mold material manufacturing process, heat treatment such as solution treatment is performed after hot extrusion. In the present invention, however, the step of performing cold working after hot extrusion is inserted as described above. During recrystallization that occurs during heat treatment such as solution treatment,
Control so that the crystal grains are uniformly fine. This makes it possible to obtain a Mn-added aluminum alloy extruded material having a homogeneous and beautiful surface in appearance.

【0014】本発明による押出型部材の製造方法におい
て行う冷間加工としては、引張、圧縮、圧延が考えられ
るが、押出型材の場合、断面が複雑で長手方向に長いた
め、圧縮、圧延による方法は不可能な場合が多く、引張
方法が実際的であるが、これに限定されないことはいう
までもない。
The cold working performed in the method for manufacturing an extrusion member according to the present invention may be tension, compression, or rolling. However, in the case of an extrusion member, the cross section is complicated and long in the longitudinal direction. However, it is needless to say that the pulling method is practical but not limited to this.

【0015】押出型材の場合、溶体化処理後、歪矯正の
ため引張りを行うのが一般的で、その為の設備が設けら
れているのが普通なので、本発明によって冷間加工を追
加してもそれらの設備を使って行えるので設備コストの
増加はないと考えてよい。
In the case of an extruded material, after solution treatment, tension is generally applied to correct distortion, and equipment for this purpose is usually provided. Therefore, cold working is added by the present invention. It can be considered that there is no increase in equipment cost because the equipment can be used with such equipment.

【0016】なお、本発明の製造方法で押出型材に加熱
処理前に加える冷間加工の加工度は、溶体化処理などの
加熱処理後に、微細均質な再結晶組織が得られるように
選定する。引張りを加える場合は、一般に引張量が3%
前後で、加熱処理後の結晶粒の粗大化がピークとなり、
引張量が5%を越えると結晶粒の微細化が明らかとな
る。
In the production method of the present invention, the workability of the cold working added to the extruded die before the heat treatment is selected so that a fine and homogeneous recrystallized structure can be obtained after the heat treatment such as the solution treatment. When applying tension, the amount of tension is generally 3%
Before and after, the coarsening of the crystal grains after the heat treatment peaks,
When the tensile amount exceeds 5%, refinement of crystal grains becomes apparent.

【0017】[0017]

【発明の実施の形態】以下、本発明によるMn添加アル
ミニウム合金押出型材の製造方法の実施の形態について
説明する。本発明のMn添加アルミニウム合金押出型材
の製造方法の実施の一形態における処理ダイヤグラムを
図1に示してある。図1に見られるように、押出された
型材は必要により焼なまし工程を行った後、引張加工を
行い、その後の溶体化処理などの熱処理に生ずる再結晶
時に、結晶粒を均一微細化させる。そのあと、押出型材
には引張矯正と、時効処理が行われる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a method for producing a Mn-added aluminum alloy extruded die according to the present invention will be described. FIG. 1 shows a processing diagram in one embodiment of the method for producing a Mn-added aluminum alloy extruded die according to the present invention. As can be seen in FIG. 1, the extruded mold material is subjected to an annealing step if necessary, and then subjected to a tensile work, so that crystal grains are uniformly refined at the time of recrystallization caused by a heat treatment such as a solution treatment. . After that, the extruded mold material is subjected to tensile straightening and aging treatment.

【0018】図2に、押出型材に対して行う引張加工量
と溶体化処理後の結晶粒のサイズの関係を2219合金
の例で示している。引張加工量が4%で結晶粒の粗大化
が最大となり、それを超えると結晶粒は小さくなり微細
化が始まる。従って、引張加工量が6%以上になれば均
一微細化した組織が得られ、外観上の問題は解消する。
FIG. 2 shows the relationship between the amount of tensile working performed on the extruded die and the size of the crystal grains after the solution treatment, for an example of the 2219 alloy. When the amount of tensile processing is 4%, the coarsening of the crystal grains becomes the maximum, and when it exceeds that, the crystal grains become small and the refinement starts. Therefore, when the amount of tensile processing is 6% or more, a uniformly fine structure can be obtained, and the problem in appearance can be solved.

【0019】図3に、前記押出型材に対し熱処理前に与
える引張加工量と、得られた押出型材の外観上のランク
の評価を示している。図2,図3からわかるように、引
張加工量は6%以上必要であるが、押出型材の断面形状
によっては粗大化層が深くなり6%の均一引張加工を与
えることができない場合も考えられる。この場合は、押
出後焼きなまし処理を加えて材料の伸びを向上させた上
で6%以上の引張加工を与える必要がある。なお、引張
加工量は多い程微細均一な組織が得られるが、10%を
越えると破断する恐れがあるため、6〜10%が適当で
ある。
FIG. 3 shows the amount of tensile processing applied to the extruded material before heat treatment and the evaluation of the appearance rank of the obtained extruded material. As can be seen from FIGS. 2 and 3, the tensile work amount is required to be 6% or more. However, depending on the cross-sectional shape of the extruded material, there may be a case where the coarsened layer becomes deep and 6% uniform tensile work cannot be given. . In this case, it is necessary to apply a post-extrusion annealing treatment to improve the elongation of the material and to give a tensile work of 6% or more. Note that the finer and more uniform structure can be obtained as the amount of tensile processing increases, but if it exceeds 10%, the structure may be broken. Therefore, 6 to 10% is appropriate.

【0020】また、本実施形態では引張加工の前に焼な
まし処理を行っているが、この焼きなまし処理は必ずし
も挿入する必要はない。焼きなまし処理を行う場合は、
420℃に加熱後、炉中で徐冷することにより実施する
(図2で用いた2219合金の押出型材には焼きなまし
処理を行っている)。
Further, in this embodiment, the annealing process is performed before the tensioning process, but it is not always necessary to insert the annealing process. When performing the annealing process,
After heating to 420 ° C., this is carried out by slow cooling in a furnace (the extruded material of the 2219 alloy used in FIG. 2 is annealed).

【0021】[0021]

【発明の効果】以上説明したように、本発明によるMn
添加アルミニウム合金押出型材の製造方法では、熱間押
出型材に対し、例えば6〜10%の引張加工などの冷間
加工を施した後、熱処理を行う。この冷間加工により、
その後に行われる溶体化処理などの熱処理時に生ずる再
結晶粗大化を抑えて、再結晶微細化をもたらすものであ
り、それにより外観見栄えの改善が達成される。
As described above, the Mn according to the present invention
In the manufacturing method of the added aluminum alloy extruded die, the hot extruded die is subjected to a cold working such as a tensile working of 6 to 10% and then to a heat treatment. By this cold working,
This suppresses coarsening of recrystallization occurring during a heat treatment such as a solution treatment performed thereafter, thereby bringing about finer recrystallization, thereby improving the appearance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態によるMn添加アルミニ
ウム合金押出型材の製造方法における処理ダイヤグラ
ム。
FIG. 1 is a processing diagram of a method for manufacturing a Mn-added aluminum alloy extruded material according to an embodiment of the present invention.

【図2】2219合金の引張加工量と溶体化処理後の結
晶粒サイズの関係を示す線図。
FIG. 2 is a diagram showing the relationship between the amount of tensile processing of a 2219 alloy and the crystal grain size after solution treatment.

【図3】2219合金に対する熱処理前に施す引張加工
量と外観見栄えクランクの関係を示す線図。
FIG. 3 is a diagram showing the relationship between the amount of tensile processing applied to a 2219 alloy before heat treatment and the appearance-appearing crank.

【図4】従来の製造方法による2000系押出型材の表
面粗大化層の状態を示す模式図。
FIG. 4 is a schematic view showing a state of a surface roughened layer of a 2000-series extruded material according to a conventional manufacturing method.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 690 C22F 1/00 690 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 690 C22F 1/00 690

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Mn添加アルミニウム合金の熱間押出型
材に冷間加工を施した後、熱処理を行うことを特徴とす
るMn添加アルミニウム合金押出型材の製造方法。
1. A method for producing a Mn-added aluminum alloy extruded die, comprising subjecting a hot-extruded die of an Mn-added aluminum alloy to cold working and then performing a heat treatment.
JP27038299A 1999-09-24 1999-09-24 Manufacture of manganese added aluminum alloy die material Withdrawn JP2001098354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27038299A JP2001098354A (en) 1999-09-24 1999-09-24 Manufacture of manganese added aluminum alloy die material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27038299A JP2001098354A (en) 1999-09-24 1999-09-24 Manufacture of manganese added aluminum alloy die material

Publications (1)

Publication Number Publication Date
JP2001098354A true JP2001098354A (en) 2001-04-10

Family

ID=17485490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27038299A Withdrawn JP2001098354A (en) 1999-09-24 1999-09-24 Manufacture of manganese added aluminum alloy die material

Country Status (1)

Country Link
JP (1) JP2001098354A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100857497B1 (en) 2007-03-28 2008-09-08 한병수 Method for producing aluminium alloy plate comprising leveling process and the leveling apparatus
CN110358949A (en) * 2019-06-25 2019-10-22 广东坚美铝型材厂(集团)有限公司 A kind of high thermal conductivity heat radiator aluminium profile and preparation method thereof, radiator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100857497B1 (en) 2007-03-28 2008-09-08 한병수 Method for producing aluminium alloy plate comprising leveling process and the leveling apparatus
CN110358949A (en) * 2019-06-25 2019-10-22 广东坚美铝型材厂(集团)有限公司 A kind of high thermal conductivity heat radiator aluminium profile and preparation method thereof, radiator
CN110358949B (en) * 2019-06-25 2021-06-08 广东坚美铝型材厂(集团)有限公司 High-thermal-conductivity radiator aluminum profile, preparation method thereof and radiator

Similar Documents

Publication Publication Date Title
US5496426A (en) Aluminum alloy product having good combinations of mechanical and corrosion resistance properties and formability and process for producing such product
CA2890535C (en) Method of manufacturing formed component for aircraft use made of aluminum alloy and formed component for aircraft use
CN112996935A (en) 7XXX series aluminum alloy products
CN112719179B (en) Forging method of TC1 titanium alloy bar
WO2017168890A1 (en) Al-mg-si-based alloy material, al-mg-si-based alloy plate, and method for manufacturing al-mg-si-based alloy plate
JP2017534757A (en) Isotropic sheet metal made of aluminum-copper-lithium alloy for aircraft fuselage manufacturing.
CN112048687A (en) Preparation method of ultrafine crystal magnesium alloy with multi-scale microstructure
JP3909406B2 (en) Method for producing Ni-based alloy material
US4295901A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
Birol Response to annealing treatments of twin-roll cast thin Al–Fe–Si strips
US9435017B2 (en) Manufacturing method of titanium alloy with high-strength and high-formability and its titanium alloy
JP2001098354A (en) Manufacture of manganese added aluminum alloy die material
US4358324A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
JPS5953347B2 (en) Manufacturing method of aircraft stringer material
US3661657A (en) Method for making aluminum sheet
WO2002075010A2 (en) Method for aging 7000 series aluminium
WO2018061530A1 (en) METHOD FOR PRODUCING Fe-Ni-BASED ALLOY THIN PLATE AND Fe-Ni-BASED ALLOY THIN PLATE
EP3577247B1 (en) A process for producing copper-nickel-tin alloys
JP2004052008A (en) Titanium-copper alloy and manufacturing method therefor
KR102445159B1 (en) Method for improving strength of metal by static recrystallization
KR100570905B1 (en) A method for increasing the ductility of magnesium alloy through texture control
JPS61227157A (en) Manufacture of al-li alloy for elongation working
JPH0610087A (en) High strength superplastic aluminum alloy excellent in corrosion resistance and its manufacture
JPS60230968A (en) Manufacture of rolled titanium alloy plate
US5292386A (en) Process for the manufacture of aluminum sheets

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205