JP2946003B2 - Method and apparatus for molding optical element - Google Patents
Method and apparatus for molding optical elementInfo
- Publication number
- JP2946003B2 JP2946003B2 JP3075976A JP7597691A JP2946003B2 JP 2946003 B2 JP2946003 B2 JP 2946003B2 JP 3075976 A JP3075976 A JP 3075976A JP 7597691 A JP7597691 A JP 7597691A JP 2946003 B2 JP2946003 B2 JP 2946003B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- temperature
- glass material
- molding
- optical element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/16—Gearing or controlling mechanisms specially adapted for glass presses
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/12—Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、ガラスレンズやプリズ
ム等の光学素子を型によってプレス成形する方法および
装置に係り、特に製造される光学素子の精度の向上に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for press-molding an optical element such as a glass lens or a prism using a mold, and more particularly to improving the precision of an optical element to be manufactured.
【0002】[0002]
【従来の技術】従来、一般的に、光学素子のプレス成形
は、上下一対の型の少なくともいずれか一方の温度を検
出し、この型をガラス素材の転移点温度以上軟化点温度
以下に加熱することにより、ガラス素材を成形可能な温
度に加熱し、その後、プレス圧力を加えて成形してい
た。すなわち、プレス圧力を加えるタイミングを型の温
度によって決定していた。2. Description of the Related Art Conventionally, in press molding of an optical element, generally, at least one of a pair of upper and lower molds is detected, and this mold is heated to a temperature higher than a transition temperature of a glass material and lower than a softening point thereof. As a result, the glass material is heated to a temperature at which the glass material can be formed, and thereafter, a pressing pressure is applied to form the glass material. That is, the timing of applying the pressing pressure is determined by the temperature of the mold.
【0003】[0003]
【発明が解決しようとする課題】ところで、ガラスの熱
膨脹係数は、転移点を境にしてそれより高温域において
はそれより低温域の数倍と非常に大きな値を示し、この
高温域における熱膨脹係数はセラミックスや金属等の型
材料の熱膨脹係数より大きな値であるため、高温域でプ
レス成形した場合、プレス直後は所定精度に成形されて
も、転移点まで温度が低下する間に、型より成形品(光
学素子)の方が大きく収縮し、いわゆる「ひけ」を生じ
る。この「ひけ」は成形される光学素子の大型化に伴っ
て大きく現われ、光学素子の精度を低下させるため、こ
の「ひけ」の解決が光学素子精度の向上にとって重要な
課題であった。By the way, the thermal expansion coefficient of the glass shows a very large value several times higher than that of the lower temperature region in the high temperature region after the transition point, and the thermal expansion coefficient in this high temperature region. Is larger than the coefficient of thermal expansion of the mold material such as ceramics and metal, so when pressed in a high temperature range, even if it is molded to a specified accuracy immediately after pressing, it is molded from the mold while the temperature falls to the transition point. The product (optical element) shrinks more, causing so-called "sink". This "sink" appears greatly with the increase in the size of the optical element to be molded, and reduces the accuracy of the optical element. Therefore, solving the "sink" is an important issue for improving the accuracy of the optical element.
【0004】この課題を解決するためには、少なくとも
プレス成形における最終型閉じ時のガラス素材(成形さ
れた光学素子)温度を転移点温度にできるだけ近付ける
ようにすればよいが、ガラス素材の温度を直接測定する
ことができず、型の温度から推測しなければならないと
共に、型の測定位置によって温度が異なるため、型の温
度によってプレス成形を制御する方法では的確な成形を
行うことができなかった。In order to solve this problem, at least the temperature of the glass material (formed optical element) at the time of closing the final mold in the press molding should be made as close as possible to the transition point temperature. It cannot be measured directly and must be inferred from the temperature of the mold.Because the temperature varies depending on the measurement position of the mold, accurate molding could not be performed by the method of controlling press molding by the temperature of the mold. .
【0005】本発明は、ガラス素材の実際の温度をより
的確に把握して高精度の光学素子を成形すると共に、型
およびガラス素材の損傷を誘発することもなく、良品を
安定して成形することのできる光学素子の成形方法およ
び装置を提供することを目的としている。According to the present invention, a high-precision optical element is formed by more accurately grasping the actual temperature of a glass material, and a non-defective product is formed stably without causing damage to the mold and the glass material. It is an object of the present invention to provide a method and an apparatus for molding an optical element that can be used.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
の本発明による光学素子の成形方法は、上下一対の型間
にガラス素材を配置し、型の温度を検出かつ制御して該
型およびガラス素材を加熱しプレス成形する光学素子の
成形方法において、上下一対の型間にガラス素材を配置
した後、ガラス素材が上型と隙間を有するかもしくは極
く小さな力で接触する設定位置S1もしくはS2まで少
なくとも上下いずれか一方の型を移動させ、次いで型お
よびガラス素材を加熱し、型の温度がガラス素材の転移
点温度T2より低い設定温度T1に到達したところで、
ガラス素材が上型と隙間を有する場合には型を移動させ
てガラス素材と上型を接触させ、 次いでガラス素材が転
移点温度T2またはその前後の温度T3になったときガ
ラス素材の変形を開始させることのできる比較的低い設
定加圧力P1で上下一対の型によりガラス素材を加圧保
持し、その後、ガラス素材が前記温度T2またはT3に
到達したところをガラス素材の変形開始に伴う型の移動
開始から検出し、次に、前記検知時における型の温度T
aを基準にして、ガラス素材の温度を温度T2またはT
3以上ガラス素材の軟化点温度Tm以下の設定温度T4
に加熱制御して前記上下一対の型によりプレス成形する
ことからなり、前記設定温度T1は前記設定加圧力P1
でガラス素材を加圧保持しても型およびガラス素材に損
傷を与えることのない温度である。According to the present invention, there is provided a method for forming an optical element, comprising: placing a glass material between a pair of upper and lower dies; detecting and controlling the temperature of the dies; In the molding method of an optical element in which a glass material is heated and press-molded, after the glass material is disposed between a pair of upper and lower molds, the glass material has a gap with the upper mold or a set position S1 where the glass material contacts with a very small force. At least one of the upper and lower molds is moved to S2, and then the mold and the glass material are heated. When the temperature of the mold reaches a set temperature T1 lower than the transition temperature T2 of the glass material,
If the glass material has a gap with the upper mold, move the mold
The glass material and the upper mold are brought into contact with each other , and then when the glass material reaches a transition point temperature T2 or a temperature T3 before or after the transition temperature T2, a pair of upper and lower members are set at a relatively low set pressure P1 capable of starting deformation of the glass material. The glass material is pressed and held by the mold, and then, when the temperature of the glass material reaches the temperature T2 or T3 is detected from the start of movement of the mold accompanying the start of deformation of the glass material, and then the temperature of the mold at the time of the detection is detected. T
a, the temperature of the glass material is set to the temperature T2 or T2.
Set temperature T4 not less than 3 and not more than softening point Tm of glass material
Heating control to consists in press-molded by the pair of upper and lower mold, prior Symbol set temperature T1 is the set pressure P1
Is a temperature at which the glass material is not damaged even if the glass material is held under pressure.
【0007】なお、上記プレス成形を行う際には、上下
一対の型が最終型閉じ状態の若干手前の設定位置S3ま
で閉じたとき、型およびガラス素材の加熱を冷却に切換
え、次に、ガラス素材の温度が前記温度T2またはT3
付近まで低下したとき、型が最終型閉じ状態となるよう
に、型の移動および冷却を制御することが好ましい。ま
た、上記プレス成形を行う際には、上下一対の型が最終
型閉じ状態の若干手前の設定位置S3まで閉じたとき、
型およびガラス素材の加熱を冷却に切換えると共に型の
移動を停止させ、次に、ガラス素材の温度が、前記温度
T2またはT3より若干高い温度まで低下したとき、前
記型を最終型閉じ状態まで移動させるようにしてもよ
い。さらに、上記光学素子の成形方法は、サーボモータ
を用いて型の位置,移動およびプレス圧力の制御を行う
ことが好ましい。In the press molding, when the pair of upper and lower molds is closed to a set position S3 slightly before the final mold closed state, the heating of the mold and the glass material is switched to cooling, and then the glass and the glass material are cooled. The temperature of the material is equal to the temperature T2 or T3
It is preferable to control the movement and cooling of the mold so that the mold is brought into the final mold closed state when it is lowered to the vicinity. When performing the press molding, when the pair of upper and lower molds is closed to a set position S3 slightly before the final mold closed state,
The heating of the mold and the glass material is switched to cooling and the movement of the mold is stopped. When the temperature of the glass material falls to a temperature slightly higher than the temperature T2 or T3, the mold is moved to a final mold closed state. You may make it do. Further, in the method of molding an optical element, it is preferable to control the position, movement and press pressure of the mold using a servomotor.
【0008】さらにまた上記目的を達成するための本発
明による光学素子の成形装置は、上下一対の型間にガラ
ス素材を配置し、型の温度を検出かつ制御して型および
ガラス素材を加熱しプレス成形する光学素子の成形装置
において、少なくともプレス圧力を成形圧力P2とこれ
より低い設定圧力P1に設定制御する手段と、プレス圧
力を前記設定加圧力P1に設定した状態で型が移動を開
始したことを検知する検知手段と、検知手段からの信号
により、該信号を受けたときの型の温度を記憶する手段
と、 前記型の温度を基準としてプレス成形動作に関す
る設定温度を算出し記憶させる手段と前記設定温度に従
ってプレス成形動作を行わせる動作指令手段とからなる
制御部を具備するものである。なお、型の駆動源は位
置,速度およびトルクをそれぞれ制御可能なサーボモー
タであることが好ましい。Further, in order to achieve the above object, the optical element molding apparatus according to the present invention arranges a glass material between a pair of upper and lower molds, detects and controls the temperature of the mold, and heats the mold and the glass material. In a molding apparatus for an optical element to be press-molded, means for setting and controlling at least the pressing pressure to a molding pressure P2 and a lower set pressure P1, and the mold starts moving with the press pressure set to the set pressure P1. Detecting means for detecting the temperature, means for storing the temperature of the mold at the time of receiving the signal from the signal from the detecting means, means for calculating and storing a set temperature relating to the press molding operation based on the temperature of the mold. And an operation command means for performing a press forming operation in accordance with the set temperature. Preferably, the driving source of the mold is a servomotor capable of controlling the position, speed and torque, respectively.
【0009】[0009]
【作用】ガラス素材は常温では1020ポアズ程度の粘度
を有し、固く、もろく、傷付き易いと同時に型をも損傷
し易いが、温度の上昇に伴って粘度が低下し、転移点に
至ると粘度は1013ポアズ程度となり、外力を加えるこ
とにより変形可能となる。本発明は、型およびガラス素
材の加熱開始時にはガラス素材が上型と隙間を有するか
もしくは極く小さな力で接触するようにして型およびガ
ラス素材の損傷を生じさせないようにする。ガラス素材
は温度の上昇に伴って粘度が低下する。そこで、上記の
ように型の温度が設定加圧力P1でガラス素材を加圧保
持しても型およびガラス素材に損傷を与えることのない
設定温度T1に達したところで、一対の型によりガラス
素材を挾さみ設定加圧力P1で加圧保持する。設定温度
T1は転移点温度T2より低く定められており、設定加
圧力P1は設定温度T1ではガラス素材を変形させず、
ガラス素材が転移点温度T2またはその前後の温度T3
に到達したところでガラス素材を変形させるように定め
られている。[Function] A glass material has a viscosity of about 10 20 poise at room temperature, and is hard, brittle, and easily damaged, and at the same time, the mold is easily damaged. However, as the temperature increases, the viscosity decreases and reaches a transition point. And the viscosity becomes about 10 13 poise, and it becomes deformable by applying an external force. The present invention prevents the mold and the glass material from being damaged by starting the heating of the mold and the glass material so that the glass material has a gap with the upper mold or contacts with an extremely small force. The viscosity of the glass material decreases as the temperature increases. Therefore, as described above, when the temperature of the mold reaches the set temperature T1 at which the glass material is not damaged even when the glass material is pressurized and held at the set pressure P1, the glass material is removed by a pair of molds. Pressing is held at the clamping force P1. The set temperature T1 is set lower than the transition point temperature T2, and the set pressure P1 does not deform the glass material at the set temperature T1,
The glass material is at or near the transition temperature T2
Is defined so as to deform the glass material when it reaches.
【0010】このため、ガラス素材が転移点温度T2ま
たはその前後の温度T3に到達すると、設定加圧力P1
によってガラス素材が変形を開始する。この変形開始を
型の移動開始により検知し、このときの形の温度Taを
取出し記憶する。この移動開始型温度Taは前記温度T
2またはT3に対し通常ずれを有しているが、型の温度
がTaのときガラス素材の温度がT2またはT3である
ことは、ガラス素材の特性から特定することができる。
すなわち、型の温度とガラス素材の温度の関係を把握で
きる。しかして、前記移動開始型温度Taを基準にし
て、ガラス素材の温度を前記温度T2またはT3以上ガ
ラス素材の軟化点温度Tm以下の所望の設定温度T4に
加熱制御してプレス成形することが可能となり、より的
確な成形を行うことができる。なお、上記のようにガラ
ス素材の温度を前記移動開始型温度Taを基準にしてよ
り正確に検出可能であるため、プレス成形の終端の若干
手前で加熱を冷却に切換え、最終型閉じ状態に至るとき
にガラス素材の温度が前記温度T2またはT3ないしそ
の付近まで低下するようにすれば、「ひけ」をより完全
に押さえられる。なお、型の位置,移動およびプレス圧
力の制御は、型をサーボモータで駆動することにより、
的確に行うことができる。Therefore, when the glass material reaches the transition point temperature T2 or the temperature T3 before and after the transition point temperature T2, the set pressing force P1
The glass material starts to deform. The start of the deformation is detected by the start of the movement of the mold, and the temperature Ta of the shape at this time is extracted and stored. The movement start type temperature Ta is equal to the temperature T.
Although there is usually a deviation from 2 or T3, it can be specified from the characteristics of the glass material that the temperature of the glass material is T2 or T3 when the temperature of the mold is Ta.
That is, the relationship between the mold temperature and the glass material temperature can be grasped. Therefore, it is possible to press-mold the glass material by controlling the temperature of the glass material to a desired set temperature T4 which is equal to or higher than the temperature T2 or T3 and equal to or lower than the softening point temperature Tm of the glass material, based on the movement start temperature Ta. Thus, more accurate molding can be performed. Since the temperature of the glass material can be more accurately detected with reference to the movement start mold temperature Ta as described above, the heating is switched to cooling slightly before the end of the press forming, and the final mold closing state is reached. Sometimes, if the temperature of the glass material is reduced to the temperature T2 or T3 or its vicinity, "sink" can be suppressed more completely. The position, movement and press pressure of the mold are controlled by driving the mold with a servomotor.
Can be performed accurately.
【0011】[0011]
【実施例】以下本発明の実施例について図1ないし図3
を参照して説明する。図1は本発明による光学素子成形
装置の一例を示すもので、フレーム1の上部から固定軸
2が下方に向って伸びており、その下端にSi3 N4 の
ようなセラミック製の断熱筒3aと透明石英ガラスのよ
うな赤外線を透過する断熱リング3bを介して上型組立
4が図示しないボルト等により取付けられている。上型
組立4は、金属製のダイプレート5,セラミックス等で
作られた上型6,ならびにこの上型6をダイプレート5
に取付けると共に型の一部を形成する固定ダイ7からな
っている。1 to 3 show an embodiment of the present invention.
This will be described with reference to FIG. FIG. 1 shows an example of an optical element molding apparatus according to the present invention, in which a fixed shaft 2 extends downward from an upper portion of a frame 1 and has a heat insulating cylinder 3a made of ceramic such as Si 3 N 4 at its lower end. The upper die assembly 4 is attached by a bolt or the like (not shown) via a heat insulating ring 3b that transmits infrared rays such as transparent quartz glass. The upper die assembly 4 includes a metal die plate 5, an upper die 6 made of ceramics or the like, and the upper die 6
And a stationary die 7 which forms part of the mold.
【0012】フレーム1の下部にはサーボモータ8aを
駆動源とした駆動装置8が設けられ、同装置8によって
速度および位置制御可能に上下動されると共に所望の値
に制御可能なプレス力を与えられる移動軸9が、固定軸
2と対向して上方に向かって伸びている。移動軸9の上
端には、断熱筒3aおよび断熱リング3bと同様の断熱
筒10a,断熱リング10bを介して上型組立4と対を
なす下型組立11が取付けられている。下型組立11
は、ダイプレート12,下型13ならびに移動ダイ14
からなっている。[0012] drive 8 in the lower part of the frame 1 which is a drive source of the servo motor 8a is provided, giving a controllable pressing force to the desired value with the speed and position controllably moved up and down by the device 8 The moving shaft 9 extends upward facing the fixed shaft 2. At the upper end of the moving shaft 9, a lower mold assembly 11 that is paired with the upper mold assembly 4 is attached via a heat insulating cylinder 10a and a heat insulating ring 10b similar to the heat insulating cylinder 3a and the heat insulating ring 3b. Lower mold assembly 11
Is a die plate 12, a lower mold 13 and a movable die 14.
Consists of
【0013】固定軸2には図示しない駆動装置によって
上下動されるブラケット15が移動可能に係合されてい
る。ブラケット15には対をなす型組立4,11の周囲
を囲む透明石英管16が取付けられている。透明石英管
16の下端は移動軸9が貫通している中間プレート1A
に気密に当接し、型組立4,11の周囲に大気からしゃ
断される成形室17を形成するようになっている。ブラ
ケット15には透明石英管16を囲む外筒18が取付け
られ、外筒18にはランプユニット19が設けられてい
る。ランプユニット19は、赤外線ランプ20,その後
方に配置された反射ミラー21とからなり、型組立4,
11を加熱するようになっている。なお、22は反射ミ
ラー21等を冷却するための水冷パイプである。A bracket 15 which is vertically moved by a driving device (not shown) is movably engaged with the fixed shaft 2. A transparent quartz tube 16 surrounding the pair of mold assemblies 4 and 11 is attached to the bracket 15. The lower end of the transparent quartz tube 16 is an intermediate plate 1A through which the moving shaft 9 passes.
And a molding chamber 17 which is cut off from the atmosphere around the mold assemblies 4 and 11 in an airtight manner. An outer cylinder 18 surrounding the transparent quartz tube 16 is attached to the bracket 15, and a lamp unit 19 is provided on the outer cylinder 18. The lamp unit 19 includes an infrared lamp 20 and a reflecting mirror 21 disposed behind the infrared lamp 20.
11 is heated. Reference numeral 22 denotes a water cooling pipe for cooling the reflection mirror 21 and the like.
【0014】固定軸2,移動軸9およびブラケット15
には、成形室17内を不活性ガス雰囲気にしたり、型組
立4,11を冷却したりするためのガス供給路23,2
4,25が設けられ、図示しない流量コントロールバル
ブを介して同じく図示しない温度制御装置によって所定
温度にコントロールされた不活性ガスを所定流量で成形
室17へ供給するようになっている。成形室17へ供給
されたガスは排気口26から排出される。なお、27は
下型組立11に設けられた温度検出用熱電対であり、2
8は赤外線ランプ20および駆動装置8を後述するよう
に制御する制御部である。Fixed shaft 2, moving shaft 9 and bracket 15
The gas supply passages 23 and 2 for making the interior of the molding chamber 17 an inert gas atmosphere and for cooling the mold assemblies 4 and 11 are provided.
4 and 25 are provided, and an inert gas controlled at a predetermined temperature by a temperature control device (not shown) is supplied to the molding chamber 17 at a predetermined flow rate through a flow control valve (not shown). The gas supplied to the molding chamber 17 is exhausted from the exhaust port 26. Note that 2 7 is a temperature detecting thermocouple provided in the lower mold assembly 11, 2
A control unit 8 controls the infrared lamp 20 and the driving device 8 as described later.
【0015】次いで上記成形装置を用いた本発明の光学
素子の成形方法について説明する。ブラケット15を固
定軸2に沿って上昇させ、成形室17を開き、図1に示
す位置より下方の型開き位置にある下型13の上にガラ
ス素材30Aを搬入する。Next, a method for molding the optical element of the present invention using the molding apparatus will be described. The bracket 15 is raised along the fixed shaft 2, the molding chamber 17 is opened, and the glass material 30A is carried onto the lower mold 13 at the mold opening position below the position shown in FIG.
【0016】次いで、ブラケット15を下降させ、透明
石英管16によって成形室17を閉じ、ガス供給路2
3,24,25から不活性ガスを供給して成形室17内
を不活性ガス雰囲気にし、駆動装置8を作動させて移動
軸9を上昇させる。移動軸9の上昇量は、サーボモータ
8aによって制御され、ガラス素材30Aと上型6とが
わずかな隙間を有するか、もしくは極くわずかに接触す
る値(図3(a)の設定位置S1もしくはS2)に定め
られる。これは、上型6,下型13およびガラス素材3
0Aの損傷を避けつつガラス素材30Aを上型6および
下型13に接近させて次に述べるガラス素材30Aの加
熱をより効率的に行うためである。この上型6に対する
ガラス素材30Aの位置決めは、ガラス素材30Aの寸
法精度が一般的に高いため、サーボモータ8aにより高
精度に行い得る。Next, the bracket 15 is lowered, the molding chamber 17 is closed by the transparent quartz tube 16, and the gas supply path 2 is closed.
An inert gas is supplied from 3, 24, 25 to make the inside of the molding chamber 17 an inert gas atmosphere, and the driving device 8 is operated to raise the moving shaft 9. Increasing the amount of moving shaft 9 is controlled by a servo motor 8a, the set position of either the glass material 30A and the upper die 6 has a slight gap, or pole Ku value slightly contact (FIG. 3 (a) S1 or S2). These are upper mold 6, lower mold 13 and glass material 3
This is because the glass material 30A is brought closer to the upper mold 6 and the lower mold 13 while avoiding damage to 0A, and the glass material 30A described below is heated more efficiently. The positioning of the glass material 30A with respect to the upper mold 6 can be performed with high accuracy by the servomotor 8a because the dimensional accuracy of the glass material 30A is generally high.
【0017】次いでランプユニット19により透明石英
管16を通して上下の型組立4,11およびガラス素材
30Aを加熱する。ガラス素材30Aは透明のガラスで
あるため、赤外線ランプ20からの輻射線による直接加
熱の割合は低く、型組立4,11を介して間接的に加熱
される割合が高いが、ガラス素材30Aと上型6との位
置関係を上記のように定めることにより、ガラス素材3
0Aは上下の型6,13によってより効果的に加熱され
る。Next, the upper and lower mold assemblies 4 and 11 and the glass material 30A are heated by the lamp unit 19 through the transparent quartz tube 16. Since the glass material 30A is a transparent glass, the ratio of direct heating by the radiation from the infrared lamp 20 is low, and the ratio of indirect heating through the mold assemblies 4 and 11 is high. By determining the positional relationship with the mold 6 as described above, the glass material 3
OA is more effectively heated by the upper and lower dies 6,13.
【0018】型組立4,11の温度は温度検出用熱電対
27により検出され、その温度が図3(c)に示すよう
に、ガラス素材30Aの転移点温度T2より低い予じめ
定められた設定温度T1に達すると、駆動装置8が再び
作動し、それまで図3(a)の設定位置S1に停止させ
ていた場合には移動軸9を位置S2まで上昇させてガラ
ス素材30Aを上型4に接触させ、次いで図3(b)に
示すように設定加圧力P1のプレス圧力を加える。この
設定加圧力P1はサーボモータ8aのトルク制御によっ
て加えられる。The temperatures of the mold assemblies 4 and 11 are detected by a thermocouple 27 for temperature detection, and the temperature is predetermined as lower than the transition temperature T2 of the glass material 30A as shown in FIG. 3 (c). When the set temperature T1 is reached, the driving device 8 is operated again. If the drive device 8 has been stopped at the set position S1 in FIG. 3A until that time, the moving shaft 9 is raised to the position S2 to move the glass material 30A to the upper mold. Then, as shown in FIG. 3 (b), a press pressure of the set pressure P1 is applied. The set pressure P1 is applied by controlling the torque of the servo motor 8a.
【0019】上記設定温度T1と設定加圧力P1は次の
ように定められている。ガラス素材30Aは、常温にお
いては粘度が1020ポアズ程度と固くもろいため、型
6,13を損傷し易いと同時にガラス素材30A自身も
損傷し易いが、温度の上昇によって粘度が低下し、型
6,13およびガラス素材30Aの損傷を生じなくな
る。設定温度T1は設定加圧力P1との関係から、上記
のような損傷を生じない温度であり、これはガラス素材
30Aの転移点温度T2との関係から定められる。他
方、設定加圧力P1はガラス素材30Aの温度が転移点
温度T2またはその前後の温度T3に達し、粘度が10
13ポアズ程度になったとき、ガラス素材30Aを変形さ
せることができ、かつガラス素材30Aの温度が前記温
度T2またはT3より低い状態ではガラス素材30Aを
変形させることのできない圧力である。The set temperature T1 and the set pressure P1 are determined as follows. At room temperature, the glass material 30A is hard and brittle, having a viscosity of about 10 20 poise, so that the molds 6 and 13 are easily damaged at the same time as the glass material 30A itself is damaged. , 13 and the glass material 30A are not damaged. The set temperature T1 is a temperature that does not cause the above-described damage from the relationship with the set pressure P1, and is determined from the relationship with the transition point temperature T2 of the glass material 30A. On the other hand, the set pressure P1 is such that the temperature of the glass material 30A reaches the transition point temperature T2 or the temperature T3 before and after the transition point temperature T2, and the viscosity is 10
When the pressure becomes about 13 poise, the glass material 30A can be deformed, and when the temperature of the glass material 30A is lower than the temperature T2 or T3, the pressure is such that the glass material 30A cannot be deformed.
【0020】上記のようにガラス素材30Aを上下の型
6,13により設定加圧力P1で加圧保持して加熱を続
け、ガラス素材30Aが前記変形を開始する温度T2ま
たはT3に達すると、図3(a)に示すように下型13
および移動軸9が位置S2から移動を開始する。移動軸
9の位置S2からの移動開始はサーボモータ8aの位置
検出手段の出力変化等から検知する検知手段によって検
知され、この検知信号によりそのときの型の温度Taす
なわち温度検出用熱電対27の出力を読込み、制御部2
8に記憶する。この記憶された移動開始型温度Taは、
通常、前記転移点温度T2またはT3と一致せず、異っ
た値を示すが、ガラス素材30Aが前記温度T2または
T3であることはガラスの特性から明らかであるため、
前記移動開始型温度Taを前記温度T2またはT3と見
なし、これを基準として以下の成形制御を行う。As described above, when the glass material 30A is heated by the upper and lower dies 6 and 13 at the set pressing force P1 and the heating is continued, and when the glass material 30A reaches the temperature T2 or T3 at which the deformation starts, FIG. As shown in FIG.
And the movement axis 9 starts moving from the position S2. The start of movement of the moving shaft 9 from the position S2 is detected by detecting means for detecting a change in the output of the position detecting means of the servomotor 8a, and the detection signal is used to detect the temperature Ta of the mold at that time, that is, the temperature detection thermocouple 27. Read the output and control unit 2
8 is stored. The stored movement start temperature Ta is
Normally, the transition point temperature T2 or T3 does not match, and shows a different value. However, since it is clear from the characteristics of glass that the glass material 30A has the temperature T2 or T3,
The movement start mold temperature Ta is regarded as the temperature T2 or T3, and the following molding control is performed based on the temperature.
【0021】一般に、ガラスのプレス成形は、前記温度
T2またはT3以上軟化点温度Tm以下の温度T4で行
う。この成形のための設定温度T4の制御は、型温度が
上記のように温度T2またはT3と設定温度T4との差
を移動開始型温度Taに加算した値となるように制御す
ることにより行えばよい。これによりガラス素材30A
は上記設定温度T4により正確に制御され、より的確な
プレス成形が可能となる。なお、実際の成形において
は、温度T2またはT3を予じめ制御部28に記憶させ
ておき、この温度T2またはT3と移動開始型温度Ta
との差により、同じく予じめ制御部28に記憶させてお
いた設定温度T4を制御部28により補正するか、また
型の検出温度を補正して行うことが好ましい。Generally, press molding of glass is performed at a temperature T4 which is equal to or higher than the temperature T2 or T3 and equal to or lower than the softening point temperature Tm. The control of the set temperature T4 for molding is performed by controlling the mold temperature to be a value obtained by adding the difference between the temperature T2 or T3 and the set temperature T4 to the movement start mold temperature Ta as described above. Good. This makes the glass material 30A
Is accurately controlled by the set temperature T4, and more accurate press forming is enabled. In actual molding, the temperature T2 or T3 is stored in advance in the control unit 28, and the temperature T2 or T3 and the movement start temperature Ta
It is preferable to correct the set temperature T4 also stored in advance in the control unit 28 by the control unit 28 or to correct the mold detection temperature.
【0022】型温度が補正された設定温度T4に達する
と、制御部28は図3(c)に示すように型温度を補正
された設定温度T4すなわちガラス素材30Aを設定温
度T4に保つように赤外線ランプ20の出力を制御す
る。この温度T2またはT3から設定温度T4への昇温
過程および設定温度T4に達した後においては、ガラス
材30Aが軟化してサーボモータ8aに対する反力が小
さいので、トルク制御であっても最終型閉じ状態になる
までは設定したトルクは作用しないことになるが、トル
ク制御により下型13を上昇させ、プレス成形を行う。When the mold temperature reaches the corrected set temperature T4, as shown in FIG. 3C , the control unit 28 keeps the mold temperature corrected set temperature T4, that is, the glass material 30A at the set temperature T4. The output of the infrared lamp 20 is controlled. After the temperature rise process from the temperature T2 or T3 to the set temperature T4 and after the temperature reaches the set temperature T4, the glass material 30A is softened and the reaction force against the servomotor 8a is small. Until the closed state is reached, the set torque does not act, but the lower mold 13 is raised by torque control and press molding is performed.
【0023】このようにして下型13を最終型閉じ状態
となるまで上昇させて一気に成形してもよいが、設定温
度T4を軟化点温度T2より比較的高く設定した場合に
は、「ひけ」を小さく押さえるため、次のようにすると
よい。すなわち、下型13の上昇により成形が進み、図
2に示すように、最終型閉じ状態までに寸法eを残す設
定位置S3(図3(a)参照)に達したことをサーボモ
ータ8aの位置検出手段で検知し、この検出信号によっ
て赤外線ランプ20による加熱を停止し、ガス供給路2
3,24から好ましくは所定温度に制御されたN2 ガス
などの不活性ガスを所定流量で断熱筒3a,10aを介
し、またはガス供給路25から直接成形室17に供給
し、型組立4,11およびガラス素材30Aの冷却を開
始する。In this way, the lower mold 13 may be raised to the final mold closed state and molded at a stretch, but if the set temperature T4 is set relatively higher than the softening point temperature T2, "fall" will occur. In order to keep the value small, it is good to do as follows. That is, as the lower die 13 is raised, the molding proceeds, and as shown in FIG. 2, the position of the servo motor 8a is reached when the set position S3 (see FIG. The heating by the infrared lamp 20 is stopped by this detection signal, and the gas supply path 2 is detected.
An inert gas such as N 2 gas, preferably controlled to a predetermined temperature, is supplied to the molding chamber 17 at a predetermined flow rate through the heat insulating cylinders 3a, 10a or directly from the gas supply path 25 to the molding chamber 17, and the mold assembly 4, 11 and the cooling of the glass material 30A are started.
【0024】冷却の開始と同時に、図3(a)に示すよ
うに、下型13の移動を停止させ、型温度が前記T2ま
たはT3に例えば10℃程度の比較的小さな値αを加算
した値まで低下したとき、再び下型13を移動させ、一
気に形を閉じるか、または図3(a)に示すように型温
度がほぼ前記T2またはT3まで低下したとき、最終型
閉じ状態すなわち位置S4に到達するように制御する。
なお、このときの型温度は前述した移動開始型温度Ta
を基準とし、好ましくは加熱過程と冷却過程の差を考慮
して補正されたものであり、該型温度がガラス素材30
A自身の温度により近い値を示すようになされている。Simultaneously with the start of cooling, as shown in FIG. 3A, the movement of the lower mold 13 is stopped, and the mold temperature is a value obtained by adding a relatively small value α of, for example, about 10 ° C. to the T2 or T3. When the mold temperature has decreased to T2 or T3, the lower mold 13 is moved again to close the shape at a stretch, or when the mold temperature has decreased to substantially T2 or T3 as shown in FIG. Control to reach.
The mold temperature at this time is the movement start mold temperature Ta described above.
Is preferably corrected in consideration of the difference between the heating process and the cooling process, and the mold temperature is
A shows a value closer to the temperature of A itself.
【0025】なお、上記のように設定位置S3で下型1
3を図3(a)に示すように一時停止させずに連続して
移動させ、ちょうど最終型閉じ状態となるときに、ガラ
ス素材30Aが前記温度T2またはT3ないしそれより
若干高い温度まで低下するように、下型13の移動速度
または/および冷却速度を制御するようにしてもよい。As described above, the lower mold 1 is set at the set position S3.
3 is continuously moved without being temporarily stopped as shown in FIG. 3 (a), and the glass material 30A drops to the temperature T2 or T3 or a temperature slightly higher than the temperature T2 just when the final mold is closed. In this way, the moving speed or / and the cooling speed of the lower mold 13 may be controlled.
【0026】また、上記寸法eは、成形する光学素子の
大きさや形状,使用するガラスおよび型材料によって異
なるが、設定位置S3におけるガラス素材30Aの温度
から転移点温度T2までガラス素材30Aが収縮する量
かもしくはそれよりわずかに大きければよく、実際はわ
ずかな寸法である。The dimension e varies depending on the size and shape of the optical element to be molded, the glass and the mold material used, but the glass material 30A contracts from the temperature of the glass material 30A at the set position S3 to the transition point temperature T2. It only needs to be in quantity or slightly larger, in fact it is a small dimension.
【0027】最終型閉じ状態に至って下型13の移動が
停止すると、サーボモータ8aにより設定したトルクで
制御され図3(b)に示すように、成形圧力P2をガラ
ス素材30Aに与えて成形を完了する。なお、図3
(a)は製品取出し可能な温度T5まで成形圧力P2で
保持した後、型開きして成形品を取出すようにしている
が、ガラス素材30Aの温度がT2またはT3からある
程度低下したところで圧力を減じてもよい。When the movement of the lower mold 13 is stopped by reaching the final mold closed state, the molding is controlled by the torque set by the servomotor 8a and the molding pressure P2 is applied to the glass material 30A as shown in FIG. Complete. Note that FIG.
In (a), after maintaining the molding pressure P2 up to the temperature T5 at which the product can be taken out, the mold is opened and the molded product is taken out. However, when the temperature of the glass material 30A drops to some extent from T2 or T3, the pressure is reduced. You may.
【0028】前述した実施例は、下型13をサーボモー
タ8aにより駆動してプレス成形する例を示したが、本
発明はこれに限らず、型移動の一部または全部を上型4
側で行ってもよく、また駆動源を油圧または空圧装置と
してもよい。また、図3(b)に示す圧力線図は一例で
あり、型の移動速度や成形品の大きさなどにより、特に
型移動中の圧力が異なることは言うまでもなく、設定温
度T1から成形用の設定温度T4に至るまでは最大圧力
を設定加圧力P1によって規制し、成形用の設定温度T
4に達した後は最大圧力を成形圧力P2によって規制す
るように圧力制御を行うものである。In the above-described embodiment, the lower mold 13 is driven by the servo motor 8a to perform press molding. However, the present invention is not limited to this.
The driving may be performed by a hydraulic or pneumatic device. Also, the pressure diagram shown in FIG. 3B is an example, and it goes without saying that the pressure during the movement of the mold is different depending on the moving speed of the mold, the size of the molded product, and the like. Up to the set temperature T4, the maximum pressure is regulated by the set pressure P1, and the set temperature T for molding is set.
After reaching 4, the pressure is controlled so that the maximum pressure is regulated by the molding pressure P2.
【0029】[0029]
【発明の効果】以上述べたように本発明によれば、ガラ
ス素材の温度をより正確に把握して的確な成形を行うこ
とができると共に、「ひけ」をより小さく押えて高精度
の光学素子を成形することが可能となり、さらに型およ
びガラス素材の損傷を誘発することもなく、良品を安定
して成形できる効果が得られる。As described above, according to the present invention, the temperature of the glass material can be grasped more accurately, accurate molding can be performed, and the "shrinkage" can be suppressed to a small degree, so that a high-precision optical element can be obtained. Can be formed, and the effect of stably forming a good product can be obtained without inducing damage to the mold and the glass material.
【図1】本発明による光学素子の成形装置の実施例を示
す概要断面図である。FIG. 1 is a schematic sectional view showing an embodiment of an optical element molding apparatus according to the present invention.
【図2】最終型閉じ状態の若干手前の状態をしめす型組
立部分の断面図である。FIG. 2 is a sectional view of a mold assembly showing a state slightly before a final mold closed state.
【図3】本発明の一実施例の成形サイクルにおける型の
位置,圧力および温度の変化を示す曲線図である。FIG. 3 is a curve diagram showing changes in mold position, pressure and temperature in a molding cycle according to one embodiment of the present invention.
2 固定軸 4 上型組立 5 ダイプレート 6 上型 7 固定ダイ 8 駆動装置 8a サーボモータ 9 移動軸 11 下型組立 12 ダイプレート 13 下型 14 移動ダイ 16 透明石英管 17 成形室 19 ランプユニット 20 赤外線ランプ 23 ガス供給路 24 ガス供給路 25 ガス供給路 27 温度検出用熱電対 28 制御部 2 Fixed shaft 4 Upper die assembly 5 Die plate 6 Upper die 7 Fixed die 8 Drive unit 8a Servo motor 9 Moving shaft 11 Lower die assembly 12 Die plate 13 Lower die 14 Moving die 16 Transparent quartz tube 17 Molding room 19 Lamp unit 20 Infrared ray Lamp 23 Gas supply path 24 Gas supply path 25 Gas supply path 27 Thermocouple for temperature detection 28 Control unit
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−149033(JP,A) 特開 平4−124041(JP,A) 特開 平3−237022(JP,A) (58)調査した分野(Int.Cl.6,DB名) C03B 11/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-149903 (JP, A) JP-A-4-124041 (JP, A) JP-A-3-237022 (JP, A) (58) Field (Int.Cl. 6 , DB name) C03B 11/00
Claims (6)
前記型の温度を検出かつ制御して該型およびガラス素材
を加熱しプレス成形する光学素子の成形方法において、 a.上下一対の型間にガラス素材を配置した後、 b.前記ガラス素材が上型と隙間を有するかもしくは極
く小さな力で接触する設定位置S1もしくはS2まで少
なくとも上下いずれか一方の型を移動させ、 c.次いで前記型およびガラス素材を加熱し、 d.前記型の温度がガラス素材の転移点温度T2より低
い設定温度T1に到達したところで、ガラス素材が上型
と隙間を有する場合には型を移動させて前記ガラス素材
と上型を接触させ、 e.次いで ガラス素材が転移点温度T2またはその前後
の温度T3になったときガラス素材の変形を開始させる
ことのできる比較的低い設定加圧力P1で前記上下一対
の型によりガラス素材を加圧保持し、f. その後、ガラス素材が前記温度T2またはT3に到
達したところをガラス素材の変形開始に伴う型の移動開
始から検出し、g. 次に、前記検知時における前記型の温度Taを基準
にして、ガラス素材の温度を前記温度T2またはT3以
上ガラス素材の軟化点温度Tm以下の設定温度T4に加
熱制御して前記上下一対の型によりプレス成形すること
からなり、h. 前記設定温度T1は前記設定加圧力P1でガラス素
材を加圧保持しても型およびガラス素材に損傷を与える
ことのない温度であることを特徴とする光学素子の成形
方法。1. A glass material is arranged between a pair of upper and lower molds,
A method for forming an optical element, comprising: detecting and controlling the temperature of the mold to heat and mold the mold and the glass material; After placing a glass material between a pair of upper and lower molds, b. Moving at least one of the upper and lower molds to a set position S1 or S2 where the glass material has a gap with the upper mold or contacts with an extremely small force; c. Then heating the mold and the glass material; d. When the temperature of the mold reaches the set temperature T1 lower than the transition point temperature T2 of the glass material, if the glass material has a gap with the upper mold, the mold is moved to bring the glass material into contact with the upper mold , e. Next, the glass material is pressed and held by the pair of upper and lower molds at a relatively low set pressure P1 capable of starting deformation of the glass material when the glass material reaches the transition point temperature T2 or a temperature T3 before and after the transition temperature T2, f. Thereafter, the point at which the glass material has reached the temperature T2 or T3 is detected from the start of the movement of the mold accompanying the start of deformation of the glass material, and g. Next, based on the temperature Ta of the mold at the time of the detection, the temperature of the glass material is controlled to a set temperature T4 equal to or higher than the temperature T2 or T3 and equal to or lower than the softening point temperature Tm of the glass material, thereby controlling the pair of upper and lower molds. Press forming, h. The method of molding an optical element, wherein the set temperature T1 is a temperature at which the mold and the glass material are not damaged even when the glass material is pressed and held at the set pressure P1.
いて、 a.前記プレス成形する際に、 上下一対の型が最終型閉
じ状態の若干手前の設定位置S3まで閉じたとき、型お
よびガラス素材の加熱を冷却に切換え、 b.次に、ガラス素材の温度が前記温度T2またはT3
付近まで低下したとき、 前記型が最終型閉じ状態となるように、型の移動および
冷却を制御することを特徴とする光学素子の成形方法。2. The method of molding an optical element according to claim 1 , wherein: a. In the press molding, when the pair of upper and lower molds is closed to a set position S3 slightly before the final mold closed state, the heating of the mold and the glass material is switched to cooling, b. Next, the temperature of the glass material is set to the temperature T2 or T3.
A method for molding an optical element, comprising: controlling movement and cooling of a mold so that the mold is in a final mold closed state when the mold is lowered to the vicinity.
いて、 a.前記プレス成形する際に、 上下一対の型が最終型閉
じ状態の若干手前の設定位置S3まで閉じたとき、型お
よびガラス素材の加熱を冷却に切換えると共に型の移動
を停止させ、 b.次に、ガラス素材の温度が前記温度T2またはT3
より若干高い温度まで低下したとき、前記型を最終型閉
じ状態まで移動させることを特徴とする光学素子の成形
方法。3. The method for molding an optical element according to claim 1 , wherein: a. In the press forming, when the pair of upper and lower molds is closed to a set position S3 slightly before the final mold closed state, the heating of the mold and the glass material is switched to cooling and the movement of the mold is stopped, b. Next, the temperature of the glass material is set to the temperature T2 or T3.
When the temperature is lowered to a slightly higher temperature, the mold is moved to a final mold closed state.
よびプレス圧力の制御を行うことを特徴とする請求項
1,2または3記載の光学素子の成形方法。4. The method for molding an optical element according to claim 1, wherein the position, movement and press pressure of the mold are controlled using a servomotor.
前記型の温度を検出かつ制御して該型およびガラス素材
を加熱しプレス成形する光学素子の成形装置において、 a.少なくともプレス圧力を成形圧力P2とこれより低
い設定加圧力P1に設定制御する手段と、 b.プレス圧力を前記設定加圧力P1に設定した状態で
型が移動を開始したことを検知する検知手段と、 c.前記検知手段からの信号により、該信号を受けたと
きの型の温度を記憶する手段と、 d.前記型の温度を基準としてプレス成形動作に関する
設定温度を算出し記憶させる手段と e.前記設定温度に従ってプレス成形動作を行わせる動
作指令手段と、からなる制御部を具備することを特徴と
する光学素子の成形装置。5. A glass material is arranged between a pair of upper and lower molds,
An optical element forming apparatus for detecting and controlling the temperature of the mold and heating and press-molding the mold and the glass material, comprising: a. Means for setting and controlling at least the pressing pressure to a molding pressure P2 and a lower set pressure P1; b. Detecting means for detecting that the mold has started moving with the press pressure set to the set pressure P1, c. Means for storing, in response to a signal from the detecting means, the temperature of the mold at the time of receiving the signal; d. Means for calculating and storing a set temperature for the press forming operation based on the temperature of the mold; e. An apparatus for forming an optical element, comprising: a control unit comprising: an operation command unit for performing a press forming operation in accordance with the set temperature.
それぞれ制御可能なサーボモータであることを特徴とす
る請求項5記載の光学素子の成形装置。6. The optical element molding apparatus according to claim 5, wherein the driving source of the mold is a servomotor capable of controlling position, speed and torque.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3075976A JP2946003B2 (en) | 1991-02-13 | 1991-02-13 | Method and apparatus for molding optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3075976A JP2946003B2 (en) | 1991-02-13 | 1991-02-13 | Method and apparatus for molding optical element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04260620A JPH04260620A (en) | 1992-09-16 |
JP2946003B2 true JP2946003B2 (en) | 1999-09-06 |
Family
ID=13591788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3075976A Expired - Lifetime JP2946003B2 (en) | 1991-02-13 | 1991-02-13 | Method and apparatus for molding optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2946003B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5782946A (en) * | 1995-01-30 | 1998-07-21 | Toshiba Machine Co., Ltd. | Method for manufacturing press-molded glass object |
JP3551076B2 (en) * | 1999-04-22 | 2004-08-04 | 松下電器産業株式会社 | Optical element molding method and molding apparatus |
JP2008105907A (en) * | 2006-10-26 | 2008-05-08 | Olympus Corp | Molding method for thermoplastic material, molding apparatus for thermoplastic material, and control program |
-
1991
- 1991-02-13 JP JP3075976A patent/JP2946003B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04260620A (en) | 1992-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5782946A (en) | Method for manufacturing press-molded glass object | |
JP3273197B2 (en) | Molding equipment for optical glass elements, etc. | |
JP2000302460A (en) | Molding of optical element and molding apparatus | |
JP2946003B2 (en) | Method and apparatus for molding optical element | |
US20030056542A1 (en) | Apparatus and method for forming silica glass elements | |
JPH0581540B2 (en) | ||
KR20030078715A (en) | Press-forming method and machine for glass | |
JPH08245228A (en) | Method for forming optical element | |
JPH08208243A (en) | Forming of optical element | |
JPH08253330A (en) | Optical element molding device and its method | |
JP3143572B2 (en) | Glass element molding apparatus and glass element molding method | |
JPH04124040A (en) | Method for forming glass lens of high accuracy | |
JP2954427B2 (en) | Glass forming method | |
JP3068261B2 (en) | Glass optical element molding method | |
JP2583592B2 (en) | Optical element molding method | |
JP3883634B2 (en) | Mold for press molding optical elements | |
JPH09286622A (en) | Optical device producing device | |
JPH1029825A (en) | Production of optical element with lens barrel | |
JP3187902B2 (en) | Glass optical element molding method | |
JPH10330121A (en) | Molding of optical element and apparatus therefor | |
JP2712630B2 (en) | Method for manufacturing reflective optical element | |
JP5399673B2 (en) | Molding apparatus and method for manufacturing molded product | |
JPH0930818A (en) | Molding of optical element | |
JP2754073B2 (en) | Optical element molding method and molding apparatus | |
JPH10316437A (en) | Press molding of optical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080702 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080702 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080702 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090702 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100702 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100702 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110702 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110702 Year of fee payment: 12 |