JPH05301727A - Method for forming optical element and forming apparatus therefor - Google Patents

Method for forming optical element and forming apparatus therefor

Info

Publication number
JPH05301727A
JPH05301727A JP13200992A JP13200992A JPH05301727A JP H05301727 A JPH05301727 A JP H05301727A JP 13200992 A JP13200992 A JP 13200992A JP 13200992 A JP13200992 A JP 13200992A JP H05301727 A JPH05301727 A JP H05301727A
Authority
JP
Japan
Prior art keywords
optical element
mold
molding
optical material
lower mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13200992A
Other languages
Japanese (ja)
Other versions
JP3220512B2 (en
Inventor
Keiichi Seki
敬一 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP13200992A priority Critical patent/JP3220512B2/en
Publication of JPH05301727A publication Critical patent/JPH05301727A/en
Application granted granted Critical
Publication of JP3220512B2 publication Critical patent/JP3220512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain a press-formed optical element having accurate thickness and surface form and free from sink mark on the surface by mainly controlling the thickness of the element in the press-forming process and mainly controlling the pressure in the cooling and solidifying process. CONSTITUTION:A lower mold 3 and an upper mold 7 are placed opposite to each other. The lower mold 3 is held on the top of a vertically shifting mechanism composed of a motor 17 and a ball screw 16. The lower mold 3 is provided with a displacement sensor 18 and a pressure sensor 19. The vertical motion of the lower mold 3 is controlled by a controller 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光学素子の成形方法お
よび成形装置に係わり、特にガラスレンズ等の光学素子
を加圧成形するための光学素子の成形方法および成形装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element molding method and a molding apparatus, and more particularly to an optical element molding method and a molding apparatus for pressure molding an optical element such as a glass lens.

【0002】[0002]

【従来の技術】従来、レンズなどの光学素子を効率よく
量産する方法として精密なプレス成形機などの加圧手段
を用いた成形方法がある。上記方法は軟化された材料塊
例えば光学素材をプレス成形機の型内に供給し、この状
態で加圧することにより所定形状の光学素子を得るよう
にしている。この場合、成形される光学素子はその肉厚
精度が光学素子としての精度を決める上で極めて重要で
ある。
2. Description of the Related Art Conventionally, as a method for efficiently mass-producing optical elements such as lenses, there is a molding method using a pressing means such as a precise press molding machine. In the above method, a softened material block, for example, an optical material is supplied into a mold of a press molding machine, and pressure is applied in this state to obtain an optical element having a predetermined shape. In this case, the precision of the thickness of the molded optical element is extremely important in determining the precision of the optical element.

【0003】プレス成形機で成形される光学素子の肉厚
を決める方法としては、例えば特開昭61−20563
0号公報記載の発明には、型内での光学素子の冷却固化
過程における、体積収縮の不均一に伴う局部収縮やヒケ
を防止するために、ストッパー等の制御機構の他に、金
型とピストンの間に加圧部材(弾性部材)を介在させる
事によって、光学素子の冷却固化による収縮に連動して
上記金型が光学素子を加圧するように構成されている。
As a method for determining the wall thickness of an optical element molded by a press molding machine, for example, Japanese Patent Laid-Open No. 61-20563.
In order to prevent local shrinkage and shrinkage due to nonuniform volume shrinkage in the process of cooling and solidifying the optical element in the mold, the invention described in Japanese Patent Publication No. 0, in addition to a control mechanism such as a stopper, By interposing a pressure member (elastic member) between the pistons, the mold is configured to press the optical element in conjunction with the contraction of the optical element due to cooling and solidification.

【0004】また、金型は加圧部材(油圧シリンダ)の
ピストンの下端部に固定されており、上記ピストンの中
途部にストッパが設けられ、ピストンによる押圧成形後
の光学素材の冷却固化による収縮に連動して金型が光学
素子を加圧できるように上記ストッパを移動あるいは取
り除くように構成されている。
The mold is fixed to the lower end of the piston of the pressurizing member (hydraulic cylinder), a stopper is provided in the middle of the piston, and the optical material shrinks due to cooling and solidification after pressure molding by the piston. The stopper is moved or removed so that the mold can press the optical element in conjunction with.

【0005】[0005]

【発明が解決しようとする課題】一般に光学素子を成形
する場合、そのガラス成形品の中肉を精度良く成形しよ
うとすると、押圧成形過程において上下の金型を所定位
置まで移動してその中肉の精度を確保した後、冷却固化
の過程においては、光学素子の局部収縮やヒケを防止し
て高精度の面形状を得るために、光学素子の冷却固化に
よる収縮に連動し、金型が光学素子に対して圧力を加え
るようになされている。
Generally, in the case of molding an optical element, when it is attempted to accurately mold the inner wall of a glass molded product, the upper and lower molds are moved to a predetermined position in the press molding process, and the inner wall of the mold is moved. After securing the precision of the optical element, in the process of cooling and solidification, in order to prevent local shrinkage and sink of the optical element and obtain a highly precise surface shape, the optical element is linked with the shrinkage due to cooling and solidification, and the mold It is designed to apply pressure to the element.

【0006】ところが、前記特開昭61−205630
号公報に記載されているように、金型とピストンとの間
に弾性部材を介在させてなる場合には、光学素子の冷却
固化過程においてのヒケ防止のための光学素子への加圧
力は、弾性部材の変形量によって異なる。そして、この
弾性部材の変形量は成形過程における光学素子の中肉量
によって変化し、この中肉量は前述の様に一定とはなら
ない。そのため、ヒケ防止のための加圧力を常に一定に
保つことは困難であり、成形後の光学素子の面精度のば
らつきにも影響を与えることになる。
However, the above-mentioned Japanese Patent Laid-Open No. 61-205630
When an elastic member is interposed between the mold and the piston as described in Japanese Patent Publication No. JP-A No. 2004-242, the pressure applied to the optical element for preventing sink marks during the cooling and solidifying process of the optical element is: Depends on the amount of deformation of the elastic member. The amount of deformation of the elastic member changes depending on the amount of medium thickness of the optical element in the molding process, and the amount of medium thickness is not constant as described above. Therefore, it is difficult to always keep the pressing force constant to prevent sink marks, and this also affects the variation in surface accuracy of the optical element after molding.

【0007】また、金型とピストンとの間に加圧部材を
介在させてなる場合においては、光学素子の冷却固化の
開始を検知する手段がないために、冷却固化が開始する
前に圧力を加えた場合には光学素子の肉厚を変化させて
しまう。さらに、冷却固化が開始した後に光学素子へ圧
力を加えても冷却固化の進行具合によっては面精度の向
上は得られずにヒケを生じてしまう。この冷却固化の開
始点や進行具合は加熱された成形素材の温度,重量およ
び成形を行なう型の温度等によって異なり、加圧を開始
するタイミングを計り加圧力を加えることができないた
め、成形後の光学素子の面精度のばらつきをおさえるこ
とはできない。
Further, in the case where the pressurizing member is interposed between the die and the piston, there is no means for detecting the start of cooling and solidification of the optical element, and therefore the pressure is applied before the cooling and solidification starts. If added, the thickness of the optical element is changed. Further, even if pressure is applied to the optical element after the cooling and solidification is started, the surface accuracy cannot be improved depending on the progress of the cooling and solidification, and a sink mark occurs. The starting point and progress of this cooling and solidification vary depending on the temperature of the heated molding material, the weight, the temperature of the mold used for molding, etc., and since it is not possible to measure the timing at which pressurization is started and apply pressure, It is not possible to suppress variations in the surface accuracy of the optical element.

【0008】因って、本発明は前記従来技術における問
題点に鑑みて開発されたもので、成形前の光学素子の肉
厚に影響されることがなく、成形後においてその中肉と
高精度の面形状を安定して供給することのできる光学素
子の成形方法および成形装置の提供を目的とする。
Therefore, the present invention was developed in view of the problems in the above-mentioned prior art, and is not affected by the wall thickness of the optical element before molding, and its medium thickness and high accuracy after molding are achieved. An object of the present invention is to provide an optical element molding method and a molding apparatus capable of stably supplying the surface shape of the above.

【0009】[0009]

【課題を解決するための手段および作用】本発明は、光
学素材の軟化点温度付近に加熱した上下一対の金型間に
光学素材を搬入し、前記金型により光学素材を加圧しつ
つ成形する光学素子の成形方法において、押圧成形過程
では前記上下一対の金型の相対位置を検出して光学素材
が所定の肉厚となる様に上下一対の金型間距離を保つと
ともに、押圧成形後の冷却固化過程では冷却固化に伴っ
て収縮する光学素材へ金型に加わる圧力を検出して常に
一定の圧力を加える成形方法である。
According to the present invention, an optical material is carried in between a pair of upper and lower molds heated near the softening point temperature of the optical material, and the optical material is molded while being pressed by the mold. In the molding method of the optical element, in the press molding process, the relative position of the pair of upper and lower molds is detected to maintain the distance between the pair of upper and lower molds so that the optical material has a predetermined thickness, and after the press molding, In the cooling and solidifying process, the molding method is a method in which the pressure applied to the mold is detected and the constant pressure is always applied to the optical material that shrinks with the cooling and solidification.

【0010】また、上下動機構部を有する上下一対の金
型により光学素材を押圧する光学素子の成形装置におい
て、上下動機構部により上下動する金型側に設けた金型
の変位を計測するセンサーと、一対の金型のうちのどち
らか一方に設けた金型に加わる圧力を検出するセンサー
と、各センサーからの検出信号により上下動機構部を制
御する制御手段とを具備したものである。
Further, in a molding apparatus for an optical element that presses an optical material with a pair of upper and lower molds having a vertical movement mechanism section, the displacement of the mold provided on the side of the mold that moves up and down by the vertical movement mechanism section is measured. It is provided with a sensor, a sensor provided in either one of a pair of molds for detecting pressure applied to the mold, and a control means for controlling the vertical movement mechanism section by a detection signal from each sensor. ..

【0011】図1は本発明の概念図である。下型3と上
型7は対向して配置されており、下型3はモーター17
およびボールネジ16から成る上下動機構の上端に上下
動自在に保持されている。下型3の下部側面には下型3
の変位を検知する変位センサー18が、下型3の下端に
は圧力を検出する圧力センサー19が配置されている。
そして、下型3の変位と下型3に加わる圧力とから、下
型3の上下動を制御するコントローラー20が設けられ
ている。
FIG. 1 is a conceptual diagram of the present invention. The lower mold 3 and the upper mold 7 are arranged so as to face each other, and the lower mold 3 is a motor 17
It is held at the upper end of a vertical movement mechanism composed of a ball screw 16 so as to be vertically movable. The lower mold 3 is on the lower side surface of the lower mold 3.
A displacement sensor 18 for detecting displacement of the lower mold 3 and a pressure sensor 19 for detecting pressure are arranged at the lower end of the lower mold 3.
A controller 20 that controls the vertical movement of the lower mold 3 based on the displacement of the lower mold 3 and the pressure applied to the lower mold 3 is provided.

【0012】上記の構成からなる成形装置において、上
型7および下型3との間に所定の温度に加熱した光学素
材1を供給し、下型3の上昇によって加圧成形を行な
う。この時、コントローラ20は下型3の変位を検知す
る変位センサー18の信号を受け、所定の位置に下型3
が位置するように制御を行い、光学素材1の中肉を得
る。その後、下型3に加わる圧力を圧力センサー19で
検出し、所定の圧力を加えるよう下型3の上下動を制御
しながら、光学素材1の冷却固化を行なう。この操作に
よって中肉の精度を確保しながら、ヒケを防止した高精
度な面形状の光学素子を得る。
In the molding apparatus having the above structure, the optical material 1 heated to a predetermined temperature is supplied between the upper mold 7 and the lower mold 3, and the lower mold 3 is elevated to perform pressure molding. At this time, the controller 20 receives a signal from the displacement sensor 18 that detects the displacement of the lower die 3, and moves the lower die 3 to a predetermined position.
Is controlled so that the inside of the optical material 1 is obtained. Thereafter, the pressure applied to the lower mold 3 is detected by the pressure sensor 19, and the optical material 1 is cooled and solidified while controlling the vertical movement of the lower mold 3 so as to apply a predetermined pressure. By this operation, an optical element having a highly precise surface shape in which sink marks are prevented can be obtained while ensuring the accuracy of the medium thickness.

【0013】[0013]

【実施例1】図2および図3は本実施例を示し、図2は
成形装置を示す1部を断面した側面図、図3はフローチ
ャートである。成形室22は架台21上に設置されてお
り、当該成形室22は上ベース10と下ベース6、さら
にカバー23により形成されている。上ベース10には
上型支持体9が嵌合固定されている。また、上型支持体
9には端部のネジ部9aに螺着した上型押さえ8を介し
て上型7が固定されている。さらに、下型3も上型7同
様に、上記下ベース6の中央開口部6aよりスライド自
在な主軸11に保持される下型保持体5のネジ部5aに
螺着した下型押さえ4を介して下型支持体5に固定され
ている。そして、下型3は上記主軸11の上下方向への
昇降により、上型7との対向方向に上下自在に保持され
ている。
Embodiment 1 FIGS. 2 and 3 show this embodiment, FIG. 2 is a side view showing a cross section of a part showing a molding apparatus, and FIG. 3 is a flow chart. The molding chamber 22 is installed on the pedestal 21, and the molding chamber 22 is formed by the upper base 10, the lower base 6, and the cover 23. The upper die support 9 is fitted and fixed to the upper base 10. Further, the upper die 7 is fixed to the upper die support 9 via an upper die retainer 8 screwed to a threaded portion 9a at the end. Further, like the upper mold 7, the lower mold 3 also includes a lower mold holder 4 screwed to a screw portion 5a of a lower mold holder 5 held by a main shaft 11 slidable from a central opening 6a of the lower base 6. And is fixed to the lower die support 5. The lower die 3 is vertically held in the direction opposite to the upper die 7 by vertically moving the main shaft 11.

【0014】さらに、上記下ベース6は中央部の開口部
6aを介して、上記主軸11が移動できるようになって
おり、架台21上に配置されている。そして、上記主軸
11の下側端部には主軸受け24が固定されており、こ
の主軸受け24の下側には、圧力センサー19が固定さ
れるとともに、当該圧力センサー19を介して上下動機
構であるテーブル15に固定されている。また、上記主
軸受け24の下端には変位センサー18が取り付けられ
て下型3の変位が測定され、その信号および圧力センサ
ー19からの信号は、上記主軸11の上下動を制御する
コントローラ20に入力している。
Further, the main shaft 11 of the lower base 6 can be moved through an opening 6a in the central portion, and the lower base 6 is arranged on a mount 21. A main bearing 24 is fixed to the lower end of the main shaft 11, and a pressure sensor 19 is fixed to the lower side of the main bearing 24, and a vertical movement mechanism is provided via the pressure sensor 19. Is fixed to the table 15. Further, a displacement sensor 18 is attached to the lower end of the main bearing 24 to measure the displacement of the lower mold 3, and its signal and the signal from the pressure sensor 19 are input to a controller 20 which controls the vertical movement of the main shaft 11. is doing.

【0015】そして上下動機構のテーブル15はガイド
14により上下方向摺動自在に保持され、さらにボール
ネジ16の回転により、上下方向に移動せしめる。ボー
ルネジ16の下端には、モーター17が取り付けられて
いる。このモーター17の回転をコントローラ20が制
御することにより、下型3の位置変位および光学素子へ
加える圧力を制御させるものである。
The table 15 of the vertical movement mechanism is held slidably in the vertical direction by the guide 14, and is further moved in the vertical direction by the rotation of the ball screw 16. A motor 17 is attached to the lower end of the ball screw 16. The controller 20 controls the rotation of the motor 17 to control the positional displacement of the lower mold 3 and the pressure applied to the optical element.

【0016】以上の構成からなる光学素子の成形装置を
用いての成形方法は、成形室22の外側に配置された図
示しない加熱炉で光学素材1の軟化点温度以上の温度ま
で胴型2に載置された光学素材1を加熱する。次に、光
学素材1および胴型2を図示しない搬送部材により光学
素材1の軟化点温度付近に加熱されている上型7と下型
3との間に搬送する。しかる後、モーター17を回転さ
せてテーブル15を上昇させることによって、下型3を
上昇させて光学素材1を上型7と下型3とによりプレス
成形する。
In the molding method using the optical element molding apparatus having the above-described structure, the barrel mold 2 is heated to a temperature equal to or higher than the softening point temperature of the optical material 1 in a heating furnace (not shown) arranged outside the molding chamber 22. The placed optical material 1 is heated. Next, the optical material 1 and the barrel die 2 are conveyed by the conveying member (not shown) between the upper die 7 and the lower die 3 which are heated to around the softening point temperature of the optical material 1. Then, the motor 17 is rotated to raise the table 15 to raise the lower die 3 and press-mold the optical material 1 with the upper die 7 and the lower die 3.

【0017】下型3と上型7の相対位置の変化は変位セ
ンサー18により測定され、下型3に加わる圧力は圧力
センサー19によって測定される。この時、下型3を上
昇させるモーター17は図3に示すフローに従って制御
される。すなわち、下型3と上型7の相対位置が所定の
位置範囲(光学素子の肉厚精度)内に入るまで下型3を
上昇するようにモーター17へ回転指令が出力される。
A change in relative position between the lower mold 3 and the upper mold 7 is measured by a displacement sensor 18, and a pressure applied to the lower mold 3 is measured by a pressure sensor 19. At this time, the motor 17 for raising the lower mold 3 is controlled according to the flow shown in FIG. That is, a rotation command is output to the motor 17 so as to raise the lower mold 3 until the relative position between the lower mold 3 and the upper mold 7 falls within a predetermined position range (the thickness accuracy of the optical element).

【0018】上型7と下型3の相対位置が所定の位置範
囲内に入った段階で、圧力センサー19から入力される
値が所定の加圧力範囲(光学素子の冷却化にともなう加
圧量)に入るようにモーター17からトルクを与えるべ
く回転支持がなされるものである。その後、光学素子の
十分な冷却固化時間を経た後に、下型3は下降し、図示
しない搬送部材によって成形室22の外側へ排出され
る。この間光学素子の冷却固化過程においては均一の加
圧力が与えられることとなる。
When the relative position between the upper mold 7 and the lower mold 3 is within a predetermined position range, the value input from the pressure sensor 19 is within a predetermined pressure range (amount of pressurization due to cooling of the optical element). ) Is supported so as to apply a torque from the motor 17 so that the motor 17 can enter. Then, after a sufficient cooling and solidifying time of the optical element has passed, the lower mold 3 descends and is discharged to the outside of the molding chamber 22 by a conveying member (not shown). During this time, a uniform pressure is applied during the cooling and solidification process of the optical element.

【0019】本実施例によれば、光学素子のプレス過程
において、下型3の変位を検出する変位センサー18を
設けて上型7と下型3との相対位置を制御することによ
り、成形後の光学素子の中肉精度が確保され、光学素子
の冷却固化過程においては、同一の駆動機構を下型3に
加わる圧力を検出する圧力センサー19により均一に加
圧力を制御することによって成形後の光学素子のヒケを
防止し、高精度な面形状を有する光学素子が安定して成
形できる。
According to the present embodiment, in the process of pressing the optical element, the displacement sensor 18 for detecting the displacement of the lower mold 3 is provided to control the relative position between the upper mold 7 and the lower mold 3, thereby making it possible after molding. The accuracy of the inner wall thickness of the optical element is ensured, and in the process of cooling and solidifying the optical element, the same driving mechanism controls the pressure force evenly by the pressure sensor 19 that detects the pressure applied to the lower mold 3, thereby The sink mark of the optical element can be prevented, and the optical element having a highly precise surface shape can be stably molded.

【0020】尚、上記圧力センサー19は上型7もちく
は上型支持体9に設置しても同様の効果が得られる。ま
た、圧力センサー19の代わりにモーター17の出力ト
ルクを検出して同様の制御を行なっても前述と同様の効
果が得られる。
The same effect can be obtained by installing the pressure sensor 19 on the upper die 7 or the upper die support 9. Even if the output torque of the motor 17 is detected instead of the pressure sensor 19 and the same control is performed, the same effect as described above can be obtained.

【0021】[0021]

【実施例2】図4は本実施例を示すフローチャートであ
る。本実施例におる成形方法に用いる成形装置は前記実
施例1の成形装置と同一であり、図2を用いて説明す
る。光学素材1の軟化点温度以上の温度まで加熱された
光学素材1は、光学素材1の軟化点温度付近に加熱され
た上型7と下型3との間に搬送され、下型3の上昇によ
りプレス成形される。この時、変位センサー18の測定
値が所定の上型7と下型3との相対位置だけを得るよう
にモーター17を制御すると、所定位置範囲に入る前に
光学素材1と上型7および下型3との熱交換により光学
素材1の冷却固化が始まり、モーター17の移動指示量
に対して位置変位は増加しなくなり、下型3の圧力は増
加する。
Second Embodiment FIG. 4 is a flow chart showing this embodiment. The molding apparatus used in the molding method of this embodiment is the same as the molding apparatus of the first embodiment, and will be described with reference to FIG. The optical material 1 heated to a temperature equal to or higher than the softening point temperature of the optical material 1 is conveyed between the upper mold 7 and the lower mold 3 heated near the softening point temperature of the optical material 1, and the lower mold 3 rises. By press molding. At this time, if the motor 17 is controlled so that the measured value of the displacement sensor 18 obtains only the relative position between the predetermined upper die 7 and the lower die 3, the optical material 1 and the upper die 7 and the lower die 7 are controlled before entering the predetermined position range. Cooling and solidification of the optical material 1 starts by heat exchange with the mold 3, the positional displacement does not increase with respect to the movement instruction amount of the motor 17, and the pressure of the lower mold 3 increases.

【0022】この状態でさらに下型3を上昇させようと
すると、光学素材1の冷却固化時に必要となる加圧量以
上の圧力が光学素材1に加えられるばかりか、モーター
17は過負荷状態となる。このため、下型3の変位の他
に下型3へ加わる圧力をコントローラー20で処理し、
プレス過程の制御中に限界値以上の圧力が検出される
か、もしくは下型3の変位量の偏差の変化量(単位時間
当たりの変位量の変化量)が限界値以下で下型3に加わ
る圧力の偏差の変化量(単位時間当たりの圧力の変化
量)が限界値以上になった場合には、光学素材1は冷却
固化過程に入ったと判断し、プレス過程の下型3の位置
制御を終了し、下型3に加わる圧力を制御する冷却固化
過程の制御に移行するものとする。
If the lower die 3 is further raised in this state, not only a pressure greater than the amount of pressure required when the optical material 1 is cooled and solidified is applied to the optical material 1, but also the motor 17 is overloaded. Become. Therefore, in addition to the displacement of the lower mold 3, the pressure applied to the lower mold 3 is processed by the controller 20,
A pressure above the limit value is detected during the control of the pressing process, or the variation amount of the deviation of the displacement amount of the lower die 3 (the variation amount of the displacement amount per unit time) is below the limit value and is added to the lower die 3. When the amount of change in pressure deviation (the amount of change in pressure per unit time) exceeds the limit value, it is determined that the optical material 1 has entered the cooling and solidifying process, and the position control of the lower mold 3 in the pressing process is performed. Upon completion, the control shifts to the cooling and solidifying process for controlling the pressure applied to the lower mold 3.

【0023】また、冷却固化過程の制御についてもプレ
ス過程の制御と同様に、プレス過程において所定の下型
3および上型7間隔に設定が完了した後、光学素材1に
加わる圧力が一定となるようにモーター17にトルクを
発生させても、光学素子の冷却が開始していなければ、
下型3に加わる圧力は増加せず、位置変位は増加する。
Regarding the control of the cooling and solidifying process, similarly to the control of the pressing process, the pressure applied to the optical material 1 becomes constant after the setting of the predetermined lower die 3 and upper die 7 intervals is completed in the pressing process. Even if a torque is generated in the motor 17, if the cooling of the optical element has not started,
The pressure applied to the lower mold 3 does not increase, but the position displacement increases.

【0024】この状態でさらにモーター17にトルクを
加えるように制御すると下型3の位置は上昇し、光学素
材1の中肉は減少する。このため、下型3に加わる圧力
の他に下型3の変位もコントローラー20で処理をし、
冷却固化過程の制御中に下型3の変位の偏差が限界値以
上で下型3に加わる圧力の偏差が限界値以下になった場
合には、光学素材1は冷却固化過程に入っていないと判
断し、光学素材1の中肉を求めるプレス過程に制御を戻
す。
When the motor 17 is further controlled to apply torque in this state, the position of the lower mold 3 is raised and the inner wall of the optical material 1 is reduced. Therefore, in addition to the pressure applied to the lower mold 3, the displacement of the lower mold 3 is processed by the controller 20,
When the deviation of the displacement of the lower die 3 is equal to or more than the limit value and the deviation of the pressure applied to the lower die 3 is equal to or less than the limit value during the control of the cooling and solidifying process, the optical material 1 is not in the cooling and solidifying process. Judgment is made, and the control is returned to the pressing process for obtaining the inside thickness of the optical material 1.

【0025】本実施例によれば、成形前の光学素材の肉
厚のばらつきが大きいものを成形しても、成形後の光学
素子の肉厚精度が確保され、高精度な面形状を有する光
学素子を安定して成形することができる。
According to the present embodiment, even if the optical material before molding having a large variation in thickness is molded, the accuracy of the thickness of the optical element after molding is ensured, and the optical element having a highly accurate surface shape is formed. The element can be stably molded.

【0026】[0026]

【実施例3】図5は本実施例で用いる成形装置を示す1
部を断面した部分側面図である。本実施例では、前記実
施例1と同様な構成部分には同一番号を付してその説明
を省略する。上ベース10下面にはホルダー25が設置
され、下ベース6上には下ホルダー28が設置されてい
る。さらに、上ホルダー25および下ホルダー28には
それぞれ耐熱性を有する静電容量式の下型変位計26お
よび上型変位計29が設置されている。そして、上型オ
サエ8および下型オサエ4にはそれぞれ上型プレート2
7および下型プレート30が固定されており、上記上型
変位計29および下型変位計26により、それぞれ上型
7および下型3の位置変位を検出するように構成されて
いる。その他は前記実施例1と同様の構成となってい
る。
[Third Embodiment] FIG. 5 shows a molding apparatus used in this embodiment.
It is a partial side view which carried out the section of the part. In the present embodiment, the same components as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted. A holder 25 is installed on the lower surface of the upper base 10, and a lower holder 28 is installed on the lower base 6. Further, a capacitance type lower displacement gauge 26 and an upper displacement gauge 29 having heat resistance are installed on the upper holder 25 and the lower holder 28, respectively. Then, the upper mold plate 8 is attached to the upper mold plate 8 and the lower mold plate 4 respectively.
7 and the lower die plate 30 are fixed, and the upper die displacement gauge 29 and the lower die displacement gauge 26 are configured to detect the positional displacements of the upper die 7 and the lower die 3, respectively. Others are the same as those in the first embodiment.

【0027】以上の構成からなる成形装置を用いての成
形方法は、光学素材1のプレス過程において、上型変位
計29と下型変位計26との出力を差分をとって上型7
と下型3との相対位置変位を検出し、所定の光学素材1
の中肉精度となるようにモーター17を駆動する。その
後、下型3へ加えられる圧力が所定の冷却固化にともな
う加圧量になるようにモーター17を駆動するものであ
る。
In the molding method using the molding apparatus having the above-described structure, in the pressing process of the optical material 1, the difference between the outputs of the upper mold displacement meter 29 and the lower mold displacement meter 26 is taken to obtain the upper mold 7.
The relative position displacement between the lower mold 3 and the
The motor 17 is driven so as to obtain the precision of the inside meat. After that, the motor 17 is driven so that the pressure applied to the lower mold 3 becomes a pressurization amount accompanying a predetermined cooling and solidification.

【0028】本実施例によれば、上型7と下型3との相
対位置を検出する過程において、より型に近い位置で型
と同一の雰囲気内でその変位量を測定することができる
ため、熱による膨張等の影響が少なく精度の良い測定が
可能となる。因って、より高精度な中肉を有した光学素
子が得られる。
According to this embodiment, in the process of detecting the relative position between the upper die 7 and the lower die 3, the displacement amount can be measured in a same atmosphere as the die at a position closer to the die. Therefore, the influence of expansion due to heat is small and accurate measurement is possible. Therefore, it is possible to obtain an optical element having a highly accurate inner wall.

【0029】[0029]

【発明の効果】以上説明した様に、本発明に係る光学素
子の成形方法および成形装置によれば、プレス成形され
る光学素材に対し、そのプレス成形過程においては肉厚
を主としてプレス成形位置を制御し、冷却固化過程にお
いては加圧力を主としてプレス成形を制御することがで
きる。このため肉厚の精度が良く、表面にヒケのない、
高精度な面形状を有した光学素子が得られる。
As described above, according to the optical element molding method and molding apparatus of the present invention, the thickness of the optical material to be press-molded is mainly determined by the thickness in the press-molding process. It is possible to control and mainly press force in the cooling and solidifying process to control the press forming. Therefore, the accuracy of the wall thickness is good and there is no sink mark on the surface.
An optical element having a highly precise surface shape can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を示す概念図である。FIG. 1 is a conceptual diagram showing the present invention.

【図2】実施例1を示す1部を断面した側面図である。FIG. 2 is a side view showing a cross section of part 1 showing the first embodiment.

【図3】実施例1を示すフローチャートである。FIG. 3 is a flowchart showing a first embodiment.

【図4】実施例2を示すフローチャートである。FIG. 4 is a flowchart showing a second embodiment.

【図5】実施例3を示す1部を断面した部分側面図であ
る。
FIG. 5 is a partial side view showing a part of the third embodiment in section.

【符号の説明】[Explanation of symbols]

1 光学素材 3 下型 7 上型 16 ボールネジ 17 モーター 18 変位センサー 19 圧力センサー 21 コントローラー 1 Optical material 3 Lower mold 7 Upper mold 16 Ball screw 17 Motor 18 Displacement sensor 19 Pressure sensor 21 Controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光学素材の軟化点温度付近に加熱した上
下一対の金型間に光学素材を搬入し、前記金型により光
学素材を加圧しつつ成形する光学素子の成形方法におい
て、押圧成形過程では前記上下一対の金型の相対位置を
検出して光学素材が所定の肉厚となる様に上下一対の金
型間距離を保つとともに、押圧成形後の冷却固化過程で
は冷却固化に伴って収縮する光学素材へ金型に加わる圧
力を検出して常に一定の圧力を加えることを特徴とする
光学素子の成形方法。
1. A method of molding an optical element in which an optical material is carried between a pair of upper and lower molds heated near the softening point temperature of the optical material, and the optical material is molded while being pressed by the mold, in a pressure molding step. Detects the relative position of the pair of upper and lower molds and maintains the distance between the pair of upper and lower molds so that the optical material has a predetermined thickness, and shrinks with cooling and solidification in the cooling and solidifying process after press molding. A method for molding an optical element, characterized in that the pressure applied to the mold is detected by applying a constant pressure to the optical material.
【請求項2】 上下動機構部を有する上下一対の金型に
より光学素材を押圧する光学素子の成形装置において、
上下動機構部により上下動する金型側に設けた金型の変
位を計測するセンサーと、一対の金型のうちのどちらか
一方に設けた金型に加わる圧力を検出するセンサーと、
各センサーからの信号により上下動機構部を制御する制
御手段とを具備したことを特徴とする光学素子の成形装
置。
2. An optical element molding apparatus for pressing an optical material by a pair of upper and lower molds having a vertical movement mechanism section,
A sensor that measures the displacement of the mold provided on the mold side that moves up and down by the vertical movement mechanism section, and a sensor that detects the pressure applied to the mold provided on either one of the pair of molds,
A molding device for an optical element, comprising: a control unit that controls a vertical movement mechanism unit according to a signal from each sensor.
JP13200992A 1992-04-24 1992-04-24 Method and apparatus for molding optical element Expired - Fee Related JP3220512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13200992A JP3220512B2 (en) 1992-04-24 1992-04-24 Method and apparatus for molding optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13200992A JP3220512B2 (en) 1992-04-24 1992-04-24 Method and apparatus for molding optical element

Publications (2)

Publication Number Publication Date
JPH05301727A true JPH05301727A (en) 1993-11-16
JP3220512B2 JP3220512B2 (en) 2001-10-22

Family

ID=15071412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13200992A Expired - Fee Related JP3220512B2 (en) 1992-04-24 1992-04-24 Method and apparatus for molding optical element

Country Status (1)

Country Link
JP (1) JP3220512B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100355535B1 (en) * 1998-08-07 2003-01-24 한국전기초자 주식회사 Compression molding apparatus for glass products for cathode ray tube and its control method
CN1301224C (en) * 2003-09-30 2007-02-21 Hoya株式会社 Press molding device and forming method of optical component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100355535B1 (en) * 1998-08-07 2003-01-24 한국전기초자 주식회사 Compression molding apparatus for glass products for cathode ray tube and its control method
CN1301224C (en) * 2003-09-30 2007-02-21 Hoya株式会社 Press molding device and forming method of optical component
US7293430B2 (en) 2003-09-30 2007-11-13 Hoya Corporation Press molding apparatus and press molding method of optical element

Also Published As

Publication number Publication date
JP3220512B2 (en) 2001-10-22

Similar Documents

Publication Publication Date Title
JP3534326B2 (en) Slide control method of hydraulic press
KR20010053073A (en) Method and apparatus for molding optical device
JP3095366B2 (en) Press control method and press device
JP3220512B2 (en) Method and apparatus for molding optical element
JP2002192399A (en) Bottom dead center correction method for servopress
JPH10236830A (en) Method for forming optical element and device therefor
US11731339B2 (en) Tilting measurement of a thermoforming mould
KR200441471Y1 (en) Cylinder position control device
JP3487467B2 (en) Manufacturing method of glass lens
JP2520522B2 (en) Optical element molding method and apparatus
JP3454530B2 (en) Glass optical element molding apparatus and molding method
JP2954427B2 (en) Glass forming method
JPH08165126A (en) Molding device for glass optical element
JP3161579B2 (en) Control method of injection compression molding
JPS62207729A (en) Device for controlling thickness of molded glass article
JPH06262299A (en) Method and device for molding mold
JP2005330140A (en) Glass element forming apparatus
JPH02137740A (en) Molding of optical element
JP3850056B2 (en) Optical element molding equipment
JP2001080924A (en) Method and device for molding optical glass element
JPH04260620A (en) Method and apparatus for forming optical element
JP2010202471A (en) Forming apparatus and forming method
JPH05279060A (en) Method for molding optical element
JPH07206458A (en) Spindle expansion correcting device for optical element forming device
JPH0371005B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees