JP2001093327A - Cu BASED CONDUCTOR COMPOSITION AND GLASS CERAMIC WIRING BOARD AS WELL AS ITS MANUFACTURING METHOD - Google Patents

Cu BASED CONDUCTOR COMPOSITION AND GLASS CERAMIC WIRING BOARD AS WELL AS ITS MANUFACTURING METHOD

Info

Publication number
JP2001093327A
JP2001093327A JP27505999A JP27505999A JP2001093327A JP 2001093327 A JP2001093327 A JP 2001093327A JP 27505999 A JP27505999 A JP 27505999A JP 27505999 A JP27505999 A JP 27505999A JP 2001093327 A JP2001093327 A JP 2001093327A
Authority
JP
Japan
Prior art keywords
glass
weight
parts
conductor
circuit layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27505999A
Other languages
Japanese (ja)
Other versions
JP3652184B2 (en
Inventor
Yoji Furukubo
洋二 古久保
Hideto Yonekura
秀人 米倉
Kenichi Nagae
謙一 永江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP27505999A priority Critical patent/JP3652184B2/en
Publication of JP2001093327A publication Critical patent/JP2001093327A/en
Application granted granted Critical
Publication of JP3652184B2 publication Critical patent/JP3652184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a Cu based conductor composition suitable to a glass ceramic, exhibiting high bonding strength as well as reliability on thermal hysteresis in use for a wiring circuit layer, good wetting performance and high bonding strength with a glass ceramic in use for beerhole filling and a firing contraction rate corresponding to that of a glass ceramic in a firing process. SOLUTION: A glass ceramic wiring board comprises a glass ceramic insulating board, a wiring circuit layer formed on the surface of or in the insulating board and a beerhole conductor for electrically connecting the wiring circuit layers. The wiring circuit layer and/or beerhole conductor are each formed of a conductor which contains, mainly, Cu and 0.1-15 wt.pts. glass frit having a yielding point of 600-800 deg.C and 0.1-15 wt.pts. silica glass in terms of 100 wt.pts. Cu.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Cuを主成分とす
るCu系導体組成物、及びガラスセラミックスからなる
絶縁基板と同時焼成して形成された前記Cu系導体組成
物から成るビアホール導体や配線回路層を形成したガラ
スセラミック配線基板の製法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Cu-based conductor composition containing Cu as a main component, and a via-hole conductor or wiring made of the Cu-based conductor composition formed by co-firing with an insulating substrate made of glass ceramic. The present invention relates to a method for manufacturing a glass ceramic wiring board on which a circuit layer is formed.

【0002】[0002]

【従来の技術】近年、配線基板においては、高周波回路
の対応性、高密度化、高速化が要求され、アルミナ系セ
ラミック材料に比較して低い誘電率が得られ、配線層の
低抵抗化が可能な低温焼成配線基板が一層注目されてい
る。
2. Description of the Related Art In recent years, in a wiring board, compatibility, high density, and high speed of a high-frequency circuit have been demanded, and a dielectric constant lower than that of an alumina-based ceramic material has been obtained. Possible low-temperature fired wiring boards are receiving more attention.

【0003】この低温焼成配線基板は、ガラスセラミッ
クスからなる絶縁基板に、該基板と同時焼成して形成さ
れた銅、金、銀などの低抵抗金属を主体とする配線回路
層を施した配線基板が知られている。このような配線基
板は、ガラスセラミック組成物からなるシート状成形体
に上記低抵抗金属粉末を含む導体ペーストを印刷した
後、800〜1000℃で同時に焼成して作製される。
[0003] This low-temperature fired wiring board is a wiring board in which a wiring circuit layer mainly composed of a low-resistance metal such as copper, gold or silver is formed on an insulating substrate made of glass-ceramics and fired simultaneously with the substrate. It has been known. Such a wiring board is produced by printing a conductor paste containing the above-mentioned low-resistance metal powder on a sheet-shaped molded body made of a glass ceramic composition, and simultaneously firing the same at 800 to 1000 ° C.

【0004】また、この低温焼成配線基板は、配線層の
低抵抗化、絶縁基板の低誘電率、低誘電損失化によっ
て、半導体素子が収納する半導体素子収納用パッケージ
や、配線回路基板、携帯電話やパーソナルハンディホン
システム、各種衛星通信用に使用される高周波用多層配
線基板などのあらゆる分野への応用が進められている。
In addition, the low-temperature fired wiring board has a low resistance of a wiring layer and a low dielectric constant and a low dielectric loss of an insulating substrate. Applications to all fields, such as personal digital assistant systems, high-frequency multilayer wiring boards used for various satellite communications, and the like, are being promoted.

【0005】低温焼成配線基板に用いる低抵抗の配線回
路層としては、金系ではコスト的な問題、銀系ではマイ
グレーションの問題から用途などが限定されるのに対し
て、銅系材料では焼成処理を還元雰囲気で行う必要があ
るものの、配線基板の高密度化、配線基板中の回路の高
周波化の要求に充分応えることが出来る材料であること
から配線層を形成するための材料として主流となってい
る。
As a low-resistance wiring circuit layer used for a low-temperature fired wiring board, applications are limited due to cost problems in a gold-based material and migration problems in a silver-based material. Although it is necessary to perform the process in a reducing atmosphere, it is a material that can sufficiently meet the demands for higher density of wiring boards and higher frequencies of circuits in the wiring board, so it has become the mainstream material for forming wiring layers ing.

【0006】ガラスセラミックからなる絶縁基体の表面
及び内部に銅粉末を主成分とする配線回路層を形成する
具体的方法としては、ガラスセラミック原料粉末、有機
バインダーに溶剤を添加して調製したスラリーをドクタ
ーブレード法などによってシート状に形成し、得られた
グリーンシートに貫通孔を打ち抜き加工し、該貫通孔に
銅粉末を主成分とする導体ペーストを充填し、同時にグ
リーンシート上に銅粉末を主成分とする導体ペーストを
配線パターン状にスクリーン印刷法などで印刷形成し、
配線パターンや貫通孔に導体が充填されたビアホール導
体が形成されたグリーンシートを複数枚加圧積層し、8
00〜1000℃で焼成することにより作製されてい
た。
As a specific method for forming a wiring circuit layer containing copper powder as a main component on the surface and inside of an insulating substrate made of glass ceramic, a slurry prepared by adding a solvent to a glass ceramic raw material powder and an organic binder is used. Formed into a sheet by doctor blade method or the like, punching a through hole in the obtained green sheet, filling the through hole with a conductive paste mainly composed of copper powder, and at the same time, mainly applying copper powder on the green sheet. Conductive paste as a component is printed and formed into a wiring pattern by screen printing, etc.
Pressing and laminating a plurality of green sheets on which a via hole conductor in which a conductor is filled in a wiring pattern or a through hole is formed, and
It was produced by firing at 00 to 1000 ° C.

【0007】以上のような目的に適用される銅導体組成
物として、主成分の銅又は銅合金に対して軟化点が3
00〜600℃のガラスフリットを含有する導電性組成
物(特開昭63−301405号公報参照)や主成分
の銅に対して結晶化ガラスフリットと導体の接着力を向
上するために、Bi、Cr、Nb、Sb、Ta、Ti、
W等の金属又は金属酸化物を含有する導体ペースト(特
開平1−112605号公報参照)などが提案されてい
る。
[0007] As the copper conductor composition applied for the above-mentioned purpose, the softening point of the main component copper or copper alloy is 3 or more.
Bi, in order to improve the adhesive force between the crystallized glass frit and the conductor with respect to the conductive composition containing a glass frit at a temperature of 00 to 600 ° C. (see JP-A-63-301405) and copper as a main component, Cr, Nb, Sb, Ta, Ti,
A conductor paste containing a metal such as W or a metal oxide (see JP-A-1-112605) has been proposed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前記提
案の銅導体組成物では以下に示すような課題が発生す
る。ではガラスフリットの軟化点が低いため、グリー
ンシート中の有機成分を除去する脱バイ工程(通常65
0〜750℃)においてガラスフリットの軟化に起因す
る脱バインダー不良を起こし、接着強度が不安定とな
る。また,では初期の接着力は良好であるが、接着力
の向上の目的で添加した金属又は金属酸化物が、熱履歴
(半田ボールの実装時等)を通すことにより変質し、接
着強度が劣化する。さらには,の導体組成物は主と
して配線パターン用として好適な物であり、これらをビ
アホールに充填してビアホール導体を形成した場合、ガ
ラスセラミックスとの濡れ性が著しく劣化し、ビアホー
ル導体とガラスセラミックの間に隙間が発生したり、ビ
アホール導体とガラスセラミックスの焼結開始温度が異
なることにより、焼成過程での収縮にズレを生じる結
果、ビアホール導体がガラスセラミック表面より不用意
に突出あるいは埋没してビアホール導体の端部に凹凸が
形成されてしてしまい、その結果半導体素子のシリコン
チップ接続部の凹凸による接続不良や、各種チップ部品
の接続不良、あるいはワイヤーボンディングの接続不良
が発生するという課題もあった。
However, the copper conductor composition proposed above has the following problems. Since the softening point of the glass frit is low, the debubbling step (usually 65) to remove the organic components in the green sheet is performed.
(0 to 750 ° C.), poor binder removal occurs due to softening of the glass frit, and the bonding strength becomes unstable. In addition, although the initial adhesive strength is good, the metal or metal oxide added for the purpose of improving the adhesive strength is deteriorated by passing through the heat history (such as when solder balls are mounted), and the adhesive strength is deteriorated. I do. Furthermore, the conductor composition is mainly suitable for wiring patterns, and when these are filled in via holes to form via-hole conductors, the wettability with glass ceramics is remarkably deteriorated. As a result, gaps occur between the via-hole conductors and the difference in the sintering start temperature between the via-hole conductor and the glass ceramic, resulting in misalignment of the shrinkage during the firing process. Irregularities are formed at the ends of the conductors. As a result, there is a problem that a connection failure due to the roughness of the silicon chip connection portion of the semiconductor element, a connection failure of various chip components, or a connection failure of wire bonding occurs. Was.

【0009】従って、本発明は、前記課題を解消せんと
してなされたもので、その目的はガラスセラミックに好
適なCu系導体組成物、つまり配線パターン用としては
熱履歴などの信頼性を含めた接着強度が強く、ビアホー
ル充填用としてはガラスセラミックとの濡れ性が良好で
接着強度が強く、しかも焼成過程でのガラスセラミック
スとの焼成収縮率を一致させることが可能なCu系導体
組成物と、ビアホール導体がガラスセラミック絶縁基板
表面から突出したり埋没したりするといった異常形態の
発生が無いガラスセラミック配線基板とその製造方法を
提供することを目的とするものである。
SUMMARY OF THE INVENTION Accordingly, the present invention has been made to solve the above-mentioned problems, and has as its object to provide a Cu-based conductor composition suitable for glass ceramics, that is, an adhesive for a wiring pattern including reliability such as heat history. A Cu-based conductor composition that has high strength, has good wettability with glass ceramic for filling via holes, has high adhesive strength, and can match the firing shrinkage with glass ceramics during the firing process; It is an object of the present invention to provide a glass-ceramic wiring board free from occurrence of an abnormal form such as a conductor protruding or being buried from the surface of a glass-ceramic insulating substrate, and a method of manufacturing the same.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記の課
題に対して検討を重ねた結果、Cu系導体組成物とし
て、Cu、あるいはCuとCuの酸化物との混合物から
なるCu成分100重量部に対して、特定の屈伏点を有
するガラスフリットと石英ガラスを特定範囲に調製した
導体組成物を用いることにより上記目的を達成できるこ
とを知見した。
Means for Solving the Problems The inventors of the present invention have repeatedly studied the above-mentioned problems, and as a result, as a Cu-based conductor composition, a Cu component composed of Cu or a mixture of Cu and Cu oxide. It has been found that the above object can be achieved by using a conductor composition in which a glass frit having a specific yield point and quartz glass are prepared in a specific range with respect to 100 parts by weight.

【0011】即ち、本発明のCu系導体組成物は、C
u、あるいはCuとCuの酸化物との混合物からなるC
u成分100重量部に対して、屈伏点が600〜800
℃のガラスフリットを0.1〜15重量部と、石英ガラ
スを0.1〜15重量部の割合で含有することを特徴と
するものである。
That is, the Cu-based conductor composition of the present invention comprises C
u or C comprising a mixture of Cu and Cu oxide
The yield point is 600 to 800 with respect to 100 parts by weight of the u component.
It is characterized by containing 0.1 to 15 parts by weight of a glass frit at 0 ° C and 0.1 to 15 parts by weight of quartz glass.

【0012】また、ガラスセラミック配線基板として
は、ガラスセラミックス絶縁基板と、該絶縁基板表面あ
るいは内部に形成された配線回路層と、該配線回路層間
を電気的に接続するためのビアホール導体を具備してな
るガラスセラミック配線基板において、前記配線回路層
および/またはビアホール導体が、Cuを主成分とし、
Cu100重量部に対して、屈伏点が600〜800℃
のガラスフリットを0.1〜15重量部と、石英ガラス
を0.1〜15重量部の割合で含有する導体からなるこ
とを特徴とするものである。
The glass-ceramic wiring substrate includes a glass-ceramic insulating substrate, a wiring circuit layer formed on or in the insulating substrate, and a via-hole conductor for electrically connecting the wiring circuit layer. Wherein the wiring circuit layer and / or the via-hole conductor are mainly composed of Cu,
Yield point of 600 to 800 ° C with respect to 100 parts by weight of Cu
And a conductor containing 0.1 to 15 parts by weight of glass frit and 0.1 to 15 parts by weight of quartz glass.

【0013】また、このようなガラスセラミック配線基
板を製造する方法として、ガラス、あるいはガラスとセ
ラミックフィラーとの混合物をシート状に成形してなる
グリーンシートに対してビアホールを形成し、該ビアホ
ール内にCu系導体ペーストを充填するとともに、前記
グリーンシート表面に、前記Cu系導体ペーストを回路
パターン状に印刷塗布して配線回路層を形成した後、8
00〜1000℃で焼成するガラスセラミック配線基板
の製法において、前記Cu系導体ペーストが、Cu、あ
るいはCuとCu酸化物との混合物からなるCu成分
と、該Cu成分のCu換算量100重量部に対して、屈
伏点が600〜800℃のガラスフリットを0.1〜1
5重量部と、石英ガラスを0.1〜15重量部の割合で
含有することを特徴とするものである。
As a method of manufacturing such a glass-ceramic wiring board, a via hole is formed in glass or a green sheet obtained by molding a mixture of glass and a ceramic filler into a sheet, and a via hole is formed in the via hole. After filling the Cu-based conductor paste and printing and applying the Cu-based conductor paste on the surface of the green sheet in a circuit pattern to form a wiring circuit layer, 8
In the method for producing a glass ceramic wiring board which is fired at 00 to 1000 ° C., the Cu-based conductor paste is prepared by adding Cu or a Cu component composed of a mixture of Cu and Cu oxide to 100 parts by weight of the Cu component in terms of Cu. On the other hand, a glass frit having a yield point of 600 to 800 ° C.
It is characterized by containing 5 parts by weight and 0.1 to 15 parts by weight of quartz glass.

【0014】なお、上記のガラスセラミック配線基板に
おいては、配線回路層としては、Cu成分に対して、屈
伏点が600〜800℃のガラスフリットを0.1〜4
重量部と、石英ガラスを0.1〜4重量部の割合で含有
する導体からなること、また、ビアホール導体として
は、Cu成分に対して、屈伏点が600〜800℃のガ
ラスフリットを2〜15重量部と、石英ガラスを2〜1
5重量部の割合で含有することが望ましい。
In the above-mentioned glass-ceramic wiring board, as a wiring circuit layer, a glass frit having a sag point of 600 to 800 ° C. with respect to the Cu component is 0.1 to 4%.
Parts by weight and a conductor containing quartz glass in a ratio of 0.1 to 4 parts by weight, and as a via hole conductor, a glass frit having a yield point of 600 to 800 ° C. with respect to the Cu component is 2 to 2 parts. 15 parts by weight and 2 to 1 parts of quartz glass
Desirably, the content is 5 parts by weight.

【0015】なお、上記製造方法においては、前記Cu
系導体組成物中のガラスフリットが、前記グリーンシー
ト中のガラスと同一であることが望ましい。
In the above manufacturing method, the Cu
It is desirable that the glass frit in the system conductor composition is the same as the glass in the green sheet.

【0016】本発明によれば、主成分であるCu成分に
対して屈伏点が600〜800℃のガラスフリットと、
石英ガラスを含有させることにより以下のような効果が
発揮される。即ち、石英ガラスを添加することにより銅
の焼結を遅らせ、銅導体とガラスセラミックスの焼成過
程での収縮率を一致させることができる。また屈伏点が
600〜800℃のガラスフリットを添加することによ
り脱バインダーが効率的に行われた後、ガラスフリット
が軟化し、銅とガラスセラミックスあるいは銅と石英ガ
ラスとの隙間に浸透し接着が強固になる。
According to the present invention, there is provided a glass frit having a yield point of 600 to 800 ° C. with respect to a Cu component as a main component,
The following effects are exhibited by incorporating quartz glass. That is, by adding quartz glass, sintering of copper can be delayed, and the shrinkage ratio of the copper conductor and the glass ceramic in the firing process can be matched. Further, after the binder is efficiently removed by adding a glass frit having a sag point of 600 to 800 ° C., the glass frit is softened and penetrates into a gap between copper and glass ceramics or copper and quartz glass to be bonded. Be strong.

【0017】さらに、上記Cu系導体組成物を用いてビ
アホール導体を形成した場合、Cu成分にガラスのみを
添加した場合には添加したガラスがビアホール導体から
ガラスセラミック絶縁基板側に流出し、ビアホール導体
周辺のガラスセラミック絶縁基板が盛り上がり凹凸が形
成されるといった不具合が発生するが、石英ガラスを添
加することによりビアホール導体内のガラス成分の流出
が抑制され、ビアホール導体とガラスセラミック絶縁基
板の前記部の凹凸の発生を抑制することができる。その
結果、ガラスセラミック配線基板における配線回路層用
およびビアホール導体用として好適な導体組成物が得ら
れる。
Further, when a via-hole conductor is formed using the above-mentioned Cu-based conductor composition, when only glass is added to the Cu component, the added glass flows out of the via-hole conductor toward the glass ceramic insulating substrate side, and the via-hole conductor is formed. Although the problem that the surrounding glass ceramic insulating substrate rises and irregularities are formed, the addition of quartz glass suppresses the outflow of the glass component in the via-hole conductor, and the via-hole conductor and the glass ceramic insulating substrate in the above-described portion of the glass-ceramic insulating substrate. Generation of unevenness can be suppressed. As a result, a conductor composition suitable for a wiring circuit layer and a via hole conductor in a glass ceramic wiring board can be obtained.

【0018】[0018]

【発明の実施の形態】以下、本発明のガラスセラミック
配線基板について、図面に基づいて説明する。尚、説明
では、配線基板の構造を複数のガラスセラミック絶縁層
からなる多層配線基板を用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a glass ceramic wiring board according to the present invention will be described with reference to the drawings. In the description, the structure of the wiring board will be described using a multilayer wiring board including a plurality of glass ceramic insulating layers.

【0019】本発明のガラスセラミック配線基板1によ
れば、絶縁基板2は、複数のガラスセラミック絶縁層2
a〜2dを積層した積層体から構成され、その絶縁層間
および絶縁基板表面には、厚みが5〜30μm程度の銅
粉末を主成分とする配線回路層3が被着形成されてい
る。また、絶縁基板2内には、絶縁層2a〜2dの厚み
方向を貫くように形成された直径が30〜200μm程
度のビアホール導体4が形成されている。
According to the glass-ceramic wiring substrate 1 of the present invention, the insulating substrate 2 includes a plurality of glass-ceramic insulating layers 2.
A wiring circuit layer 3 mainly composed of copper powder having a thickness of about 5 to 30 μm is formed on the insulating layer and on the surface of the insulating substrate. In the insulating substrate 2, a via-hole conductor 4 having a diameter of about 30 to 200 μm is formed so as to penetrate the insulating layers 2a to 2d in the thickness direction.

【0020】絶縁基板2は、少なくともSiO2 を含有
するガラス、又はSiO2 を含有するガラスとセラミッ
クフィラーとの複合材料からなるガラスセラミックスか
らなる。具体的には、ガラスセラミックスのガラス成分
は、複数の金属酸化物から構成され、焼成後において非
晶質、又は焼成によってコージェライト、ムライト、ア
ノーサイト、セルジアン、スピネル、ガーナイト、ウィ
レマイト、ドロマイト、リチウムシリケートやその置換
誘導体の結晶を析出する結晶化ガラスによって構成され
る。
The insulating substrate 2 is made of glass ceramic containing at least SiO 2 containing glass or a composite material of SiO 2 containing glass and ceramic filler. Specifically, the glass component of the glass ceramic is composed of a plurality of metal oxides, and is amorphous after firing, or cordierite, mullite, anorthite, Celsian, spinel, garnite, willemite, dolomite, lithium after firing. It is composed of crystallized glass that precipitates crystals of silicate and its substituted derivatives.

【0021】ガラス成分中には、SiO2 以外にLi2
O、K2 O、Na2 Oなどのアルカリ金属酸化物、Ca
O、MgO、BaOなどのアルカリ土類金属酸化物、A
23 、P2 5 、ZnO、B2 3 、PbOの群か
ら選ばれる少なくとも1種以上を含有する。
In the glass component, in addition to SiO 2 , Li 2
Alkali metal oxides such as O, K 2 O, Na 2 O, Ca
Alkaline earth metal oxides such as O, MgO, BaO, A
l 2 O 3, P 2 O 5, ZnO, containing at least one selected from the group consisting of B 2 O 3, PbO.

【0022】フィラー成分としては、クオーツ、クリス
トバライト、石英、コランダム(αアルミナ)、ムライ
ト、コージェライト、フォルステライトの群から選ばれ
る少なくとも1種以上が好適に用いられる。ガラス成分
とフィラー成分とは、ガラス成分が30〜70重量部、
フィラー成分が70〜30重量部からなることが基板強
度を高める上で適切である。
As the filler component, at least one selected from the group consisting of quartz, cristobalite, quartz, corundum (α-alumina), mullite, cordierite, and forsterite is preferably used. Glass component and filler component, the glass component is 30 to 70 parts by weight,
It is appropriate for the filler component to be composed of 70 to 30 parts by weight in order to increase the strength of the substrate.

【0023】本発明によれば、配線回路層3および/ま
たはビアホール導体4が、Cuを主成分とし、Cu10
0重量部に対して、屈伏点が600〜800℃のガラス
フリットを0.1〜15重量部と、石英ガラスを0.1
〜15重量部の割合で含有する導体からなることを特徴
とするものであるが、特に、配線回路層用とビアホール
導体用とで最適な含有量が定められる。
According to the present invention, the wiring circuit layer 3 and / or the via-hole conductor 4 are composed mainly of Cu
With respect to 0 parts by weight, 0.1-15 parts by weight of a glass frit having a yield point of 600-800 ° C. and 0.1 parts by weight of quartz glass
It is characterized by being composed of a conductor contained in a proportion of up to 15 parts by weight, and in particular, the optimum content is determined for the wiring circuit layer and the via hole conductor.

【0024】配線回路層用としては、前記Cu成分に対
して屈伏点が600〜800℃のガラスフリットを0.
1〜4重量部、石英ガラスを0.1〜4重量部の割合で
含有することが望ましい。
For the wiring circuit layer, a glass frit having a sag point of 600 to 800 ° C. with respect to the Cu component is used as a glass frit.
It is desirable to contain 1 to 4 parts by weight and 0.1 to 4 parts by weight of quartz glass.

【0025】ガラスフリットの屈伏点を上記の温度に限
定したのは、600℃未満の場合、脱バインダー工程中
にガラスフリットの軟化が生じ、その結果、ペースト中
の脱バインダー不良が発生して配線回路層の絶縁基板へ
の接着強度が不安定となり、絶縁基板の反りが発生する
ためである。逆に800℃を超える場合、銅の焼結性を
劣化させ、半田濡れ性の劣化、接着強度の低下、基板反
り発生などの悪影響を及ぼす。
The reason why the yield point of the glass frit is limited to the above-mentioned temperature is that when the temperature is lower than 600 ° C., the glass frit is softened during the debinding step, and as a result, the debinding failure in the paste occurs and the wiring is formed. This is because the adhesive strength of the circuit layer to the insulating substrate becomes unstable, and the insulating substrate warps. On the other hand, when the temperature exceeds 800 ° C., the sinterability of copper is deteriorated, and adverse effects such as deterioration of solder wettability, lowering of adhesive strength, and occurrence of substrate warpage are caused.

【0026】ガラスフリットの含有量をを上記の比率に
したのは0.1重量部未満の場合、軟化成分が少なくな
り、銅とガラスセラミック絶縁基板あるいは銅と石英ガ
ラスの隙間を満たすことができず、配線回路層の絶縁基
板への密着強度が低下したり、基板に反りが発生するな
どの問題がある。逆に4重量部を超える場合、ガラス成
分がビアホール導体の端面の導体表面に浮き上がり半田
濡れ性に悪影響を及ぼすためである。
When the content of the glass frit is less than 0.1 parts by weight, the softening component is reduced and the gap between copper and glass ceramic insulating substrate or between copper and quartz glass can be filled. However, there are problems such as a decrease in the adhesion strength of the wiring circuit layer to the insulating substrate and a problem in that the substrate is warped. Conversely, if the amount exceeds 4 parts by weight, the glass component floats on the conductor surface at the end face of the via-hole conductor and adversely affects solder wettability.

【0027】石英ガラスの含有量を上記の比率にしたの
は、0.1重量部未満の場合、銅とガラスが別々に焼結
し分離を起こし、配線回路層表面にガラスが浮き出るこ
とにより配線回路層の半田濡れ性に悪影響を及ぼし、逆
に4重量部を超える場合、銅の焼結性を劣化させ、半田
濡れ性に悪影響を及ぼすためである。
When the content of quartz glass is set to the above-mentioned ratio, when the content is less than 0.1 part by weight, copper and glass are separately sintered and separated, and the glass floats on the surface of the wiring circuit layer, thereby causing the wiring. This is because it adversely affects the solder wettability of the circuit layer, and conversely, if it exceeds 4 parts by weight, the sinterability of copper is degraded and the solder wettability is adversely affected.

【0028】ビアホール導体用としては、前記Cu成分
に対して屈伏点が600〜800℃のガラスフリットが
2〜15重量部、石英ガラスが2〜15重量部を含有す
ることが望ましい。
For via-hole conductors, it is desirable that the glass frit having a sag point of 600 to 800 ° C. with respect to the Cu component contains 2 to 15 parts by weight, and quartz glass contains 2 to 15 parts by weight.

【0029】ガラスフリットの屈伏点を上記の温度に限
定したのは600℃未満の場合、脱バインダー工程中に
ガラスフリットの軟化が生じ、その結果、脱バインダー
不良を起こしビアホール部分の焼結を劣化させ、ビアホ
ール導体の端部に凹凸が発生したり、ビアホール導体の
気密性が劣化する。逆に800℃を超える場合も、銅の
焼結性を著しく劣化させ、半田濡れ性、気密性が低下す
るとともに、ビアホール導体の端部に凹凸が形成されや
すくなる。
When the yield point of the glass frit is limited to the above-mentioned temperature, if the temperature is lower than 600 ° C., the glass frit is softened during the debinding step, resulting in poor debinding and deterioration of the sintering of the via hole. As a result, unevenness occurs at the end of the via-hole conductor, and the airtightness of the via-hole conductor deteriorates. Conversely, when the temperature exceeds 800 ° C., the sinterability of copper is significantly deteriorated, the solder wettability and the airtightness are reduced, and irregularities are easily formed at the end of the via-hole conductor.

【0030】ガラスフリットの含有量を上記の比率にし
たのは2重量部未満の場合、軟化成分が少なすぎて銅と
ビアホール壁面あるいは銅と石英ガラスの隙間を満たす
ことが出来ず、ビアホール導体の気密性の劣化が発生す
る。逆に15重量部を超える場合、ガラス成分がビアホ
ール導体の端面にて浮き上がり半田濡れ性が劣化してし
まうためである。
When the content of the glass frit is less than 2 parts by weight, the softening component is too small to fill the gap between the copper and the via hole wall or the gap between the copper and the quartz glass. Airtightness deteriorates. Conversely, if the amount exceeds 15 parts by weight, the glass component floats on the end face of the via-hole conductor, and the solder wettability deteriorates.

【0031】石英ガラスを上記比率にしたのは4重量部
未満の場合、銅と前記ガラスが別々に焼結し分離を起こ
し、銅体表面にガラスが浮き出ることにより半田濡れ性
に悪影響を及ぼし、さらにビアホール部のガラス成分が
ガラスセラミック絶縁基板側に流出しビアホール周辺の
絶縁基板が盛り上がるといった悪影響を及ぼす。逆に1
5重量部を超える場合、銅の焼結性を劣化させ、半田濡
れ性の低下、気密性の低下等の悪影響を及ぼす。
When the ratio of the quartz glass is less than 4 parts by weight, the copper and the glass are separately sintered and separated from each other, and the glass is raised on the surface of the copper body, which adversely affects the solder wettability. Furthermore, the glass component in the via hole portion flows out to the glass ceramic insulating substrate side, and the adverse effect is caused such that the insulating substrate around the via hole rises. Conversely 1
If it exceeds 5 parts by weight, the sinterability of copper is deteriorated, and adverse effects such as a decrease in solder wettability and a decrease in airtightness are caused.

【0032】また、多層配線基板の表面の配線回路層3
は、ICチップなどの各種電子部品5を搭載するための
パッドとして、シールド用導体膜として、さらには、外
部回路と接続する端子電極として用いられ、各種電子部
品5が配線回路層3に半田や導電性接着剤などを介して
接合される。なお、図示していないが、必要に応じて、
配線基板の表面には、更に、珪化タンタル、珪化モリブ
デンなどの厚膜抵抗体膜や配線保護膜などを形成しても
構わない。
The wiring circuit layer 3 on the surface of the multilayer wiring board
Are used as pads for mounting various electronic components 5 such as IC chips, as conductive films for shielding, and as terminal electrodes for connection to external circuits. It is joined via a conductive adhesive or the like. Although not shown, if necessary,
On the surface of the wiring substrate, a thick-film resistor film such as tantalum silicide or molybdenum silicide, a wiring protection film, or the like may be further formed.

【0033】次に、本発明のガラスセラミック配線基板
を作製する方法について説明する。まず、上述したよう
なガラス成分、又はガラス成分とセラミックフィラーと
を混合してガラスセラミックス組成物を調製し、その混
合物に有機バインダーなどを加えた後、ドクターブレー
ド法、圧延法、プレス法などによりシート上に成形して
グリーンシートを作製する。
Next, a method of manufacturing the glass ceramic wiring board of the present invention will be described. First, a glass component as described above, or a glass component and a ceramic filler are mixed to prepare a glass-ceramic composition, and after adding an organic binder to the mixture, a doctor blade method, a rolling method, a pressing method, etc. It is molded on a sheet to produce a green sheet.

【0034】次に、配線回路層および/またはビアホー
ル導体を形成するためのCu系導体ペーストを調製す
る。このペーストは、Cu成分として、Cu、あるいは
CuとCu2 O、CuOなどのCu酸化物との混合物か
らなるものである。これらは、いずれも平均粒径が0.
5〜10μm、好ましくは3〜5μmの球状粉末である
ことが望ましい。これは、平均粒径が10μmよりも大
きいと微細な配線加工が難しく、また0.5μmよりも
小さいと銅の焼結が著しく早くなり、ガラスフリットや
石英ガラスの添加の効果が小さくなるためである。な
お、上記Cu酸化物は、還元性雰囲気で焼成されること
により実質的に金属Cuとなる。
Next, a Cu-based conductor paste for forming a wiring circuit layer and / or a via-hole conductor is prepared. This paste is composed of Cu as a Cu component or a mixture of Cu and Cu oxide such as Cu 2 O and CuO. All of these have an average particle size of 0.1.
It is desirable to use spherical powder of 5 to 10 μm, preferably 3 to 5 μm. This is because if the average particle size is larger than 10 μm, fine wiring processing is difficult, and if the average particle size is smaller than 0.5 μm, the sintering of copper becomes remarkably fast, and the effect of adding glass frit or quartz glass is reduced. is there. The Cu oxide becomes substantially metallic Cu by firing in a reducing atmosphere.

【0035】本発明によれば、上記Cu成分をCu換算
量100重量部に対して、屈伏点が600〜800℃の
ガラスフリットを1〜15重量部と、石英ガラスを1〜
15重量部とを含有させる。ガラスフリットと石英ガラ
スの平均粒径は、分散性および微細配線化を達成する上
で1〜5μmであることが好ましい。つまり、平均粒径
が5μmを超えると微細配線加工に不敵となり、また1
μm以下だとペースト中に安定して分散させることが困
難となり、凝集体を形成し、銅体表面の欠陥を発生させ
る。
According to the present invention, 1 to 15 parts by weight of a glass frit having a yield point of 600 to 800 ° C. and 1 to 15 parts by weight of quartz
15 parts by weight. The average particle size of the glass frit and the quartz glass is preferably 1 to 5 μm in order to achieve dispersibility and fine wiring. In other words, if the average particle size exceeds 5 μm, it becomes invulnerable to fine wiring processing,
If it is less than μm, it will be difficult to stably disperse it in the paste, forming aggregates and causing defects on the copper body surface.

【0036】また、導体ペースト中には、上記のCu系
導体組成物に対して、さらにアクリル樹脂などからなる
有機バインダーと、αテルピネオール、ジブチルフタレ
ート、ブチルカルビトールなどの有機溶剤とを均質混合
して調製される。有機バインダーはCu系導体組成物1
00重量部に対して1〜10重量部、有機溶剤成分は5
〜30重量部の割合で混合されることが望ましい。
In the conductor paste, an organic binder composed of an acrylic resin or the like and an organic solvent such as α-terpineol, dibutyl phthalate, butyl carbitol and the like are homogeneously mixed with the above-mentioned Cu-based conductor composition. It is prepared by Organic binder is Cu-based conductor composition 1
1 to 10 parts by weight based on 00 parts by weight, and the organic solvent component is 5 parts by weight.
It is desirable to mix them in a ratio of up to 30 parts by weight.

【0037】次に、上述のCu系導体ペーストを、前記
ガラスセラミックグリーンシート上に、スクリーン印刷
法などにより回路パターン状に印刷塗布して配線回路層
を形成する。また、ビアホール導体を形成するには、グ
リーンシートにレーザーやマイクロドリル、パンチング
などにより直径30〜200μmの貫通孔を形成しその
内部にペーストを充填する。その後、配線パターンやビ
アホール導体が形成されたグリーンシートを積層圧着し
て積層体を形成する。
Next, the above-mentioned Cu-based conductor paste is printed and applied in a circuit pattern on the glass ceramic green sheet by a screen printing method or the like to form a wiring circuit layer. To form a via-hole conductor, a through hole having a diameter of 30 to 200 μm is formed in a green sheet by laser, micro drill, punching, or the like, and the inside is filled with a paste. After that, the green sheets on which the wiring patterns and the via-hole conductors are formed are laminated and pressed to form a laminate.

【0038】その後、この積層体を400〜800℃の
窒素雰囲気中で加熱処理してグリーンシート内やペース
ト中の有機成分を分解除去した後、800〜1000℃
の窒素雰囲気中で同時焼成することにより配線回路層及
びビアホール導体を具備する多層配線基板を作製するこ
とができる。
Thereafter, the laminate is subjected to heat treatment in a nitrogen atmosphere at 400 to 800 ° C. to decompose and remove organic components in the green sheet and the paste.
By sintering simultaneously in a nitrogen atmosphere, a multilayer wiring board having a wiring circuit layer and a via-hole conductor can be manufactured.

【0039】また、Cu系導体ペースト中のCu成分と
して、Cu酸化物を含む場合には、脱バインダー後、水
素雰囲気または窒素+水蒸気雰囲気等で還元処理後、焼
成することにより、Cu酸化物をCuに変換させること
ができる。
In the case where a Cu oxide is contained as a Cu component in the Cu-based conductor paste, the Cu oxide is removed by removing the binder, performing a reduction treatment in a hydrogen atmosphere or a nitrogen + steam atmosphere or the like, and firing. It can be converted to Cu.

【0040】[0040]

【実施例】実施例1 絶縁基板用のグリーンシートとしては重量比率で43%
SiO2 −37%BaO−9%B2 3 −6%Al2
3 −5%CaO(屈伏点700℃)の組成のガラスを5
0体積%に対してフィラー成分としてSiO2 を50体
積%混合したものを用いた。これに分子量30万のアク
リル系バインダーと可塑剤、分散剤、溶剤を加え混合
し、かかる泥しょうをドクターブレード法により厚さ平
均200μmのグリーンシートに成形した。
EXAMPLE 1 A green sheet for an insulating substrate was 43% by weight.
SiO 2 -37% BaO-9% B 2 O 3 -6% Al 2 O
3 5 Glass composition of -5% CaO (sag point 700 ° C.)
SiO 2 as a filler component was a mixture of 50 vol% with respect to 0 vol%. An acrylic binder having a molecular weight of 300,000, a plasticizer, a dispersant, and a solvent were added and mixed, and the slurry was formed into a green sheet having an average thickness of 200 μm by a doctor blade method.

【0041】次に、平均粒径が5μmの銅粉末に対し
て、平均粒径が3μmの前記ガラス粉末と、平均粒径が
2μmの石英ガラス粉末を表1に示す割合で秤量し、こ
れらのCu系導体組成物100重量部に対して、有機バ
インダーとしてアクリル樹脂を2重量部、有機溶剤とし
てαテルピネオールを15重量部添加混練し、導体ペー
ストを調製した。
Next, the glass powder having an average particle diameter of 3 μm and the quartz glass powder having an average particle diameter of 2 μm were weighed at the ratio shown in Table 1 with respect to the copper powder having an average particle diameter of 5 μm. To 100 parts by weight of the Cu-based conductor composition, 2 parts by weight of an acrylic resin as an organic binder and 15 parts by weight of α-terpineol as an organic solvent were added and kneaded to prepare a conductive paste.

【0042】かくして得られたグリーンシートと導体ペ
ーストにより各種特性を評価するサンプルとして、以下
の物を用意した。
The following samples were prepared as samples for evaluating various characteristics by using the green sheet and the conductive paste thus obtained.

【0043】即ち、接着強度を測定するサンプルとし
て、グリーンシート上に焼成後の形状が2mm角、厚さ
約20μmとなるものをスクリーン印刷し、その下部に
グリーンシート5枚を加圧積層した。また基板反りを評
価するサンプルとしてグリーンシート上に10mm×1
0mm、厚さ20μmとなるものをスクリーン印刷し、
その下部にグリーンシート1枚を加圧積層した。
That is, as a sample for measuring the adhesive strength, a green sheet having a shape of 2 mm square and about 20 μm in thickness after firing was screen-printed on a green sheet, and five green sheets were pressure-laminated below the green sheet. Also, as a sample for evaluating substrate warpage, a 10 mm × 1
0mm, 20μm thick screen printing,
One green sheet was pressure-laminated under the lower part.

【0044】半田濡れ性を評価するサンプルとしてはグ
リーンシート上に直径が0.1mmの円形パターンをス
クリーン印刷し、その下部にグリーンシート5枚を加圧
積層した。次いで、この未焼成状態の配線パターンが形
成された積層体を、有機バインダーなどの有機成分を分
解除去するために、窒素雰囲気中で700℃の温度で3
時間保持して脱脂した後、900℃に昇温して1時間保
持し配線基板を作製した。なお、CuOを含んだ試料N
o.22〜25では、脱バインダー後、水素雰囲気中で7
50℃で1時間還元処理した後、窒素雰囲気中で900
℃で1時間焼成した。
As a sample for evaluating the solder wettability, a circular pattern having a diameter of 0.1 mm was screen-printed on a green sheet, and five green sheets were laminated by pressing under the circular pattern. Next, in order to decompose and remove organic components such as an organic binder, the laminate on which the unfired wiring pattern is formed is heated at 700 ° C. in a nitrogen atmosphere at a temperature of 700 ° C.
After degreasing by holding for a time, the temperature was raised to 900 ° C. and held for 1 hour to prepare a wiring board. The sample N containing CuO
o. In 22 to 25, after debinding, 7 in hydrogen atmosphere
After reduction treatment at 50 ° C for 1 hour, 900
Calcination was carried out at ℃ for 1 hour.

【0045】得られた配線基板のうち、2mm角の銅配
線層に厚さ1μmのNiメッキを行い、その上に厚さ
0.1μmのAuメッキを施した後、直径0.8mmの
錫メッキ銅線を該メッキ被覆層上に基板と平衡に半田付
けし、該錫メッキ銅線を基板に対して垂直方向に曲げ、
該錫メッキ導線を10mm/minの引っ張り速度で垂
直方向に引っ張り、これが破断したときの最大荷重を銅
配線回路層の接着強度として評価した。尚良否の判断と
しては、2kg/2mm角を超える場合を良品とした。
次に、基板反りの評価については、10mm×10mm
の対角方向(14.2mm)を接触型の表面あらさ径に
て測定した。尚良否の判断としては50μm/14.2
mm以下のものを良品とした。
In the obtained wiring board, a 2 mm square copper wiring layer is plated with Ni having a thickness of 1 μm, Au is plated thereon with a thickness of 0.1 μm, and then tin plating with a diameter of 0.8 mm is performed. Soldering the copper wire in equilibrium with the substrate on the plating coating layer, bending the tinned copper wire in a direction perpendicular to the substrate,
The tin-plated conductive wire was pulled vertically at a pulling speed of 10 mm / min, and the maximum load when the wire broke was evaluated as the adhesive strength of the copper wiring circuit layer. In addition, as a quality judgment, a case exceeding 2 kg / 2 mm square was determined as a good product.
Next, regarding the evaluation of the substrate warpage, 10 mm × 10 mm
In the diagonal direction (14.2 mm) was measured as the surface roughness diameter of the contact type. It should be noted that the quality was determined as 50 μm / 14.2.
mm or less was regarded as a non-defective product.

【0046】また半田濡れ性としては評価サンプルにフ
ラックスを塗布し235℃に保たれた共晶半田中に鉛直
方向に45度の角度で5秒間浸漬させたものを実体顕微
鏡にて観察した。良否の判断はパターンの全面が半田に
濡れているものを良品とした。
The solder wettability was evaluated by applying a flux to the evaluation sample and immersing it in a eutectic solder maintained at 235 ° C. at a vertical angle of 45 ° for 5 seconds with a stereoscopic microscope. Pass / fail judgment was made when the entire surface of the pattern was wet with solder.

【0047】[0047]

【表1】 [Table 1]

【0048】表1から明らかなように、ガラスフリット
の屈伏点が600℃よりも低い試料No.1、屈伏点が8
00℃よりも高い試料No.5、ガラス量が0.1重量部
よりも少ない試料No.6,7、ガラス量が15重量部よ
りも多い試料No.13、石英ガラス量が0.1重量部よ
りも少ない試料No.14、15、石英ガラス量が15重
量部よりも多い試料No.21はいずれも、導体の焼結不
足に起因する接着強度の低下、基板の反り、半田濡れ性
低下が発生した。
As is apparent from Table 1, Sample No. 1 in which the sag point of the glass frit was lower than 600 ° C., and the sag point was 8
Sample No. 5 higher than 00 ° C., Sample Nos. 6, 7 having less than 0.1 parts by weight of glass, Sample No. 13 having more than 15 parts by weight of glass, 0.1 weight of quartz glass Sample Nos. 14 and 15 with less than 15 parts by weight, and Sample No. 21 with a quartz glass content of more than 15 parts by weight, all of which have reduced adhesive strength due to insufficient sintering of the conductor, warpage of the substrate, and reduced solder wettability. There has occurred.

【0049】それに対して、本発明の試料No.2〜4、
8〜12、16〜20、22〜25では、いずれも配線
回路層用のCu系導体組成物として良好な結果を示し
た。なお、試料No.11、12、19、20では、半田
濡れ性の項目で△という評価が成されているが、この組
成の場合には、半田濡れ性が求められない場合において
有効に用いられる。
On the other hand, the samples Nos. 2 to 4 of the present invention
8 to 12, 16 to 20, and 22 to 25 all showed good results as Cu-based conductor compositions for wiring circuit layers. In Samples Nos. 11, 12, 19 and 20, △ was evaluated in terms of solder wettability, but this composition is effectively used when solder wettability is not required. .

【0050】実施例2 ビアホール導体用のCu系導体組成物の評価を以下に実
施した。実施例1と同様にして作成したグリーンシート
に直径が160μmのビアホールを形成した。
Example 2 Evaluation of a Cu-based conductor composition for a via-hole conductor was performed as follows. A via hole having a diameter of 160 μm was formed in the green sheet prepared in the same manner as in Example 1.

【0051】一方、平均粒径が5μmの銅粉末に対し
て、平均粒径が3μmの前記ガラス粉末と、平均粒径が
2μmの石英ガラス粉末を表2に示す割合で秤量し、こ
れらのCu系導体組成物100重量部に対して、有機バ
インダーとしてアクリル樹脂を2重量部、有機溶剤とし
てαテルピネオールを15重量部添加混練し、導体ペー
ストを調製した。
On the other hand, for the copper powder having an average particle size of 5 μm, the glass powder having an average particle size of 3 μm and the quartz glass powder having an average particle size of 2 μm were weighed at the ratio shown in Table 2, and these Cu powders were weighed. To 100 parts by weight of the system conductor composition, 2 parts by weight of an acrylic resin as an organic binder and 15 parts by weight of α-terpineol as an organic solvent were added and kneaded to prepare a conductor paste.

【0052】そして、上記ビアホール内に上記Cu系導
体ペーストを充填し、これを3層積層した。次いで、こ
の積層体を、有機バインダーなどの有機成分を分解除去
するために、窒素雰囲気中で700℃の温度で3時間保
持して脱脂した後、900℃に昇温して1時間保持し配
線基板を作製した。なお、試料No.47〜50は、脱バ
インダー後、水素雰囲気中で750℃で1時間還元処理
した後、窒素雰囲気中で900℃で1時間焼成した。
Then, the above-mentioned Cu-based conductive paste was filled in the above-mentioned via hole, and three layers were laminated. Next, in order to decompose and remove organic components such as an organic binder, the laminate is degreased by holding at a temperature of 700 ° C. for 3 hours in a nitrogen atmosphere, and then heated to 900 ° C. and held for 1 hour to form a wiring. A substrate was prepared. Samples Nos. 47 to 50 were subjected to a reduction treatment at 750 ° C. for 1 hour in a hydrogen atmosphere after debinding, and then fired at 900 ° C. for 1 hour in a nitrogen atmosphere.

【0053】得られた配線基板の半田濡れ性の評価とし
て、実施例1と同様にしてNiメッキ、Auメッキを施
した後、半田中に浸漬して配線の表面を観察し、配線の
全面に半田が付着しているものを○、一部分でも半田が
付着していない部分が存在するものを×として評価し
た。更に気密性を確認するために蛍光探傷液に2時間浸
漬した後、30秒間流水で洗浄し、紫外線によりビアホ
ール導体周辺からの蛍光液のもれが発生の有無を確認
し、もれが発生したものを×、もれの発生がないものを
○とした。更に、ビアホール導体部分の凹凸を表面粗さ
計にて測定した。ビアホール導体部分の凹凸については
ビアホール導体がガラスセラミックより突出している物
をプラスの数値、へこんでいる物をマイナスの数値で表
し±15μm以下を良品と判定した。
To evaluate the solder wettability of the obtained wiring board, Ni plating and Au plating were applied in the same manner as in Example 1 and then immersed in solder, the surface of the wiring was observed, and the entire surface of the wiring was observed. A sample to which solder was attached was evaluated as ○, and a sample in which a portion to which no solder was attached was present was evaluated as ×. In order to further confirm the airtightness, the sample was immersed in a fluorescent test solution for 2 hours, washed with running water for 30 seconds, and the presence or absence of leakage of the fluorescent solution from around the via-hole conductor by ultraviolet rays was confirmed. The sample was evaluated as x, and the sample without leakage was evaluated as ○. Further, the unevenness of the via-hole conductor was measured by a surface roughness meter. Regarding the unevenness of the via-hole conductor portion, the one in which the via-hole conductor protruded from the glass ceramic was represented by a positive value, and the one in which the via-hole conductor protruded was represented by a negative value.

【0054】[0054]

【表2】 [Table 2]

【0055】表2から明らかなように、ガラスフリット
の屈伏点が600℃よりも低い試料No.26、屈伏点が
800℃よりも高い試料No.30、ガラス量が0.1重
量部よりも少ない試料No.31、32、ガラス量が15
重量部よりも多い試料No.38、石英ガラス量が0.1
重量部よりも少ない試料No.39、40、石英ガラス量
が15重量部よりも多い試料No.46は、ビアホール導
体の焼結不足によって、半田濡れ性が低下したり、気密
性が低下したり、あるいはビアホール導体の周辺に凹凸
の発生が大きくなるなどの不具合が発生した。
As is clear from Table 2, Sample No. 26 having a sag point of the glass frit lower than 600 ° C., Sample No. 30 having a sag point of higher than 800 ° C., and a glass amount of more than 0.1 part by weight. Small sample No. 31, 32, glass amount is 15
Sample No. 38 which is larger than parts by weight, quartz glass amount is 0.1
In Samples Nos. 39 and 40, which are less than 15 parts by weight, and Sample No. 46, in which the amount of quartz glass is more than 15 parts by weight, solder wettability and airtightness are reduced due to insufficient sintering of the via-hole conductor. Or a problem such as an increase in the occurrence of irregularities around the via-hole conductor.

【0056】それに対して本発明の試料番号27〜2
9、33〜37、41〜45、47〜50ではいずれも
めっき性、気密性が良好で、表面の凹凸も±15μm以
下に抑えることができた。なお試料No.8、16では半
田濡れ性と気密性の項目で△という評価が成されている
が、この組成に関しては、半田濡れ性、気密性が厳しく
求められない場合においてのみ有効である。
On the other hand, Sample Nos. 27 to 2 of the present invention
9, 33 to 37, 41 to 45, and 47 to 50 all exhibited good plating properties and airtightness, and the surface irregularities could be suppressed to ± 15 μm or less. Samples Nos. 8 and 16 are evaluated as Δ for solder wettability and airtightness. However, this composition is effective only when solder wettability and airtightness are not strictly required.

【0057】尚、上述の2つの実施例では、基板構造が
積層体で説明したが、単状のガラスセラミックシート上
に上述の銅粉末を主成分とするCu系導体ペーストを用
いて、所定の配線パターンを形成し、グリーンシートと
所定の配線パターンを一体的に焼成した配線基板でも構
わない。
In the above two embodiments, the substrate structure is described as a laminate, but a predetermined glass ceramic sheet is formed by using the above-mentioned Cu-based conductor paste containing copper powder as a main component. A wiring board formed by forming a wiring pattern and integrally firing a green sheet and a predetermined wiring pattern may be used.

【0058】また、基板構造が積層構造であっても、内
部配線層2のみを積層体と同時に焼成処理し、表面配線
層をすでに焼成された積層体に焼き付け処理で形成して
も構わない。
Even if the substrate structure is a laminated structure, only the internal wiring layer 2 may be baked simultaneously with the laminate, and the surface wiring layer may be formed on the already baked laminate by baking.

【0059】[0059]

【発明の効果】以上詳述したように、本発明によれば、
ガラスセラミックススからなる絶縁基板に対して、配線
回路層やビアホール導体を施す銅粉末を主成分とするC
u系導体組成物中に、屈伏点が600〜800℃のガラ
スフリットと石英ガラスを含有させることにより、配線
回路層用としては接着強度が強く、あるいはビアホール
導体用としてビアホール充填用としてはガラスセラミッ
クとの濡れ性が良好で接着強度が強く、しかも焼成過程
でのガラスセラミックスとの焼成収縮率を一致させるこ
とが可能であり、ガラスセラミック基板との同時焼結性
に優れ、さらには、ビアホール導体がガラスセラミック
絶縁基板表面から突出したり埋没したりするといった異
常形態の発生が無いガラスセラミック配線基板の製造方
法を提供できる。
As described in detail above, according to the present invention,
For an insulating substrate made of glass ceramics, C containing copper powder as a main component for providing a wiring circuit layer and a via hole conductor
By including a glass frit having a sag point of 600 to 800 ° C. and quartz glass in the u-based conductor composition, the adhesive strength is high for a wiring circuit layer, or a glass ceramic for filling a via hole for a via hole conductor. It has good wettability and high adhesive strength, and can match the firing shrinkage with glass ceramics during the firing process, has excellent simultaneous sinterability with glass ceramic substrates, and has a via hole conductor. A method for manufacturing a glass-ceramic wiring board can be provided which does not cause an abnormal form such as protruding or buried from the surface of the glass-ceramic insulating substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の配線基板の概略断面図である。FIG. 1 is a schematic sectional view of a wiring board of the present invention.

【符号の説明】[Explanation of symbols]

1 配線基板 2 絶縁基板 3 配線回路層 4 ビアホール導体 5 電子部品 DESCRIPTION OF SYMBOLS 1 Wiring board 2 Insulating board 3 Wiring circuit layer 4 Via-hole conductor 5 Electronic component

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4E351 AA07 AA13 BB31 BB49 CC12 CC22 CC31 DD04 DD33 EE02 EE03 EE10 GG01 GG15 GG16 5G301 DA06 DA34 DD01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4E351 AA07 AA13 BB31 BB49 CC12 CC22 CC31 DD04 DD33 EE02 EE03 EE10 GG01 GG15 GG16 5G301 DA06 DA34 DD01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】Cu、あるいはCuとCu酸化物との混合
物からなるCu成分と、該Cu成分のCu換算量100
重量部に対して、屈伏点が600〜800℃のガラスフ
リットを0.1〜15重量部と、石英ガラスを0.1〜
15重量部の割合で含有することを特徴とするCu系導
体組成物。
1. A Cu component comprising Cu or a mixture of Cu and Cu oxide, and a Cu equivalent amount of the Cu component of 100
With respect to parts by weight, 0.1 to 15 parts by weight of a glass frit having a yield point of 600 to 800 ° C. and 0.1 to 15 parts by weight of quartz glass
A Cu-based conductor composition comprising 15 parts by weight.
【請求項2】ガラスセラミックス絶縁基板と、該絶縁基
板表面あるいは内部に形成された配線回路層と、該配線
回路層間を電気的に接続するためのビアホール導体を具
備してなるガラスセラミック配線基板において、前記配
線回路層および/またはビアホール導体が、Cuを主成
分とし、Cu100重量部に対して、屈伏点が600〜
800℃のガラスフリットを0.1〜15重量部と、石
英ガラスを0.1〜15重量部の割合で含有する導体か
らなることを特徴とするガラスセラミック配線基板。
2. A glass ceramic wiring board comprising: a glass ceramic insulating substrate; a wiring circuit layer formed on or in the insulating substrate; and a via-hole conductor for electrically connecting the wiring circuit layer. The wiring circuit layer and / or the via-hole conductor contain Cu as a main component and have a sagging point of 600 to 100 parts by weight of Cu.
A glass-ceramic wiring substrate comprising a conductor containing 0.1 to 15 parts by weight of a glass frit at 800 ° C. and 0.1 to 15 parts by weight of quartz glass.
【請求項3】前記配線回路層が、Cuを主成分とし、C
u100重量部に対して、屈伏点が600〜800℃の
ガラスフリットを0.1〜4重量部と、石英ガラスを
0.1〜4重量部の割合で含有する導体からなることを
特徴とする請求項2記載のガラスセラミック配線基板。
3. The wiring circuit layer according to claim 1, wherein said wiring circuit layer is mainly composed of Cu,
It is characterized by comprising a conductor containing 0.1 to 4 parts by weight of a glass frit having a yield point of 600 to 800 ° C. and 0.1 to 4 parts by weight of quartz glass with respect to 100 parts by weight of u. The glass ceramic wiring board according to claim 2.
【請求項4】前記ビアホール導体が、Cuを主成分と
し、Cu100重量部に対して、屈伏点が600〜80
0℃のガラスフリットを2〜15重量部と、石英ガラス
を2〜15重量部の割合で含有する導体からなることを
特徴とする請求項2または請求項3記載のガラスセラミ
ック配線基板。
4. The via-hole conductor contains Cu as a main component and has a sag point of 600 to 80 with respect to 100 parts by weight of Cu.
4. The glass-ceramic wiring substrate according to claim 2, comprising a conductor containing 2 to 15 parts by weight of a glass frit at 0 ° C. and 2 to 15 parts by weight of quartz glass.
【請求項5】ガラス、あるいはガラスとセラミックフィ
ラーとの混合物をシート状に成形してなるグリーンシー
トに対してビアホールを形成し、該ビアホール内にCu
系導体ペーストを充填するとともに、前記グリーンシー
ト表面に、前記Cu系導体ペーストを回路パターン状に
印刷塗布して配線回路層を形成した後、800〜100
0℃で焼成するガラスセラミック配線基板の製法におい
て、前記Cu系導体ペーストが、Cu、あるいはCuと
Cu酸化物との混合物からなるCu成分と、該Cu成分
のCu換算量100重量部に対して、屈伏点が600〜
800℃のガラスフリットを0.1〜15重量部と、石
英ガラスを0.1〜15重量部の割合で含有することを
特徴とするガラスセラミック配線基板の製法。
5. A via hole is formed in a green sheet formed by molding glass or a mixture of glass and a ceramic filler into a sheet, and Cu is formed in the via hole.
After filling the system-based conductor paste and printing and applying the Cu-based conductor paste on the surface of the green sheet in a circuit pattern to form a wiring circuit layer, 800 to 100
In the method for producing a glass ceramic wiring board which is fired at 0 ° C., the Cu-based conductor paste is based on Cu, or a Cu component composed of a mixture of Cu and Cu oxide, and 100 parts by weight of the Cu component in terms of Cu. , Yield point is 600 ~
A method for producing a glass ceramic wiring board, comprising: a glass frit at 800 ° C. in a ratio of 0.1 to 15 parts by weight and a quartz glass in a ratio of 0.1 to 15 parts by weight.
【請求項6】前記配線回路層を形成するCu系導体ペー
ストが、Cu、あるいはCuとCu酸化物との混合物か
らなるCu成分と、該Cu成分のCu換算量100重量
部に対して、屈伏点が600〜800℃のガラスフリッ
トを0.1〜4重量部と、石英ガラスを0.1〜4重量
部の割合で含有することを特徴とする請求項5記載のガ
ラスセラミック配線基板の製法。
6. A Cu-based conductor paste for forming said wiring circuit layer is bent against Cu or a Cu component composed of a mixture of Cu and Cu oxide and 100 parts by weight of the Cu component in terms of Cu. 6. The method for producing a glass ceramic wiring board according to claim 5, comprising 0.1 to 4 parts by weight of glass frit having a temperature of 600 to 800 [deg.] C. and 0.1 to 4 parts by weight of quartz glass. .
【請求項7】前記ビアホールに充填するCu系導体ペー
ストが、Cu、あるいはCuとCu酸化物との混合物か
らなるCu成分と、該Cu成分のCu換算量100重量
部に対して、屈伏点が600〜800℃のガラスフリッ
トを2〜15重量部と、石英ガラスを2〜15重量部の
割合で含有することを特徴とする請求項5または請求項
6記載のガラスセラミック配線基板の製法。
7. A Cu-based conductor paste filled in the via hole has a sag point with respect to Cu or a Cu component composed of a mixture of Cu and Cu oxide and 100 parts by weight of the Cu component in terms of Cu. The method for producing a glass ceramic wiring substrate according to claim 5 or 6, wherein the glass frit at 600 to 800 ° C is contained in a proportion of 2 to 15 parts by weight and the quartz glass in a proportion of 2 to 15 parts by weight.
【請求項8】前記Cu系導体組成物中のガラスフリット
が、前記グリーンシート中のガラスと同一であることを
特徴とする請求項5乃至7のいずれか記載のガラスセラ
ミック配線基板の製法。
8. The method according to claim 5, wherein the glass frit in the Cu-based conductor composition is the same as the glass in the green sheet.
JP27505999A 1999-09-28 1999-09-28 Conductive paste, glass-ceramic wiring board and manufacturing method thereof Expired - Fee Related JP3652184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27505999A JP3652184B2 (en) 1999-09-28 1999-09-28 Conductive paste, glass-ceramic wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27505999A JP3652184B2 (en) 1999-09-28 1999-09-28 Conductive paste, glass-ceramic wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001093327A true JP2001093327A (en) 2001-04-06
JP3652184B2 JP3652184B2 (en) 2005-05-25

Family

ID=17550283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27505999A Expired - Fee Related JP3652184B2 (en) 1999-09-28 1999-09-28 Conductive paste, glass-ceramic wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3652184B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186126A (en) * 2004-12-28 2006-07-13 Ngk Spark Plug Co Ltd Manufacturing method of wiring board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186126A (en) * 2004-12-28 2006-07-13 Ngk Spark Plug Co Ltd Manufacturing method of wiring board
JP4533129B2 (en) * 2004-12-28 2010-09-01 日本特殊陶業株式会社 Wiring board manufacturing method

Also Published As

Publication number Publication date
JP3652184B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
JPS599992A (en) Method of producing multilayer circuit board
JP2002226259A (en) Composition for substrate of ceramic electronic parts, ceramic electronic parts and method for manufacturing laminated type ceramic electronic parts
JP3528037B2 (en) Manufacturing method of glass ceramic substrate
JP4703212B2 (en) Wiring board and manufacturing method thereof
KR100617436B1 (en) Thick film conductor paste compositions for ltcc tape
KR100744855B1 (en) High Thermal Cycle Conductor System
JP4454105B2 (en) Manufacturing method of multilayer wiring board
JP2006236921A (en) Conductive paste, ceramic wiring board using it and its manufacturing method
JP4549029B2 (en) Glass ceramic composition, glass ceramic sintered body, method for producing glass ceramic sintered body, and wiring board
JP4549028B2 (en) Glass ceramic composition, glass ceramic sintered body, method for producing glass ceramic sintered body, and wiring board
JP3652184B2 (en) Conductive paste, glass-ceramic wiring board and manufacturing method thereof
JPH11284296A (en) Wiring board
JPH1116418A (en) Copper metallized composition and glass ceramic wiring board using it
JP3666308B2 (en) Conductive paste and ceramic electronic components
JP2001015895A (en) Wiring board and its manufacture
JPH11186727A (en) Wiring board and manufacture thereof
JP4646362B2 (en) Conductor composition and wiring board using the same
JP3643264B2 (en) Conductive paste and wiring board using the same
JP4632472B2 (en) Copper conductor composition and wiring board using the same
JP3905991B2 (en) Glass ceramic wiring board
JP3426920B2 (en) Wiring board
JP2001015930A (en) Multilayer printed wiring board and manufacture thereof
JP2003132733A (en) Conductor composition and wiring substrate to use the same
JP2005191307A (en) Wiring board
JP4762564B2 (en) Conductor composition, wiring board using the same, and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050222

R150 Certificate of patent or registration of utility model

Ref document number: 3652184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees