JP2001080924A - Method and device for molding optical glass element - Google Patents

Method and device for molding optical glass element

Info

Publication number
JP2001080924A
JP2001080924A JP25126599A JP25126599A JP2001080924A JP 2001080924 A JP2001080924 A JP 2001080924A JP 25126599 A JP25126599 A JP 25126599A JP 25126599 A JP25126599 A JP 25126599A JP 2001080924 A JP2001080924 A JP 2001080924A
Authority
JP
Japan
Prior art keywords
molding
press
pressure
optical glass
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25126599A
Other languages
Japanese (ja)
Inventor
Nobuhiro Yamamichi
伸浩 山道
Nobuyuki Nakagawa
伸行 中川
Kosei Matsumoto
鋼清 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25126599A priority Critical patent/JP2001080924A/en
Publication of JP2001080924A publication Critical patent/JP2001080924A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/16Gearing or controlling mechanisms specially adapted for glass presses

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain the dispersion in a shape of a molding caused by the weight difference of a glass material, the difference of molding shapes and the difference of setting positions, or the like, by controlling a pressing pressure added to a die while using the die temperature and the shaft position as the conditions to decide the pressing pressure in order to allow the thickness of an optical glass element to have a set value at a press step in the cooling process to mold by a glass molding method. SOLUTION: The pressing pressure is controlled so that the pressure is increased when the difference between the shaft position in the pressing direction of the molding die and the target position is small in comparison with that of the die temperatures and the pressure is decreased when it is large. The device for molding the optical glass element is provided with a detection means for detecting the die temperature and the shaft position, respectively, comparison means for comparing the detected values with the target values, respectively, and a pressing pressure control means for successively deciding/controlling the pressure based on the compared results. The device is also provided with upper and lower molding dies 1, 2, an upper side press shaft 3, a load cell 4 for measuring the pressing pressure, and an electric servomotor 5 for driving the shaft 3. The position of the shaft 3 is decided by a pulse signal to be sent to the servomotor 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガラスモールド法
により光学ガラス素子を成形する方法および成形装置に
関し、特に、成形された光学ガラス素子の厚さ(肉厚)
を一定に保持するように工夫した光学ガラス素子の成形
方法および成形装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for molding an optical glass element by a glass molding method, and more particularly, to a thickness (thickness) of the molded optical glass element.
The present invention relates to a method and apparatus for molding an optical glass element devised so as to maintain a constant.

【0002】[0002]

【従来の技術】従来、ガラスモールド法では、ガラス素
材を加熱、軟化させ、その軟化状態でプレス圧力を作用
させて、型形状(光学的機能面)をガラス素材に転写し
ている。この際、一般に、ガラスの線膨張係数は、成形
型やスペーサの線膨張係数より大きいために、冷却過程
でも、成形型にプレス圧力を加えて、最終段階まで、ガ
ラス素材を型表面に接触しているように、加圧下に維持
する方法が採られている。
2. Description of the Related Art Conventionally, in a glass molding method, a glass material is heated and softened, and a pressing pressure is applied in the softened state to transfer a mold shape (optically functional surface) to the glass material. At this time, since the linear expansion coefficient of the glass is generally larger than the linear expansion coefficients of the mold and the spacer, even during the cooling process, a pressing pressure is applied to the mold to bring the glass material into contact with the surface of the mold until the final stage. As described above, a method of maintaining under pressure is adopted.

【0003】このガラスモールド法において、或る一種
類の光学ガラス素子を成形する場合に、成形量、成形時
間、成形圧力、加熱温度、加熱時間などの成形条件は、
成形以前に予め設定してあって、同じ条件で、成形を繰
り返していた。この成形方法は、成形以前のガラス素材
の重量(体積)と形状が厳密に同一であれば、特に問題
がなく、同一の成形品(光学ガラス素子)が得られた。
In this glass molding method, when molding a certain kind of optical glass element, molding conditions such as molding amount, molding time, molding pressure, heating temperature and heating time are as follows.
It was set before molding and molding was repeated under the same conditions. In this molding method, if the weight (volume) and shape of the glass material before molding were exactly the same, there was no particular problem, and the same molded product (optical glass element) was obtained.

【0004】しかし、現実には、成形の都度、成形型に
供給されるガラス素材の大きさを厳密に同一にすること
が困難であり、重量(体積)や形状に僅かな差が生じ
る。このため、上述のような同一の成形条件で成形を繰
り返すと、基準の大きさより若干、大きいガラス素材で
は、プレス圧に対して、その成形が基準値まで進行しな
い内に硬化し(つまり、予定肉厚より厚くなり)、ま
た、若干、小さいガラス素材では、予定以上に成形が進
み(つまり、予定肉厚より薄くなる)という問題があっ
た。
However, in reality, it is difficult to make the size of the glass material supplied to the molding die exactly the same every time molding is performed, and there is a slight difference in weight (volume) and shape. For this reason, when the molding is repeated under the same molding conditions as described above, the glass material slightly harder than the reference size hardens against the pressing pressure before the molding proceeds to the reference value (that is, the predetermined In the case of a slightly smaller glass material, there is a problem that the molding proceeds more than planned (that is, the glass material becomes thinner than the planned thickness).

【0005】換言すれば、ガラス素材の重量(体積)が
大きい場合、成形時にガラスが、通常より多く、成形型
の型面外周へ延びる(径が大きくなる)ため、成形され
る面積が大きくなり、単位面積当たりに加えるプレス圧
力が減少する。そのため、設定された標準の成形時間で
プレス成形した場合、基準値より肉厚のガラス成形品
(光学ガラス素子)ができてしまう。また、重量(体
積)が大きいと、熱容量が大きいために、ガラスの加熱
に時間が掛かり、設定した加熱時間では、ガラスが十分
軟化されず、その結果、同じプレス圧力での成形量が不
足し、肉厚が基準値より大きい光学ガラス素子ができて
しまう。ガラス素材の重量(体積)が小さい場合は、丁
度、この逆で、肉厚の小さいガラス成形品(光学ガラス
素子)となるのである。
[0005] In other words, when the weight (volume) of the glass material is large, the glass is larger than usual at the time of molding and extends to the outer periphery of the mold surface (the diameter becomes large), so that the area to be molded becomes large. The pressing pressure applied per unit area is reduced. Therefore, when press molding is performed for the set standard molding time, a glass molded product (optical glass element) having a thickness greater than the reference value is produced. On the other hand, if the weight (volume) is large, it takes a long time to heat the glass due to a large heat capacity, and the glass is not sufficiently softened by the set heating time, and as a result, the molding amount under the same pressing pressure is insufficient. In addition, an optical glass element having a thickness larger than the reference value is produced. If the weight (volume) of the glass material is small, the reverse is true, and the glass molded product (optical glass element) having a small thickness is obtained.

【0006】そこで、既に、特開平3−193630号
公報に所載のように、ガラス素材の大きさ(重量)に合
わせて成形温度を変化させ、肉厚を一定にするという方
法が提案されている。しかし、成形温度を変化させる
と、ガラスの粘性、成形時の成形型の成形面の形状、冷
却時のガラス成形品と成形型との熱収縮量などが異なっ
てくるので、仮に、中心部肉厚が一定になったとして
も、成形された光学ガラス素子(特に、レンズ系の素
子)の屈折率や形状にバラツキが生じることになり、好
ましくない。
Therefore, as disclosed in Japanese Patent Application Laid-Open No. 3-193630, a method has been proposed in which the molding temperature is changed in accordance with the size (weight) of the glass material to make the wall thickness constant. I have. However, if the molding temperature is changed, the viscosity of the glass, the shape of the molding surface of the molding die during molding, the amount of heat shrinkage between the glass molded product and the molding die during cooling, etc. will differ. Even if the thickness becomes constant, the refractive index and the shape of the formed optical glass element (particularly, lens-based element) vary, which is not preferable.

【0007】これらの問題を考慮して、特開平10−1
67737号公報に所載の発明では、成形前のガラス素
材の重量を測定し、この重量に応じて、成形型の移動
量、成形時間、成形圧力および加熱時間の中から、一つ
以上の成形条件を変化させる方法が採られている。
In consideration of these problems, Japanese Patent Laid-Open No. 10-1
According to the invention described in Japanese Patent Application No. 67737, the weight of a glass material before molding is measured, and one or more molding materials are selected from a moving distance of a molding die, a molding time, a molding pressure, and a heating time in accordance with the weight. A method of changing conditions is employed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、近年、
非球面レンズ、自由曲面レンズなどの光学素子の需要が
急速に高まりつつあり、このような光学素子は、製品に
要求される形状精度も、従来のものより、大変厳しくな
っている。また、成形する光学素子(特に、レンズ系の
素子)の形状も多種多様になっており、冷却時にプレス
される量(型移動量)は、成形前のガラス素材の形状
差、あるいは、成形型内の置かれるガラス素材の位置な
どによっても、影響を大きく受け易い。従って、成形前
にガラス素材の重量を測定し、その重量に応じて、プレ
ス量やプレス圧力などを制御する方法では、もはや対応
しきれなくなってきた。
However, in recent years,
The demand for optical elements such as an aspherical lens and a free-form surface lens is rapidly increasing, and the shape accuracy required for such optical elements is much stricter than that of conventional optical elements. Also, the shapes of optical elements to be molded (particularly, lens-based elements) are also various, and the amount pressed during cooling (the amount of mold movement) depends on the difference in shape of the glass material before molding or the molding die. It is easily affected by the position of the glass material placed inside. Therefore, a method of measuring the weight of a glass material before molding and controlling the press amount, the press pressure, and the like in accordance with the weight cannot be used anymore.

【0009】更に、ガラス素材の重量を測定するために
は、成形機の他に、ガラス重量測定装置も必要であり、
装置を設置する追加の場所も、余分に必要である。ま
た、ガラス素材の搬送経路も複雑になるので、ガラス素
材の搬送ミス(落下など)による連続成形の中断を引き
起こす可能性もある。
Further, in order to measure the weight of the glass material, a glass weight measuring device is required in addition to the molding machine.
Additional places to install the equipment are also needed extra. In addition, since the glass material conveyance path becomes complicated, continuous molding may be interrupted due to a glass material conveyance error (eg, drop).

【0010】本発明は、上記事情に基づいてなされたも
ので、その目的とするところは、ガラス素材の重量差、
形状差、置き方などの差から起こる成形品(光学ガラス
素子)の形状バラツキを抑制でき、従来の成形方法より
も良好な成形品が得られる光学ガラス素子の成形方法お
よび成形装置を提供するにある。
[0010] The present invention has been made based on the above circumstances, and the object thereof is to achieve a weight difference between glass materials,
In order to provide a molding method and a molding apparatus for an optical glass element, which can suppress a variation in the shape of a molded article (optical glass element) caused by a difference in shape, placement, and the like, and can obtain a molded article better than a conventional molding method. is there.

【0011】[0011]

【課題を解決するための手段】このため、本発明では、
ガラス素材を加熱、軟化させ、成形型によりプレス成形
する光学ガラス素子の成形方法において、成形された光
学ガラス素子の厚さを設定値にするために、冷却過程で
のプレス工程にて、型の温度と軸位置とを、プレス圧力
を決定する条件として、型に加えるプレス圧力を制御す
ることを特徴とすることを特徴とする。
Therefore, in the present invention,
In a molding method of an optical glass element in which a glass material is heated and softened and press-molded by a molding die, in order to set a thickness of the molded optical glass element to a set value, in a pressing step in a cooling process, The press pressure applied to the mold is controlled by using the temperature and the shaft position as conditions for determining the press pressure.

【0012】この場合、本発明の実施の形態としては、
成形型の温度に対して、その成形型のプレス方向の軸位
置が、予め設定した目標位置より小さい場合に、プレス
圧力を増大させ、目標値より大きい場合に、プレス圧力
を減少させるように、制御することが有効である。
In this case, as an embodiment of the present invention,
For the temperature of the molding die, if the axial position of the molding die in the pressing direction is smaller than a preset target position, the pressing pressure is increased, and if it is larger than the target value, the pressing pressure is decreased. It is effective to control.

【0013】また、本発明では、ガラス素材を加熱、軟
化させ、成形型によりプレス成形する光学ガラス素子の
成形装置において、成形された光学ガラス素子の厚さを
設定値にするために、冷却過程でのプレス工程にて、型
の温度と軸位置とを、それぞれ検出する検出手段と、該
検出手段による検出値を目標値に比較する比較手段と、
その比較結果に基づいて、逐次的なプレス圧力を決定
し、制御するプレス圧制御手段とを具備していることを
特徴とする。
According to the present invention, in a molding apparatus of an optical glass element for heating and softening a glass material and press-molding the glass material by a molding die, a cooling process is performed to set the thickness of the molded optical glass element to a set value. In the pressing step, a detecting means for respectively detecting the temperature and the axial position of the mold, and a comparing means for comparing a value detected by the detecting means with a target value,
It is characterized by comprising a press pressure control means for determining and controlling successive press pressures based on the comparison result.

【0014】[0014]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて図面を参照して説明する。ここでは、ガラス素材を
変形可能な所定温度でプレス成形し、その型内のガラス
成形品に掛かる負荷が実質的にゼロになった後に、冷却
工程に移り、更に、冷却工程中に再加圧した後、型から
成形品を取り出す光学素子の成形方法において、冷却工
程において再加圧するための圧力を、プレス軸の(可動
成形型の)位置を参照しながら、その時点の温度におけ
る設定位置と比較し、プレス量(型の移動量)が多すぎ
る場合にはプレス圧力を小さくし、前記プレス量が少な
い場合にはプレス圧を大きくするのである。これによ
り、冷却工程中に再加圧する温度領域では、常にガラス
に圧力が掛かっており、冷却中の再加圧終了温度におい
て、ガラスが所定の肉厚になるように制御するのであ
る。なお、このための成形装置は、以下の実施の形態で
明らかにされる。
Embodiments of the present invention will be described below with reference to the drawings. Here, the glass material is press-molded at a predetermined temperature at which it can be deformed, and after the load applied to the glass molded product in the mold becomes substantially zero, the process moves to the cooling process, and further, the pressurization is performed again during the cooling process. After that, in the molding method of the optical element for removing the molded product from the mold, the pressure for re-pressing in the cooling step is determined by referring to the position of the press shaft (of the movable molding die) and the set position at the temperature at that time. In comparison, if the amount of pressing (the amount of movement of the mold) is too large, the pressing pressure is reduced, and if the amount of pressing is small, the pressing pressure is increased. Thus, in the temperature range in which the glass is repressurized during the cooling step, the pressure is constantly applied to the glass, and the glass is controlled so as to have a predetermined thickness at the temperature of the end of the repressurization during cooling. A molding apparatus for this purpose will be clarified in the following embodiments.

【0015】(第1の実施形態)次に、図1を参照し
て、本発明の第1の実施形態について、具体的に説明す
る。ここでの成形装置は、上下の成形型1および2、プ
レス軸3、プレス圧力を測定するロードセル4、プレス
軸3を駆動する電動サーボモータ5を具備している。そ
して、プレス軸3の位置は、電動サーボモータ5に送る
パルス信号により決定される。
(First Embodiment) Next, a first embodiment of the present invention will be specifically described with reference to FIG. The molding apparatus here includes upper and lower molding dies 1 and 2, a press shaft 3, a load cell 4 for measuring press pressure, and an electric servomotor 5 for driving the press shaft 3. The position of the press shaft 3 is determined by a pulse signal sent to the electric servomotor 5.

【0016】また、この成形装置では、このプレス軸3
の位置は、適当な検出手段(図示せず)により検出さ
れ、上述の検出結果が、比較手段(図示せず)により、
所定のプレス時間内で、その時の成形型の温度をパラメ
ータとする、予め設定されたプレス移動量の基準値と比
較され、その比較結果に基づいて、プレス圧力の調整制
御(即ち、電動サーボモータ5の駆動のためのパルス信
号制御)を行うように構成されている。
In this molding apparatus, the press shaft 3
Is detected by a suitable detecting means (not shown), and the above detection result is obtained by comparing means (not shown).
Within a predetermined press time, the temperature is compared with a preset reference value of the amount of press movement using the temperature of the molding die at that time as a parameter, and based on the comparison result, press pressure adjustment control (that is, electric servomotor 5 (pulse signal control for the drive of No. 5).

【0017】更に詳述すると、電動サーボモータ5の駆
動で、プレス方向に関して、プレス軸3に圧力が掛かる
と、プレス軸3およびロードセル4の、圧縮あるいは撓
み、成形機のフレームの伸びなどを生起する。また、成
形型に熱を加えると、プレス軸3や成形機のフレームが
熱膨張を起こす。
More specifically, when pressure is applied to the press shaft 3 in the press direction by driving the electric servomotor 5, the press shaft 3 and the load cell 4 are compressed or bent, and the frame of the molding machine is elongated. I do. When heat is applied to the mold, the press shaft 3 and the frame of the molding machine undergo thermal expansion.

【0018】この場合、電動サーボモータ5は、成形型
から離れた位置にあるので、プレス圧力と温度の変化に
より、可動成形型の先端が実際にある位置と、電動サー
ボモータ5に与えるパルスによる電気的表示位置との間
には、差が生じる。
In this case, since the electric servomotor 5 is located at a position distant from the molding die, the position of the tip of the movable molding die is actually determined by the change in press pressure and temperature, and the pulse applied to the electric servomotor 5 is changed. There is a difference from the electrical display position.

【0019】これらの影響を取り除くために、まず、成
形装置において、成形型の代わりにダミー型を取付け、
ダミー型(固定型と可動型)相互を突き当てた状態で、
プレス圧力を変化させ、それぞれの軸位置表示を記録す
る。次に型の温度を変化させて、同様に測定する。この
結果をグラフに示すと、プレス圧力と軸位置とは、図4
に示すように、比例関係にあり、また、型温度と軸位置
は、図5に示すように、反比例関係にあることが分か
る。これを式で表すと、次の式に近似される。
In order to eliminate these effects, first, in a molding apparatus, a dummy mold is attached instead of a mold,
With the dummy type (fixed type and movable type) abutting each other,
Change the press pressure and record each axis position indication. Next, the temperature of the mold is changed, and the same measurement is performed. The results are shown in the graph.
As shown in FIG. 5, it is understood that the mold temperature and the shaft position are in an inversely proportional relationship as shown in FIG. This can be approximated by the following equation.

【0020】Z=a(P/T)+b但し、Z:軸位置、
P:プレス圧力、T:型温度、a、b:定数である。こ
の式により、プレス圧力と温度が分かれば、成形機に表
示される軸位置を使って、実際の成形型(プレス軸)の
位置を求めることができる。ここまでを、成形に先立っ
て、予め、準備して置く。
Z = a (P / T) + b where Z: axis position,
P: press pressure, T: mold temperature, a, b: constants. From this equation, if the press pressure and temperature are known, the actual position of the molding die (press shaft) can be obtained using the shaft position displayed on the molding machine. This is prepared and put in advance before molding.

【0021】次に、成形時のプロセス線図(図3)を用
いて、順序を追って、成形プロセスを説明する。まず、
光学ガラス素子のための素材(硝材としてSK12を用
いた)を580℃まで加熱し、数分間、その温度で保持
し、ガラスを軟化させ、第一のプレス(e)を所定の軸
位置(c)に到達するまで行う。次に、冷却中のプレス
温度領域(550℃から450℃)の間にプレスするプ
レス代を、従来の成形方法の、プレス圧力を一定にして
成形した時のデータから、凡その見当を付ける。今回の
例では、冷却時にプレスされる量は約30ミクロンであ
ったから、30ミクロンを基準値とした。
Next, the molding process will be described step by step with reference to the process diagram at the time of molding (FIG. 3). First,
The material for the optical glass element (SK12 was used as the glass material) was heated to 580 ° C., kept at that temperature for several minutes, the glass was softened, and the first press (e) was moved to the predetermined axial position (c). ) Until it reaches. Next, a rough estimate of a press allowance to be performed during a press temperature range (550 ° C. to 450 ° C.) during cooling is obtained from data obtained when a conventional molding method is used while molding at a constant press pressure. In this example, the amount pressed during cooling was about 30 microns, so 30 microns was used as the reference value.

【0022】そこで、550℃から450℃まで冷却す
る100℃の温度差の間に、30ミクロンを押すので、
0.3ミクロン/℃でプレス軸が移動する必要がある。
ここでは、第二のプレス(f)の開始温度(a)におい
て、4000Nのプレス圧力を掛け、それから、型が2
0℃冷却される毎に、測定軸位置(最初に求めた式の値
より補正された位置、以下同様に称する)を目標の軸位
置(dの線上)と比較し、測定軸位置が目標の位置に達
していない場合には、プレス圧力を上げる(ここでは5
00N増加させた)。また、測定軸位置が目標の位置を
越えている場合は、プレス圧力を下げる(ここでは、5
00N減少させる)。
Then, 30 microns is pushed during the temperature difference of 100 ° C. to cool from 550 ° C. to 450 ° C.,
The press shaft needs to move at 0.3 microns / ° C.
Here, at the starting temperature (a) of the second press (f), a press pressure of 4000 N is applied and then the mold is
Each time the temperature is cooled by 0 ° C., the position of the measurement axis (the position corrected from the value of the equation obtained first, the same applies hereinafter) is compared with the target axis position (on the line d), and the position of the measurement axis is determined. If the position has not been reached, increase the press pressure (here 5
00N). If the measurement axis position is beyond the target position, the press pressure is reduced (here, 5
00N).

【0023】このようにして、成形した結果、設定した
温度領域では、常にガラスに圧力を掛けて置くことがで
き、さらに、プレス終了温度における軸位置のバラツキ
を±2ミクロン以内に抑えることができた。そして、こ
のプロセスを用いた成形品は厚み精度を±2ミクロン以
内にすることができた。
As a result of molding, as described above, in the set temperature range, it is possible to always apply pressure to the glass, and furthermore, it is possible to suppress the variation of the axial position at the pressing end temperature to within ± 2 μm. Was. The molded article using this process could have a thickness accuracy within ± 2 microns.

【0024】(第2の実施形態)次に、図2を参照し
て、本発明の第2の実施形態を説明する。ここで、符号
6、7は上下の成形型、8、9は上下の胴型、10は上
側のプレス軸、12は下側のプレス軸、13、14は、
それぞれのプレス軸用の電動サーボモータを示してい
る。ここで、第一のプレスにおける成形型の間隔制御
を、プレス軸10を下げて胴型相互を突き当てることに
より、先の実施の形態よりも、精度よくすることができ
る。
(Second Embodiment) Next, a second embodiment of the present invention will be described with reference to FIG. Here, reference numerals 6 and 7 denote upper and lower molding dies, 8 and 9 denote upper and lower body dies, 10 denotes an upper press shaft, 12 denotes a lower press shaft, and 13 and 14,
An electric servomotor for each press shaft is shown. Here, by controlling the interval between the molding dies in the first press by lowering the press shaft 10 and abutting the barrel dies, it is possible to make the control more accurate than in the previous embodiment.

【0025】その後、冷却時の第二のプレスの制御は、
プレス軸12を上昇させることにより、第1の実施の形
態と同様に行う。この時のプレス軸12の軸位置は、第
1の実施の形態と同様に、予め、計算式で求め、これを
補正して置くのである。
Thereafter, the control of the second press during cooling is as follows:
The operation is performed in the same manner as in the first embodiment by raising the press shaft 12. The shaft position of the press shaft 12 at this time is obtained in advance by a calculation formula, and is corrected and set, as in the first embodiment.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
ガラスモールド法による成形において、成形される光学
ガラス素子の屈折率や形状のバラツキを少なくして、特
に、その肉厚を一定に制御することができる。更に、プ
レス圧力の制御をPID制御を用いて連続的に変化させ
ると、成形を、より高い精度で実現できる。
As described above, according to the present invention,
In the molding by the glass molding method, variations in the refractive index and the shape of the optical glass element to be molded can be reduced, and in particular, the thickness can be controlled to be constant. Further, when the control of the press pressure is continuously changed using the PID control, the molding can be realized with higher accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態を示す成形機の模式図
である。
FIG. 1 is a schematic diagram of a molding machine showing a first embodiment of the present invention.

【図2】本発明の第2の実施形態を示す成形機の模式図
である。
FIG. 2 is a schematic diagram of a molding machine showing a second embodiment of the present invention.

【図3】本発明の第1の実施形態におけるプロセス線図
である。
FIG. 3 is a process diagram according to the first embodiment of the present invention.

【図4】本発明に係わるプレス圧力と軸位置の関係を示
すグラフである。
FIG. 4 is a graph showing a relationship between a press pressure and an axial position according to the present invention.

【図5】本発明に係わる肩温度と軸位置の関係を示すグ
ラフである。
FIG. 5 is a graph showing the relationship between shoulder temperature and shaft position according to the present invention.

【符号の説明】[Explanation of symbols]

1 上側の成形型 2 下側の成形型 3 上側のプレス軸 4 ロードセル 5 電動サーボモータ 6 上側の成形型 7 下側の成形型 8 上側の胴型 9 下側の胴型 10 上側のプレス軸 12 下側のプレス軸 13、14 電動サーボモータ DESCRIPTION OF SYMBOLS 1 Upper molding die 2 Lower molding die 3 Upper pressing shaft 4 Load cell 5 Electric servo motor 6 Upper molding die 7 Lower molding die 8 Upper trunk die 9 Lower trunk die 10 Upper press shaft 12 Lower press shaft 13, 14 Electric servo motor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ガラス素材を加熱、軟化させ、成形型に
よりプレス成形する光学ガラス素子の成形方法におい
て、成形された光学ガラス素子の厚さを設定値にするた
めに、冷却過程でのプレス工程にて、型の温度と軸位置
とを、プレス圧力を決定する条件として、型に加えるプ
レス圧力を制御することを特徴とする光学ガラス素子の
成形方法。
In a method for forming an optical glass element, wherein a glass material is heated and softened and press-formed by a forming die, a pressing step in a cooling process is performed to set a thickness of the formed optical glass element to a set value. The method of molding an optical glass element, wherein the press pressure applied to the mold is controlled using the temperature and the axial position of the mold as conditions for determining the press pressure.
【請求項2】 成形型の温度に対して、その成形型のプ
レス方向の軸位置が、予め設定した目標位置より小さい
場合に、プレス圧力を増大させ、目標値より大きい場合
に、プレス圧力を減少させるように、制御することを特
徴とする請求項1に記載の光学ガラス素子の成形方法。
2. The press pressure is increased when the axial position in the press direction of the mold is smaller than a preset target position with respect to the temperature of the mold, and the press pressure is increased when the axial position is larger than the target value. The method for forming an optical glass element according to claim 1, wherein the control is performed so as to reduce the amount.
【請求項3】 ガラス素材を加熱、軟化させ、成形型に
よりプレス成形する光学ガラス素子の成形装置におい
て、成形された光学ガラス素子の厚さを設定値にするた
めに、冷却過程でのプレス工程にて、型の温度と軸位置
とを、それぞれ検出する検出手段と、該検出手段による
検出値を目標値に比較する比較手段と、その比較結果に
基づいて、逐次的なプレス圧力を決定し、制御するプレ
ス圧制御手段とを具備していることを特徴とする光学ガ
ラス素子の成形装置。
3. In a molding apparatus for an optical glass element which heats and softens a glass material and press-molds it with a molding die, a pressing step in a cooling process is performed in order to set a thickness of the molded optical glass element to a set value. In, detecting means for detecting the temperature and the axial position of the mold, respectively, comparing means for comparing the detection value by the detecting means with the target value, based on the comparison result, to determine the sequential press pressure And a press pressure control means for controlling.
JP25126599A 1999-09-06 1999-09-06 Method and device for molding optical glass element Pending JP2001080924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25126599A JP2001080924A (en) 1999-09-06 1999-09-06 Method and device for molding optical glass element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25126599A JP2001080924A (en) 1999-09-06 1999-09-06 Method and device for molding optical glass element

Publications (1)

Publication Number Publication Date
JP2001080924A true JP2001080924A (en) 2001-03-27

Family

ID=17220222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25126599A Pending JP2001080924A (en) 1999-09-06 1999-09-06 Method and device for molding optical glass element

Country Status (1)

Country Link
JP (1) JP2001080924A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249242A (en) * 2012-06-04 2013-12-12 Canon Inc Method for manufacturing optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013249242A (en) * 2012-06-04 2013-12-12 Canon Inc Method for manufacturing optical element

Similar Documents

Publication Publication Date Title
KR100193374B1 (en) A method of press molding a glass molded article and a molding apparatus therefor
JP2001058837A (en) Method for molding optical element and device for molding optical element
JP4559315B2 (en) Optical element molding method
JP2001080924A (en) Method and device for molding optical glass element
JP2001047524A (en) Manufacture of plastic optical element, manufacturing device therefor and plastic optical element manufactured using manufacturing method for plastic optical element
JPH06122525A (en) Apparatus for forming optical element, forming method and optical element
JP2004091281A (en) Apparatus for manufacturing glass lens
KR101058572B1 (en) Manufacturing mold of meniscus aspherical lens
JP2946003B2 (en) Method and apparatus for molding optical element
JPH0248498B2 (en) KOGAKUBUHINNOSEIKEISOCHI
JP3883634B2 (en) Mold for press molding optical elements
JP2004331471A (en) Method and apparatus for molding optical device
JP2754073B2 (en) Optical element molding method and molding apparatus
JPH08208243A (en) Forming of optical element
JP2583592B2 (en) Optical element molding method
JP2006096605A (en) Method of forming optical device
JP3130621B2 (en) Optical element molding method
JP2954427B2 (en) Glass forming method
JPH05301727A (en) Method for forming optical element and forming apparatus therefor
JPH05339013A (en) Method and device for forming lens
JP4463534B2 (en) Molding apparatus, molded product and mold relative distance measuring method
JPH08133767A (en) Optical element forming method
JP2006143544A (en) Method of molding optical element
JP3793116B2 (en) How to create a mold
JP2005206389A (en) Method and apparatus for forming optical element