JP2001084946A - Method for evaluating secondary particle detector system and particle beam device - Google Patents

Method for evaluating secondary particle detector system and particle beam device

Info

Publication number
JP2001084946A
JP2001084946A JP26320799A JP26320799A JP2001084946A JP 2001084946 A JP2001084946 A JP 2001084946A JP 26320799 A JP26320799 A JP 26320799A JP 26320799 A JP26320799 A JP 26320799A JP 2001084946 A JP2001084946 A JP 2001084946A
Authority
JP
Japan
Prior art keywords
particle beam
secondary particle
detector
ratio
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26320799A
Other languages
Japanese (ja)
Inventor
Toshihide Agemura
寿英 揚村
Satoru Fukuhara
福原  悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26320799A priority Critical patent/JP2001084946A/en
Publication of JP2001084946A publication Critical patent/JP2001084946A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for quantitatively evaluating detection efficiency of a detector system by obtaining a ratio between counting rate calculated by subtracting a back ground counting rate measured with blocking primary particle beam from the number of output pulse corrected for a counting loss and the number of incident particles per unit time entering into a secondary particle detector calculated from measured probe current of the primary particle beam. SOLUTION: Primary particle beam of which probe current is measured beforehand is made directly enter into a secondary particle detector, and an output pulse counting rate of the secondary particle detector is measured. The output pulse counting rate is corrected for counting loss, and a back ground counting rate measured with blocking the primary particle beam is subtracted from the corrected number of the output pulse to obtain a counting rate to be used. Detection efficiency is expressed by a product of collecting efficiency represented as a ratio of the number of electron entering into the detector to the total number of secondary electrons, backscattered electrons, and sum of the secondary electrons and the backscattered electrons, generated by primary electron beam irradiating a sample, and counting efficiency represented as a ratio of the outputted signal amount on the basis of the number of electrons to the number of electrons coming into the detector.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、走査型電子顕微鏡
(SEM)、集束イオンビーム装置(FIB)など試料
から発生した二次電子及び後方散乱電子を検出して観
察、寸法測定、分析、加工などを行う装置の二次電子お
よび後方散乱電子検出系の検出効率の評価方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting, observing, measuring, analyzing, and processing secondary electrons and backscattered electrons generated from a sample such as a scanning electron microscope (SEM) and a focused ion beam apparatus (FIB). The present invention relates to a method for evaluating the detection efficiency of a secondary electron and backscattered electron detection system of an apparatus for performing such operations.

【0002】[0002]

【従来の技術】走査型電子顕微鏡や集束イオンビーム装
置など一次粒子線を試料に照射して表面観察を行う装置
においては、一次粒子線を試料上で走査させ、試料表面
および内部の情報を持った二次電子や後方散乱電子を検
出器で検出して信号とし、AD変換した画像データを画
像メモリに記憶させ、メモリ上で適当な画像処理を行っ
てディジタル−アナログ変換し、粒子線の走査とCRT
の走査を同期させて映像を形成して表面状態を観察す
る。検出器としてはシンチレータと光電子増倍管を組み
合わせたものや、電子増倍管、マイクロチャンネルプレ
ート(MCP)、半導体検出器などが用いられる。検出
器の出力信号から画像を得る手段としては、信号が連続
的なアナログ信号の場合は、そのアナログ信号の電圧値
を画像の輝度信号とするアナログ検出法と、信号が離散
的なパルス信号の場合は、そのパルス信号の数を計数し
て画像の輝度信号とする電子計数法がある。
2. Description of the Related Art In a device for irradiating a sample with a primary particle beam, such as a scanning electron microscope or a focused ion beam device, to observe a surface, the primary particle beam is scanned on the sample and information on the sample surface and inside is stored. Secondary electrons and backscattered electrons are detected by a detector and converted into a signal. The AD-converted image data is stored in an image memory. Appropriate image processing is performed on the memory to perform digital-to-analog conversion. And CRT
The image is formed by synchronizing the scanning of the image and the surface state is observed. As the detector, a combination of a scintillator and a photomultiplier, an electron multiplier, a microchannel plate (MCP), a semiconductor detector, and the like are used. Means for obtaining an image from the output signal of the detector include, when the signal is a continuous analog signal, an analog detection method in which the voltage value of the analog signal is used as the luminance signal of the image, and a method in which the signal is a discrete pulse signal. In such a case, there is an electronic counting method in which the number of the pulse signals is counted and used as a luminance signal of an image.

【0003】上述の検出器と画像取得方法で得られた画
像の画質の向上のためには、試料で発生した二次電子や
後方散乱電子を効率よく検出する、すなわち検出効率を
向上させなければならない。したがってこの検出効率を
定量的に評価することが重要である。定量評価方法の一
例として、アナログ検出法から得られたディジタル画像
のS/Nから検出効率を評価する方法がスキャニング
ボリューム18(1996)第533頁から第538頁
(SCANNING Vol18(1996)533−
538)に示されている。
In order to improve the image quality of an image obtained by the above-described detector and image acquisition method, it is necessary to efficiently detect secondary electrons and backscattered electrons generated in a sample, that is, to improve the detection efficiency. No. Therefore, it is important to quantitatively evaluate the detection efficiency. As an example of a quantitative evaluation method, a method of evaluating detection efficiency from S / N of a digital image obtained by an analog detection method is a scanning method.
Volume 18 (1996) pp. 533 to 538 (SCANNING Vol 18 (1996) 533-
538).

【0004】[0004]

【発明が解決しようとする課題】上記文献によれば、実
験的に得られたS/Nと、一次電子ビームの照射電流量
や二次電子放出比および後方散乱係数、一次電子ビーム
が1画素に滞在する時間、画像積算枚数から計算できる
S/Nの理論値との比の二乗で検出効率を定義してい
る。しかしながら、この方法では検出器とその信号処理
回路のノイズを考慮しておらず、また検出器の計数効率
については述べらておらず、正確に検出効率を評価する
ことはできない。また前記文献には、検出器とその信号
処理回路のノイズが無視できる電子計数法を用いた検出
効率の評価方法についての記載はない。
According to the above-mentioned document, the S / N obtained experimentally, the amount of irradiation current of the primary electron beam, the secondary electron emission ratio, the backscattering coefficient, and the primary electron beam are represented by one pixel. , The detection efficiency is defined by the square of the ratio to the theoretical value of S / N, which can be calculated from the number of accumulated images. However, this method does not take into account the noise of the detector and its signal processing circuit, does not describe the counting efficiency of the detector, and cannot accurately evaluate the detection efficiency. In addition, the document does not describe a method for evaluating detection efficiency using an electronic counting method in which noise in a detector and its signal processing circuit can be ignored.

【0005】本発明の目的は、アナログ検出法で得られ
た画像データおよび電子計数法で得られた出力パルス計
数率から、検出器系の検出効率を定量的に評価する方
法、およびそれを実現させるための粒子線装置を提供す
ることにある。
An object of the present invention is to provide a method for quantitatively evaluating the detection efficiency of a detector system from image data obtained by an analog detection method and an output pulse count rate obtained by an electronic counting method, and to realize the method. It is an object of the present invention to provide a particle beam device for performing the above.

【0006】[0006]

【課題を解決するための手段】本発明は上記の目的を達
成するために、まず、二次粒子検出器にプローブ電流を
あらかじめ測定した一次粒子線を直接入射させ、二次粒
子検出器の出力パルス計数率を測定し、測定した出力パ
ルス計数率に二次粒子検出器とその信号処理回路の不感
時間による計数損失の補正を施し、計数損失補正した出
力パルス数から一次粒子線を遮断したときのバックグラ
ウンド計数率を差し引いた計数率と、測定した一次粒子
線のプローブ電流から計算できる二次粒子検出器に単位
時間あたりに入射した粒子数との比を取って、計数効率
を決定する。
According to the present invention, in order to achieve the above object, first, a primary particle beam whose probe current is measured in advance is directly incident on a secondary particle detector, and the output of the secondary particle detector is output. When the pulse count rate is measured, the measured output pulse count rate is corrected for the count loss due to the dead time of the secondary particle detector and its signal processing circuit, and the primary particle beam is cut off from the output pulse number corrected for the count loss. The counting efficiency is determined by taking the ratio of the counting rate obtained by subtracting the background counting rate of the above and the number of particles incident on the secondary particle detector per unit time, which can be calculated from the measured probe current of the primary particle beam.

【0007】次にアナログ検出法では、二次粒子検出器
にプローブ電流をあらかじめ測定した一次粒子線を直接
入射させ、二次粒子検出器の入射面上で二次元走査した
ときの画像データを取得し、各画素あたりの信号強度分
布を作成し、分布の平均値と分布の標準偏差との比から
S/Nを求め、更にプローブ電流を変化させて前記方法
でS/Nを求めて、二次粒子検出器に単位時間あたりに
入射した粒子数と画像のS/Nの関係を決定し、次に、
二次粒子を放出する割合が一次粒子線の入射エネルギー
に対して既知で、表面が平坦で鏡面の標準試料にプロー
ブ電流をあらかじめ測定した一次粒子線を照射し、標準
試料面上で二次元走査したときに発生した二次粒子を検
出したときの画像データを取得し、各画素あたりの信号
強度分布を作成し、分布の平均値と分布の標準偏差との
比から求めたS/Nと二次粒子検出器に単位時間あたり
に入射した粒子数と画像のS/Nの関係から、二次粒子
検出器に入射した二次粒子流を求めて、二次粒子流と、
二次粒子を放出する割合とプローブ電流の積との比から
収集効率を決定する。
Next, in the analog detection method, a primary particle beam whose probe current is measured in advance is directly incident on the secondary particle detector, and image data obtained when two-dimensional scanning is performed on the incident surface of the secondary particle detector is obtained. Then, a signal intensity distribution for each pixel is created, the S / N is determined from the ratio of the average value of the distribution to the standard deviation of the distribution, and the S / N is determined by the above method by changing the probe current. The relationship between the number of particles incident on the secondary particle detector per unit time and the S / N of the image is determined.
The secondary particle emission rate is known with respect to the incident energy of the primary particle beam, and a flat sample with a flat surface and a mirror surface is irradiated with a pre-measured primary particle beam, and two-dimensional scanning is performed on the standard sample surface. The image data obtained when the secondary particles generated at the time of the detection are detected are obtained, the signal intensity distribution for each pixel is created, and the S / N and the second ratio obtained from the ratio between the average value of the distribution and the standard deviation of the distribution are obtained. From the number of particles incident on the secondary particle detector per unit time and the S / N ratio of the image, the secondary particle flow incident on the secondary particle detector is determined,
The collection efficiency is determined from the ratio of the product of the secondary particles and the product of the probe current.

【0008】また、電子計数法では、二次粒子を放出す
る割合が一次粒子線の入射エネルギーに対して既知で、
表面が部分的に平坦の標準試料にプローブ電流をあらか
じめ測定した一次粒子線を照射し、発生した二次粒子を
検出したときの二次粒子検出器の出力パルス計数率を測
定し、測定した出力パルス計数率に二次粒子検出器とそ
の信号処理回路の不感時間による計数損失の補正を施
し、計数損失補正した出力パルス数から一次粒子線を遮
断したときのバックグラウンド計数率を差し引いた計数
率と二次粒子の電荷の積で二次粒子流を求めて、二次粒
子流と、二次粒子を放出する割合とプローブ電流の積と
の比から収集効率を決定する。
In the electron counting method, the ratio of secondary particles emitted is known with respect to the incident energy of the primary particle beam.
A primary particle beam whose probe current is measured in advance is applied to a standard sample whose surface is partially flat, and the output pulse count rate of the secondary particle detector when the generated secondary particles are detected is measured. The pulse count rate is corrected for the count loss due to the dead time of the secondary particle detector and its signal processing circuit, and the count rate obtained by subtracting the background count rate when the primary particle beam is cut off from the output pulse number corrected for the count loss. And the product of the secondary particle charge and the secondary particle flow, and the collection efficiency is determined from the ratio of the secondary particle flow and the product of the probe current and the ratio of secondary particle emission.

【0009】上記で求めた計数効率と収集効率との積で
二次粒子検出器系の検出効率を定量的に評価する。
The detection efficiency of the secondary particle detector system is quantitatively evaluated based on the product of the counting efficiency and the collection efficiency determined above.

【0010】[0010]

【発明の実施の形態】本発明の理解のため、まず図8を
用いて走査型電子顕微鏡の構成を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS For the purpose of understanding the present invention, the configuration of a scanning electron microscope will be described first with reference to FIG.

【0011】ここでの検出器5はシンチレータ10、ラ
イトガイド11、光電子増倍管12から構成されてい
る。電子銃1で発生した一次電子ビーム2は、集束レン
ズ6と対物レンズ9によって細く絞られ試料4に照射さ
れる。一次電子ビーム2は、走査制御部17から偏向コ
イル7、8に走査信号が供給され、試料面上で走査され
る。一次電子ビーム2の走査と同期してCRT19の偏
向コイル18も走査することで、一次電子ビーム2が照
射されている試料面上の位置とCRT19の画素を対応
させることができる。試料4の一次電子ビーム照射位置
から放出された二次電子3は、二次電子3を効率よく検
出するために+10kVの電圧が印加されたシンチレー
タ10に衝突して光子に変換される。シンチレータ10
で発生した光子はライトガイド11を介して光電子増倍
管12で電流信号に変換される。光電子増倍管12から
の出力電流は増幅器で電流電圧変換され、さらに適切な
波高となるように増幅される。アナログ検出法では、増
幅器からの電圧信号はAD変換器でデジタル信号に変換
された後画像メモリ15に転送され、各画素に対応する
アドレスに書き込まれる。電子計数法では、増幅器から
のパルス信号は波高弁別器でノイズ成分となる波高のパ
ルスが除去され、真の二次電子信号の波高のパルスだけ
がカウンタに供給されてカウントされる。カウンタでカ
ウントされた計数値は画像メモリ15に転送され、各画
素に対応するアドレスに書き込まれる。どちらの方法に
おいても、画像メモリ15に記憶された二次電子信号
は、画像メモリ15上で画像積算などの適当な画像処理
などを施して、DA変換器16によってCRT19の輝
度信号に変換され、CRT19上に二次電子像が形成さ
れる。
The detector 5 comprises a scintillator 10, a light guide 11, and a photomultiplier tube 12. The primary electron beam 2 generated by the electron gun 1 is narrowed down by a converging lens 6 and an objective lens 9 and irradiates a sample 4. The primary electron beam 2 is supplied with a scanning signal from the scanning control unit 17 to the deflecting coils 7 and 8, and is scanned on the sample surface. By scanning the deflection coil 18 of the CRT 19 in synchronization with the scanning of the primary electron beam 2, the position on the sample surface to which the primary electron beam 2 is irradiated can correspond to the pixel of the CRT 19. The secondary electrons 3 emitted from the primary electron beam irradiation position of the sample 4 collide with a scintillator 10 to which a voltage of +10 kV is applied in order to efficiently detect the secondary electrons 3, and are converted into photons. Scintillator 10
Are generated by the photomultiplier tube 12 via the light guide 11 and converted into a current signal. The output current from the photomultiplier tube 12 is subjected to current-voltage conversion by an amplifier, and is further amplified to have an appropriate wave height. In the analog detection method, a voltage signal from an amplifier is converted into a digital signal by an AD converter, then transferred to the image memory 15, and written to an address corresponding to each pixel. In the electronic counting method, a pulse signal from an amplifier is subjected to a pulse height discriminator to remove a pulse having a pulse height serving as a noise component, and only a pulse having a pulse height of a true secondary electron signal is supplied to a counter and counted. The count value counted by the counter is transferred to the image memory 15 and written to an address corresponding to each pixel. In either method, the secondary electron signal stored in the image memory 15 is subjected to appropriate image processing such as image integration on the image memory 15 and is converted into a luminance signal of the CRT 19 by the DA converter 16. A secondary electron image is formed on the CRT 19.

【0012】以下、本発明の実施の形態の一例を説明す
る。本発明における検出効率は、一次電子ビームを試料
に照射して発生する二次電子、後方散乱電子、あるいは
二次電子と後方散乱電子の和の総数のうち、何個が検出
器に入射するかを表す収集効率と、検出器に入射した電
子のうち、何個分の信号量が出力されるかを表す計数効
率との積で表す。ここでは、例として二次電子に対する
検出器系の検出効率の評価方法について以下説明する。
Hereinafter, an example of an embodiment of the present invention will be described. The detection efficiency in the present invention, the secondary electrons generated by irradiating the sample with a primary electron beam, backscattered electrons, or the total number of secondary electrons and backscattered electrons, the total number of incident on the detector And the counting efficiency that indicates how many signal amounts of the electrons incident on the detector are output. Here, a method of evaluating the detection efficiency of the detector system for secondary electrons will be described below as an example.

【0013】はじめに計数効率の評価方法について図1
のフロー図を用いて以下に説明する。
First, a method for evaluating the counting efficiency is shown in FIG.
This will be described below with reference to the flowchart of FIG.

【0014】まず、検出器に入射させる電子のエネルギ
ーを決定し、加速電圧、検出器入射面のバイアス電圧を
設定したあと(ステップ101)、一次電子ビームのプ
ローブ電流IPEをファラデーカップとプローブ電流計で
測定する(ステップ102)。
First, the energy of electrons to be incident on the detector is determined, and an acceleration voltage and a bias voltage on the detector incident surface are set (step 101). Then, the probe current I PE of the primary electron beam is changed to the Faraday cup and the probe current. The measurement is performed with a meter (step 102).

【0015】次に、一次電子ビームを検出器に直接入射
させる(ステップ103)。これにより、単位時間あた
りに検出器に入射した電子の数はIPE /eで表せる
(e:1.602×10~19C)。一次電子ビームを検
出器に直接入射させる方法としては、図9のように試料
室内で一次電子ビーム2の軌道軸上に検出器5を配置し
て一次電子ビーム2を入射させる方法が簡単である。既
存の装置の検出器配置を用いる場合は、図9のように一
次電子ビーム2の軌道軸と検出器5の中心軸の交点近辺
に反射板20を設置し、一次電子ビーム2の加速電圧2
1と同じ電圧のリターディング電圧22を与えて一次電
子ビーム2を曲げて、試料室側面部、対物レンズ上部あ
るいは対物レンズ内部に配置された検出器5に一次電子
ビーム2を入射させる方法などがある。反射板20とし
ては、表面を鏡面研磨あるいはアルミニウム蒸着したア
ルミニウム円盤などを用いることができる。
Next, the primary electron beam is directly incident on the detector (step 103). Thus, the number of electrons incident on the detector per unit time can be expressed by I PE / e (e: 1.602 × 10 to 19 C). As a method of causing the primary electron beam to directly enter the detector, a simple method of arranging the detector 5 on the trajectory axis of the primary electron beam 2 in the sample chamber and causing the primary electron beam 2 to enter as shown in FIG. . In the case of using the detector arrangement of the existing device, as shown in FIG. 9, a reflector 20 is installed near the intersection of the trajectory axis of the primary electron beam 2 and the central axis of the detector 5, and the acceleration voltage 2 of the primary electron beam 2 is increased.
A method in which the primary electron beam 2 is bent by applying a retarding voltage 22 of the same voltage as that of 1 to make the primary electron beam 2 incident on the detector 5 disposed on the side of the sample chamber, on the objective lens, or inside the objective lens. is there. As the reflection plate 20, an aluminum disk or the like whose surface is mirror-polished or aluminum-deposited can be used.

【0016】次に検出器出力での単位時間あたりのパル
ス数nPEm(計数率)を、電子計数法やアンプ出力でオ
シロスコープによる観測などにより測定する(ステップ
104)。一次電子ビームはランダムな時間間隔で検出
器に入射し、また検出器装置(検出器と信号処理回路)
には入射した2つの電子を分離して数える事ができない
時間幅(不感時間)が存在するため、計数損失が起こ
る。このため計数率は入射した電子数IPE/eよりも必
ず少なくなるが、検出器装置の不感時間を用いて補正を
加えることができる。不感時間は、観測されるパルス幅
でおおよそは予想できるが、ある時間間隔内の計数分布
を測定することで解析的に求めることができる。 計数
率nPEmから不感時間による計数損失を補正した計数率
PEを求める(ステップ105)。ここで、入射した電
子数が変化すると不感時間も変化する検出器もあるの
で、プローブ電流を変化させて出力パルスの計数率と不
感時間による計数損失の補正係数の関係を求めておく
(ステップ106、図4)。次に、一次電子ビームを遮
断し、測定条件を同じにしてバックグラウンド計数率n
bを測定し、 nPE−nbを求める(ステップ107)。
計数効率の定義から、nPE−nbと、実際に検出器に入
射した単位時間あたりの電子数IPE/eの比で計数効率
を計算する(ステップ108)。ただし、入射エネルギ
ーが変化しても計数効率がほぼ一定の検出器と、入射エ
ネルギーが変ると計数効率も変化する検出器があるの
で、計数効率が変化する検出器では、入射エネルギーを
変えて、入射エネルギーと計数効率の関係を求める(ス
テップ109、図5)。この計数効率は、SEMやFI
B装置の検出器の性能を示す指標となる。
Next, the number of pulses n PEm (count rate) per unit time at the output of the detector is measured by an electronic counting method or observation by an oscilloscope with the output of the amplifier (step 104). The primary electron beam enters the detector at random time intervals, and the detector device (detector and signal processing circuit)
Since there is a time width (dead time) in which two incident electrons cannot be counted separately, a counting loss occurs. For this reason, the count rate is always smaller than the number of incident electrons I PE / e, but correction can be made using the dead time of the detector device. The dead time can be roughly estimated from the observed pulse width, but can be determined analytically by measuring the count distribution within a certain time interval. A count rate n PE obtained by correcting the count loss due to the dead time is obtained from the count rate n PEm (step 105). Here, since there is a detector in which the dead time changes when the number of incident electrons changes, the relationship between the count rate of the output pulse and the correction coefficient of the counting loss due to the dead time is obtained by changing the probe current (step 106). 4). Next, the primary electron beam is cut off, and the background counting rate n
b is measured to determine n PE −n b (step 107).
From the definition of the counting efficiency, the counting efficiency is calculated based on the ratio of n PE −n b and the number of electrons I PE / e per unit time actually incident on the detector (step 108). However, since there are detectors whose counting efficiency is almost constant even if the incident energy changes, and detectors whose counting efficiency changes when the incident energy changes, in the detector where the counting efficiency changes, the incident energy is changed. The relationship between the incident energy and the counting efficiency is determined (step 109, FIG. 5). This counting efficiency is based on SEM and FI
This is an index indicating the performance of the detector of the device B.

【0017】次に、アナログ検出法を用いた収集効率の
評価方法について図2のフロー図を用いて以下に説明す
る。検出器に入射する電子のエネルギーを、実際の使用
時に検出器に入射する電子のエネルギーと等しくなるよ
うに、加速電圧や検出器入射面にバイアスする電圧を設
定する(ステップ201)。また、走査速度、画像積算
枚数も設定し(ステップ202)、プローブ電流IPE
測定する(ステップ203)。計数効率の測定と同じよ
うに一次電子ビームを検出器に直接入射させる(ステッ
プ204)。次にAD変換器入力において、検出器から
の信号の直流オフセットをゼロに調整し、AD変換器の
ダイナミックレンジ内に信号が入るように検出器や信号
処理回路のゲインを調整する(ステップ205)。この
条件で得られる画像は、凹凸情報を持たないグレーな画
像となる。この画像において、画像メモリに記憶された
画像データから各画素の信号強度分布(横軸階調度、縦
軸頻度)を求める(ステップ206)。この頻度分布の
平均信号強度Sとその標準偏差σを求め、S/σでS/
Nを決定する(ステップ207)。同じ方法で各プロー
ブ電流に対するS/Nを求め、プローブ電流IPEととS
/Nの関係を求めておく(ステップ208、図6)。
Next, a method of evaluating the collection efficiency using the analog detection method will be described below with reference to the flowchart of FIG. An acceleration voltage and a voltage for biasing the detector incident surface are set so that the energy of the electrons incident on the detector becomes equal to the energy of the electrons incident on the detector during actual use (step 201). The scanning speed and the number of integrated images are also set (step 202), and the probe current IPE is measured (step 203). The primary electron beam is directly incident on the detector as in the measurement of the counting efficiency (step 204). Next, at the input of the AD converter, the DC offset of the signal from the detector is adjusted to zero, and the gain of the detector and the signal processing circuit is adjusted so that the signal falls within the dynamic range of the AD converter (Step 205). . An image obtained under this condition is a gray image having no unevenness information. In this image, the signal intensity distribution (horizontal axis gradient, vertical axis frequency) of each pixel is obtained from the image data stored in the image memory (step 206). The average signal strength S of this frequency distribution and its standard deviation σ are obtained, and S / σ
N is determined (step 207). The S / N for each probe current is obtained in the same manner, and the probe currents I PE and S
/ N is determined (step 208, FIG. 6).

【0018】次に、試料表面が平坦かつ鏡面で、ある入
射エネルギーで二次電子放出比δが解っている標準試料
を試料台にセットする(ステップ209)。平坦あるい
は鏡面の試料を使用するのは、二次電子放出比の照射点
依存性をなくすためである。
Next, a standard sample whose surface is flat and mirror surface and whose secondary electron emission ratio δ is known at a certain incident energy is set on the sample stage (step 209). The reason for using a flat or mirror-finished sample is to eliminate the irradiation point dependency of the secondary electron emission ratio.

【0019】例えば入射エネルギーを10keVとし、
シリコンウエハを用いるとすれば、δ=0.215とな
る。入射エネルギーが10keVであれば、加速電圧は
10kVに設定する(ステップ210)。また、プロー
ブ電流IPEを設定する。設定条件は、δIPEが、あらか
じめ測定しておいたIPE対S/Nの関係のIPEの範囲内
になるようにIPEを設定する(ステップ211)。走査
速度、画像積算枚数は先述の条件に合わせる。この条件
で一次電子ビームを試料に照射し(ステップ212)、
先述と同じようにAD変換器入力における直流オフセッ
トをゼロに調整し、AD変換器のダイナミックレンジ内
に信号が入るように検出器や信号処理回路のゲインを調
整する(ステップ213)。発生した二次電子を収集し
て信号としたときに得られる画像も、試料表面が平坦あ
るいは鏡面であるため凹凸情報を持たないグレーな画像
となる。この画像データから先述の方法と同じように信
号強度分布を求めて(S/N)SEを求める(ステップ2
14)。(S/N)SE と求めておいたIPE対S/Nの
関係(図6)から、検出器に入射した二次電子流ISE
(IPESEを求める(ステップ215)。先述した収集
効率の定義から、二次電子の収集効率はISE/δIPE
求めることができる(ステップ216)。
For example, when the incident energy is 10 keV,
If a silicon wafer is used, δ = 0.215. If the incident energy is 10 keV, the acceleration voltage is set to 10 kV (step 210). Further, the probe current IPE is set. Setting conditions, .delta.I PE sets the I PE to be in the range of I PE relationship measured in advance I PE vs. S / N (step 211). The scanning speed and the number of integrated images are adjusted to the conditions described above. The sample is irradiated with a primary electron beam under these conditions (step 212),
As described above, the DC offset at the input of the AD converter is adjusted to zero, and the gain of the detector and the signal processing circuit is adjusted so that the signal falls within the dynamic range of the AD converter (step 213). The image obtained when the generated secondary electrons are collected and used as a signal is also a gray image having no unevenness information because the sample surface is flat or mirror-finished. From this image data, a signal intensity distribution is obtained in the same manner as described above, and (S / N) SE is obtained (step 2).
14). (S / N) From the relationship between SE and the determined IPE to S / N (FIG. 6), the secondary electron current ISE = incident on the detector =
(I PE ) SE is obtained (step 215). From the definition of the collection efficiency described above, the collection efficiency of the secondary electrons can be obtained by I SE / δI PE (step 216).

【0020】次に、電子計数法を用いた収集効率の評価
方法について図3のフロー図を用いて以下に説明する。
アナログ検出法と同じく標準試料を試料台にセットする
(ステップ301)。加速電圧を設定し(ステップ30
2)、電子計数法が適用できるプローブ電流IPEを設定
する(ステップ303)。電子計数法の場合は、アナロ
グ検出法のように一次電子ビームを走査する必要はなく
スポット照射すればよいので、試料表面が必ずしも鏡面
である必要はない。この条件で一次電子ビームを試料に
照射し(ステップ304)、発生した二次電子を収集し
て得られるパルス計数率nSEmを測定する(ステップ3
05)。図4により検出器の不感時間による計数損失を
補正した計数率nSEを求める(ステップ306)。次
に、一次電子ビームを遮断し、測定条件を同じにしてバ
ックグラウンド計数率nbを測定して、 nSE−nbを求
める(ステップ307)。 nSE−nbから検出器に入射
した二次電子流ISE=e(nSE−nb )/εを計算する
(ステップ308)。アナログ検出法と同じように収集
効率の定義から、二次電子の収集効率はISE/δIPE
求めることができる(ステップ309)。
Next, a method for evaluating the collection efficiency using the electronic counting method will be described below with reference to the flowchart of FIG.
A standard sample is set on a sample stage as in the analog detection method (step 301). Set the acceleration voltage (Step 30)
2) The probe current IPE to which the electron counting method can be applied is set (step 303). In the case of the electron counting method, the primary electron beam does not need to be scanned as in the analog detection method, and spot irradiation may be performed. Therefore, the sample surface does not necessarily have to be a mirror surface. The sample is irradiated with the primary electron beam under these conditions (step 304), and the pulse count rate n SEm obtained by collecting the generated secondary electrons is measured (step 3).
05). Referring to FIG. 4, a counting rate n SE in which the counting loss due to the dead time of the detector is corrected is obtained (step 306). Next, the primary electron beam is cut off, the background count rate n b is measured under the same measurement conditions, and n SE −n b is determined (step 307). n SE -n secondary electron current incident on the detector from b I SE = e (n SE -n b) / ε calculating the (step 308). Similarly to the analog detection method, from the definition of the collection efficiency, the collection efficiency of the secondary electrons can be obtained by I SE / δI PE (step 309).

【0021】上記の実施の形態の一例では二次電子の検
出効率について詳述したが、本発明における検出効率の
評価方法は、後方散乱電子や二次電子+後方散乱電子の
検出効率の評価にも適用できる。
Although the detection efficiency of secondary electrons has been described in detail in one example of the above embodiment, the method of evaluating the detection efficiency in the present invention is applied to the evaluation of the detection efficiency of backscattered electrons or secondary electrons + backscattered electrons. Can also be applied.

【0022】また、上記の実施の形態の一例では、標準
試料を用いるため、ある入射エネルギーでの二次電子放
出比が既知である必要があった。しかし、試料から放出
された全電子(二次電子+後方散乱電子)に対する収集
効率を評価する場合は、試料として絶縁材料を用いるこ
とでも求めることができる。図7を用いて以下に説明す
る。絶縁材料では試料への一次電子ビームの入射エネル
ギーを、二次電子放出比と後方散乱係数の和が1以下の
(c)の領域に設定すると、試料が負に帯電するために
一次電子ビームの入射エネルギーが減少してくる。
(b)の領域との境界までくると、そのエネルギー以下
では逆に正に帯電するため入射エネルギーは増加してく
る。したがって全電子放出比が1となる交点付近で絶縁
材料の電位は安定する。この状態のときに、先述した方
法によりプローブ電流IPEと二次電子と後方散乱電子の
電子流ISE+BSEを求めれば、ISE+BSE/IPEで試料から
放出された全電子に対する収集効率を求めることができ
る。絶縁材料としては、入射エネルギーが1.5keV
付近で電子放出比が1となる石英(SiO2)などを用
いればよい。
Further, in the above embodiment, since the standard sample is used, the secondary electron emission ratio at a certain incident energy needs to be known. However, when evaluating the collection efficiency with respect to all the electrons (secondary electrons + backscattered electrons) emitted from the sample, it can also be obtained by using an insulating material as the sample. This will be described below with reference to FIG. In the case of an insulating material, when the incident energy of the primary electron beam to the sample is set in a region (c) where the sum of the secondary electron emission ratio and the backscattering coefficient is 1 or less, the sample is negatively charged. Incident energy decreases.
At the boundary with the region (b), when the energy is lower than the energy, the incident energy is increased because it is positively charged. Therefore, the potential of the insulating material becomes stable near the intersection where the total electron emission ratio becomes 1. In this state, if the probe current I PE and the electron current I SE + BSE of the secondary electrons and the backscattered electrons are obtained by the method described above, the collection for all the electrons emitted from the sample by I SE + BSE / I PE Efficiency can be determined. As an insulating material, the incident energy is 1.5 keV
Quartz (SiO 2 ) or the like having an electron emission ratio of 1 in the vicinity may be used.

【0023】上記で詳述した評価方法を応用した装置、
あるいは実施するために必要な装置の例を以下に述べ
る。
An apparatus to which the evaluation method described in detail above is applied,
Alternatively, an example of an apparatus necessary for carrying out the method will be described below.

【0024】測長SEMのような連続して検出器を使用
する装置では、検出器の性能劣化に伴う画質の低下が問
題となる。そこで、定期的に同じ測定条件で収集効率を
測定して検出器の性能劣化を判断するための装置の一例
を、図10と図11を用いて以下に説明する。図11は
操作表示画面の一例を示しており、図10の表示部30
に対応する。
In an apparatus such as a length measuring SEM which uses a detector continuously, there is a problem that the image quality is deteriorated due to the deterioration of the performance of the detector. Therefore, an example of an apparatus for periodically measuring the collection efficiency under the same measurement conditions and determining the performance degradation of the detector will be described below with reference to FIGS. FIG. 11 shows an example of the operation display screen.
Corresponding to

【0025】二次電子の収集効率を例とし、まずアナロ
グ検出法を用いた装置について述べる。始めに新規に収
集効率を測定する。測定の前に、一次電子ビーム2を検
出器5に直接入射させたとき、信号処理部25の出力信
号から得られる画像から求まるS/Nと入射電子流の関
係(図6)を表す関数あるいは各入射電子流に対応する
S/Nのテーブル、測定に用いる標準試料4の二次電子
放出比、走査速度、画像積算枚数をメモリ27にあらか
じめ記憶させておく。
First, an apparatus using an analog detection method will be described, taking the collection efficiency of secondary electrons as an example. First, a new collection efficiency is measured. When the primary electron beam 2 is directly incident on the detector 5 before the measurement, a function representing the relationship between the S / N obtained from the image obtained from the output signal of the signal processing unit 25 and the incident electron flow (FIG. 6) or The S / N table corresponding to each incident electron flow, the secondary electron emission ratio of the standard sample 4 used for measurement, the scanning speed, and the number of integrated images are stored in the memory 27 in advance.

【0026】次に、標準試料4を試料台にセットする。
入力手段27で図11の測定条件設定ボタン30bを選
択し、メモリ27に記憶されている二次電子放出比に対
応する入射エネルギーを演算処理・画像処理部26に読
み出して加速電圧・プローブ電流制御部23により加速
電圧を設定し、また走査速度、画像積算枚数も演算処理
・画像処理部26に読み出して走査制御部17により設
定する。プローブ電流IPEを測定条件設定のメニュー内
で入力手段28により設定してから、入力手段27で図
11の測定ボタン30aを選択し、収集効率の測定を開
始する。収集効率の測定は以下の手順で行われる。直流
オフセットを調整し、一次電子ビーム2を試料4に照射
し、二次電子3を検出して得られた信号が飽和しないよ
うに検出器のゲインを調整して画像を取得し、画像の信
号強度分布から(S/N)SEを演算処理・画像処理部2
6で計算させる。発生した二次電子3が検出器5に入射
するエネルギーでのIPE対S/Nの関係を表す関数もし
くはテーブルをメモリ27から演算処理・画像処理部2
6に読み出し、(S/N)SE と比較して検出器5に入
射した二次電子流ISEを求め、収集効率ISE /δIPE
を計算する。ISEは関数あるいはテーブルから得られる
(IPESEである。計数効率が入射エネルギーで変化す
る場合は、二次電子3が検出器5に入射するエネルギー
での計数効率ε(E)を、メモリ27に記憶されている
関数あるいはテーブルから演算処理・画像処理部26に
読み取る必要がある。測定した収集効率の測定結果は、
入力手段27で図11のテーブルボタン30cを選択す
ればテーブル30iに、プロットボタン30dを選択す
ればグラフ30h内に表示される。入力手段27で図1
1の保存ボタン30fを選択し、収集効率の計算結果、
測定何月日、プローブ電流、加速電圧、走査速度、画像
積算枚数などの測定条件と検出器5のゲインをメモリ2
7に保存する。保存されたデータは、入力手段27で出
力ボタン30gを選択し、出力手段29で出力させるこ
とができる。
Next, the standard sample 4 is set on the sample table.
The measurement condition setting button 30b of FIG. 11 is selected by the input unit 27, and the incident energy corresponding to the secondary electron emission ratio stored in the memory 27 is read out to the arithmetic processing / image processing unit 26 to control the acceleration voltage / probe current control. The accelerating voltage is set by the unit 23, and the scanning speed and the number of integrated images are also read out to the arithmetic processing / image processing unit 26 and set by the scanning control unit 17. After the probe current IPE is set by the input means 28 in the measurement condition setting menu, the measurement button 30a in FIG. 11 is selected by the input means 27 to start the measurement of the collection efficiency. The measurement of the collection efficiency is performed in the following procedure. The DC offset is adjusted, the primary electron beam 2 is irradiated on the sample 4, the gain of the detector is adjusted so that the signal obtained by detecting the secondary electron 3 is not saturated, and an image is obtained. Computes (S / N) SE from intensity distribution and image processing unit 2
6 is calculated. A function or table representing the relationship between I PE and S / N at the energy at which the generated secondary electrons 3 enter the detector 5 is calculated from the memory 27 by the arithmetic processing / image processing unit 2.
6, the secondary electron current I SE incident on the detector 5 is obtained by comparing with (S / N) SE, and the collection efficiency I SE / δI PE
Is calculated. I SE is (I PE ) SE obtained from a function or a table. When the counting efficiency changes with the incident energy, the counting efficiency ε (E) at the energy at which the secondary electrons 3 are incident on the detector 5 is calculated and calculated from a function or a table stored in the memory 27. 26 need to be read. The measurement result of the measured collection efficiency is
When the table button 30c in FIG. 11 is selected by the input means 27, the table 30i is displayed, and when the plot button 30d is selected, the graph is displayed in the graph 30h. FIG.
Select the save button 30f of 1 and calculate the collection efficiency,
Measurement date and time, probe current, acceleration voltage, scanning speed, number of images and other measurement conditions and the gain of detector 5 are stored in memory 2.
Save to 7. The stored data can be output by the output unit 29 by selecting the output button 30g by the input unit 27.

【0027】例えば2ヶ月後に、入力手段27で図11
の開くボタン30eを選択し、図11のテーブル30
i、グラフ30hに過去の測定結果を表示し、また測定
条件を演算処理・画像処理部26に読み込ませる。次
に、入力手段27で図11の測定ボタン30aを選択
し、同じように収集効率を測定を測定する。測定した結
果は図11のテーブル30i、グラフ30hにデータが
追加される。入力手段27で図11の保存ボタン30f
を選択し、収集効率の測定結果を過去の測定結果と共に
メモリ27に保存する。
For example, two months later, the input means 27
Is selected, and the table 30 in FIG. 11 is selected.
i, the past measurement results are displayed on the graph 30h, and the measurement conditions are read by the arithmetic processing / image processing unit 26. Next, the measurement button 30a in FIG. 11 is selected by the input means 27, and the collection efficiency is measured in the same manner. The measured result is added to the table 30i and the graph 30h in FIG. Save button 30f of FIG.
Is selected, and the measurement results of the collection efficiency are stored in the memory 27 together with the past measurement results.

【0028】以上のように定期的に収集効率を測定して
低下傾向があれば、検出器の性能が劣化していると判断
できる。これは、収集効率は測定条件が同じであれば検
出器の配置のみに依存するため、時間が経過しても変化
しないからである。例えば、収集効率が始めに測定した
値よりも50%低下した場合は、検出器やその構成部分
の交換をするというよな目安にもなる。
As described above, if the collection efficiency is periodically measured and the tendency is to decrease, it can be determined that the performance of the detector has deteriorated. This is because the collection efficiency depends only on the arrangement of the detectors when the measurement conditions are the same, and thus does not change with time. For example, if the collection efficiency is reduced by 50% from the initially measured value, it may be a guide to replace the detector and its components.

【0029】上記では収集効率の絶対値を求めたが、相
対的な評価で良いのであれば、S/Nと入射電子流の関
係(図6)を表す関数あるいは各入射電子流に対応する
S/Nのテーブルなどをメモリ27に保存しておく必要
はなく、ある時間経過後に測定した二次電子画像のS/
Nと、始めに測定した二次電子画像のS/Nとの比で評
価できる。
In the above, the absolute value of the collection efficiency was obtained. However, if the relative evaluation is sufficient, a function representing the relationship between the S / N and the incident electron flow (FIG. 6) or the S corresponding to each incident electron flow is used. It is not necessary to store a table of / N in the memory 27, and the S / S of the secondary electron image measured after a certain time has elapsed.
It can be evaluated by the ratio of N to the S / N of the secondary electron image measured first.

【0030】電子計数法で信号処理する場合は、アナロ
グ検出法のIPE対S/Nの関係を示す関数あるいはテー
ブルの代わりに、測定されるパルス計数率と不感時間に
よる計数損失の関係(図4)を示す関数あるいはテーブ
ルをメモリ27に記憶させておく。また計数効率εもメ
モリ27にあらかじめ記憶させておく。
When signal processing is performed by the electronic counting method, instead of a function or a table indicating the relationship between IPE and S / N in the analog detection method, the relationship between the measured pulse count rate and the count loss due to the dead time (see FIG. The function or table indicating 4) is stored in the memory 27. The counting efficiency ε is also stored in the memory 27 in advance.

【0031】また、収集効率の測定は以下の手順で行わ
れる。一次電子ビーム2を試料4に照射し、二次電子3
を検出して得られるパルス信号の計数率nSEmを測定
し、測定値を演算処理・画像処理部26に送信する。測
定されたパルス計数率と不感時間による計数損失の関係
を示す関数あるいはテーブルをメモリ27から演算処理
・画像処理部26に読み出し、 nSEmに不感時間による
計数損失を補正した計数率nSEを計算する。一次電子ビ
ーム2を遮断したときのバックグラウンド計数率nb
測定し、nSE−nbから検出器5に入射した二次電子流
SEを求め、収集効率ISE /δIPEを計算する。ISE
はe(nSE− nb )/εから計算できる。その他につ
いてはアナログ検出法と同様の操作で良い。
The measurement of the collection efficiency is performed according to the following procedure. The sample 4 is irradiated with the primary electron beam 2 and the secondary electrons 3
Is measured, and the count rate n SEm of the pulse signal obtained by detecting is measured, and the measured value is transmitted to the arithmetic processing / image processing unit 26. A function or a table indicating the relationship between the measured pulse count rate and the count loss due to the dead time is read from the memory 27 to the arithmetic processing / image processing unit 26, and the count rate n SE obtained by correcting the count loss due to the dead time to n SEm is calculated. I do. The background count rate n b when the primary electron beam 2 is cut off is measured, the secondary electron flow I SE incident on the detector 5 is obtained from n SE −n b , and the collection efficiency I SE / δI PE is calculated. . I SE
Can be calculated from e (n SE −n b ) / ε. Otherwise, the same operation as in the analog detection method may be used.

【0032】また相対的な評価で良いのであれば、測定
されるパルス計数率と不感時間による計数損失の関係
(図4)を示す関数あるいはテーブルをメモリ27に保
存しておく必要はなく、ある時間経過後に測定した計数
率と、始めに測定した計数率との比で評価できる。
If the relative evaluation is sufficient, it is not necessary to store in the memory 27 a function or table indicating the relationship between the measured pulse count rate and the count loss due to the dead time (FIG. 4). It can be evaluated by the ratio of the counting rate measured after the passage of time to the counting rate measured first.

【0033】上記の実施の形態のでは二次電子の収集効
率を測定する装置について詳述したが、本発明は、後方
散乱電子や二次電子+後方散乱電子の収集効率を測定す
る装置にも適用できる。二次電子放出比の代わりに後方
散乱係数、あるいは両方をメモリ27に記憶させておけ
ばよい。
Although the apparatus for measuring the collection efficiency of secondary electrons has been described in detail in the above embodiment, the present invention is also applicable to an apparatus for measuring the collection efficiency of backscattered electrons or secondary electrons + backscattered electrons. Applicable. The backscattering coefficient, or both, may be stored in the memory 27 instead of the secondary electron emission ratio.

【0034】また、絶縁材料を使用する場合は、標準試
料4の二次電子放出比の代わりに図7のエネルギーE2
をメモリ27に記憶させ、加速電圧・プローブ電流制御
部23により加速電圧をE2よりも少し大きめに設定す
る。
When an insulating material is used, the energy E2 shown in FIG.
Is stored in the memory 27, and the acceleration voltage is set slightly higher than E2 by the acceleration voltage / probe current control unit 23.

【0035】さらには、一次電子ビームを検出器に直接
入射させることができる装置では、収集効率のかわりに
計数効率を測定して評価することもできる。
Further, in an apparatus capable of directly injecting the primary electron beam into the detector, the counting efficiency can be measured and evaluated instead of the collection efficiency.

【0036】近年、走査型電子顕微鏡ではコンタミネー
ションを減少させるためプローブ電流を減少させる傾向
にある。しかし、画像として認識できる最適なS/Nは
保持しなければならない。そこで、最適なS/Nが得ら
れるようにプローブ電流を制御するための装置の一例
を、図10を用いて以下に説明する。
In recent years, the scanning electron microscope has a tendency to reduce the probe current in order to reduce the contamination. However, the optimum S / N that can be recognized as an image must be maintained. Therefore, an example of an apparatus for controlling the probe current so as to obtain an optimum S / N will be described below with reference to FIG.

【0037】まず、メモリ27に最適なS/Nを記憶さ
せておく。最適なS/Nは、画像として判断できる最小
のS/Nや、分解能評価に影響を及ぼさない程度のS/
N、あるいは測長SEMなどの装置では測長再現性が悪
化しない程度のS/Nなど、目的に応じて設定すればよ
い。次に加速電圧・プローブ電流制御部23により、加
速電圧、プローブ電流を設定し、走査制御部17で走査
速度、画像積算枚数を設定する。一次電子ビーム2を試
料4に照射する際、試料表面の凹凸による二次電子放出
比のばらつきをなくすため、フォーカス制御部24によ
って一次電子ビーム2のプローブをぼかす。この一次電
子ビーム2を試料4に照射し、発生した二次電子3を検
出して得られた画像からS/Nを求める。あらかじめメ
モリ27に記憶させておいたS/Nを演算処理・画像処
理部26に読み出し、求めたS/Nと比較して最適なプ
ローブ電流値を算出し、加速電圧・プローブ電流制御部
23によりプローブ電流を設定する。この方法を用いれ
ば、一次電子ビーム2の加速電圧を変えたり試料4を変
えたりして、二次電子放出比がどのように変ったとして
も常に最適なS/Nの画像を得ることができる。
First, the optimum S / N is stored in the memory 27. The optimal S / N is the minimum S / N that can be determined as an image, or the S / N that does not affect the resolution evaluation.
N or an S / N ratio that does not degrade the reproducibility of length measurement in an apparatus such as a length measuring SEM may be set according to the purpose. Next, the acceleration voltage and the probe current are set by the acceleration voltage / probe current control unit 23, and the scanning speed and the number of integrated images are set by the scanning control unit 17. When irradiating the sample 4 with the primary electron beam 2, the focus control unit 24 blurs the probe of the primary electron beam 2 in order to eliminate variations in the secondary electron emission ratio due to irregularities on the sample surface. The sample 4 is irradiated with the primary electron beam 2, the generated secondary electrons 3 are detected, and the S / N is determined from an image obtained. The S / N previously stored in the memory 27 is read out to the arithmetic processing / image processing unit 26, and an optimum probe current value is calculated by comparing the S / N with the obtained S / N. Set the probe current. If this method is used, an optimum S / N image can always be obtained no matter how the secondary electron emission ratio changes by changing the acceleration voltage of the primary electron beam 2 or changing the sample 4. .

【0038】上記では、プローブ電流を最適化する方法
について述べたが、走査速度、画像積算枚数によっても
S/Nは変化する。したがって、プローブ電流、走査速
度、画像積算枚数をそれぞれ単独に、あるいは相互に制
御しても最適なS/Nを得ることができる。
Although the method for optimizing the probe current has been described above, the S / N also changes depending on the scanning speed and the number of integrated images. Therefore, the optimum S / N can be obtained even if the probe current, the scanning speed, and the number of integrated images are controlled independently or mutually.

【0039】S/Nを画像データから求めるためには、
AD変換器33の入力で検出器5の出力信号の直流オフ
セットをゼロに、出力信号の最大値がAD変換器33の
ダイナミックレンジを越えないように調整しなければな
らない。これを解決するための装置の一例を、図12を
用いて以下に説明する。従来の走査型電子顕微鏡の信号
処理部における増幅器31とAD変換器33の間にオフ
セット値・ピーク値判定部32を設ける。まず、一次電
子ビームを遮断したときの直流オフセット成分をオフセ
ット値・ピーク値判定部32により判定し、オフセット
がゼロになるようにオフセット制御部34に信号を送っ
て、増幅器31の前段で信号のオフセットを調整する。
次に一次電子ビームを試料に照射し、発生した二次電子
を検出する。光電子増倍管12からの出力信号を増幅器
31で増幅した後の信号の最大値をオフセット値・ピー
ク値判定部32により判定し、信号が飽和している場合
にはゲインを下げるように光電子増倍管12の高電圧制
御部35に信号を送って、光電子増倍管12に印加する
電圧を下げる。これによって画像データの正確なS/N
を求めることができる。
In order to determine S / N from image data,
The DC offset of the output signal of the detector 5 must be adjusted to zero at the input of the AD converter 33 so that the maximum value of the output signal does not exceed the dynamic range of the AD converter 33. An example of an apparatus for solving this will be described below with reference to FIG. An offset value / peak value determining unit 32 is provided between an amplifier 31 and an AD converter 33 in a signal processing unit of a conventional scanning electron microscope. First, the DC offset component when the primary electron beam is cut off is determined by the offset value / peak value determination unit 32, and a signal is sent to the offset control unit 34 so that the offset becomes zero. Adjust the offset.
Next, the sample is irradiated with a primary electron beam, and the generated secondary electrons are detected. The maximum value of the signal after the output signal from the photomultiplier tube 12 is amplified by the amplifier 31 is determined by the offset value / peak value determination unit 32, and when the signal is saturated, the photomultiplier is reduced so that the gain is reduced. A signal is sent to the high voltage controller 35 of the multiplier 12 to lower the voltage applied to the photomultiplier 12. This allows accurate S / N of image data
Can be requested.

【0040】以上、本発明の実施の形態を述べたが、本
発明は、電子ビームではなくイオンビームを用いた装置
にも適用できる。
Although the embodiments of the present invention have been described above, the present invention can be applied to an apparatus using an ion beam instead of an electron beam.

【0041】[0041]

【発明の効果】以上詳述したように本発明によれば、一
次粒子線を二次粒子検出器に直接入射させることによっ
て、二次粒子検出器およびその信号処理回路のノイズを
含めて計数効率の評価が可能となる。そのため正確に収
集効率および検出効率を評価することができる。また電
子計数法を適用することによって、二次粒子検出器およ
びその信号処理回路のノイズを無視することができ、よ
り正確に収集効率および検出効率を評価することができ
る。これによりアナログ検出法と電子計数法で得られた
画像データおよびパルス計数率から、二次粒子検出器系
の検出効率を定量的に評価する方法およびそれを実現さ
せるための粒子線装置を提供することができる。
As described above in detail, according to the present invention, the counting efficiency including the noise of the secondary particle detector and its signal processing circuit can be obtained by directly irradiating the primary particle beam to the secondary particle detector. Can be evaluated. Therefore, collection efficiency and detection efficiency can be accurately evaluated. Further, by applying the electronic counting method, the noise of the secondary particle detector and its signal processing circuit can be ignored, and the collection efficiency and the detection efficiency can be evaluated more accurately. This provides a method for quantitatively evaluating the detection efficiency of a secondary particle detector system from image data and a pulse count rate obtained by an analog detection method and an electronic counting method, and a particle beam apparatus for realizing the method. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例における計数効率の
評価方法を示すフロー図。
FIG. 1 is a flowchart illustrating a method for evaluating counting efficiency according to an example of an embodiment of the present invention.

【図2】本発明の実施の形態の一例におけるアナログ検
出法を用いた収集効率の評価方法を示すフロー図。
FIG. 2 is a flowchart showing a method of evaluating collection efficiency using an analog detection method according to an example of an embodiment of the present invention.

【図3】本発明の実施の形態の一例における電子計数法
を用いた収集効率の評価方法を示すフロー図。
FIG. 3 is a flowchart showing a method for evaluating collection efficiency using an electronic counting method according to an example of an embodiment of the present invention.

【図4】本発明の実施の形態の一例における測定したパ
ルス計数率と不感時間による計数損失の補正係数の関係
を示す図。
FIG. 4 is a diagram illustrating a relationship between a measured pulse count rate and a correction coefficient for counting loss due to dead time in one example of an embodiment of the present invention.

【図5】本発明の実施の形態の一例における検出器への
入射エネルギーと計数効率の関係を示す図。
FIG. 5 is a diagram illustrating a relationship between incident energy to a detector and counting efficiency according to an example of an embodiment of the present invention.

【図6】本発明の実施の形態の一例における検出器に入
射する電子流とS/Nの関係を示す図。
FIG. 6 is a diagram showing a relationship between an electron flow incident on a detector and S / N in one example of an embodiment of the present invention.

【図7】本発明の実施の形態の一例における試料への入
射エネルギーと試料の電子放出比の関係を示す図。
FIG. 7 is a diagram showing a relationship between incident energy on a sample and an electron emission ratio of the sample in one example of an embodiment of the present invention.

【図8】従来の電子顕微鏡の概略図。FIG. 8 is a schematic diagram of a conventional electron microscope.

【図9】本発明の実施の形態の一例における一次電子ビ
ームを検出器に直接入射させる方法を示す図。
FIG. 9 is a diagram showing a method for directly injecting a primary electron beam to a detector according to an example of an embodiment of the present invention.

【図10】本発明の実施の形態の一例における走査型電
子顕微鏡の概略図。
FIG. 10 is a schematic diagram of a scanning electron microscope according to an example of an embodiment of the present invention.

【図11】本発明の実施の形態の一例における操作表示
画面の一例を示す図。
FIG. 11 illustrates an example of an operation display screen according to an example of an embodiment of the present invention.

【図12】本発明の実施の形態の一例における直流オフ
セットと検出器のゲインを調整する信号処理部の概略
図。
FIG. 12 is a schematic diagram of a signal processing unit that adjusts a DC offset and a gain of a detector according to an example of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…電子銃、2…一次電子ビーム、3…二次電子、4…
試料、5…検出器、13…アナログ検出法信号処理部、
14…電子計数法信号処理部、15…画像メモリ、17
…走査制御部、20…反射板、23…加速電圧・プロー
ブ電流制御部、24…フォーカス制御部、25…信号処
理部、26…演算処理・画像処理部、27…メモリ、2
8…入力手段、29…出力手段、30…表示手段、31
…増幅器、32…オフセット値・ピーク値判定部、33
…AD変換器、34…オフセット制御部、35…高電圧
制御部。
1 ... Electron gun, 2 ... Primary electron beam, 3 ... Secondary electron, 4 ...
Sample, 5: detector, 13: signal processing unit for analog detection method,
14 ... Electronic counting signal processing unit, 15 ... Image memory, 17
... Scan control unit, 20 reflector, 23 acceleration voltage / probe current control unit, 24 focus control unit, 25 signal processing unit, 26 arithmetic processing / image processing unit, 27 memory, 2
8 ... input means, 29 ... output means, 30 ... display means, 31
... Amplifier, 32 ... Offset value / peak value judgment unit, 33
... A / D converter, 34 ... Offset control unit, 35 ... High voltage control unit.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G001 AA03 DA09 FA02 FA06 FA09 FA10 GA05 GA06 GA09 JA01 JA06 SA10 5C033 NN01 NP08  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2G001 AA03 DA09 FA02 FA06 FA09 FA10 GA05 GA06 GA09 JA01 JA06 SA10 5C033 NN01 NP08

Claims (23)

【特許請求の範囲】[Claims] 【請求項1】 二次粒子検出器にプローブ電流をあらか
じめ測定した一次粒子線を直接入射させ、二次粒子検出
器の出力パルス計数率を測定し、測定した出力パルス計
数率に計数損失の補正を施し、計数損失補正した出力パ
ルス数から一次粒子線を遮断したときのバックグラウン
ド計数率を差し引いた計数率と、測定した一次粒子線の
プローブ電流から計算できる二次粒子検出器に単位時間
あたりに入射した粒子数との比を取って、計数効率を決
定することを特徴する二次粒子検出器系の評価方法。
1. A primary particle beam whose probe current has been measured in advance is directly incident on a secondary particle detector, an output pulse count rate of the secondary particle detector is measured, and a counting loss correction is made to the measured output pulse count rate. Per unit time to the secondary particle detector that can be calculated from the count rate obtained by subtracting the background count rate when the primary particle beam is cut off from the number of output pulses corrected for the count loss and the probe current of the measured primary particle beam. A method for evaluating a secondary particle detector system, wherein a counting efficiency is determined by taking a ratio with respect to the number of particles incident on a secondary particle detector.
【請求項2】 二次粒子検出器にプローブ電流をあらか
じめ測定した一次粒子線を直接入射させ、二次粒子検出
器の入射面上で二次元走査したときの画像データを取得
し、各画素あたりの信号強度分布を作成し、分布の平均
値と分布の標準偏差との比からS/Nを求め、更にプロ
ーブ電流を変化させて前記方法でS/Nを求めて、二次
粒子検出器に単位時間あたりに入射した粒子数と画像の
S/Nの関係を決定し、次に、二次粒子を放出する割合
が一次粒子線の入射エネルギーに対して既知で、表面が
平坦で鏡面の標準試料にプローブ電流をあらかじめ測定
した一次粒子線を照射し、標準試料面上で二次元走査し
たときに発生した二次粒子を検出したときの画像データ
を取得し、各画素あたりの信号強度分布を作成し、分布
の平均値と分布の標準偏差との比から求めたS/Nと、
二次粒子検出器に単位時間あたりに入射した粒子数と画
像のS/Nの関係から二次粒子検出器に入射した二次粒
子流を求めて、二次粒子流と、二次粒子を放出する割合
とプローブ電流の積との比から収集効率を決定すること
を特徴とする二次粒子検出器系の評価方法。
2. A primary particle beam whose probe current is measured in advance is directly incident on a secondary particle detector, and image data obtained by two-dimensional scanning on an incident surface of the secondary particle detector is acquired. The signal intensity distribution is created, the S / N is determined from the ratio of the average value of the distribution and the standard deviation of the distribution, and the S / N is determined by the above method by changing the probe current. The relationship between the number of particles incident per unit time and the S / N ratio of the image is determined. Next, the ratio of secondary particle emission is known with respect to the incident energy of the primary particle beam. The sample is irradiated with a primary particle beam whose probe current has been measured in advance, and image data is obtained when secondary particles generated during two-dimensional scanning on the standard sample surface are detected, and the signal intensity distribution for each pixel is obtained. Create distribution means and distribution markers S / N obtained from the ratio with the quasi-deviation,
The secondary particle flow incident on the secondary particle detector is obtained from the relationship between the number of particles incident on the secondary particle detector per unit time and the S / N ratio of the image, and the secondary particle flow and the secondary particles are emitted. A method for evaluating a secondary particle detector system, wherein the collection efficiency is determined from a ratio of a product ratio of a probe current and a product ratio of a probe current.
【請求項3】 二次粒子を放出する割合が一次粒子線の
入射エネルギーに対して既知で、表面が部分的に平坦の
標準試料にプローブ電流をあらかじめ測定した一次粒子
線を照射し、発生した二次粒子を検出したときの二次粒
子検出器の出力パルス計数率を測定し、測定した出力パ
ルス計数率に計数損失の補正を施し、計数損失補正した
出力パルス数から一次粒子線を遮断したときのバックグ
ラウンド計数率を差し引いた計数率と二次粒子の電荷の
積と、計数効率との比で二次粒子流を求めて、二次粒子
流と、二次粒子を放出する割合とプローブ電流の積との
比から収集効率を決定することを特徴とする二次粒子検
出器系の評価方法。
3. A secondary particle emission ratio is known with respect to the incident energy of the primary particle beam, and a standard sample having a partially flat surface is irradiated with a primary particle beam whose probe current is measured in advance to generate a secondary particle. The output pulse count rate of the secondary particle detector when secondary particles were detected was measured, the measured output pulse count rate was subjected to count loss correction, and the primary particle beam was cut off from the count loss corrected output pulse number. The secondary particle flow is determined by the ratio of the product of the secondary particle charge and the count rate obtained by subtracting the background count rate, and the counting efficiency, and the secondary particle flow, the secondary particle emission ratio, and the probe A method for evaluating a secondary particle detector system, wherein a collection efficiency is determined from a ratio of a current to a product.
【請求項4】 請求項2および請求項3記載の二次粒子
検出器系の評価方法において、標準材料のかわりに絶縁
材料を用いて二次粒子を放出する割合が1となるように
一次粒子線の入射エネルギーを設定し、二次粒子流とプ
ローブ電流との比から収集効率を決定することを特徴と
する二次粒子検出器系の評価方法。
4. The method for evaluating a secondary particle detector system according to claim 2, wherein the primary particles are released such that the ratio of secondary particles emitted by using an insulating material instead of the standard material is 1. A method for evaluating a secondary particle detector system, comprising setting an incident energy of a line and determining a collection efficiency from a ratio between a secondary particle flow and a probe current.
【請求項5】 請求項4記載の二次粒子検出器系の評価
方法において、絶縁材料として石英を用いることを特徴
とする二次粒子検出器系の評価方法。
5. The method for evaluating a secondary particle detector system according to claim 4, wherein quartz is used as an insulating material.
【請求項6】 請求項1記載の計数効率と請求項2記載
の収集効率の積、請求項1記載の計数効率と請求項3記
載の収集効率の積、あるいは請求項1記載の計数効率と
請求項4記載の収集効率の積で二次粒子検出器の検出効
率を決定することを特徴とする二次粒子検出器系の評価
方法。
6. The product of the counting efficiency according to claim 1 and the collecting efficiency according to claim 2, the product of the counting efficiency according to claim 1 and the collecting efficiency according to claim 3, or the counting efficiency according to claim 1. A method for evaluating a secondary particle detector system, wherein the detection efficiency of the secondary particle detector is determined by the product of the collection efficiencies according to claim 4.
【請求項7】 請求項1記載の二次粒子検出器系の評価
方法において、定期的に同じ測定条件で計数効率を測定
し、前回測定した計数効率と比較して二次粒子検出器の
性能劣化を判断することを特徴とする二次粒子検出器系
の評価方法。
7. The method for evaluating a secondary particle detector system according to claim 1, wherein the counting efficiency is periodically measured under the same measurement conditions, and the performance of the secondary particle detector is compared with the previously measured counting efficiency. A method for evaluating a secondary particle detector system, which comprises determining deterioration.
【請求項8】 請求項2、請求項3および請求項4記載
の二次粒子検出器系の評価方法において、定期的に同じ
測定条件で収集効率を測定し、前回測定した収集効率と
比較して二次粒子検出器の性能劣化を判断することを特
徴とする二次粒子検出器系の評価方法。
8. The method for evaluating a secondary particle detector system according to claim 2, wherein the collection efficiency is periodically measured under the same measurement conditions and compared with the previously measured collection efficiency. A method for evaluating a secondary particle detector system, comprising: determining deterioration in performance of a secondary particle detector by using the method.
【請求項9】 一次粒子線を試料上に集束するための集
束手段と、試料上に照射された一次粒子線を二次元に走
査する手段と、一次粒子線と試料との相互作用によって
発生した二次粒子を検出する検出手段を備えた粒子線装
置において、一次粒子線を二次粒子検出器に直接入射さ
せる手段を備えたことを特徴とする粒子線装置。
9. A focusing means for focusing the primary particle beam on the sample, a means for scanning the primary particle beam irradiated on the sample in two dimensions, and an interaction between the primary particle beam and the sample. What is claimed is: 1. A particle beam apparatus provided with a detecting means for detecting secondary particles, comprising: means for directly entering a primary particle beam into a secondary particle detector.
【請求項10】 請求項9記載の粒子線装置において、
一次粒子線の軌道軸と二次粒子検出器の中心軸との交点
あるいは交点近辺に反射板を設置し、一次粒子線の加速
電圧と同じ電圧以上のリターディング電圧を与えて一次
粒子線を曲げ、試料室側面部、対物レンズ上部あるいは
対物レンズ内部に配置された二次粒子検出器に一次粒子
線を直接入射させる手段を備えたことを特徴とする粒子
線装置。
10. The particle beam apparatus according to claim 9, wherein
A reflector is installed at or near the intersection between the orbit axis of the primary particle beam and the center axis of the secondary particle detector, and the primary particle beam is bent by applying a retarding voltage equal to or higher than the acceleration voltage of the primary particle beam. A particle beam apparatus comprising means for directly entering a primary particle beam into a secondary particle detector arranged on a side surface of a sample chamber, above an objective lens, or inside an objective lens.
【請求項11】 請求項10記載の粒子線装置におい
て、反射板として表面を鏡面研磨、あるいは蒸着処理を
施したアルミニウム円盤を備えたことを特徴とする粒子
線装置。
11. The particle beam apparatus according to claim 10, further comprising an aluminum disk having a mirror-polished or vapor-deposited surface as a reflection plate.
【請求項12】 請求項9記載の粒子線装置において、
二次粒子検出器にプローブ電流をあらかじめ測定した一
次粒子線を直接入射させ、二次粒子検出器の出力パルス
計数率を測定し、測定した出力パルス計数率に計数損失
の補正を施し、計数損失補正した出力パルス数から一次
粒子線を遮断したときのバックグラウンド計数率を差し
引いた計数率と、測定した一次粒子線のプローブ電流か
ら計算できる二次粒子検出器に単位時間あたりに入射し
た粒子数との比を取って、計数効率を決定する手段を備
えたことを特徴する粒子線装置。
12. The particle beam apparatus according to claim 9, wherein
The primary particle beam whose probe current was previously measured was directly incident on the secondary particle detector, the output pulse count rate of the secondary particle detector was measured, and the measured output pulse count rate was corrected for counting loss, and the counting loss was calculated. The number of particles incident on the secondary particle detector per unit time, which can be calculated from the corrected output pulse number minus the background count rate when the primary particle beam is cut off and the probe current of the measured primary particle beam And a means for determining the counting efficiency by taking the ratio of
【請求項13】 請求項9記載の粒子線装置において、
二次粒子検出器にプローブ電流をあらかじめ測定した一
次粒子線を直接入射させ、二次粒子検出器の入射面上で
二次元走査したときの画像データを取得し、各画素あた
りの信号強度分布を作成し、分布の平均値と分布の標準
偏差との比からS/Nを求め、更にプローブ電流を変化
させて前記方法でS/Nを求めて、二次粒子検出器に単
位時間あたりに入射した粒子数と画像のS/Nの関係を
決定し、次に、二次粒子を放出する割合が一次粒子線の
入射エネルギーに対して既知で、表面が平坦で鏡面の標
準試料にプローブ電流をあらかじめ測定した一次粒子線
を照射し、標準試料面上で二次元走査したときに発生し
た二次粒子を検出したときの画像データを取得し、各画
素あたりの信号強度分布を作成し、分布の平均値と分布
の標準偏差との比から求めたS/Nと、二次粒子検出器
に単位時間あたりに入射した粒子数と画像のS/Nの関
係から、二次粒子検出器に入射した二次粒子流を求め
て、二次粒子流と、二次粒子を放出する割合とプローブ
電流の積との比から収集効率を決定する手段を備えたこ
とを特徴する粒子線装置。
13. The particle beam apparatus according to claim 9, wherein
The primary particle beam, whose probe current was measured in advance, was directly incident on the secondary particle detector, image data was obtained when two-dimensional scanning was performed on the incident surface of the secondary particle detector, and the signal intensity distribution for each pixel was obtained. S / N is calculated from the ratio between the average value of the distribution and the standard deviation of the distribution, and the S / N is calculated by the above method by changing the probe current, and the S / N is incident on the secondary particle detector per unit time. The relationship between the number of particles obtained and the S / N ratio of the image is determined. Next, the rate at which the secondary particles are emitted is known with respect to the incident energy of the primary particle beam. Irradiate the primary particle beam measured in advance, acquire image data when detecting secondary particles generated when performing two-dimensional scanning on the standard sample surface, create a signal intensity distribution for each pixel, and The ratio of the mean to the standard deviation of the distribution The secondary particle flow incident on the secondary particle detector is determined from the S / N determined from the above and the relationship between the number of particles incident on the secondary particle detector per unit time and the S / N ratio of the image. A particle beam apparatus comprising: means for determining collection efficiency based on a ratio of a particle flow and a ratio of a product of a secondary particle emission rate and a probe current.
【請求項14】 請求項9記載の粒子線装置において、
二次粒子を放出する割合が一次粒子線の入射エネルギー
に対して既知で、表面が部分的に平坦の標準試料にプロ
ーブ電流をあらかじめ測定した一次粒子線を照射し、発
生した二次粒子を検出したときの二次粒子検出器の出力
パルス計数率を測定し、測定した出力パルス計数率に計
数損失の補正を施し、計数損失補正した出力パルス数か
ら一次粒子線を遮断したときのバックグラウンド計数率
を差し引いた計数率と二次粒子の電荷の積と、計数効率
との比で二次粒子流を求めて、二次粒子流と、二次粒子
を放出する割合とプローブ電流の積との比から収集効率
を決定する手段を備えたことを特徴する粒子線装置。
14. The particle beam apparatus according to claim 9, wherein
The secondary particle emission rate is known with respect to the incident energy of the primary particle beam, and the secondary particle generated by irradiating a standard sample with a partially flat surface to the primary particle beam whose probe current is measured in advance is detected. The output pulse count rate of the secondary particle detector at the time of the measurement is measured, the measured output pulse count rate is corrected for the count loss, and the background count when the primary particle beam is cut off from the output pulse number corrected for the count loss is calculated. The secondary particle flow is determined by the ratio of the product of the charge of the secondary particles and the counting efficiency after subtracting the ratio, and the counting efficiency, and the secondary particle flow, the product of the ratio of releasing the secondary particles and the product of the probe current are calculated. A particle beam apparatus comprising means for determining a collection efficiency from a ratio.
【請求項15】 請求項13および請求項14記載の粒
子線装置において、標準材料のかわりに絶縁材料を用い
て二次粒子を放出する割合を1となるように一次粒子線
の入射エネルギーを設定し、二次粒子流と、プローブ電
流との比から収集効率を決定する手段を備えたことを特
徴する粒子線装置。
15. The particle beam device according to claim 13 or 14, wherein the incident energy of the primary particle beam is set so that the ratio of secondary particle emission using an insulating material instead of the standard material is 1. And a means for determining the collection efficiency from the ratio between the secondary particle flow and the probe current.
【請求項16】 請求項12記載の二次粒子検出器系の
評価方法において、絶縁材料として石英を備えたことを
特徴とする粒子線装置。
16. The particle beam apparatus according to claim 12, wherein quartz is provided as an insulating material.
【請求項17】 請求項12記載の計数効率と請求項1
3記載の収集効率の積、請求項12記載の計数効率と請
求項14記載の収集効率の積、あるいは請求項12記載
の計数効率と請求項15記載の収集効率の積で二次粒子
検出器の検出効率を決定する手段を備えたことを特徴す
る粒子線装置。
17. The counting efficiency according to claim 12 and claim 1.
The secondary particle detector is a product of the collection efficiency according to claim 3, a product of the counting efficiency according to claim 12 and the collection efficiency according to claim 14, or a product of the counting efficiency according to claim 12 and the collection efficiency according to claim 15. A particle beam apparatus comprising means for determining the detection efficiency of a particle beam.
【請求項18】 請求項12記載の粒子線装置におい
て、定期的に同じ測定条件で計数効率を測定し、前回測
定した計数効率と比較して二次粒子検出器の性能劣化を
判断する手段を備えたことを特徴とする粒子線装置。
18. The particle beam apparatus according to claim 12, wherein a means for periodically measuring the counting efficiency under the same measurement conditions and comparing the counting efficiency with the previously measured counting efficiency to judge the performance deterioration of the secondary particle detector. A particle beam device, comprising:
【請求項19】 請求項13、請求項14および請求項
15記載の粒子線装置において、定期的に同じ測定条件
で収集効率を測定し、前回測定した収集効率と比較して
二次粒子検出器の性能劣化を判断する手段を備えたこと
を特徴とする粒子線装置。
19. The secondary particle detector according to claim 13, wherein the collection efficiency is periodically measured under the same measurement conditions and compared with the previously measured collection efficiency. A particle beam apparatus comprising means for determining performance degradation of a particle beam.
【請求項20】 一次粒子線を試料上に集束するための
集束手段と、試料上に照射された一次粒子線を二次元に
走査する手段と、一次粒子線と試料との相互作用によっ
て発生した二次粒子を検出する検出手段と、画像や装置
を操作するための画面を表示する手段を備えた粒子線装
置において、操作画面上に時間の経過と収集効率の関
係、あるいは時間の経過とS/Nの関係、あるいは時間
の経過と出力パルス計数率の関係を示す表、あるいはグ
ラフを表示する手段を備えたことを特徴とする粒子線装
置。
20. Focusing means for focusing the primary particle beam on the sample, means for scanning the primary particle beam irradiated on the sample in two dimensions, and interaction between the primary particle beam and the sample. In a particle beam apparatus provided with a detecting means for detecting secondary particles and a means for displaying an image or a screen for operating the apparatus, the relationship between the passage of time and the collection efficiency on the operation screen, or the passage of time and S A particle beam apparatus comprising means for displaying a table or a graph showing the relationship between / N or the passage of time and the output pulse count rate.
【請求項21】 画像や装置を操作するための画面を表
示する手段を備えた請求項9記載の粒子線装置におい
て、操作画面上に時間の経過と計数効率効率の関係、あ
るいは時間の経過と出力パルス計数率の関係を示す表、
あるいはグラフを表示する手段を備えたことを特徴とす
る粒子線装置。
21. The particle beam apparatus according to claim 9, further comprising means for displaying an image or a screen for operating the apparatus, wherein the relation between the passage of time and the efficiency of counting efficiency or the passage of time on the operation screen. A table showing the relationship of the output pulse count rate,
Alternatively, a particle beam apparatus comprising means for displaying a graph.
【請求項22】 請求項9記載の粒子線装置において、
一次粒子線のプローブ電流、走査速度、画像積算枚数を
それぞれ単独、あるいは組み合わせて調節し、常に最適
なS/Nの画像を得る手段を備えたこと特徴とする粒子
線装置。
22. The particle beam apparatus according to claim 9,
A particle beam apparatus comprising means for adjusting a probe current, a scanning speed, and the number of integrated images of a primary particle beam individually or in combination to always obtain an image having an optimum S / N.
【請求項23】 二次粒子検出器の出力信号の直流オフ
セットと、二次粒子検出器のゲインを調整する手段を備
えた請求項9記載の粒子線装置において、アナログ検出
法を適用した信号処理手段のアナログ−ディジタル変換
器の入力で、二次粒子検出器からの出力信号の直流オフ
セットをゼロに調整し、アナログ−ディジタル変換器の
ダイナミックレンジの範囲内に出力信号が入るように二
次粒子検出器のゲインを調整する手段を備えたこと特徴
とする粒子線装置。
23. The particle processing apparatus according to claim 9, further comprising means for adjusting a DC offset of an output signal of the secondary particle detector and a gain of the secondary particle detector. Means for adjusting the dc offset of the output signal from the secondary particle detector to zero at the input of the analog-to-digital converter so that the output signal falls within the dynamic range of the analog-to-digital converter. A particle beam apparatus comprising means for adjusting a gain of a detector.
JP26320799A 1999-09-17 1999-09-17 Method for evaluating secondary particle detector system and particle beam device Pending JP2001084946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26320799A JP2001084946A (en) 1999-09-17 1999-09-17 Method for evaluating secondary particle detector system and particle beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26320799A JP2001084946A (en) 1999-09-17 1999-09-17 Method for evaluating secondary particle detector system and particle beam device

Publications (1)

Publication Number Publication Date
JP2001084946A true JP2001084946A (en) 2001-03-30

Family

ID=17386279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26320799A Pending JP2001084946A (en) 1999-09-17 1999-09-17 Method for evaluating secondary particle detector system and particle beam device

Country Status (1)

Country Link
JP (1) JP2001084946A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086011A (en) * 2005-09-26 2007-04-05 Hitachi High-Technologies Corp Electron microscope controller, electron microscope system, and control method for electron microscope
WO2013150847A1 (en) * 2012-04-03 2013-10-10 株式会社 日立ハイテクノロジーズ Charged particle beam device
JP2013258031A (en) * 2012-06-12 2013-12-26 Jeol Ltd Adjustment method of electron microscope, and electron microscope
WO2015186202A1 (en) * 2014-06-04 2015-12-10 株式会社日立製作所 Scanning electron microscope device
CN111737935A (en) * 2020-06-30 2020-10-02 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Power device failure rate evaluation method, computer equipment and storage medium
JP2021118056A (en) * 2020-01-23 2021-08-10 日本電子株式会社 Charged particle beam device and adjustment method thereof
WO2024066034A1 (en) * 2022-09-30 2024-04-04 纳克微束(北京)有限公司 Electron detector and electron detection system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4644084B2 (en) * 2005-09-26 2011-03-02 株式会社日立ハイテクノロジーズ Electron microscope control apparatus, electron microscope system, and control method of electron microscope
JP2007086011A (en) * 2005-09-26 2007-04-05 Hitachi High-Technologies Corp Electron microscope controller, electron microscope system, and control method for electron microscope
JPWO2013150847A1 (en) * 2012-04-03 2015-12-17 株式会社日立ハイテクノロジーズ Charged particle beam equipment
WO2013150847A1 (en) * 2012-04-03 2013-10-10 株式会社 日立ハイテクノロジーズ Charged particle beam device
CN104246966A (en) * 2012-04-03 2014-12-24 株式会社日立高新技术 Charged particle beam device
US9355814B2 (en) 2012-04-03 2016-05-31 Hitachi High-Technologies Corporation Charged particle beam apparatus
JP2013258031A (en) * 2012-06-12 2013-12-26 Jeol Ltd Adjustment method of electron microscope, and electron microscope
WO2015186202A1 (en) * 2014-06-04 2015-12-10 株式会社日立製作所 Scanning electron microscope device
JP2021118056A (en) * 2020-01-23 2021-08-10 日本電子株式会社 Charged particle beam device and adjustment method thereof
JP7054711B2 (en) 2020-01-23 2022-04-14 日本電子株式会社 How to adjust charged particle beam device and charged particle beam device
CN111737935A (en) * 2020-06-30 2020-10-02 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Power device failure rate evaluation method, computer equipment and storage medium
CN111737935B (en) * 2020-06-30 2023-09-29 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Power device failure rate assessment method, computer equipment and storage medium
WO2024066034A1 (en) * 2022-09-30 2024-04-04 纳克微束(北京)有限公司 Electron detector and electron detection system

Similar Documents

Publication Publication Date Title
Shuman et al. Quantitative data processing of parallel recorded electron energy‐loss spectra with low signal to background
JP5937171B2 (en) Scanning electron microscope and sample observation method
WO2016158421A1 (en) Light quantity detection device, and immunoanalysis device and charged particle beam device using same
US7982179B2 (en) Beam current calibration system
US10274441B2 (en) Generating an image of an object or a representation of data about the object
US6555830B1 (en) Suppression of emission noise for microcolumn applications in electron beam inspection
JP2001084946A (en) Method for evaluating secondary particle detector system and particle beam device
JP2002289129A (en) Electron microscope being scanned at low degree of vacuum
US8093567B2 (en) Method and system for counting secondary particles
US5043584A (en) Photon-counting type streak camera device
WO2020129150A1 (en) Measurement device and signal processing method
JP3420037B2 (en) Dimension measuring device and dimension measuring method
US20210287891A1 (en) Method of operating a secondary-electron multiplier in the ion detector of a mass spectrometer
Hara et al. Performance of a CsI photocathode in a hard x-ray streak camera
JP2005026192A (en) Charged particle beam device
JPH07105888A (en) Scanning electron microscope
JP2000133193A (en) Charged particle beam irradiating device
JPH0982261A (en) Electron microscope
JP3832331B2 (en) Electron beam analyzer
Moldovan et al. Characterisation of a detector based on microchannel plates for electrons in the energy range 10–20 keV
Moldovan et al. Characterisation of a counting imaging detector for electron detection in the energy range 10–20 keV
Matheson et al. Testing and comparison of imaging detectors for electrons in the energy range 10–20 keV
Ferioli et al. Sensitivity studies with the SPS rest gas profile monitor
JP2000131045A (en) Scanning type charged particle beam system
Pearce et al. Noise contributions to feature dimension measurement in a scanning electron microscope (Sem)