JP2001098105A - Method for manufacturing expanded product having biodegradability - Google Patents

Method for manufacturing expanded product having biodegradability

Info

Publication number
JP2001098105A
JP2001098105A JP27779299A JP27779299A JP2001098105A JP 2001098105 A JP2001098105 A JP 2001098105A JP 27779299 A JP27779299 A JP 27779299A JP 27779299 A JP27779299 A JP 27779299A JP 2001098105 A JP2001098105 A JP 2001098105A
Authority
JP
Japan
Prior art keywords
particles
polylactic acid
glass transition
transition point
biodegradable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27779299A
Other languages
Japanese (ja)
Other versions
JP4293489B2 (en
Inventor
Takayoshi Kubo
孝敬 久保
Sei Yoshimoto
聖 吉本
Shinko Yama
真弘 山
Tsunahiro Nakae
綱大 中江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Research Institute of Innovative Technology for the Earth RITE
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Research Institute of Innovative Technology for the Earth RITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd, Research Institute of Innovative Technology for the Earth RITE filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP27779299A priority Critical patent/JP4293489B2/en
Publication of JP2001098105A publication Critical patent/JP2001098105A/en
Application granted granted Critical
Publication of JP4293489B2 publication Critical patent/JP4293489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Abstract

PROBLEM TO BE SOLVED: To provide a method for molding, capable of transporting expandable particles made of polylactic acid composition having biodegradability to post processors in the state as it is and to improve foaming in post processing and flexibility and cushioning characteristics of post processing products thereof. SOLUTION: This method comprises molding expanded products mainly containing polylactic acid of L-isomer and D-isomer at a ratio (95:5) to (60:40) and is characterized by previously providing expanded particles mainly comprising polylactic acid, compounding a biodegradable resin having <=40 deg.C glass transition point to the expanded particles and molding the resultant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、生分解性を有し、
地球環境保全に資する乳酸を原料として、主として包装
材料として用いられる発泡成形物の製造方法を提供する
ものである。
The present invention relates to a biodegradable composition,
An object of the present invention is to provide a method for producing a foamed molded product mainly used as a packaging material by using lactic acid that contributes to global environmental protection as a raw material.

【0002】[0002]

【従来の技術】軽量性、緩衝性、成形加工性を生かした
プラスチック発泡体が包装、梱包材として多量に用いら
れており、その素材はポリスチレン(PS)、ポリオレ
フィンといった石油を原料とする化学製品で、使用後の
処分が困難で、焼却するにしても燃焼カロリーが高く、
焼却炉をいためたり、埋め立てをしても分解しない上に
容積が大きいために処分場のスペースを占有してしまう
といった大きな社会問題となってきている。
2. Description of the Related Art Plastic foams utilizing light weight, cushioning properties, and moldability are widely used as packaging and packing materials, and are made of petroleum-based chemical products such as polystyrene (PS) and polyolefin. It is difficult to dispose after use, and even if it is incinerated, it has a high calorie burn,
It has become a major social problem that it does not decompose even if it is damaged by incinerators or landfilled, and because it has a large volume, it occupies the space of the disposal site.

【0003】又、処分されずに投棄された発泡体が及ぼ
す、河川、海洋など、自然態系への影響も無視ではなく
なってきている。そこで、生態系の中で分解し、地球環
境への影響が少ない樹脂が開発された。例えば、微生物
の体内で合成されるポリヒドロキシブチレート系樹脂
や、脂肪族グリコールと脂肪族カルボン酸からなるポリ
エステル又は、カプロラクトンを主成分とするポリエス
テル系樹脂などが発表されているが、前者は、微生物が
作り出すため、純度が低い上、極めて生産性が悪く、利
用は制限される。
[0003] In addition, the effects of natural foams, such as rivers and oceans, caused by foams discarded without being disposed of are no longer ignored. Therefore, resins that decompose in the ecosystem and have less impact on the global environment have been developed. For example, a polyhydroxybutyrate resin synthesized in the body of a microorganism, a polyester composed of an aliphatic glycol and an aliphatic carboxylic acid, or a polyester resin containing caprolactone as a main component, etc., have been announced. Due to the production of microorganisms, the purity is low, the productivity is extremely low, and the use is limited.

【0004】また、後者は、原料が石油・天然ガスとい
った安価で多量に入手できるものであるから生産性は確
かに良いが、結晶性樹脂である上にガラス転移点が低い
ため、生分解性包装材料としては実用性においてその用
途が制限されると共に原料を石油・天然ガスとしている
ため、分解すると地球上に存在する炭酸ガスに新たに炭
酸ガスが加算されるため、炭酸ガスの増加抑制に寄与し
ない。又、長期的にみた場合原料ソースが有限であるた
め、やがて入手が困難となり、本当の意味での地球環境
保全に資し得ない。
The latter is certainly good in productivity because the raw material is inexpensive and available in large quantities such as petroleum and natural gas. However, since it is a crystalline resin and has a low glass transition point, it is biodegradable. The practical use of packaging materials is limited in terms of practicality, and petroleum and natural gas are used as raw materials.When decomposed, carbon dioxide is added to the existing carbon dioxide on the earth, so it is necessary to control the increase in carbon dioxide. Does not contribute. In the long term, since the raw material source is limited, it becomes difficult to obtain the material source soon, and it cannot contribute to global environmental protection in the true sense.

【0005】更に、生分解性の素材としてグリコール酸
や乳酸などもグリコリドやラクチドの開環重合によりポ
リマーが得られ、医療用徐放剤として、又、医療用等の
繊維として利用されているが、そのままでは発泡体とし
て、包装容器や緩衝材として大量に使用されるに至って
いない。
Further, as a biodegradable material, glycolic acid, lactic acid and the like can be obtained as a polymer by ring-opening polymerization of glycolide or lactide, and are used as a sustained-release agent for medical use or as a fiber for medical use. However, as it is, it has not been used in a large amount as a foam, as a packaging container or as a cushioning material.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、生分
解性を有するポリ乳酸組成物から得られる発泡性粒子
を、ポリスチレン発泡性粒子と同様に発泡性粒子の状態
で後次加工業者に搬送し、該加工業者が発泡、成形加工
して得られる成形物の柔軟性、及び緩衝性を改善するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide expandable particles obtained from a biodegradable polylactic acid composition to a downstream processor in the form of expandable particles in the same manner as polystyrene expandable particles. The object of the present invention is to improve the flexibility and cushioning of a molded product obtained by conveying and processing and foaming and molding.

【0007】ポリ乳酸組成物の発泡性粒子及び発泡粒子
に関しては、既に特開平5−17965、特開平5−1
7966に提案されている。しかし、本発明者らが詳細
に追試した結果、いずれの提案もその効果は期待出来な
いものであった。特開平5−17965は発泡粒子が提
案されているが、明細書中に詳述してある方法を忠実に
再現しても高発泡の発泡粒子を安定して、且つ、大量に
製造することは出来なかった。その原因は、水分散系で
高温高圧下で処理したポリ乳酸組成物を高温下に大気中
に噴出させると綿状になり粒子とはならない。
[0007] Regarding the expandable particles and expanded particles of the polylactic acid composition, Japanese Patent Laid-Open Nos. 5-17965 and 5-1 have already been disclosed.
7966. However, as a result of a detailed examination by the present inventors, none of the proposals was expected to be effective. JP-A-5-17965 proposes foamed particles. However, even if the method detailed in the specification is faithfully reproduced, it is not possible to stably produce high-expanded foamed particles in large quantities. I could not do it. The cause is that when the polylactic acid composition treated in a water dispersion system under high temperature and high pressure is spouted into the atmosphere at high temperature, it becomes flocculent and does not become particles.

【0008】発泡性ポリスチレンビーズのように発泡性
ビーズを予備発泡し、該発泡粒子を型枠成形するために
は真球に近い球状粒子が必要であり、綿状物では型枠成
形は不可能である。また、該処理ポリ乳酸組成物を10
0℃付近まで冷却して噴出させると発泡倍率の低い変形
した発泡粒子しか得られれず、型枠成形に耐えうるもの
ではない。更に、特開平5−17965には他の製造方
法は何ら記載されておらず、該提案でもって発泡粒子を
得ることは期待出来ない。一方、特開平5−17966
に提案されている発泡性粒子は一般に採用されいる方法
とかけ離れた方法で製造することが明細書中に記載され
現実性に乏しく、仮にこの提案により製造した発泡性粒
子から発泡粒子を得るにしても、高発泡倍率の発泡粒子
を安定して製造することは困難である。
[0008] In order to pre-expand expandable beads such as expandable polystyrene beads and form the expanded particles into a form, spherical particles close to a true sphere are required. It is. In addition, the treated polylactic acid composition was
When it is cooled to around 0 ° C. and jetted, only deformed expanded particles having a low expansion ratio can be obtained, which is not endurable for forming. Furthermore, JP-A-5-17965 does not disclose any other production method, and it cannot be expected that foamed particles can be obtained by this proposal. On the other hand, JP-A-5-17966
The expandable particles proposed in the specification is described in the specification that it is manufactured by a method far from the generally adopted method is not realistic, and if the expandable particles are obtained from the expandable particles manufactured by this proposal, However, it is difficult to stably produce expanded particles having a high expansion ratio.

【0009】本発明者等は、既に高い発泡性を有する生
分解性樹脂として不可欠な条件であるベースポリマー、
高分子量化するための添加剤、発泡させるための添加剤
等について詳細に検討を重ねた結果、実用上十分な生産
性を有する生分解性樹脂組成物を見いだし、発明提案を
行った。該生分解性樹脂組成物に発泡剤を含浸して得ら
れる発泡性粒子は、ポリスチレン発泡性粒子と同様に発
泡性粒子の状態で後次加工業者に搬送可能である。しか
し、該提案で得られる発泡粒子は高発泡倍率を有するも
のの、該発泡粒子から得られる成形物は柔軟性が不十分
でその用途が制限されている。
The present inventors have proposed a base polymer which is an essential condition as a biodegradable resin having a high foaming property.
As a result of detailed studies on an additive for increasing the molecular weight, an additive for foaming, and the like, a biodegradable resin composition having practically sufficient productivity was found, and an invention was proposed. The expandable particles obtained by impregnating the biodegradable resin composition with a foaming agent can be transported to a subsequent processor in the form of expandable particles, like the polystyrene expandable particles. However, although the foamed particles obtained by the proposal have a high expansion ratio, molded articles obtained from the foamed particles have insufficient flexibility and their applications are limited.

【0010】特開平8−253617においてポリ乳酸
の共重合物による柔軟性の改善が提案がされているが、
該提案により発泡性粒子を得ても、共重合物であるため
発泡剤の揮散が速く本発明の趣旨である発泡性粒子の状
態での後次加工業者への搬送は困難である。該提案によ
れば、柔軟性のある発泡粒子の製造は可能であるが、商
品の流通は発泡粒子又はその成形物で行わなければなら
ず極めて不経済である。又共重合ポリ乳酸であるため、
ガラス転移点が低下し荷重下における変形も大きい欠点
も有している。
[0010] Japanese Patent Application Laid-Open No. 8-253617 proposes improvement of flexibility by using a copolymer of polylactic acid.
Even if foamable particles are obtained according to the proposal, the volatilization of the foaming agent is fast because the copolymer is a copolymer, and it is difficult to transport the foamable particles in the state of the present invention to a post-processing company. According to the proposal, flexible foamed particles can be produced, but the distribution of goods must be carried out by the foamed particles or a molded product thereof, which is extremely uneconomical. Also, because it is copolymerized polylactic acid,
It also has the disadvantage that the glass transition point is reduced and the deformation under load is large.

【0011】[0011]

【課題を解決するための手段】本発明者らは、大量に生
産、使用するためにはかかる課題を克服することが必須
と判断し鋭意研究の結果、本発明に到達したものであ
る。即ち、本発明は、L体とD体との重量比が95/5
〜60/40の範囲にあるポリ乳酸を主体とする発泡成
形物を製造するに際して、予めポリ乳酸を主体とする発
泡粒子を製造し、該発泡粒子にガラス転移点が40℃以
下である生分解性樹脂を配合した後、成形加工を行うこ
とを特徴とする生分解性発泡成形物の製造法である。
Means for Solving the Problems The present inventors have determined that it is essential to overcome such problems in order to produce and use in large quantities, and as a result of earnest research, have arrived at the present invention. That is, according to the present invention, the weight ratio of L-form to D-form is 95/5.
When producing a foamed product mainly composed of polylactic acid in the range of 60 to 40/40, foamed particles mainly composed of polylactic acid are produced in advance, and biodegradation in which the glass transition point of the foamed particles is 40 ° C. or lower is performed. This is a method for producing a biodegradable foamed molded product, which is characterized by performing a molding process after blending a reactive resin.

【0012】[0012]

【発明の実施の形態】通常、ポリ乳酸を主体とする発泡
粒子からなる成形体の製造工程は以下のようなものであ
る。先ずポリ乳酸を重合する。これに、増粘剤と発泡核
剤を添加したポリ乳酸組成物を製造する。次にポリ乳酸
組成物に発泡剤と発泡助剤を含浸させ、発泡性粒子とす
る。更に発泡性粒子を加熱処理し、発泡粒子を得る。最
後に発泡粒子を成形する。以下にこの製造工程に沿っ
て、本願発明について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A process for producing a molded article comprising expanded particles mainly composed of polylactic acid is generally as follows. First, polylactic acid is polymerized. A polylactic acid composition is prepared by adding a thickener and a foam nucleating agent thereto. Next, the polylactic acid composition is impregnated with a foaming agent and a foaming aid to form foamable particles. Further, the expandable particles are heat-treated to obtain expanded particles. Finally, foamed particles are formed. Hereinafter, the present invention will be described along the manufacturing steps.

【0013】本発明に用いるL体とD体との重量比が9
5/5〜60/40の範囲にあるポリ乳酸とは、融点は
有するもののその融解熱が小さいポリ乳酸まで含むもの
である。即ち、DSC測定による融解熱(2nd sc
an△H)が0.1J/g以下のポリ乳酸でありD体共
重合比率では5モル%以上に相当する。これはmacr
omolecules255719−5729(199
2)記載のXD=0.048以上に近似するものであ
る。本発明に使用されるポリ乳酸のD体とL体の共重合
比率はD体が5〜40モル%が必要であり、更には、8
〜20モル%が好ましく使用される。特に、高発泡倍率
の発泡粒子が要求される場合、融解熱(2nd sca
n△H)の無いD体が8〜20モル%が好ましい。D体
のモル比率がこの範囲より小さいと結晶性が高く、発泡
倍率が上がらなかったり、発泡が不均一になり使用でき
ない。一方、D体の量がこの範囲を超えると耐熱性が劣
り使用できない。
When the weight ratio between the L-form and the D-form used in the present invention is 9
The polylactic acid in the range of 5/5 to 60/40 includes polylactic acid having a melting point but a small heat of fusion. That is, the heat of fusion (2nd sc
an @ H) is a polylactic acid of 0.1 J / g or less, corresponding to a D-form copolymerization ratio of 5 mol% or more. This is macr
omolecules 255719-5729 (199
2) It is close to X D = 0.048 or more described. The D-form and the L-form of the polylactic acid used in the present invention must have a copolymerization ratio of 5 to 40 mol% for the D-form.
~ 20 mol% is preferably used. In particular, when expanded particles having a high expansion ratio are required, the heat of fusion (2nd sca) is required.
The D-form without n △ H) is preferably 8 to 20 mol%. If the molar ratio of the D-form is less than this range, the crystallinity is high, and the expansion ratio does not increase, or the foaming becomes nonuniform, so that it cannot be used. On the other hand, when the amount of D-form exceeds this range, heat resistance is inferior and cannot be used.

【0014】本発明に使用されるポリ乳酸は溶融粘度が
JIS K7210(荷重2.16kgf)に準拠した
メルトインデックス値(MI)で1〜10の範囲にある
高分子量のポリ乳酸が好ましい。しかし、該ポリ乳酸を
そのまま使用しても発泡倍率の高い発泡粒子は得ること
が出来ない。発泡倍率の高い発泡粒子は得るにはポリイ
ソシアネート、酸無水物、エポキシ化合物等の粘度増加
剤と反応させて更に超高粘度化したポリ乳酸組成物とす
る必要がある。例えば、10倍以上の高発泡倍率の発泡
粒子を得るには、該組成物の溶融粘度(MI)が5以
下、好ましくは1以下であることが望ましい。MI値が
この範囲にあれば、生産性に優れ、発泡倍率の高い発泡
体を得る事が出来るので好ましい。
The polylactic acid used in the present invention is preferably a high molecular weight polylactic acid having a melt viscosity in the range of 1 to 10 by a melt index value (MI) according to JIS K7210 (load: 2.16 kgf). However, even if the polylactic acid is used as it is, expanded particles having a high expansion ratio cannot be obtained. In order to obtain expanded particles having a high expansion ratio, it is necessary to obtain a polylactic acid composition which has been further made to have a very high viscosity by reacting with a viscosity increasing agent such as a polyisocyanate, an acid anhydride or an epoxy compound. For example, in order to obtain expanded particles having a high expansion ratio of 10 times or more, it is desirable that the composition has a melt viscosity (MI) of 5 or less, preferably 1 or less. When the MI value is in this range, it is preferable because a foam having excellent productivity and a high expansion ratio can be obtained.

【0015】本発明に使用されるポリイソシアネートと
しては、芳香族、脂環族、脂肪族系のいずれのポリイソ
シアネートでも良いが、例えば、芳香族ポリイソシアネ
ートとしてはトリレン、ジフェニルメタン、ナフチレ
ン、トリジン、キシレン、トリフェニルメタンを骨格と
するポリイソシアネート、脂環族ポリイソシアネートと
しては水素化ジフェニルメタンを骨格とするポリイソシ
アネート、脂肪族ポリイソシアネートとしてはヘキサメ
チレンを骨格とするポリイソシアネートがあり、その中
で汎用性、取り扱い性、耐候性等からトリレン、ジフェ
ニルメタン、特にジフェニルメタンが好ましく使用され
る。
The polyisocyanate used in the present invention may be any of aromatic, alicyclic and aliphatic polyisocyanates. For example, aromatic polyisocyanates include tolylene, diphenylmethane, naphthylene, tolidine and xylene. There is a polyisocyanate having a triphenylmethane skeleton, a polyisocyanate having a hydrogenated diphenylmethane skeleton as an alicyclic polyisocyanate, and a polyisocyanate having a hexamethylene skeleton as an aliphatic polyisocyanate. Tolylene, diphenylmethane, especially diphenylmethane is preferably used from the viewpoints of handleability, weather resistance and the like.

【0016】次に本発明に使用するポリ乳酸には、発泡
倍率の向上、発泡セルの均一性、発泡セルの微細化など
の目的でタルク、カオリン、マイカ、ベントナイト、ゼ
オライトなどの無機粉末が使用される。その中でタルク
が最も好ましく、該ポリ乳酸に対して0.5〜20重量
%、更に好ましくは、2〜10重量%である。タルクの
使用量がこの範囲にあると、得られる成形物の柔軟性が
向上し、包装材として優れた機能を有するので好まし
い。
In the polylactic acid used in the present invention, an inorganic powder such as talc, kaolin, mica, bentonite, or zeolite is used for the purpose of improving the expansion ratio, uniformity of the foam cells, and miniaturization of the foam cells. Is done. Among them, talc is most preferable, and 0.5 to 20% by weight, more preferably 2 to 10% by weight based on the polylactic acid. When the amount of talc is in this range, the flexibility of the obtained molded article is improved, and the talc has an excellent function as a packaging material, which is preferable.

【0017】本発明に使用するタルクはその平均粒子径
が好ましくは10μm以下、更に好ましくは5μm以
下、特に好ましくは3μm以下である。発泡セル膜の膜
厚は多くの場合数μmである。
The talc used in the present invention has an average particle diameter of preferably 10 μm or less, more preferably 5 μm or less, particularly preferably 3 μm or less. In many cases, the thickness of the foam cell membrane is several μm.

【0018】増粘剤及び/又はタルクを本発明に使用す
るポリ乳酸に添加、分散させる方法はラクチドからポリ
乳酸を得る重合工程、ポリ乳酸と増粘剤及び/又はタル
クを混練機等で溶融混練する方法のいずれでも良いが、
高濃度のタルクを添加、分散させるためには二軸混練機
を使用して溶融混練する方法が好ましい。
The method of adding and dispersing the thickener and / or talc to the polylactic acid used in the present invention is a polymerization step of obtaining polylactic acid from lactide, and melting the polylactic acid and the thickener and / or talc with a kneader or the like. Any method of kneading may be used,
In order to add and disperse talc at a high concentration, a method of melt-kneading using a twin-screw kneader is preferable.

【0019】かくして得られたポリ乳酸樹脂組成物に、
発泡剤、発泡助剤を含浸させ、発泡処理を行うと高発泡
倍率の発泡体が得られる。ここで用いる発泡剤として
は、プロパン、n−ブタン、イソブタン、n−ペンタ
ン、イソペンタン、シクロペンタン、ヘキサン等の炭化
水素、ジメチルエーテル、メチルエチルエーテル等のエ
ーテル類が使用される。ポリ乳酸の場合、炭素数3〜4
の炭化水素を用いる事が好ましい。又、発泡助剤として
は炭素数1〜4のアルコール、ケトン、エーテル類等が
主として用いられる。
The polylactic acid resin composition thus obtained contains
When a foaming agent and a foaming aid are impregnated and subjected to a foaming treatment, a foam having a high expansion ratio is obtained. As the foaming agent used here, hydrocarbons such as propane, n-butane, isobutane, n-pentane, isopentane, cyclopentane and hexane, and ethers such as dimethyl ether and methyl ethyl ether are used. In the case of polylactic acid, carbon number 3-4
It is preferable to use the hydrocarbon of the above. Alcohols having 1 to 4 carbon atoms, ketones, ethers and the like are mainly used as foaming assistants.

【0020】発泡剤、発泡助剤の含浸は通常の方法が使
用でき、水分散系又は非水系で、加熱下、高圧下で行う
ことが出来る。例えば、オートクレーブに本発明のポリ
乳酸、発泡剤、発泡助剤を所定量投入し、内温80〜9
0℃に保持しながら数時間加熱すると容易に発泡性粒子
を得ることが出来る。
The impregnation of a foaming agent and a foaming aid can be carried out by a usual method, and can be carried out under heating and under high pressure in an aqueous dispersion or non-aqueous system. For example, a predetermined amount of the polylactic acid of the present invention, a foaming agent, and a foaming assistant are charged into an autoclave, and the internal temperature is 80 to 9;
By heating for several hours while maintaining the temperature at 0 ° C., expandable particles can be easily obtained.

【0021】得られた該発泡性粒子は、水蒸気で適正条
件下に加熱することにより、容易に高発泡倍率の発泡粒
子を製造することが出来る。発泡の適正条件としては、
発泡倍率や発泡粒子の二次発泡性という観点から水蒸気
の温度が50〜105℃、加熱時間が10から300秒
が好ましい。
By heating the obtained expandable particles under appropriate conditions with steam, expanded particles having a high expansion ratio can be easily produced. As appropriate conditions for foaming,
From the viewpoint of the expansion ratio and the secondary expandability of the expanded particles, the temperature of steam is preferably 50 to 105 ° C., and the heating time is preferably 10 to 300 seconds.

【0022】本発明において、発泡性粒子から発泡粒子
を得るに際しては、ブロッキング防止剤を使用すること
が好ましい。ブロッキング防止剤としては、高級脂肪酸
の金属塩、特にステアリン酸マグネシウム、ステアリン
酸亜鉛が好ましく使用される。その好ましい配合量は、
発泡性粒子に対して0.01〜0.1重量%の範囲であ
る。
In the present invention, it is preferable to use an anti-blocking agent when obtaining expanded particles from expandable particles. As the antiblocking agent, metal salts of higher fatty acids, particularly magnesium stearate and zinc stearate are preferably used. Its preferred amount is
It is in the range of 0.01 to 0.1% by weight based on the expandable particles.

【0023】かくして得られた本発明の発泡粒子を、従
来のように単に発泡成形機を使用して成形加工した成形
物は、同じ密度の発泡ポリスチレン成形物に比して柔軟
性が劣る。水蒸気の圧力、時間、クラッキングなどの成
形条件を種々変更しても、柔軟性の改善は不可能であ
る。
The molded article obtained by molding the thus obtained expanded particles of the present invention simply by using a conventional foam molding machine is inferior in flexibility to an expanded polystyrene molded article having the same density. Even if the molding conditions such as steam pressure, time, and cracking are variously changed, it is impossible to improve flexibility.

【0024】そこで、本発明では、成形の際に発泡粒子
にガラス転移点が40℃以下の生分解性樹脂を配合した
後、成形加工を行う。これにより、得られる成形物は柔
軟性が大幅に改善され、発泡ポリスチレン成形物に同等
のレベルとなる。
Therefore, in the present invention, a molding process is performed after a biodegradable resin having a glass transition point of 40 ° C. or less is added to the foamed particles during molding. Thereby, the obtained molded product is greatly improved in flexibility, which is equivalent to that of the expanded polystyrene molded product.

【0025】生分解性樹脂のガラス転移点が40℃以下
とは、乾燥状態状態におけるガラス転移点である。又、
該生分解性樹脂は結晶部分を有する樹脂であることが必
要である。その理由は、脂肪族ジカルボン酸と脂肪族グ
リコール及び/又はヒドロキシカルボン酸などから得ら
れる非晶性の生分解性ポリエステル樹脂又は生分解性ポ
リウレタン樹脂は、耐溶剤性、耐熱性等が悪く使用でき
ない。ガラス転移点が40℃を超える樹脂を添加しても
成形物の柔軟性は改善されない。
The glass transition point of the biodegradable resin of 40 ° C. or lower is a glass transition point in a dry state. or,
The biodegradable resin needs to be a resin having a crystal part. The reason is that amorphous biodegradable polyester resin or biodegradable polyurethane resin obtained from aliphatic dicarboxylic acid and aliphatic glycol and / or hydroxy carboxylic acid cannot be used because of poor solvent resistance, heat resistance and the like. . Even if a resin having a glass transition point exceeding 40 ° C. is added, the flexibility of the molded product is not improved.

【0026】本発明に使用するガラス転移点が40℃以
下の生分解性樹脂とは、脂肪族ジカルボン酸としてマロ
ン酸、コハク酸、アジピン酸、セバシン酸等があり、脂
肪族グリコールとしてエチレングリコープロピレングリ
コール、ブチレングリコール、ヘキサンジオール等があ
り、これらの組み合わせの樹脂の中から結晶性でガラス
転移点が40℃以下の樹脂が選定される。これらの中
で、ポリブチレンサクシネートを主体とする樹脂が好ま
しく使用される。又、ヒドロキシカルボン酸又はラクト
ンからの樹脂としてはポリカプロラクトンが好ましい。
さらに、生分解性のポリウレタン樹脂としては、ソフト
セグメントとしてポリブチレンアジペートからなるポリ
オール、ハードセグメントとしてジフェニルメタンジイ
ソシアネート、鎖伸長剤としてブタンジオールからなる
樹脂が好ましく使用される。
The biodegradable resin having a glass transition point of 40 ° C. or lower used in the present invention includes malonic acid, succinic acid, adipic acid and sebacic acid as aliphatic dicarboxylic acids and ethylene glycol propylene as aliphatic glycol. There are glycol, butylene glycol, hexanediol and the like, and a resin having a glass transition point of 40 ° C. or lower is selected from resins of these combinations. Among these, a resin mainly composed of polybutylene succinate is preferably used. In addition, polycaprolactone is preferred as the resin from hydroxycarboxylic acid or lactone.
Further, as the biodegradable polyurethane resin, a resin composed of polybutylene adipate as a soft segment, diphenylmethane diisocyanate as a hard segment, and a resin composed of butanediol as a chain extender is preferably used.

【0027】該生分解性樹脂の発泡粒子に対する配合量
は、1〜50重量%好ましくは3〜20重量%である。
配合量がこの範囲にあると、高発泡倍率で柔軟性に優れ
た成形物が得られるので好ましい。
The compounding amount of the biodegradable resin with respect to the expanded particles is 1 to 50% by weight, preferably 3 to 20% by weight.
When the compounding amount is in this range, a molded article having a high expansion ratio and excellent flexibility is obtained, which is preferable.

【0028】該生分解性樹脂の発泡粒子に対する配合方
法は、ペレット、粉体、溶液による混合のいずれでも良
いが、それらの中で粉体混合が使用量の低減化、簡便性
などから好ましく利用される。粉体の粒子径は、小さい
ほど好ましいが1mm以下、更には、0.2mm以下が
発泡粒子表面への吸着性の面から良好である。
The method of blending the biodegradable resin with the foamed particles may be any of pellets, powders, and mixing with a solution. Among them, powder mixing is preferably used from the viewpoint of reduction in the amount used and simplicity. Is done. The smaller the particle diameter of the powder is, the better, but 1 mm or less, and further preferably 0.2 mm or less is preferable from the viewpoint of the adsorptivity to the surface of the foamed particles.

【0029】また、本発明においては、発泡粒子に、目
的に応じその他の添加剤についても適宜添加することが
出来、例えば熱安定剤、酸化防止剤、難燃剤、紫外線吸
収剤、可塑剤等がある。但し、難燃剤等は塩素等のハロ
ゲン化物であることが多く、生分解性や焼却処分時の有
害物質発生という観点から最小限に留めておくのがよ
い。
In the present invention, other additives can be appropriately added to the foamed particles according to the purpose. Examples of the additives include a heat stabilizer, an antioxidant, a flame retardant, an ultraviolet absorber, and a plasticizer. is there. However, the flame retardant or the like is often a halide such as chlorine, and is preferably minimized from the viewpoint of biodegradability and generation of harmful substances during incineration.

【0030】本発明により得られる成形物は、その優れ
た柔軟性、緩衝性を生かしていろいろな用途に使用で
き、経済価値としては非常に高いものである。
The molded product obtained by the present invention can be used for various applications by utilizing its excellent flexibility and cushioning property, and has a very high economic value.

【0031】[0031]

【実施例】以下に実施例及び比較例により、本発明を更
に具体的に説明する。尚、評価は下記の方法で行った。
The present invention will be described more specifically with reference to the following examples and comparative examples. In addition, evaluation was performed by the following method.

【0032】ΔH:パーキンエルマー社製DSC7を使
用。サンプル10mgを10℃/分で200℃まで昇温
した1st scan後、急冷して0℃まで持ってい
き、10℃/分で200℃まで昇温した2nd sca
nで測定。同様の方法で融点、ガラス転移点を測定。
ΔH: DSC7 manufactured by PerkinElmer was used. After the first scan of 10 mg of the sample heated to 200 ° C. at 10 ° C./min, it was quenched and brought to 0 ° C., and the second scan heated to 200 ° C. at 10 ° C./min.
Measured with n. The melting point and glass transition point were measured in the same manner.

【0033】ポリ乳酸のMI:JIS K7210に準
拠した方法で測定。(測定温度190℃、オリフィス径
2mm、2.16kg荷重の条件)
Polylactic acid MI: Measured by a method according to JIS K7210. (Measurement temperature 190 ° C, orifice diameter 2mm, 2.16kg load condition)

【0034】ポリ乳酸組成物のMI:JIS K721
0に準拠した方法で測定。(測定温度190℃、オリフ
ィス径2mm、21.6kg荷重の条件)
MI of polylactic acid composition: JIS K721
Measured according to method 0. (Measurement temperature 190 ° C, orifice diameter 2 mm, load of 21.6 kg)

【0035】発泡倍率:メスシリンダーを用いて、発泡
前の発泡性粒子の体積及び発泡粒子の体積を測定し、発
泡倍率を次式により求めた。 発泡倍率(倍)=予備発泡粒子の体積/発泡剤含浸ペレ
ットの体積
Expansion ratio: The volume of the expandable particles before expansion and the volume of the expanded particles were measured using a measuring cylinder, and the expansion ratio was determined by the following equation. Expansion ratio (times) = volume of pre-expanded particles / volume of pellets impregnated with blowing agent

【0036】成形物の評価 引張強度:JIS K−6767に準じて測定。 試料:300×300×30mmの成形物から切り出し
て作製。
Evaluation of molded article Tensile strength: Measured according to JIS K-6767. Sample: Prepared by cutting out a molded product of 300 × 300 × 30 mm.

【0037】柔軟性評価: 曲げ応力:JIS K−7221に準じて測定。 試料:300×300×30mmの成形物から長さ15
0mm、幅25mm、高さ20mmの形状物を切り出し
て作製。 測定:テンシロン試験機を用い、2点支持間100mm
で支持間の中央部を10mm/分で押し曲げる方法で、
10%歪み応力(kgf/cm2)を測定した。
Flexibility evaluation: Bending stress: Measured according to JIS K-7221. Specimen: 300 × 300 × 30 mm molded product, length 15
It is made by cutting out a shape object of 0 mm, width 25 mm and height 20 mm. Measurement: Using a Tensilon tester, 100 mm between two supports
By pressing and bending the central part between the supports at 10 mm / min,
The 10% strain stress (kgf / cm 2 ) was measured.

【0038】圧縮応力:JIS K−7220に準じて
測定。 試料:300×300×60mmの成形物から長さ10
0mm、幅100mm、高さ50mmの形状物を切り出
して作製。 測定:テンシロン試験機を用い、圧縮速度10mm/分
で圧縮し、10%歪み応力(kgf/cm2)を測定し
た。
Compressive stress: Measured according to JIS K-7220. Specimen: 300 × 300 × 60 mm molded product to length 10
It is made by cutting out a shape object of 0 mm, width 100 mm and height 50 mm. Measurement: Using a Tensilon tester, compression was performed at a compression speed of 10 mm / min, and a 10% strain stress (kgf / cm 2 ) was measured.

【0039】緩衝性:動的緩衝係数を測定。 試料:300×300×60mmの成形物から長さ10
0mm、幅100mm、厚み50mmの形状物を切り出
しして作製。 測定:吉田精機製CST320型試験機を用い、加重の
落下高さは35cmとして落下重量を変えて、衝突荷
重、厚み変位、最大加速度を測定し、荷重−最大加速度
線図から最小加速度を求めて、下式で動的緩衝係数を算
出した。 緩衝係数=最小加速度×{(落下高さ+圧縮変位量)/
サンプル厚み}
Buffering property: The dynamic buffering coefficient was measured. Specimen: 300 × 300 × 60 mm molded product to length 10
It is made by cutting out a shape object of 0 mm, width 100 mm and thickness 50 mm. Measurement: Using a CST320 type tester manufactured by Yoshida Seiki Co., Ltd., measuring the impact load, thickness displacement, and maximum acceleration while changing the falling weight with a falling height of 35 cm and obtaining the minimum acceleration from the load-maximum acceleration diagram. The dynamic buffer coefficient was calculated by the following equation. Buffer coefficient = minimum acceleration × {(fall height + compression displacement) /
Sample thickness}

【0040】耐薬品性:上記成形物より30×30×3
0mmの試験片を切り出し、25℃でエチルアルコール
中に浸漬し、24時間後試験片の状態を目視で評価。
Chemical resistance: 30 × 30 × 3 from the above molded product
A test piece of 0 mm was cut out, immersed in ethyl alcohol at 25 ° C., and after 24 hours, the condition of the test piece was visually evaluated.

【0041】製造例1:ポリ乳酸の製造例 市販のL−ラクチド、D−ラクチドをそれぞれ酢酸エチ
ルを用いて再結晶して精製した。精製したL−ラクチ
ド、D―ラクチド及び触媒としてオクチル酸スズをスズ
として10ppm添加し、表1の組成になるように攪拌
機付きオートクレーブに仕込み、減圧脱気した後、N2
雰囲気下で重合温度170℃〜190℃に2時間加熱
し、開環重合を行った。反応終了後、オートクレーブよ
りポリマーを取り出し、溶融粘度(MI)を測定し、M
Iが3〜5のポリマーを得た。
Production Example 1: Production Example of Polylactic Acid Commercially available L-lactide and D-lactide were each purified by recrystallization using ethyl acetate. Purified L-lactide, D-lactide and tin octylate as a catalyst were added as a catalyst in an amount of 10 ppm as tin, charged into an autoclave with a stirrer so as to have the composition shown in Table 1, degassed under reduced pressure, and N2
Under an atmosphere, the mixture was heated to a polymerization temperature of 170 ° C to 190 ° C for 2 hours to perform ring-opening polymerization. After completion of the reaction, the polymer was taken out of the autoclave, and the melt viscosity (MI) was measured.
A polymer having an I of 3 to 5 was obtained.

【0042】製造例2:ポリ乳酸組成物の製造例 次いで、該ポリマーを水分が1000ppm以下になる
まで乾燥させた後、該ポリマーに対してタルクを3重量
%、粘度増加剤として官能基2.8当量/モルのジフェ
ニルメタンポリイソシアネートを1重量%をブレンドし
た後、二軸混練機に供給し、回転数100rpm、溶融
温度180℃、滞留時間3〜5分、吐出量10kg/時
の条件下に反応混練した。得られたポリ乳酸組成物を切
断し、直径約1.5mmの粒子を得、熟成した後に溶融
粘度(MI)を測定し、MIが3以下のポリ乳酸樹脂組
成物を得た。結果を表1に示した。
Production Example 2: Production Example of Polylactic Acid Composition Next, the polymer was dried until the water content became 1000 ppm or less, and then 3% by weight of talc based on the polymer was used. After blending 1% by weight of 8 equivalents / mol of diphenylmethane polyisocyanate, the mixture is fed to a twin-screw kneader under the conditions of a rotation speed of 100 rpm, a melting temperature of 180 ° C., a residence time of 3 to 5 minutes, and a discharge rate of 10 kg / hour. The reaction was kneaded. The resulting polylactic acid composition was cut to obtain particles having a diameter of about 1.5 mm. After aging, the melt viscosity (MI) was measured to obtain a polylactic acid resin composition having an MI of 3 or less. The results are shown in Table 1.

【0043】[0043]

【表1】 [Table 1]

【0044】製造例3:発泡性粒子の製造例 製造例2に例示したポリ乳酸組成物1000部、イソペ
ンタン300部、メタノール50部を回転式オートクレ
ーブに仕込み温度80〜90℃、回転数3rpm、2時
間保持した後冷却し、含浸率8〜15%の発泡性粒子を
得た。
Production Example 3: Production Example of Expandable Particles 1000 parts of the polylactic acid composition exemplified in Production Example 2, 300 parts of isopentane, and 50 parts of methanol were charged into a rotary autoclave at a temperature of 80 to 90 ° C., a rotation number of 3 rpm, and 2 rpm. After holding for a time, the mixture was cooled to obtain expandable particles having an impregnation ratio of 8 to 15%.

【0045】製造例4:発泡粒子の製造例 該発泡性粒子及びブロッキング防止剤としてステアリン
酸マグネシウム0.05重量%を予めブレンドした混合
物を予備発泡機(ダイセン工業(株)DYHL−30
0)に約3kg投入し、水蒸気にて80〜90℃に30
秒〜1分保持した。得られた発泡粒子を風乾した後、発
泡倍率2〜40倍の発泡粒子を得た。
Production Example 4: Production Example of Expanded Particles A mixture obtained by previously blending the expandable particles and 0.05% by weight of magnesium stearate as an antiblocking agent was mixed with a prefoaming machine (DYHL-30, Daisen Industries Co., Ltd.).
0) and about 30 kg with steam at 80-90 ° C.
Hold for seconds to 1 minute. After the obtained expanded particles were air-dried, expanded particles having an expansion ratio of 2 to 40 times were obtained.

【0046】製造例5:成形物の製造例 製造例4に例示した発泡粒子を24時間エージングした
後、該発泡粒子と特定の生分解性樹脂の平均粒子径0.
1mmの粉体を所定量ブレンドした混合物を、300×
300×30mm又は300×300×60mmの金型
を設置した発泡成形機(ダイセン工業(株)DS−30
0L−MC)に充填し、スチーム圧0.3kgf/cm
2、10〜30秒処理し成形加工し成形物を得た。
Production Example 5: Production Example of Molded Product After the foamed particles exemplified in Production Example 4 were aged for 24 hours, the foamed particles and the specific biodegradable resin had an average particle size of 0.1%.
A mixture obtained by blending a predetermined amount of 1 mm powder into
A foam molding machine (Daisen Industries Co., Ltd. DS-30) equipped with a 300 × 30 mm or 300 × 300 × 60 mm mold.
0L-MC), steam pressure 0.3kgf / cm
2. Processed for 10 to 30 seconds and molded to obtain a molded product.

【0047】実施例1〜4、比較例1〜3 製造例1,2に例示した方法により製造したポリ乳酸組
成物P1〜P6及び対照であるポリスチレン粒子を、製
造例3に例示した方法で処理し、含浸率が8〜12重量
%の発泡性粒子を得た。次いで該発泡性粒子を製造例4
に例示した方法で水蒸気温度85℃、処理時間45秒の
条件で処理し、発泡粒子を得た。尚、対照のポリスチレ
ン粒子は、発泡処理は水蒸気温度95℃で60秒間処理
した。得られた発泡粒子を製造例5に例示した方法でポ
リブチレンサクシネート粒子を該発泡粒子に対して10
重量%混合し、成形加工を行い、それぞれの成形物を
得、これら成形物の物性評価を行った。
Examples 1 to 4 and Comparative Examples 1 to 3 The polylactic acid compositions P1 to P6 produced by the methods exemplified in Production Examples 1 and 2 and the polystyrene particles as a control were treated by the method exemplified in Production Example 3. Thus, expandable particles having an impregnation ratio of 8 to 12% by weight were obtained. Then, the expandable particles were prepared in Production Example 4
The foamed particles were obtained by the treatment under the conditions of a steam temperature of 85 ° C. and a treatment time of 45 seconds according to the method exemplified in (1). The control polystyrene particles were foamed at a steam temperature of 95 ° C. for 60 seconds. The obtained expanded particles were treated with polybutylene succinate particles by the method exemplified in Production Example 5 for 10 minutes to the expanded particles.
% By weight and molding was performed to obtain each molded product, and the physical properties of these molded products were evaluated.

【0048】[0048]

【表2】 [Table 2]

【0049】評価結果 P1は結晶性、且つ、結晶化度が高いため発泡倍率が極
端に小さいく発泡体としては使用できない。P2〜P5
は本発明の目的である曲げ応力、圧縮応力に代表される
柔軟性及び緩衝係数が対照であるポリスチレン発泡成形
体と殆ど同一レベルで好ましい結果となった。
Evaluation Result P1 has high crystallinity and high crystallinity, and therefore has an extremely low expansion ratio and cannot be used as a foam. P2 to P5
The preferred results of the present invention were almost the same as those of the polystyrene foam molded article having the same flexibility and cushioning coefficient as represented by the bending stress and the compressive stress, which are the objects of the present invention.

【0050】実施例2、5〜8、比較例3〜5 製造例1,2に例示した方法により製造したポリ乳酸組
成物P3及び対照であるポリスチン粒子を、製造例3に
例示した方法で処理し、含浸率が9〜12重量%の発泡
性粒子を得た。次いで該発泡性粒子を製造例4に例示し
た方法で水蒸気温度85℃、処理時間45秒の条件で処
理し、発泡粒子を得た。尚、対照のポリスチレン粒子
は、発泡処理は水蒸気温度95℃で60秒間処理した。
得られた発泡粒子に、表3に示した生分解性樹脂を製造
例5に例示した方法で、該発泡粒子に対して10重量%
混合し、成形加工を行い、それぞれの成形物を得、これ
ら成形物の物性評価を行った。
Examples 2, 5 to 8, Comparative Examples 3 to 5 The polylactic acid composition P3 produced by the method exemplified in Production Examples 1 and 2 and the polystin particles as a control were treated by the method exemplified in Production Example 3. Thus, expandable particles having an impregnation ratio of 9 to 12% by weight were obtained. Next, the expandable particles were treated under the conditions of a steam temperature of 85 ° C. and a treatment time of 45 seconds by the method exemplified in Production Example 4 to obtain expanded particles. The control polystyrene particles were foamed at a steam temperature of 95 ° C. for 60 seconds.
To the obtained foamed particles, the biodegradable resin shown in Table 3 was added in a manner as exemplified in Production Example 5 by 10% by weight based on the foamed particles.
Mixing and molding were performed to obtain respective molded products, and the physical properties of these molded products were evaluated.

【0051】[0051]

【表3】 [Table 3]

【0052】評価結果 混合生分解性樹脂にポリブチレンアジペート/サクシネ
ート共重合体を使用した比較例4は本発明の主たる目的
である柔軟性、緩衝性の改善は認められたが、非結晶性
であるため耐薬品性が悪く、更に耐熱性も劣るため包装
材としては不適格である。また、混合生分解性樹脂にポ
リ乳酸を使用した比較例5も結晶性ポリマーで耐薬品性
は良好あるが、ガラス転移点が高いことに起因する柔軟
性、緩衝性が不十分となり、包装材としては不適格であ
る。混合生分解性樹脂にポリブチレンアジペート、ポリ
ブチレンサクシネート、ポリカプロラクトン、ポリヒド
ロキシブチレート、ポリブチレンアジペートをソフトセ
グメントに使用した熱可塑性ポリウレタンを使用した実
施例2、5〜8はいずれも曲げ応力、圧縮応力で代表さ
れる柔軟性、及び緩衝性は大幅に改善され発泡ポリスチ
レン成形物と同レベルに到達した。
Evaluation Results In Comparative Example 4 in which a polybutylene adipate / succinate copolymer was used as the mixed biodegradable resin, the improvement of flexibility and buffering properties, which were the main objects of the present invention, was recognized, but non-crystalline properties were obtained. Because of this, the chemical resistance is poor and the heat resistance is also poor, so it is not suitable as a packaging material. Comparative Example 5, which used polylactic acid as the mixed biodegradable resin, was also a crystalline polymer and had good chemical resistance, but the flexibility and cushioning properties due to the high glass transition point were insufficient, and the packaging material was poor. Is ineligible. Examples 2 to 5 to 8 in which a thermoplastic polyurethane in which polybutylene adipate, polybutylene succinate, polycaprolactone, polyhydroxybutyrate, and polybutylene adipate were used for the soft segment were used as the mixed biodegradable resin were all used in bending stress. The flexibility represented by compressive stress and the cushioning property were greatly improved, and reached the same level as the molded article of expanded polystyrene.

【0053】実施例2、9〜14、比較例3、6〜7 製造例1,2に例示した方法により製造したポリ乳酸組
成物P3及び対照であるポリスチン粒子を、製造例3に
例示した方法で処理し、含浸率が11重量%の発泡性粒
子を得た。次いで該発泡性粒子を製造例4に例示した方
法で水蒸気温度85℃、処理時間45秒の条件で処理
し、発泡粒子を得た。尚、対照のポリスチレン粒子は、
発泡処理は水蒸気温度95℃で60秒間処理した。得ら
れた発泡粒子に、ポリブリレンサクシネートを製造例5
に例示した方法で、該発泡粒子に対して所定量混合し、
成形加工を行い、それぞれの成形物を得、これら成形物
の物性評価を行った。
Examples 2, 9 to 14, Comparative Examples 3, 6 to 7 The polylactic acid composition P3 produced by the method exemplified in Production Examples 1 and 2 and the polystin particles as a control were prepared by the method exemplified in Production Example 3. To obtain expandable particles having an impregnation ratio of 11% by weight. Next, the expandable particles were treated under the conditions of a steam temperature of 85 ° C. and a treatment time of 45 seconds by the method exemplified in Production Example 4 to obtain expanded particles. The control polystyrene particles are as follows:
The foaming treatment was performed at a steam temperature of 95 ° C. for 60 seconds. Production Example 5 of polybrylene succinate on the obtained expanded particles
In the method exemplified in the above, a predetermined amount is mixed with the expanded particles,
Molding was performed to obtain each molded product, and the physical properties of these molded products were evaluated.

【0054】[0054]

【表4】 [Table 4]

【0055】評価結果 発泡粒子にポリブチレンサクシネートを無添加の比較例
6は曲げ応力、圧縮応力に代表される柔軟性、及び緩衝
性が共に不良であるのに対して、ポリブチレンサクシネ
ートを1重量%混合した成形物は柔軟性、緩衝性共に大
幅に改善された。この改善傾向はポリブチレンサクシネ
ートの添加量と共に大きくなるが、20重量%を越える
と該樹脂の性質の影響が次第に強くなる。該混合量が5
0重量%を越えると柔軟性、緩衝性共に低下し、本発明
の目的を逸脱し、好ましくない結果となった。これらの
結果から、適正混合量は1から50重量%であった。そ
の中で、特に3〜20重量%が好ましい範囲であり、こ
の範囲にある成形物は発泡ポリスチレン成形物と同レベ
ルの柔軟性、緩衝性を示した。
Evaluation Results Comparative Example 6, in which no polybutylene succinate was added to the expanded particles, had poor flexibility and buffering properties typified by bending stress and compressive stress, whereas polybutylene succinate did not. The molded article mixed with 1% by weight greatly improved both flexibility and cushioning property. This improvement tendency increases with the amount of polybutylene succinate added, but if it exceeds 20% by weight, the effect of the properties of the resin gradually increases. The mixing amount is 5
If the content exceeds 0% by weight, both the flexibility and the buffering property are reduced, deviating from the object of the present invention, resulting in unfavorable results. From these results, the proper mixing amount was 1 to 50% by weight. Among these, a preferred range is 3 to 20% by weight, and a molded product in this range has the same level of flexibility and cushioning properties as a foamed polystyrene molded product.

【0056】[0056]

【発明の効果】以上、本発明の生分解を有する発泡粒子
及びその成形物は、包装材料としての機能を十分保有し
ており発泡性、耐熱性、機械物性等、従来から用いられ
てきた発泡ポリスチレン(PS)と同程度のものが生産
効率よく得られ、地球環境保全に資するものである。
As described above, the biodegradable foamed particles of the present invention and the molded product thereof have a sufficient function as a packaging material, and have been used for foaming, heat resistance and mechanical properties. Polystyrene (PS) can be obtained at a high production efficiency and contributes to global environmental protection.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 67:02) (C08L 67/04 (C08L 67/04 75:06) 75:06) B29K 67:00 B29K 67:00 75:00 75:00 105:04 105:04 B65D 1/00 A (72)発明者 吉本 聖 山口県防府市鐘紡町4番1号 カネボウ合 繊株式会社内 (72)発明者 山 真弘 山口県防府市鐘紡町4番1号 カネボウ合 繊株式会社内 (72)発明者 中江 綱大 山口県防府市大字大崎276番地の516 Fターム(参考) 3E033 AA20 BA13 BB01 CA20 4F074 AA66 AA68 AA81 AA98 AC32 AD13 AG20 BA31 BA39 BA73 CA23 CA30 CA34 CA39 CA49 CA53 CC04Y CC04Z CC07Z CC22Z CC29Z CC47 DA24 DA33 4F212 AA24 AA31 AG20 UA05 UB01 UF01 4J002 CF032 CF181 CF182 CK032 GG02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 67:02) (C08L 67/04 (C08L 67/04 75:06) 75:06) B29K 67:00 B29K 67:00 75:00 75:00 105: 04 105: 04 B65D 1/00 A (72) Inventor Seiji Yoshimoto 4-1 Kanebocho, Hofu City, Yamaguchi Prefecture Inside Kanebo Goden Co., Ltd. (72) Inventor Yama Masahiro 4-1 Kanebo-cho, Hofu-shi, Yamaguchi Prefecture Kanebo Gosen Co., Ltd. (72) Inventor Tsunahiro Nakae 516 F-term at 276 Osaki, Ofu-shi, Yamaguchi Prefecture (Reference) 3E033 AA20 BA13 BB01 CA20 4F074 AA66 AA68 AA81 AA98 AC32 AD13 AG20 BA31 BA39 BA73 CA23 CA30 CA34 CA39 CA49 CA53 CC04Y CC04Z CC07Z CC22Z CC29Z CC47 DA24 DA33 4F212 AA24 AA31 AG20 UA05 UB01 UF01 4J002 CF032 CF181 CF182 CK032 GG02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 L体とD体との重量比が95/5〜60
/40の範囲にあるポリ乳酸を主体とする発泡成形物を
製造するに際して、予めポリ乳酸を主体とする発泡粒子
を製造し、該発泡粒子にガラス転移点が40℃以下であ
る生分解性樹脂を配合した後、成形加工を行うことを特
徴とする生分解性発泡成形物の製造法。
1. The weight ratio of L-form to D-form is 95/5 to 60
When producing a foamed product mainly composed of polylactic acid in the range of / 40, foamed particles mainly composed of polylactic acid are produced in advance, and a biodegradable resin having a glass transition point of 40 ° C. or lower is added to the foamed particles. A process for producing a biodegradable foamed molded product, which comprises molding after mixing.
【請求項2】 L体とD体との重量比が92/8〜80
/20の範囲にあるポリ乳酸を使用することを特徴とす
る請求項1に記載の成形物の製造方法。
2. The weight ratio of L-form to D-form is 92/8 to 80.
The method for producing a molded product according to claim 1, wherein a polylactic acid in the range of / 20 is used.
【請求項3】 ガラス転移点が40℃以下である生分解
性樹脂が脂肪族ジカルボン酸と脂肪族グリコール及び/
又はヒドロキシカルボン酸を主成分とすることを特徴と
する請求項1に記載の成形物の製造方法。
3. The biodegradable resin having a glass transition point of 40 ° C. or lower is composed of an aliphatic dicarboxylic acid, an aliphatic glycol and / or
The method for producing a molded article according to claim 1, wherein the molded article mainly comprises hydroxycarboxylic acid.
【請求項4】 ガラス転移点が40℃以下である生分解
性樹脂が、ポリブチレンサクシネート又はポリカプロラ
クトン又はその混合物であることを特徴とする請求項1
に記載の成形物の製造方法。
4. The biodegradable resin having a glass transition point of 40 ° C. or lower is polybutylene succinate, polycaprolactone or a mixture thereof.
The method for producing a molded article according to the above.
【請求項5】 ガラス転移点が40℃以下である生分解
性樹脂が、ポリブチレンアジペートを主成分とした熱可
塑性ポリウレタンであることを特徴とする請求項1に記
載の成形物の製造方法。
5. The method according to claim 1, wherein the biodegradable resin having a glass transition point of 40 ° C. or lower is a thermoplastic polyurethane containing polybutylene adipate as a main component.
【請求項6】 ガラス転移点が40℃以下である生分解
性樹脂の配合量が、発泡粒子に対して3〜20重量%の
範囲にあることを特徴とする請求項1に記載の成形物の
製造方法。
6. The molded article according to claim 1, wherein the amount of the biodegradable resin having a glass transition point of 40 ° C. or lower is in the range of 3 to 20% by weight based on the expanded particles. Manufacturing method.
JP27779299A 1999-09-30 1999-09-30 Method for producing foamed molded article having biodegradation Expired - Fee Related JP4293489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27779299A JP4293489B2 (en) 1999-09-30 1999-09-30 Method for producing foamed molded article having biodegradation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27779299A JP4293489B2 (en) 1999-09-30 1999-09-30 Method for producing foamed molded article having biodegradation

Publications (2)

Publication Number Publication Date
JP2001098105A true JP2001098105A (en) 2001-04-10
JP4293489B2 JP4293489B2 (en) 2009-07-08

Family

ID=17588363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27779299A Expired - Fee Related JP4293489B2 (en) 1999-09-30 1999-09-30 Method for producing foamed molded article having biodegradation

Country Status (1)

Country Link
JP (1) JP4293489B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100883319B1 (en) 2007-10-04 2009-02-11 경상대학교산학협력단 Polyurethane blend material containing polylatic acid and polyurethane using polyol obtained from bean, and foaming product thereof
WO2009119325A1 (en) * 2008-03-27 2009-10-01 株式会社カネカ Aliphatic polyester resin foam, flower arrangement holder made of the foam, and processes for production of both
JP2010525099A (en) * 2007-04-19 2010-07-22 シンブラ・テクノロジー・ベスローテン・フエンノートシヤツプ Coated granular foamable polylactic acid
WO2011062224A1 (en) * 2009-11-19 2011-05-26 株式会社カネカ Interconnected cell porous body and manufacturing method thereof
JP2013067740A (en) * 2011-09-22 2013-04-18 Furukawa Electric Co Ltd:The Thermoplastic resin bead foam, and method for manufacturing the same
US20140259909A1 (en) * 2011-10-29 2014-09-18 Synbra Technology B.V. Growth substrate for plants

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525099A (en) * 2007-04-19 2010-07-22 シンブラ・テクノロジー・ベスローテン・フエンノートシヤツプ Coated granular foamable polylactic acid
KR100883319B1 (en) 2007-10-04 2009-02-11 경상대학교산학협력단 Polyurethane blend material containing polylatic acid and polyurethane using polyol obtained from bean, and foaming product thereof
WO2009119325A1 (en) * 2008-03-27 2009-10-01 株式会社カネカ Aliphatic polyester resin foam, flower arrangement holder made of the foam, and processes for production of both
JP5365940B2 (en) * 2008-03-27 2013-12-11 株式会社カネカ Aliphatic polyester resin foam, pedestal for flower arrangement comprising the foam, and method for producing them
WO2011062224A1 (en) * 2009-11-19 2011-05-26 株式会社カネカ Interconnected cell porous body and manufacturing method thereof
JP5609887B2 (en) * 2009-11-19 2014-10-22 株式会社カネカ Open-cell porous body and method for producing the same
US9012526B2 (en) 2009-11-19 2015-04-21 Kaneka Corporation Interconnected cell porous body and manufacturing method thereof
JP2013067740A (en) * 2011-09-22 2013-04-18 Furukawa Electric Co Ltd:The Thermoplastic resin bead foam, and method for manufacturing the same
US20140259909A1 (en) * 2011-10-29 2014-09-18 Synbra Technology B.V. Growth substrate for plants
US9521814B2 (en) * 2011-10-29 2016-12-20 Synbra Technology B.V. Growth substrate for plants

Also Published As

Publication number Publication date
JP4293489B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
KR101778325B1 (en) Method for producing expandable granulates containing polylactic acid
JP3937727B2 (en) Resin composition for foam having biodegradability
JP3802680B2 (en) Expandable resin composition having biodegradability
JP5383489B2 (en) Biodegradable aliphatic polyester-based expanded particles and molded articles thereof
WO2006112287A1 (en) Polyhydroxyalkanoate-based resin foam particle, molded article comprising the same and process for producing the same
JP2005264166A (en) Foamed particle and molded product
CA2778580A1 (en) Expandable beads of a compostable or biobased thermoplastic polymer
JP4019747B2 (en) Expandable particles, expanded particles and expanded molded articles comprising a polyester resin composition
JP2003268143A (en) Aliphatic polyester resin for producing foam and foam produced thereby
JP4293489B2 (en) Method for producing foamed molded article having biodegradation
JP3871822B2 (en) Expandable resin composition having biodegradability
JP4578094B2 (en) Biodegradable foam beads, method for producing the same, and biodegradable foam molded product
JP2000230029A (en) Anti-static resin composition
JP2002020526A (en) Expandable resin beads
JP2001164027A (en) Polylactic acid foaming particle and formed product thereof and method for producing the same particle
JP3737396B2 (en) Expanded particles and molded bodies
JP3550782B2 (en) Expandable particles of lactic acid-based polyester
JP3907047B2 (en) Method for producing foamed molding
JP3811747B2 (en) Expandable resin composition having biodegradability
JP3802681B2 (en) Expandable resin composition having biodegradability
JPH06248106A (en) Foamable polyester particle and foam
JP2001098104A (en) Expanded particle having biodegradability and mold thereof
JP2001098044A (en) Polylactic acid resin composition having biodegradability and expandability
JP3787447B2 (en) Expandable resin composition having biodegradability
JP3879433B2 (en) Polyester resin composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050530

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees