JP2001091319A - Flow rate measurement device - Google Patents

Flow rate measurement device

Info

Publication number
JP2001091319A
JP2001091319A JP26911699A JP26911699A JP2001091319A JP 2001091319 A JP2001091319 A JP 2001091319A JP 26911699 A JP26911699 A JP 26911699A JP 26911699 A JP26911699 A JP 26911699A JP 2001091319 A JP2001091319 A JP 2001091319A
Authority
JP
Japan
Prior art keywords
flow rate
ultrasonic signal
ultrasonic
flow
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26911699A
Other languages
Japanese (ja)
Inventor
Minoru Kumagai
稔 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP26911699A priority Critical patent/JP2001091319A/en
Publication of JP2001091319A publication Critical patent/JP2001091319A/en
Pending legal-status Critical Current

Links

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To make stably obtainable the improvement of measurement accuracy and the reduction of consumption of power by controlling the oscillation intervals of ultrasonic wave signal to an optimum value according to the actual flowrate. SOLUTION: In the flow rate measurement device 1 calculating the flow rate of fluid such as gas based on the transmission time of ultrasonic wave signal transmitted and received by a pair of ultrasonic vibrators 3 and 4, a pressure judgment circuit 14 and a delay circuit 15 are provided as a measurement interval control means for controlling the function of a trigger circuit 6 based on the detected value so that the detected value of the pressure detector 13 for detecting the fluid pressure in the flow path 2 is monitored and the oscillation intervals of the ultrasonic signal are shortened according to the lowering of the fluid pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波信号を利用
してガスなどの流量を計測する流量計測装置に関し、詳
しくは、計測精度の向上と消費電力の低減を図るための
流量計測装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate measuring device for measuring a flow rate of gas or the like using an ultrasonic signal, and more particularly, to a flow rate measuring device for improving measurement accuracy and reducing power consumption. Regarding improvement.

【0002】[0002]

【従来の技術】図4は、超音波信号を利用してガスなど
の流量を計測する流量計測装置の従来例を示したもので
ある。この流量計測装置51は、シングアラウンド(Si
ng Around )法により、流路52内を流れる流体の流量
を計測するものである。シングアラウンド法は、原理的
には、流路52内での測線上での流速vを、流体中にお
ける超音波信号Sの伝搬速度の変化の逆数であるシング
アラウンド周波数の差Δfとして計測し、この値を基に
流量演算するものである。
2. Description of the Related Art FIG. 4 shows a conventional example of a flow rate measuring device for measuring a flow rate of a gas or the like using an ultrasonic signal. This flow rate measuring device 51 has a single-around (Si
The flow rate of the fluid flowing in the flow path 52 is measured by the ng Around method. In principle, the sing-around method measures a flow velocity v on a measurement line in the flow path 52 as a difference Δf of a sing-around frequency which is a reciprocal of a change in a propagation velocity of the ultrasonic signal S in the fluid, The flow rate is calculated based on this value.

【0003】具体的には、流量計測装置51は、図示の
ように、流体を挟んで対向するように流路52に配設さ
れた一対の超音波振動子53,54と、これらの一対の
超音波振動子53,54の一方から超音波信号を発信さ
せる発信回路55と、発信回路55を所定間隔で駆動す
るトリガ回路56と、超音波振動子53,54で受信し
た信号を増幅して出力する増幅回路57と、増幅回路5
7の出力を規定の信号と比較して超音波信号の受信を検
知する比較回路58と、比較回路58の出力信号に基づ
いて超音波信号の受信回数が規定数に達するまでトリガ
回路56を繰り返し作動させる繰り返し回路59と、一
対の超音波振動子53,54の一方を発信回路55に他
方を増幅回路57に切り換え接続する切換回路60と、
超音波信号の発信が規定回数だけ繰り返し実施するのに
要した時間を計測する計時回路61と、計時回路61で
計測された超音波信号の伝搬時間に基づいて流量を算出
する流量演算回路62とを備えた構成である。
[0003] Specifically, as shown in the figure, a flow rate measuring device 51 includes a pair of ultrasonic vibrators 53 and 54 disposed in a flow path 52 so as to face each other with a fluid therebetween, and a pair of these ultrasonic vibrators 53 and 54. A transmitting circuit 55 for transmitting an ultrasonic signal from one of the ultrasonic vibrators 53 and 54, a trigger circuit 56 for driving the transmitting circuit 55 at predetermined intervals, and an amplifying signal received by the ultrasonic vibrators 53 and 54 Amplifying circuit 57 for outputting, and amplifying circuit 5
7 is compared with a prescribed signal to detect the reception of the ultrasonic signal, and the trigger circuit 56 is repeated based on the output signal of the comparison circuit 58 until the number of receptions of the ultrasonic signal reaches the prescribed number. A switching circuit 60 for switching and connecting one of the pair of ultrasonic transducers 53 and 54 to the transmitting circuit 55 and the other to the amplifier circuit 57;
A time counting circuit 61 for measuring the time required to repeatedly execute the transmission of the ultrasonic signal a prescribed number of times; a flow rate calculating circuit 62 for calculating a flow rate based on the propagation time of the ultrasonic signal measured by the time counting circuit 61; It is a configuration provided with.

【0004】そして、上記構成により、まず、一方の超
音波振動子53から超音波信号Sを発信させ、その超音
波信号Sが他方の超音波振動子54に受信されると、再
び超音波振動子53から超音波信号Sを発信させて超音
波振動子54で受信し、この繰り返しを規定回数行って
その所要時間T1を計測する。続いて、発信する超音波
振動子を超音波振動子54に切り換えて、同様に規定回
数だけ超音波信号Sの発信及び受信を繰り返すのに要し
た時間T2を計測し、T1とT2の時間差から流体の流
速vを算出する。そして、求めた流速vと流路52の断
面積から流量を算出する。
According to the above configuration, first, an ultrasonic signal S is transmitted from one ultrasonic transducer 53, and when the ultrasonic signal S is received by the other ultrasonic transducer 54, the ultrasonic vibration The ultrasonic signal S is transmitted from the transducer 53 and received by the ultrasonic transducer 54, and the repetition is performed a specified number of times to measure the required time T1. Subsequently, the transmitting ultrasonic transducer is switched to the ultrasonic transducer 54, and similarly, the time T2 required to repeat the transmission and reception of the ultrasonic signal S by the specified number of times is measured, and the time difference between T1 and T2 is calculated. The flow velocity v of the fluid is calculated. Then, the flow rate is calculated from the obtained flow velocity v and the cross-sectional area of the flow path 52.

【0005】ところで、上記のような流量計測装置51
において、大流量でかつ単位時間当たりの流量変化が激
しい場合には、超音波信号の発信間隔を短縮して単位時
間当たりの計測回数を増大しないと、計測精度を向上さ
せることが難しい。一方、小流量でかつ単位時間当たり
の流量変化がほどんどない場合には、超音波信号の発信
間隔を増大させて計測回数を減らしても、流量の計測精
度上、ほとんど問題が生じない。
Incidentally, the flow rate measuring device 51 as described above
In the case of a large flow rate and a drastic change in the flow rate per unit time, it is difficult to improve the measurement accuracy unless the transmission interval of the ultrasonic signal is shortened to increase the number of measurements per unit time. On the other hand, when the flow rate is small and there is little change in the flow rate per unit time, even if the transmission interval of the ultrasonic signal is increased to reduce the number of times of measurement, almost no problem occurs in the measurement accuracy of the flow rate.

【0006】しかし、従来の流量計測装置51では、一
般的に、トリガ回路56を作動させるスタート信号は、
ある一定の周波数か、又はランダム関数を含めてある関
数に決められており、流量が微少、あるいは全く流れて
いない場合にも、決められたサンプリング周波数で計測
が行われていた。このため、小流量時あるいは流れが停
止している場合においても電力を使用する頻度が高く、
装置が電池駆動の場合、短期間の内に電池交換が必要に
なるなどの問題点が生じていた。
However, in the conventional flow measuring device 51, generally, a start signal for activating the trigger circuit 56 is
Measurement is performed at a fixed sampling frequency or a certain function including a random function. Even when the flow rate is very small or does not flow at all, measurement is performed at the determined sampling frequency. Therefore, even when the flow rate is small or when the flow is stopped, the power is frequently used,
When the apparatus is driven by a battery, there have been problems such as a need to replace the battery within a short period of time.

【0007】そこで、このような背景から、流量演算回
路62によって算出される流量値又は流速値を監視し、
これらの値が小さくなるときにはそれに伴って超音波信
号の発信間隔を増大させることで、計測精度の向上と消
費電力の低減との双方を図った技術が提案されている
(特開平8−122117号公報参照)。
In view of such circumstances, the flow rate value or the flow velocity value calculated by the flow rate calculation circuit 62 is monitored.
When these values become smaller, there has been proposed a technique for increasing both the transmission interval of the ultrasonic signal and thereby improving the measurement accuracy and reducing the power consumption (Japanese Patent Laid-Open No. 8-122117). Gazette).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、流路内
での流体の流れは、流量計測装置の下流に接続されるガ
ス機器などの流体消費機器の出力変化に伴う脈動などの
ために、流れ状態が乱れ易く、流路内での流れの乱れ
は、前述した超音波信号の伝搬速度に影響を与え、流速
や流量等の計測精度の低下を招くことになる。このた
め、算出される流量値又は流速値に基づいて発信間隔を
調整する従来の技術では、流れに乱れが生じていない定
常流の状態では、超音波信号の発信間隔を流量に応じた
最適値に調整可能であるが、脈動等で流れが乱れた場合
には、算出した流量値又は流速値の誤差の影響で、超音
波信号の発信間隔の調整値が最適値とならず、その発信
間隔の調整結果が更に次の流量計測処理の誤差を招いて
しまい、計測精度の悪化を招くおそれがあった。
However, the flow of the fluid in the flow path is in a flow state due to a pulsation caused by an output change of a fluid consuming device such as a gas device connected downstream of the flow measuring device. Is easily disturbed, and the disturbance of the flow in the flow path affects the above-described propagation speed of the ultrasonic signal, and causes a decrease in measurement accuracy of the flow velocity, the flow rate, and the like. For this reason, in the related art in which the transmission interval is adjusted based on the calculated flow rate value or flow velocity value, in a state of steady flow where the flow is not disturbed, the transmission interval of the ultrasonic signal is set to an optimum value corresponding to the flow rate. However, when the flow is disturbed due to pulsation or the like, the adjustment value of the transmission interval of the ultrasonic signal does not become the optimum value due to the error of the calculated flow rate value or the flow velocity value, and the transmission interval is not adjusted. The result of the adjustment may further cause an error in the next flow rate measurement process, and may cause deterioration in measurement accuracy.

【0009】本発明は、上記事情に鑑みてなされたもの
で、脈動等によって流路内の流れに乱れが生じていて
も、超音波信号の発信間隔を実際の流量に応じた最適値
に調整することができ、流量の計測精度の向上と消費電
力の低減との双方を安定して得ることが可能な流量計測
装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and adjusts the transmission interval of an ultrasonic signal to an optimum value according to an actual flow rate even if a flow in a flow path is disturbed due to pulsation or the like. It is an object of the present invention to provide a flow measurement device capable of stably obtaining both improvement in measurement accuracy of flow and reduction in power consumption.

【0010】[0010]

【課題を解決するための手段】本発明による流量計測装
置は、流体を挟んで対向するように流路に配設された一
対の超音波振動子と、前記一対の超音波振動子の一方か
ら超音波信号を発信させる発信手段と、前記流路中の流
体圧を検出する圧力検知手段と、前記流体圧に応じて前
記超音波信号の発信間隔を制御する計測間隔制御手段
と、前記一対の超音波振動子間における超音波信号の伝
搬時間を検出する計時手段と、前記検出した伝搬時間に
基づいて流体の流量を算出する流量演算手段と、を備え
たものである。
According to the present invention, there is provided a flow rate measuring apparatus comprising: a pair of ultrasonic vibrators disposed in a flow path so as to face each other with a fluid interposed therebetween; A transmitting unit that transmits an ultrasonic signal, a pressure detecting unit that detects a fluid pressure in the flow path, a measurement interval control unit that controls a transmission interval of the ultrasonic signal according to the fluid pressure, and the pair of the It is provided with time measuring means for detecting the propagation time of the ultrasonic signal between the ultrasonic transducers, and flow rate calculating means for calculating the flow rate of the fluid based on the detected propagation time.

【0011】好ましくは、前記計測間隔制御手段は、前
記流体圧の低下に応じて超音波信号の発信間隔が短縮さ
れるように発信間隔を調整することとする。また、前記
計測間隔制御手段は、前記超音波信号の発信間隔の調整
を、この超音波信号の1回の発信毎に行うこととする。
或いは、前記計測間隔制御手段は、前記超音波信号の発
信間隔の調整を、一方の超音波振動子において繰り返し
行う所定回数の発信単位ごとに行うこととする。
Preferably, the measurement interval control means adjusts the transmission interval so that the transmission interval of the ultrasonic signal is shortened in accordance with the decrease in the fluid pressure. Further, the measurement interval control means adjusts the transmission interval of the ultrasonic signal for each transmission of the ultrasonic signal.
Alternatively, the measurement interval control means adjusts the transmission interval of the ultrasonic signal for each predetermined number of transmission units repeatedly performed by one ultrasonic transducer.

【0012】上記構成において、流体圧は実際の流量変
化に応じて変動するため、実質的には、流量に応じて超
音波信号の発信間隔を調整する結果となる。そして、計
測結果の流速値や流量値を使用して超音波信号の発信間
隔を調整する従来の方法と比較すると、圧力値は直接の
検出値であり、脈動等の影響による演算誤差を含んでい
ないため、より正確に、実際の流量に応じた超音波信号
の発信間隔を設定することが可能であり、最適な超音波
信号の発信間隔による計測処理によって、流量の計測精
度が向上する。
In the above configuration, since the fluid pressure fluctuates according to the actual flow rate change, the transmission interval of the ultrasonic signal is substantially adjusted according to the flow rate. Then, when compared with the conventional method of adjusting the transmission interval of the ultrasonic signal using the flow velocity value and the flow rate value of the measurement result, the pressure value is a direct detection value and includes a calculation error due to the influence of pulsation and the like. Therefore, it is possible to more accurately set the transmission interval of the ultrasonic signal according to the actual flow rate, and the measurement processing based on the optimum transmission interval of the ultrasonic signal improves the measurement accuracy of the flow rate.

【0013】このとき、大流量時など流体圧が低下した
ときには流体圧に応じて超音波信号の発信間隔を短縮す
ることにより、流量の計測精度をより向上させることが
可能となる。また、低流量や微少流量時など流体圧が高
いときには、超音波信号の発信間隔の増大によって発信
回数を減らすことで、流量計測装置の電力を使用する頻
度を低減させ、消費電力の低減を図ることが可能とな
り、装置が電池駆動の場合、電池寿命を延ばすことが可
能となる。一般に、流量計測装置においては、圧力計が
既設であるため、圧力検知手段として特に新たにセンサ
等を追加しなくとも、既設の圧力計を利用することで、
超音波信号の発信間隔の最適化を安価に実現することが
可能となる。
At this time, when the fluid pressure decreases, for example, when the flow rate is large, the accuracy of measuring the flow rate can be further improved by shortening the transmission interval of the ultrasonic signal according to the fluid pressure. In addition, when the fluid pressure is high, such as when the flow rate is low or minute, the number of transmissions is reduced by increasing the transmission interval of the ultrasonic signal, thereby reducing the frequency of using the power of the flow measurement device and reducing the power consumption. When the device is driven by a battery, the battery life can be extended. In general, in a flow rate measuring device, since a pressure gauge is already provided, it is possible to use the existing pressure gauge without particularly adding a new sensor or the like as a pressure detecting means.
Optimization of the transmission interval of the ultrasonic signal can be realized at low cost.

【0014】なお、計測間隔制御手段による超音波信号
の発信間隔の調整処理は、超音波信号の1回の発信毎に
行うようにしてもよいし、繰り返し行う所定回数の超音
波信号の発信単位ごとに行うようにしてもよく、計測法
に応じて適宜選択するのが好ましい。
The process of adjusting the transmission interval of the ultrasonic signal by the measurement interval control means may be performed for each transmission of the ultrasonic signal, or may be performed repeatedly for a predetermined number of transmission units of the ultrasonic signal. It may be performed every time, and it is preferable to select appropriately according to the measurement method.

【0015】[0015]

【発明の実施の形態】以下、図面を参照して本発明の好
適な実施の形態を説明する。図1ないし図3は本発明に
係る流量計測装置の一実施形態を示したもので、図1は
流量計測装置の構成を示すブロック図、図2は本実施形
態の流量計測装置における超音波信号の発信/受信間隔
を示す説明図、図3は本実施形態における流量計測装置
の流路内での圧力変化を示す説明図である。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. FIGS. 1 to 3 show an embodiment of a flow measuring device according to the present invention. FIG. 1 is a block diagram showing a configuration of the flow measuring device. FIG. 2 is an ultrasonic signal in the flow measuring device of the present embodiment. FIG. 3 is an explanatory diagram showing a pressure change in the flow path of the flow rate measuring device in the present embodiment.

【0016】本実施形態の流量計測装置1は、ガスなど
の流体の流量を計測するものであり、流体を挟んで対向
するように流路2に配設された一対の超音波振動子3,
4と、これらの一対の超音波振動子3,4の一方から超
音波信号を発信させる発信手段としての発信回路5と、
発信回路5を所定間隔で駆動するトリガ回路6と、超音
波振動子の他方で受信した信号を増幅して出力する増幅
回路7と、増幅回路7の出力を規定の信号と比較して超
音波信号の受信を検知する比較回路8と、比較回路8の
出力信号に基づいて超音波信号の受信回数が規定数に達
するまでトリガ回路6を繰り返し作動させる繰り返し回
路9と、一対の超音波振動子3,4の一方を発信回路5
に他方を増幅回路7に切り換え接続する切換回路10
と、超音波信号の発信が規定回数だけ繰り返し実施する
のに要した時間を計測する計時手段としての計時回路1
1と、計時回路11で計測された超音波信号の伝搬時間
に基づいて流量を算出する流量演算手段としての流量演
算回路12とを有して構成される。
The flow rate measuring device 1 of the present embodiment measures a flow rate of a fluid such as a gas, and a pair of ultrasonic vibrators 3 and 3 disposed in the flow path 2 so as to face each other with the fluid interposed therebetween.
A transmitting circuit 5 as transmitting means for transmitting an ultrasonic signal from one of the pair of ultrasonic transducers 3 and 4;
A trigger circuit 6 for driving the transmission circuit 5 at a predetermined interval; an amplification circuit 7 for amplifying and outputting a signal received by the other of the ultrasonic transducers; and an ultrasonic circuit for comparing the output of the amplification circuit 7 with a prescribed signal. A comparison circuit 8 for detecting reception of a signal, a repetition circuit 9 for repeatedly operating the trigger circuit 6 based on the output signal of the comparison circuit 8 until the number of receptions of the ultrasonic signal reaches a specified number, and a pair of ultrasonic transducers Oscillator 5
Switching circuit 10 for switching and connecting the other to amplifying circuit 7
And a time-measuring circuit 1 as a time-measuring means for measuring a time required for repeatedly transmitting the ultrasonic signal a specified number of times.
1 and a flow rate calculating circuit 12 as a flow rate calculating means for calculating a flow rate based on the propagation time of the ultrasonic signal measured by the timing circuit 11.

【0017】流路2内部には、この流路内の流体の圧力
を検知する圧力検知手段として、圧力計などからなる圧
力検知部13が設けられている。また、流体圧に応じて
超音波信号の発信間隔を制御する計測間隔制御手段とし
て、圧力検知部13による流体圧の検出値(例えば基準
とする圧力値に対する検出値の大小や比率)を判定する
圧力判定回路14と、圧力判定回路14の判定結果に基
づいてトリガ回路6が出力する超音波信号の発信間隔に
適度の遅延時間を加えて超音波信号の発信間隔を調整す
る遅延回路15とを備えている。本実施形態では、一般
的に流量計測装置に装備されている既設の圧力計を圧力
検知部13に利用して、流路中の流体圧を監視し、流体
圧の低下に応じて超音波信号の発信間隔が短縮されるよ
うに、圧力検知部13の圧力検出値に基づいてトリガ回
路6の動作を制御する。
Inside the flow path 2, there is provided a pressure detecting unit 13 such as a pressure gauge as pressure detecting means for detecting the pressure of the fluid in the flow path. In addition, as a measurement interval control unit that controls the transmission interval of the ultrasonic signal according to the fluid pressure, the detection value of the fluid pressure by the pressure detection unit 13 (for example, the magnitude or ratio of the detection value to the reference pressure value) is determined. The pressure determination circuit 14 and a delay circuit 15 that adjusts the transmission interval of the ultrasonic signal by adding an appropriate delay time to the transmission interval of the ultrasonic signal output from the trigger circuit 6 based on the determination result of the pressure determination circuit 14. Have. In the present embodiment, the existing pressure gauge generally provided in the flow rate measuring device is used for the pressure detection unit 13 to monitor the fluid pressure in the flow path, and an ultrasonic signal is generated in response to a decrease in the fluid pressure. The operation of the trigger circuit 6 is controlled based on the pressure detection value of the pressure detection unit 13 so as to shorten the transmission interval.

【0018】このように構成された本実施形態の流量計
測装置1では、シングアラウンド法により、流路2内を
流れるガスなどの流量を計測する。まず、スタート回路
16からの開始信号によってトリガ回路6が始動して、
一方の超音波振動子3を駆動することにより、超音波信
号Sが発信され、流路2中を他方の超音波振動子4に向
けて進行する。この超音波信号Sが他方の超音波振動子
4で受信されると、再び超音波振動子3から超音波信号
Sを発信させ、超音波振動子4で受信する。この超音波
信号Sの発信及び受信の繰り返しを規定回数行い、その
所要時間T1を計測する(図2参照)。続いて、発信す
る超音波振動子を超音波振動子4に切り換えて、同様に
規定回数だけ超音波信号Sの発信及び受信を繰り返し、
その所要時間T2を計測する。そして、所要時間T1と
T2の時間差から流体の流速vを算出し、その流速vと
流路2の断面積とから流量を算出する。
In the flow rate measuring apparatus 1 of the present embodiment configured as described above, the flow rate of gas or the like flowing in the flow path 2 is measured by the sing-around method. First, the trigger circuit 6 is started by a start signal from the start circuit 16, and
By driving one of the ultrasonic vibrators 3, an ultrasonic signal S is transmitted, and travels in the flow path 2 toward the other ultrasonic vibrator 4. When this ultrasonic signal S is received by the other ultrasonic transducer 4, the ultrasonic signal 3 is transmitted again from the ultrasonic transducer 3 and received by the ultrasonic transducer 4. The transmission and reception of the ultrasonic signal S are repeated a specified number of times, and the required time T1 is measured (see FIG. 2). Subsequently, the ultrasonic transducer to be transmitted is switched to the ultrasonic transducer 4, and transmission and reception of the ultrasonic signal S are similarly repeated a specified number of times.
The required time T2 is measured. Then, the flow velocity v of the fluid is calculated from the time difference between the required times T1 and T2, and the flow rate is calculated from the flow velocity v and the cross-sectional area of the flow path 2.

【0019】図2の特性曲線(a)は、流路2において
上流側に位置する超音波振動子3における超音波信号の
発信及び受信のタイムチャートを示し、特性曲線(b)
は、流路2において下流側に位置する超音波振動子4に
おける超音波信号の発信及び受信のタイムチャートを示
している。また、特性曲線(a)上に示したT1は、シ
ングアラウンド法に基づいて、超音波振動子3から発信
した超音波信号が超音波振動子4で受信される処理を予
め定めた所定回数(例えば100〜1000回)だけ繰
り返したときの所要時間であり、特性曲線(b)上に示
したT2は、同様に、超音波振動子4から発信した超音
波信号が超音波振動子3で受信される処理を予め定めた
所定回数(例えば100〜1000回)だけ繰り返した
ときの所要時間である。
A characteristic curve (a) of FIG. 2 shows a time chart of transmission and reception of an ultrasonic signal in the ultrasonic transducer 3 located on the upstream side in the flow path 2, and a characteristic curve (b).
4 shows a time chart of transmission and reception of an ultrasonic signal in the ultrasonic transducer 4 located on the downstream side in the flow path 2. Further, T1 shown on the characteristic curve (a) is a predetermined number of times that the ultrasonic signal transmitted from the ultrasonic transducer 3 is received by the ultrasonic transducer 4 based on the sing-around method. T2 shown on the characteristic curve (b) is a time required when the ultrasonic signal is transmitted from the ultrasonic transducer 4 and received by the ultrasonic transducer 3 in the same manner. This is the required time when the processing to be performed is repeated a predetermined number of times (for example, 100 to 1000 times).

【0020】また、Δtは、一方の超音波振動子から発
信された超音波信号が他方の超音波振動子で受信された
後に、次の発信がなされるまでの遅延時間である。遅延
回路15によって、この遅延時間Δtを流体圧に応じて
増減させることで、超音波信号の発信間隔(すなわち流
量計測時のサンプリング間隔)を調整する。本実施形態
の場合は、シングアラウンド法で流量計測を行うため、
前記圧力判定回路14及び遅延回路15による超音波信
号の発信間隔の調整処理は、前記のように超音波信号の
発信及び受信を所定回数(100〜1000回)だけ繰
り返す際の所定回数の発信単位毎で行うようにする。
Further, Δt is a delay time from when an ultrasonic signal transmitted from one ultrasonic transducer is received by the other ultrasonic transducer to when the next transmission is made. By increasing or decreasing the delay time Δt according to the fluid pressure by the delay circuit 15, the transmission interval of the ultrasonic signal (that is, the sampling interval at the time of the flow rate measurement) is adjusted. In the case of this embodiment, since the flow rate is measured by the sing-around method,
The process of adjusting the transmission interval of the ultrasonic signal by the pressure determination circuit 14 and the delay circuit 15 is performed by a predetermined number of transmission units when the transmission and reception of the ultrasonic signal are repeated a predetermined number of times (100 to 1000 times) as described above. It is done every time.

【0021】上述したように、本実施形態では超音波信
号の発信間隔の調整は流体圧に応じて行うが、図3に示
すように、流路2内の流体圧は実際の流量変化に応じて
変動する。したがって、実質的には、流量に応じて超音
波信号の発信間隔を調整する結果となる。この場合、流
体圧は直接検知した検出値であり、流量計測時の脈動等
の影響による演算誤差を含んでいないため、計測結果の
流速値や流量値を使用して超音波信号の発信間隔を調整
する従来の方法と比較すると、より正確に、実際の流量
に応じた適切な超音波信号の発信間隔を算出することが
可能である。このため、常に最適な超音波信号の発信間
隔による計測処理を行うことができ、流量の計測精度を
向上させることができる。
As described above, in the present embodiment, the transmission interval of the ultrasonic signal is adjusted in accordance with the fluid pressure, but as shown in FIG. 3, the fluid pressure in the flow path 2 is adjusted in accordance with the actual flow rate change. Fluctuate. Accordingly, the transmission interval of the ultrasonic signal is substantially adjusted according to the flow rate. In this case, since the fluid pressure is a directly detected value and does not include a calculation error due to the influence of pulsation or the like at the time of flow rate measurement, the transmission interval of the ultrasonic signal is determined using the flow velocity value or the flow rate value of the measurement result. Compared with the conventional method of adjusting, it is possible to more accurately calculate an appropriate ultrasonic signal transmission interval according to the actual flow rate. For this reason, it is possible to always perform the measurement process based on the optimum transmission interval of the ultrasonic signal, and it is possible to improve the measurement accuracy of the flow rate.

【0022】このとき、大流量時など流体圧が低下した
ときには流体圧に応じて超音波信号の発信間隔を短縮す
ることにより、流量の計測精度をより向上させることが
できる。また、低流量や微少流量時など流体圧が高いと
きには、超音波信号の発信間隔を延長して発信回数を減
らすことで、流量計測装置の電力を使用する頻度を低減
させ、消費電力の低減を図ることができ、装置が電池駆
動の場合は電池寿命を延ばすことができる。また、流量
計測装置においては、一般的に流路内の圧力を検知する
圧力計が配設されているため、圧力検知手段として特に
新たにセンサ等を追加しなくとも、既設の圧力計を利用
することで、超音波信号の発信間隔の最適化を安価に実
現することができる。
At this time, when the fluid pressure decreases, for example, when the flow rate is large, the accuracy of measuring the flow rate can be further improved by shortening the transmission interval of the ultrasonic signal according to the fluid pressure. Also, when the fluid pressure is high such as at low flow rate or minute flow rate, the transmission interval of the ultrasonic signal is extended to reduce the number of transmissions, thereby reducing the frequency of using the power of the flow measurement device and reducing power consumption. When the device is driven by a battery, the battery life can be extended. In addition, since a pressure gauge for detecting the pressure in the flow path is generally provided in the flow rate measuring device, an existing pressure gauge can be used without particularly adding a new sensor or the like as a pressure detecting means. By doing so, optimization of the transmission interval of the ultrasonic signal can be realized at low cost.

【0023】図3において、超音波信号の発信間隔の調
整例を具体的に説明すると、流体圧が基準圧力P0から
P1に低下する期間L1(ガス使用時等のある程度の流
量がある期間)では、その流体圧の減少率(基準圧力P
0に対する流体圧P1の比:P1/P0)に応じて前述
した遅延時間Δtを短く設定して、計測間隔(サンプリ
ング間隔)を短縮し、これによって、計測精度の維持、
向上を図るようにする。
Referring to FIG. 3, a specific example of the adjustment of the transmission interval of the ultrasonic signal will be described. In the period L1 during which the fluid pressure drops from the reference pressure P0 to the reference pressure P1 (a period during which there is a certain flow rate when gas is used). , The decrease rate of the fluid pressure (reference pressure P
(The ratio of the fluid pressure P1 to 0: P1 / P0), the above-mentioned delay time Δt is set short, and the measurement interval (sampling interval) is shortened.
Try to improve.

【0024】また、圧力低下が期間L3のように更に大
きくなり流体圧がP2となった場合は、圧力比P2/P
0に応じて遅延時間Δtを期間L1のときよりも更に短
く設定する。或いは、所定の計測精度が得られるまで、
遅延時間Δtを短くし、計測間隔を短縮する。例えば、
所定の計測精度が得られる圧力比P1/P0やP2/P
0と遅延時間Δtとの関係を求めておき、遅延時間を設
定する。圧力に対する遅延時間や計測間隔の値は、流量
計測装置の設置後の初期動作時において所定期間の学習
により算出し、値をテーブルなどの形式で図示しない記
憶手段に設定記憶しておく。
When the pressure drop further increases as in the period L3 and the fluid pressure becomes P2, the pressure ratio P2 / P
According to 0, the delay time Δt is set to be shorter than in the period L1. Alternatively, until the predetermined measurement accuracy is obtained,
The delay time Δt is shortened, and the measurement interval is shortened. For example,
Pressure ratio P1 / P0 or P2 / P for obtaining a predetermined measurement accuracy
The relationship between 0 and the delay time Δt is obtained in advance, and the delay time is set. The delay time for pressure and the value of the measurement interval are calculated by learning for a predetermined period at the time of initial operation after installation of the flow rate measuring device, and the values are set and stored in a storage unit (not shown) in a form such as a table.

【0025】また、期間L4(流体圧P0)→期間L5
(流体圧P3)→期間L6(流体圧P4)のように、段
階的に流体圧が減少するときには、圧力比P4/P0に
対応して遅延時間を短く設定し、計測間隔を短縮する。
或いは、圧力比(P3/P0)+(P4/P0)に対応
する遅延時間を設定し、計測間隔を短縮する。
Further, period L4 (fluid pressure P0) → period L5
When the fluid pressure decreases stepwise as in (fluid pressure P3) → period L6 (fluid pressure P4), the delay time is set short in accordance with the pressure ratio P4 / P0, and the measurement interval is shortened.
Alternatively, a delay time corresponding to the pressure ratio (P3 / P0) + (P4 / P0) is set to shorten the measurement interval.

【0026】また、期間L2,L4のように流体圧がP
0の時は、ガスなどの流体が使用されていないか、又は
極めて微少な流量の場合であるから、遅延時間Δtを最
大限に大きく設定することで、超音波信号の発信間隔を
最大化して、単位時間当たりの超音波信号の発信回数を
低減させることにより、消費電力の低減を図るようにす
る。
The fluid pressure becomes P as in periods L2 and L4.
When the value is 0, fluid such as gas is not used, or the flow rate is extremely small. Therefore, by setting the delay time Δt to a maximum value, the transmission interval of the ultrasonic signal is maximized. By reducing the number of transmissions of ultrasonic signals per unit time, power consumption can be reduced.

【0027】なお、本発明に適合する流体の流量計測方
法は、前述したシングアラウンド法に限るものではな
い。例えば、いわゆる伝搬時間差法、周波数差法などの
計測法にも応用可能である。シングアラウンド法でない
場合は、計測間隔制御手段による超音波信号の発信間隔
の調整処理は、超音波信号の1回の発信毎に行うように
してもよく、計測法に応じて適宜選択するとよい。
The method of measuring the flow rate of a fluid conforming to the present invention is not limited to the above-described sing-around method. For example, the present invention can be applied to measurement methods such as a so-called propagation time difference method and a frequency difference method. If the method is not the sing-around method, the process of adjusting the transmission interval of the ultrasonic signal by the measurement interval control means may be performed for each transmission of the ultrasonic signal, or may be appropriately selected according to the measurement method.

【0028】[0028]

【発明の効果】以上説明したように本発明によれば、脈
動等によって流路内の流れに乱れが生じていても、超音
波信号の発信間隔を実際の流量に応じた最適値に調整す
ることができ、流量の計測精度の向上と消費電力の低減
との双方を安定して得ることが可能な流量計測装置を提
供できる効果がある。
As described above, according to the present invention, even if the flow in the flow path is disturbed due to pulsation or the like, the transmission interval of the ultrasonic signal is adjusted to the optimum value according to the actual flow rate. Thus, there is an effect that it is possible to provide a flow measurement device capable of stably obtaining both the improvement of the flow measurement accuracy and the reduction of power consumption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係る流量計測装置の構成
を示すブロック図である。
FIG. 1 is a block diagram illustrating a configuration of a flow measurement device according to an embodiment of the present invention.

【図2】本実施形態の流量計測装置における超音波信号
の発信/受信間隔を示す説明図である。
FIG. 2 is an explanatory diagram showing transmission / reception intervals of an ultrasonic signal in the flow rate measuring device of the present embodiment.

【図3】本実施形態における流量計測装置の流路内での
圧力変化を示す説明図である。
FIG. 3 is an explanatory diagram showing a pressure change in a flow path of the flow measurement device according to the embodiment.

【図4】従来の流量計測装置の構成例を示すブロック図
である。
FIG. 4 is a block diagram illustrating a configuration example of a conventional flow measurement device.

【符号の説明】[Explanation of symbols]

1 流量計測装置 2 流路 3,4 超音波振動子 5 発信回路 6 トリガ回路 7 増幅回路 8 比較回路 9 繰り返し回路 10 切換回路 11 計時回路 12 流量演算回路 13 圧力検知回路 14 圧力判定回路 15 遅延回路 DESCRIPTION OF SYMBOLS 1 Flow rate measuring device 2 Flow path 3, 4 Ultrasonic vibrator 5 Oscillation circuit 6 Trigger circuit 7 Amplification circuit 8 Comparison circuit 9 Repetition circuit 10 Switching circuit 11 Timing circuit 12 Flow rate calculation circuit 13 Pressure detection circuit 14 Pressure judgment circuit 15 Delay circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 流体を挟んで対向するように流路に配設
された一対の超音波振動子と、 前記一対の超音波振動子の一方から超音波信号を発信さ
せる発信手段と、 前記流路中の流体圧を検出する圧力検知手段と、 前記流体圧に応じて前記超音波信号の発信間隔を制御す
る計測間隔制御手段と、 前記一対の超音波振動子間における超音波信号の伝搬時
間を検出する計時手段と、 前記検出した伝搬時間に基づいて流体の流量を算出する
流量演算手段と、 を備えたことを特徴とする流量計測装置。
A pair of ultrasonic vibrators disposed in a flow path so as to face each other with a fluid interposed therebetween; a transmitting unit configured to transmit an ultrasonic signal from one of the pair of ultrasonic vibrators; Pressure detecting means for detecting a fluid pressure in a road; measuring interval control means for controlling a transmission interval of the ultrasonic signal according to the fluid pressure; and a propagation time of the ultrasonic signal between the pair of ultrasonic transducers. And a flow rate calculation means for calculating a flow rate of the fluid based on the detected propagation time.
【請求項2】 前記計測間隔制御手段は、前記流体圧の
低下に応じて超音波信号の発信間隔が短縮されるように
発信間隔を調整することを特徴とする請求項1記載の流
量計測装置。
2. The flow rate measuring device according to claim 1, wherein the measurement interval control means adjusts the transmission interval so that the transmission interval of the ultrasonic signal is shortened in accordance with the decrease in the fluid pressure. .
【請求項3】 前記計測間隔制御手段は、前記超音波信
号の発信間隔の調整を、この超音波信号の1回の発信毎
に行うことを特徴とする請求項1記載の流量計測装置。
3. The flow rate measuring device according to claim 1, wherein the measurement interval control means adjusts the transmission interval of the ultrasonic signal for each transmission of the ultrasonic signal.
【請求項4】 前記計測間隔制御手段は、前記超音波信
号の発信間隔の調整を、一方の超音波振動子において繰
り返し行う所定回数の発信単位ごとに行うことを特徴と
する請求項1記載の流量計測装置。
4. The apparatus according to claim 1, wherein the measurement interval control means adjusts the transmission interval of the ultrasonic signal for each predetermined number of transmission units repeatedly performed by one of the ultrasonic transducers. Flow measurement device.
JP26911699A 1999-09-22 1999-09-22 Flow rate measurement device Pending JP2001091319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26911699A JP2001091319A (en) 1999-09-22 1999-09-22 Flow rate measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26911699A JP2001091319A (en) 1999-09-22 1999-09-22 Flow rate measurement device

Publications (1)

Publication Number Publication Date
JP2001091319A true JP2001091319A (en) 2001-04-06

Family

ID=17467910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26911699A Pending JP2001091319A (en) 1999-09-22 1999-09-22 Flow rate measurement device

Country Status (1)

Country Link
JP (1) JP2001091319A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350202A (en) * 2001-05-30 2002-12-04 Matsushita Electric Ind Co Ltd Flow measuring device
JP2005037325A (en) * 2003-07-18 2005-02-10 Matsushita Electric Ind Co Ltd Flow measuring instrument
JP2019181360A (en) * 2018-04-09 2019-10-24 エヌアイシ・オートテック株式会社 Nozzle clogging inspection method and device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350202A (en) * 2001-05-30 2002-12-04 Matsushita Electric Ind Co Ltd Flow measuring device
JP2005037325A (en) * 2003-07-18 2005-02-10 Matsushita Electric Ind Co Ltd Flow measuring instrument
JP2019181360A (en) * 2018-04-09 2019-10-24 エヌアイシ・オートテック株式会社 Nozzle clogging inspection method and device
JP7054140B2 (en) 2018-04-09 2022-04-13 エヌアイシ・オートテック株式会社 Nozzle clogging inspection method and equipment

Similar Documents

Publication Publication Date Title
JPH06235721A (en) Ultrasonic measuring method and equipment
JP3689973B2 (en) Flow measuring device
JP2001091319A (en) Flow rate measurement device
JPH0921667A (en) Flow rate measuring apparatus
JP2003106882A (en) Flow measuring instrument
JPH1144563A (en) Apparatus for measuring flow rate
JP3838209B2 (en) Flow measuring device
JP2004069524A (en) Flow rate measuring apparatus
JPH09280917A (en) Flow rate measuring apparatus
JP2002296085A (en) Ultrasonic flowmeter
JP3422100B2 (en) Flow measurement device
JP3945530B2 (en) Flow measuring device
JP5034510B2 (en) Flow velocity or flow rate measuring device and its program
JP4157313B2 (en) Flowmeter
JP4552285B2 (en) Flowmeter
JP3821102B2 (en) Flow measuring device
JP4008266B2 (en) Flow measuring device
JP2004085420A (en) Flow measuring instrument
JP5845432B2 (en) Ultrasonic flow meter
JP4362890B2 (en) Flow measuring device
JP4144084B2 (en) Ultrasonic flow meter
JP2020180812A (en) Ultrasonic flowmeter
JP3453876B2 (en) Ultrasonic flow meter
JP4830191B2 (en) Flow measuring device
JP4163887B2 (en) Flowmeter

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324