JP2001074605A - Apparatus for measuring wavefront aberration - Google Patents

Apparatus for measuring wavefront aberration

Info

Publication number
JP2001074605A
JP2001074605A JP24670599A JP24670599A JP2001074605A JP 2001074605 A JP2001074605 A JP 2001074605A JP 24670599 A JP24670599 A JP 24670599A JP 24670599 A JP24670599 A JP 24670599A JP 2001074605 A JP2001074605 A JP 2001074605A
Authority
JP
Japan
Prior art keywords
optical system
measured
wavefront aberration
plano
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24670599A
Other languages
Japanese (ja)
Inventor
Kiwa Sugiyama
喜和 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP24670599A priority Critical patent/JP2001074605A/en
Publication of JP2001074605A publication Critical patent/JP2001074605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an apparatus for measuring a wavefront aberration capable of accurately measuring the aberration at a low cost even in a bright optical system having a large NA or an optical system having a solid immersion lens. SOLUTION: The apparatus for measuring a wavefront aberration to measure the aberration of an optical system 12 to be measured comprises a reflecting optical system for reflecting a first luminous flux L12 passed through the system 12 to return the flux L12 to the system 12 and interferes the wavefront of the flux L12 passed through the system 12 after reflecting by the reflecting optical system with a reference wavefront. In this case, the reflecting optical system has a plano-convex lens 13 having a flat surface 13a and a convex spherical surface 13b. The lens 13 is disposed at a center A13 of curvature of the surface 13b, and disposed in a direction in which the surface 13a becomes the optical system 12 side. The surface 13a of the lens 13 is a transmission surface for transmitting the flux L12, and the surface 13b is a reflecting surface for reflecting the flux L12 passed through the surface 13a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、干渉計測によって
光学系の波面収差を測定する波面収差測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavefront aberration measuring device for measuring a wavefront aberration of an optical system by interference measurement.

【0002】[0002]

【従来の技術】従来より、干渉計測によって光学系の波
面収差を測定する波面収差測定装置は、高精度な光学系
の性能を正確に評価するために使用されている。一般
に、被測定光学系を通過した光束の波面(被測定波面)
は、被測定光学系の持つ収差に応じて変形する。したが
って、波面収差測定装置では、被測定波面を参照波面と
干渉させ、得られた干渉縞に基づいて被測定光学系の波
面収差を測定する。
2. Description of the Related Art Conventionally, a wavefront aberration measuring apparatus for measuring the wavefront aberration of an optical system by interference measurement has been used for accurately evaluating the performance of a highly accurate optical system. Generally, the wavefront of the light beam that has passed through the measured optical system (measured wavefront)
Is deformed according to the aberration of the optical system to be measured. Therefore, the wavefront aberration measuring apparatus causes the measured wavefront to interfere with the reference wavefront, and measures the wavefront aberration of the measured optical system based on the obtained interference fringes.

【0003】このような波面収差測定装置20は、図4
に示されるように、被測定波面と参照波面とを干渉させ
る波面干渉部21と、球面状の折り返しミラー23と
が、被測定光学系22の焦点F21,F22側に各々設
けられたものである。なお、折り返しミラー23は、そ
の曲率中心A23が被測定光学系22の焦点F22と一
致する配置となっている。
[0003] Such a wavefront aberration measuring apparatus 20 is shown in FIG.
As shown in FIG. 2, a wavefront interference unit 21 for causing a measured wavefront and a reference wavefront to interfere with each other and a spherical turning mirror 23 are provided on the focal points F21 and F22 of the measured optical system 22, respectively. . The folding mirror 23 is arranged such that its center of curvature A23 coincides with the focal point F22 of the optical system 22 to be measured.

【0004】波面収差測定装置20を用いて被測定光学
系22の波面収差を測定する際には、波面干渉部21か
ら被測定光学系22に対し、測定光束L21が出射され
る。この測定光束L21は、被測定光学系22の一方の
焦点F21に集光したのち、被測定光学系22に入射す
る。そして、被測定光学系22を通過した通過した光束
L22は、被測定光学系22の他方の焦点F22に集光
したのち、折り返しミラー23に入射し、そこで反射す
る。折り返しミラー23で反射した光束L23は、光束
L22の光路を逆行して再び被測定光学系22を通過
し、さらに光束L21の光路も逆行して、波面干渉部2
1に戻る。
When measuring the wavefront aberration of the measured optical system 22 using the wavefront aberration measuring device 20, a measurement light beam L 21 is emitted from the wavefront interference unit 21 to the measured optical system 22. The measurement light beam L21 is focused on one focal point F21 of the measured optical system 22, and then enters the measured optical system 22. The light beam L22 that has passed through the measured optical system 22 is condensed at the other focal point F22 of the measured optical system 22, then enters the turning mirror 23, and is reflected there. The light beam L23 reflected by the return mirror 23 travels back through the optical path of the light beam L22 and passes through the optical system to be measured 22 again, and further travels backward in the optical path of the light beam L21.
Return to 1.

【0005】このようにして波面干渉部21に戻ってき
た光束L23の波面は、被測定光学系22の収差に応じ
て変形しているため、参照波面と干渉させることによ
り、被測定光学系22の波面収差を測定することができ
る。
[0005] The wavefront of the light beam L23 returning to the wavefront interference unit 21 in this manner is deformed in accordance with the aberration of the optical system 22 to be measured. Can be measured.

【0006】[0006]

【発明が解決しようとする課題】ところで、上記した従
来の波面収差測定装置20を用いてNA(∝ sinθ2)
の大きな明るい光学系を測定しようとすると、それだけ
NAの大きな折り返しミラー23を用意する必要があ
る。また、折り返しミラー23のNAを単に大きくする
だけでなく、折り返しミラー23の有効径B23内の面
精度も高精度に保たなければならない。波面収差測定装
置20では、折り返しミラー23の面精度が波面収差の
測定結果に直接影響を与えるためである。
By the way, using the conventional wavefront aberration measuring device 20 described above, NA (NA sin θ2)
In order to measure a bright optical system having a large NA, it is necessary to prepare a folding mirror 23 having a large NA. In addition to not only increasing the NA of the turning mirror 23, the surface accuracy within the effective diameter B23 of the turning mirror 23 must be kept high. This is because, in the wavefront aberration measuring device 20, the surface accuracy of the folding mirror 23 directly affects the measurement result of the wavefront aberration.

【0007】しかしながら、NAの大きな折り返しミラ
ー23を高精度に加工するのは非常に困難であり、ま
た、加工面の精度を検査するのも非常に難しい。したが
って、NAの大きな光学系を測定可能な波面収差測定装
置20は、非常に高価なものとなってしまう。一方、ソ
リッドイマージョンレンズ(solid immersion lens)を
含む光学系(以下「SIL光学系」という)の場合に
は、次のような問題が生じる。ちなみに、SIL光学系
は、最近、光ピックアップレンズなどに提案されている
ものであり、NAが大きい。また、SIL光学系の中に
はNAが1を越えるものもある。
However, it is very difficult to machine the folding mirror 23 having a large NA with high accuracy, and it is also very difficult to inspect the accuracy of the machined surface. Therefore, the wavefront aberration measuring device 20 capable of measuring an optical system having a large NA is very expensive. On the other hand, in the case of an optical system including a solid immersion lens (hereinafter, referred to as “SIL optical system”), the following problem occurs. Incidentally, the SIL optical system has recently been proposed for an optical pickup lens or the like, and has a large NA. Further, some SIL optical systems have an NA exceeding 1.

【0008】さて、SIL光学系の中でも特にNAが1
を越えるものの場合、波面収差測定装置20を用いて測
定しようとすると、ソリッドイマージョンレンズの端面
で測定光束が全反射を起こしてしまう。このため、測定
光束は折り返しミラー23に到達できない。したがっ
て、従来の波面収差測定装置20では、NAが1を越え
るSIL光学系の測定が不可能であった。
[0008] Among the SIL optical systems, particularly, NA is 1
In the case of exceeding the value, when the measurement is performed using the wavefront aberration measuring device 20, the measurement light flux is totally reflected at the end face of the solid immersion lens. Therefore, the measurement light beam cannot reach the turning mirror 23. Therefore, the conventional wavefront aberration measuring apparatus 20 cannot measure an SIL optical system whose NA exceeds 1.

【0009】また、NAが1を越えないSIL光学系の
場合、測定光束はソリッドイマージョンレンズの端面で
全反射を起こさないため、従来の波面収差測定装置20
を用いて波面収差を測定することは可能である。しか
し、ソリッドイマージョンレンズの端面での反射光束が
ノイズとなって、精度の良い測定ができないという問題
があった。
In the case of a SIL optical system whose NA does not exceed 1, the measuring beam does not undergo total reflection at the end face of the solid immersion lens.
Can be used to measure the wavefront aberration. However, there is a problem that a light beam reflected on the end face of the solid immersion lens becomes noise and accurate measurement cannot be performed.

【0010】例えば、ソリッドイマージョンレンズの屈
折率n=1.5とすると、ソリッドイマージョンレンズ
の端面における振幅反射率は、(n−1)/(n+1)=
0.2程度になり、光束L22の1/5の振幅を持つ光
束がこの面で反射する。そのため、仮に図4の折り返し
ミラー23の面の反射率が1であっても、ソリッドイマ
ージョンレンズの端面で反射した光束が、光束L23と
干渉すると、これによって受ける光束L23の位相の変
調は、決して小さなものとは言えない。
For example, if the refractive index of the solid immersion lens is n = 1.5, the amplitude reflectance at the end face of the solid immersion lens is (n-1) / (n + 1) =
A light beam having an amplitude of about 0.2, which is 5 of the light beam L22, is reflected on this surface. Therefore, even if the reflectance of the surface of the turning mirror 23 in FIG. 4 is 1, if the light beam reflected by the end face of the solid immersion lens interferes with the light beam L23, the phase modulation of the light beam L23 received by this will never occur. Not a small one.

【0011】ソリッドイマージョンレンズの端面での反
射を減らすためには、この端面に反射防止膜をコートを
することが考えられる。しかし、ソリッドイマージョン
レンズは一般にとても小さく、その端面に反射防止膜を
コートをすることは難しい。このため、NAが1を越え
ないSIL光学系の測定は、ソリッドイマージョンレン
ズの端面をコートすることなく行わざるをえない。
In order to reduce the reflection at the end face of the solid immersion lens, it is conceivable to coat this end face with an antireflection film. However, solid immersion lenses are generally very small, and it is difficult to coat an end face with an antireflection film. For this reason, the measurement of the SIL optical system whose NA does not exceed 1 has to be performed without coating the end face of the solid immersion lens.

【0012】本発明の目的は、NAの大きな明るい光学
系やソリッドイマージョンレンズを含む光学系であって
も精度良く波面収差を測定可能でかつ安価な波面収差測
定装置を提供することにある。
An object of the present invention is to provide an inexpensive wavefront aberration measuring apparatus capable of measuring wavefront aberration with high accuracy even in an optical system having a large NA and an optical system including a solid immersion lens.

【0013】[0013]

【課題を解決するための手段】請求項1に記載の発明
は、被測定光学系を通過した第1光束を反射して被測定
光学系に戻す反射光学系を備え、該反射光学系での反射
後に被測定光学系を通過した第2光束の波面と参照波面
とを干渉させることにより、被測定光学系の波面収差を
測定する波面収差測定装置であって、反射光学系が、平
面および凸状の球面を有する平凸レンズにて構成された
ものである。この平凸レンズは、球面の曲率中心が平面
上に位置し、平面が被測定光学系側となる向きに配置さ
れる。また、平凸レンズの平面は、第1光束を透過させ
る透過面であり、球面は、平面を透過した第1光束を反
射させる反射面である。
According to a first aspect of the present invention, there is provided a reflection optical system which reflects a first light beam having passed through an optical system to be measured and returns the first light beam to the optical system to be measured. A wavefront aberration measuring apparatus for measuring a wavefront aberration of an optical system to be measured by causing a wavefront of a second light beam having passed through an optical system to be measured after reflection and a reference wavefront to interfere with each other. It is composed of a plano-convex lens having a spherical surface. This plano-convex lens is arranged such that the center of curvature of the spherical surface is located on a plane and the plane is on the side of the optical system to be measured. The plane of the plano-convex lens is a transmission surface that transmits the first light beam, and the spherical surface is a reflection surface that reflects the first light beam transmitted through the plane.

【0014】請求項1の波面収差測定装置において、被
測定光学系を通過した第1光束は、平凸レンズの平面を
透過したのち球面で反射し、再び平面を透過して被測定
光学系に戻る。そして、被測定光学系に戻った光束は被
測定光学系を再び通過する。被測定光学系を通過した第
2光束の波面は、被測定光学系の持つ収差に応じて変形
しているため、この第2光束の波面と参照波面とを干渉
させることにより、被測定光学系の波面収差を測定する
ことができる。
In the wavefront aberration measuring apparatus according to the first aspect, the first light beam that has passed through the optical system to be measured transmits through the plane of the plano-convex lens, is reflected by the spherical surface, transmits through the plane again, and returns to the optical system to be measured. . Then, the light flux returned to the measured optical system passes through the measured optical system again. Since the wavefront of the second light beam that has passed through the measured optical system is deformed according to the aberration of the measured optical system, by causing the wavefront of the second light beam to interfere with the reference wavefront, the measured optical system Can be measured.

【0015】また、被測定光学系を通過した第1光束
は、平凸レンズの平面を透過する際に屈折する。このた
め、球面の有効径(第1光束を反射する領域)を小さく
することができる。請求項2に記載の発明は、請求項1
に記載の波面収差測定装置において、平凸レンズの球面
の曲率中心を被測定光学系の焦点に一致させたものであ
る。
The first light beam having passed through the optical system to be measured is refracted when passing through the plane of the plano-convex lens. For this reason, the effective diameter of the spherical surface (the area that reflects the first light beam) can be reduced. The invention described in claim 2 is the first invention.
Wherein the center of curvature of the spherical surface of the plano-convex lens coincides with the focal point of the optical system to be measured.

【0016】請求項2の波面収差測定装置において、被
測定光学系を通過した第1光束は、球面の曲率中心に集
光する。さらに、球面で反射した光束(反射光束)も、
球面の曲率中心で集光する。球面の曲率中心は平面上に
あるため、第1光束および反射光束の集光点は、平面上
に位置することになる。したがって、平凸レンズの平面
を第1光束および反射光束が透過する際に、収差が発生
することはない。
In the wavefront aberration measuring apparatus according to a second aspect, the first light beam having passed through the optical system to be measured is focused on the center of curvature of the spherical surface. Furthermore, the luminous flux reflected by the spherical surface (reflected luminous flux)
Light is collected at the center of curvature of the spherical surface. Since the center of curvature of the spherical surface is on a plane, the focal points of the first light beam and the reflected light beam are located on the plane. Therefore, when the first light beam and the reflected light beam pass through the plane of the plano-convex lens, no aberration occurs.

【0017】請求項3に記載の発明は、請求項2に記載
の波面収差測定装置において、被測定光学系に含まれる
ソリッドイマージョンレンズの端面に、平凸レンズの平
面を密着させたものである。請求項3の波面収差測定装
置によれば、ソリッドイマージョンレンズの端面から平
凸レンズの平面に第1光束を導くことができる。したが
って、ソリッドイマージョンレンズを含む光学系の波面
収差を測定することができる。
According to a third aspect of the present invention, in the wavefront aberration measuring apparatus according to the second aspect, a plane of a plano-convex lens is adhered to an end face of a solid immersion lens included in the optical system to be measured. According to the wavefront aberration measuring device of the third aspect, the first light flux can be guided from the end face of the solid immersion lens to the plane of the plano-convex lens. Therefore, the wavefront aberration of the optical system including the solid immersion lens can be measured.

【0018】請求項4に記載の発明は、請求項3に記載
の波面収差測定装置において、平凸レンズの平面とソリ
ッドイマージョンレンズの端面との間に、平凸レンズと
屈折率がほぼ同じである液体を挟み、平凸レンズの屈折
率nが「NAmax/n≦1」の条件を満足するようにし
たものである。ただし、NAmaxは、ソリッドイマージ
ョンレンズの最大NAを表す。
According to a fourth aspect of the present invention, in the wavefront aberration measuring apparatus according to the third aspect, a liquid having a refractive index substantially equal to that of the plano-convex lens is provided between the plane of the plano-convex lens and the end face of the solid immersion lens. , The refractive index n of the plano-convex lens satisfies the condition of “NAmax / n ≦ 1”. Here, NAmax represents the maximum NA of the solid immersion lens.

【0019】請求項4の波面収差測定装置によれば、平
凸レンズの平面とソリッドイマージョンレンズの端面と
の間の隙間が無くなり、かつ、平凸レンズとソリッドイ
マージョンレンズとの境界面での全反射が起きないた
め、ソリッドイマージョンレンズを含む光学系の波面収
差を精度良く測定することができる。なお、請求項4に
記載の波面収差測定装置において、平凸レンズの平面
に、液体を保持するための微小凹部を形成することによ
り、ソリッドイマージョンレンズの端面の位置調整を行
うことができる。したがって、平凸レンズの球面の曲率
中心をソリッドイマージョンレンズの端面上に位置決め
できる。
According to the wavefront aberration measuring device of the fourth aspect, the gap between the plane of the plano-convex lens and the end face of the solid immersion lens is eliminated, and the total reflection at the boundary between the plano-convex lens and the solid immersion lens is reduced. Since this does not occur, the wavefront aberration of the optical system including the solid immersion lens can be accurately measured. In the wavefront aberration measuring apparatus according to the fourth aspect, the position of the end face of the solid immersion lens can be adjusted by forming a minute concave portion for holding the liquid on the plane of the plano-convex lens. Therefore, the center of curvature of the spherical surface of the plano-convex lens can be positioned on the end surface of the solid immersion lens.

【0020】また、被測定光学系を通過した第1光束を
反射して被測定光学系に戻す反射光学系を備え、該反射
光学系での反射後に被測定光学系を通過した第2光束の
波面と参照波面とを干渉させることにより、被測定光学
系の波面収差を測定する波面収差測定装置であって、反
射光学系を、凹状の球面を底部に有する容器と該容器内
の液体とで構成する。さらに、反射光学系を、球面の曲
率中心が液体の液面上に位置する構成とし、かつ、液面
が被測定光学系側となる向きに配置する。また、液体の
液面を、第1光束を透過させる透過面とする。容器の球
面を、液面を透過した第1光束を反射させる反射面とす
る。
In addition, there is provided a reflecting optical system that reflects the first light beam that has passed through the optical system to be measured and returns the first light beam to the optical system to be measured, and that the second light beam that has passed through the optical system to be measured after being reflected by the reflecting optical system. A wavefront aberration measuring device for measuring a wavefront aberration of an optical system to be measured by causing a wavefront and a reference wavefront to interfere with each other, wherein a reflecting optical system is formed by a container having a concave spherical surface at a bottom and a liquid in the container. Constitute. Further, the reflection optical system is configured such that the center of curvature of the spherical surface is located on the liquid surface of the liquid, and is arranged so that the liquid surface is on the side of the measured optical system. In addition, the liquid surface of the liquid is a transmission surface that transmits the first light flux. The spherical surface of the container is a reflecting surface that reflects the first light flux transmitted through the liquid surface.

【0021】この波面収差測定装置において、被測定光
学系を通過した第1光束は、液体の液面を透過したのち
容器の球面で反射し、再び液面を透過して被測定光学系
に戻る。そして、被測定光学系に戻った光束は被測定光
学系を再び通過する。被測定光学系を通過した第2光束
の波面は、被測定光学系の持つ収差に応じて変形してい
るため、この第2光束の波面と参照波面とを干渉させる
ことにより、被測定光学系の波面収差を測定することが
できる。
In this wavefront aberration measuring apparatus, the first light beam that has passed through the optical system to be measured transmits through the liquid surface of the liquid, is reflected by the spherical surface of the container, passes through the liquid surface again, and returns to the optical system to be measured. . Then, the light flux returned to the measured optical system passes through the measured optical system again. Since the wavefront of the second light beam that has passed through the optical system to be measured is deformed according to the aberration of the optical system to be measured, the wavefront of the second light beam and the reference wavefront interfere with each other, so that the optical system to be measured Can be measured.

【0022】また、被測定光学系を通過した第1光束
は、液体の液面を透過する際に屈折する。このため、容
器の球面の有効径(第1光束を反射する領域)を小さく
することができる。
The first light beam that has passed through the optical system to be measured is refracted when transmitting through the liquid surface of the liquid. For this reason, the effective diameter of the spherical surface of the container (the area that reflects the first light beam) can be reduced.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施形態について
図面を用いて詳細に説明する。 (第1実施形態)まず、第1実施形態について説明す
る。第1実施形態は、請求項1,請求項2に対応する。
Embodiments of the present invention will be described below in detail with reference to the drawings. (First Embodiment) First, a first embodiment will be described. The first embodiment corresponds to claims 1 and 2.

【0024】第1実施形態の波面収差測定装置10は、
図1に示されるように、被測定光学系12の一方の焦点
F11側に配置された波面干渉部11と、被測定光学系
12の他方の焦点F12側に配置された平凸レンズ13
とで構成されている。図1において波面干渉部11の詳
細な構成は図示省略したが、よく知られたフィゾー型干
渉計やトワイマングリーン型干渉計などの2光線干渉計
と同様、レーザ光源と、レーザ光束の一部(測定光束L
11)を被測定光学系12の焦点F11に集光する光学
系と、レーザ光束の他の一部から参照光束を生成する光
学系と、干渉縞を検出する光学系とで構成されている。
The wavefront aberration measuring apparatus 10 according to the first embodiment
As shown in FIG. 1, a wavefront interference unit 11 arranged on one focal point F11 side of the measured optical system 12 and a plano-convex lens 13 arranged on the other focal point F12 side of the measured optical system 12.
It is composed of Although the detailed configuration of the wavefront interfering unit 11 is not shown in FIG. 1, the laser light source and a part of the laser beam are similar to a well-known two-beam interferometer such as a Fizeau interferometer or a Twyman-Green interferometer. (Measurement light flux L
11) is composed of an optical system that focuses the light beam 11) on the focal point F11 of the measured optical system 12, an optical system that generates a reference light beam from another part of the laser light beam, and an optical system that detects interference fringes.

【0025】一方、平凸レンズ13は、平面13aおよ
び凸状の球面13bを有し、球面13bの曲率中心A1
3が平面13a上に位置するように加工された光学素子
である。この平凸レンズ13は、平面13aが被測定光
学系12側となる向きに配置されている。さらに、平凸
レンズ13は、球面13bの曲率中心A13が被測定光
学系12の焦点F12に一致するように配置されてい
る。
On the other hand, the plano-convex lens 13 has a flat surface 13a and a convex spherical surface 13b, and has a center of curvature A1 of the spherical surface 13b.
3 is an optical element processed so as to be located on the plane 13a. The plano-convex lens 13 is arranged so that the plane 13a is on the side of the optical system 12 to be measured. Further, the plano-convex lens 13 is arranged such that the center of curvature A13 of the spherical surface 13b coincides with the focal point F12 of the optical system 12 to be measured.

【0026】なお、平凸レンズ13の平面13aは、被
測定光学系12を通過した光束(測定光束L12)を透
過させる透過面である。また、平凸レンズ13の球面1
3bは、平面13aを透過した測定光束L12を反射さ
せる反射面(凹状)である。このように構成された波面
収差測定装置10において、波面干渉部11から出射さ
れた測定光束L11は、被測定光学系12の焦点F11
で集光したのち、発散光束となって被測定光学系12に
入射する。
The plane 13a of the plano-convex lens 13 is a transmitting surface for transmitting a light beam (measurement light beam L12) that has passed through the optical system 12 to be measured. The spherical surface 1 of the plano-convex lens 13
Reference numeral 3b denotes a reflection surface (concave shape) that reflects the measurement light beam L12 transmitted through the plane 13a. In the wavefront aberration measuring apparatus 10 configured as described above, the measurement light beam L11 emitted from the wavefront interference unit 11 is focused on the focal point F11 of the optical system 12 to be measured.
After being condensed, the light is diverged and enters the optical system under measurement 12.

【0027】そして、被測定光学系12を通過した測定
光束L12は、被測定光学系12の焦点F12で集光す
ると同時に平凸レンズ13の平面13aに到達し、この
平面13aを透過して平凸レンズ13内に入射する。さ
らに、平凸レンズ13に入射した測定光束L12は、発
散光束となって球面13bに向かう。測定光束L12
は、請求項の「第1光束」に対応する。
The measurement light beam L12 that has passed through the measured optical system 12 is condensed at the focal point F12 of the measured optical system 12, and reaches the plane 13a of the plano-convex lens 13 at the same time. 13 is incident. Further, the measurement light beam L12 incident on the plano-convex lens 13 becomes a divergent light beam and travels toward the spherical surface 13b. Measurement light flux L12
Corresponds to the “first light flux” in the claims.

【0028】ここで、被測定光学系12を通過した測定
光束L12の集光角度をθo、平凸レンズ13内に入射
した測定光束L12の発散角度をθ1、平凸レンズ13
の屈折率をN1、空気の屈折率をNoとすると、集光角
度θoと発散角度θ1との関係は次式(1)で表される
(スネルの法則)。 No×sin(θo)=N1×sin(θ1) …… (1) 平凸レンズ13の屈折率N1は空気の屈折率Noより大
きいため、平凸レンズ13内に入射した測定光束L12
の発散角度θ1は、集光角度θoより小さくなる。
Here, the converging angle of the measurement light beam L12 passing through the optical system under measurement 12 is θo, the divergence angle of the measurement light beam L12 incident on the plano-convex lens 13 is θ1, the plano-convex lens 13
Assuming that the refractive index is N1 and the refractive index of air is No, the relationship between the converging angle θo and the diverging angle θ1 is expressed by the following equation (1) (Snell's law). No × sin (θo) = N1 × sin (θ1) (1) Since the refractive index N1 of the plano-convex lens 13 is larger than the refractive index No of air, the measurement light beam L12 incident on the plano-convex lens 13
Is smaller than the converging angle θo.

【0029】このように、集光角度θoよりも小さい発
散角度θ1で発散しながら球面13bに向かう測定光束
L12は、球面13bに到達するとそこで反射する。球
面13bの曲率中心A13は、平面13a上に位置し、
かつ上記した測定光束L12の集光点(F12)に一致
しているため、球面13bでの反射により得られた光束
(測定光束L13)は測定光束L12の光路を逆行す
る。つまり、測定光束L13は、集束しながら平面13
aに向かい、球面13bの曲率中心A13で集光する。
As described above, the measurement light beam L12 diverging at the divergence angle θ1 smaller than the converging angle θo and traveling toward the spherical surface 13b reaches the spherical surface 13b and is reflected there. The center of curvature A13 of the spherical surface 13b is located on the plane 13a,
Further, since the light flux coincides with the focal point (F12) of the measurement light flux L12, the light flux (measurement light flux L13) obtained by the reflection on the spherical surface 13b goes backward in the optical path of the measurement light flux L12. That is, the measurement light beam L13 converges on the plane 13
The light is focused at a center of curvature A13 of the spherical surface 13b toward a.

【0030】その後、測定光束L13は、平面13aを
透過して発散光束となり、被測定光学系12に再び入射
する。被測定光学系12を再び通過した光束(測定光束
L14)は、測定光束L11の光路を逆行し、被測定光
学系12の焦点F11で集光したのち発散光束となって
波面干渉部11に入射する。波面干渉部11に入射した
測定光束L14の波面は、被測定光学系12の持つ収差
に応じて変形している。測定光束L14は、請求項の
「第2光束」に対応する。
Thereafter, the measurement light beam L13 passes through the plane 13a to become a divergent light beam, and reenters the measured optical system 12. The light beam (measurement light beam L14) that has passed through the measured optical system 12 again travels backward in the optical path of the measured light beam L11, is collected at the focal point F11 of the measured optical system 12, becomes a divergent light beam, and enters the wavefront interference unit 11. I do. The wavefront of the measurement light beam L <b> 14 that has entered the wavefront interference unit 11 is deformed according to the aberration of the measured optical system 12. The measurement light beam L14 corresponds to a “second light beam” in the claims.

【0031】波面干渉部11では、戻って来た測定光束
L14の波面と参照光束の波面(参照波面)とが干渉
し、被測定光学系12の持つ収差に応じた干渉縞が形成
される。したがって、この干渉縞に基づいて、被測定光
学系12の波面収差を測定することができる。以上のよ
うに、波面収差測定装置10によれば、平凸レンズ13
内に入射した測定光束L12の発散角度θ1(測定光束
L13の集光角度にも相当)を小さくすることができる
ため、高度な面精度が要求される球面13bの有効径B
13を従来の有効径B23と比較して小さくすることが
できる。
In the wavefront interference unit 11, the wavefront of the returning measurement light beam L 14 and the wavefront of the reference light beam (reference wavefront) interfere with each other, and an interference fringe corresponding to the aberration of the optical system 12 to be measured is formed. Therefore, the wavefront aberration of the measured optical system 12 can be measured based on the interference fringes. As described above, according to the wavefront aberration measuring apparatus 10, the plano-convex lens 13
The divergence angle θ1 (corresponding to the converging angle of the measurement light beam L13) of the measurement light beam L12 incident on the inside can be reduced, so that the effective diameter B of the spherical surface 13b that requires high surface accuracy is required.
13 can be made smaller than the conventional effective diameter B23.

【0032】したがって、NA(∝ sinθo)の大きな
明るい被測定光学系12を測定する場合でも、有効径B
13を大きくする必要はなく、波面収差測定装置10を
安価に構成することができる。さらに、被測定光学系1
2からの測定光束L12が平凸レンズ13の平面13a
に入射する際、この平面13a上で集光するため、測定
光束L12の平凸レンズ13への入射による収差が発生
しない。
Therefore, even when measuring a bright optical system 12 having a large NA (∝ sin θo), the effective diameter B
13 does not need to be large, and the wavefront aberration measuring apparatus 10 can be configured at low cost. Further, the measured optical system 1
The measurement light beam L12 from 2 is a plane 13a of the plano-convex lens 13.
When the light is incident on the flat surface 13a, no aberration occurs due to the incidence of the measurement light beam L12 on the plano-convex lens 13.

【0033】なお、被測定光学系12が収差を持ってい
る場合、厳密には、測定光束L12の平凸レンズ13へ
の入射によって、平面13aで収差が発生する。しかし
ながら、波面収差測定装置10を用いて収差測定を行う
ような被測定光学系12は、高精度なものであり、その
収差も十分小さい。このため、たとえ平凸レンズ13の
平面13aで収差が発生した場合でも、この収差が波面
収差測定装置10による測定結果に実際に影響すること
はないといえる。
When the measured optical system 12 has an aberration, strictly speaking, the measurement light beam L12 is incident on the plano-convex lens 13 to cause an aberration on the plane 13a. However, the measured optical system 12 that performs the aberration measurement using the wavefront aberration measurement device 10 has high accuracy and its aberration is sufficiently small. Therefore, even if an aberration occurs on the plane 13 a of the plano-convex lens 13, it can be said that the aberration does not actually affect the measurement result by the wavefront aberration measurement device 10.

【0034】(第2実施形態)次に、第2実施形態につ
いて説明する。第2実施形態は、請求項1〜請求項5に
対応する。第2実施形態の波面収差測定装置は、ソリッ
ドイマージョンレンズ14を含む被測定光学系12の波
面収差を測定するためのものである。
(Second Embodiment) Next, a second embodiment will be described. The second embodiment corresponds to claims 1 to 5. The wavefront aberration measuring device according to the second embodiment is for measuring the wavefront aberration of the measured optical system 12 including the solid immersion lens 14.

【0035】このため第2実施形態の波面収差測定装置
には、上記した波面収差測定装置10と同様の波面干渉
部(不図示)および平凸レンズ13の他、図2(a)に示
されるように、微小凹部15が設けられ、この微小凹部
15内に液体16が保持されている。ここで、微小凹部
15は、平凸レンズ13の平面13aに形成されてい
る。また、液体16には、平凸レンズ13の屈折率N1
とほぼ同じ屈折率のものが用いられる(例えば、油侵顕
微鏡で用いられるマッチングオイル)。
For this reason, the wavefront aberration measuring apparatus according to the second embodiment has a wavefront interference section (not shown) and a plano-convex lens 13 similar to those of the above-described wavefront aberration measuring apparatus 10, and also has a structure as shown in FIG. A micro concave portion 15 is provided, and a liquid 16 is held in the fine concave portion 15. Here, the minute concave portion 15 is formed on the plane 13 a of the plano-convex lens 13. The liquid 16 has a refractive index N1 of the plano-convex lens 13.
The one having a refractive index substantially the same as that of (for example, matching oil used in an oil immersion microscope) is used.

【0036】ここで、ソリッドイマージョンレンズ14
は、図2(b)に示されるように、球面状の入射面14a
と平面状の端面14bとを有する。また、ソリッドイマ
ージョンレンズ14を含む被測定光学系12では、ソリ
ッドイマージョンレンズの端面14bに測定光束L12
が集光する。さて、平凸レンズ13は、ソリッドイマー
ジョンレンズ14の端面14bとの間に液体16を挟ん
で配置される。このとき、平凸レンズ13の球面13b
の曲率中心A13が、ソリッドイマージョンレンズ14
の端面14b上に位置し、かつ焦点F12に一致するよ
うに配置が調整される。
Here, the solid immersion lens 14
Is, as shown in FIG. 2B, a spherical incident surface 14a.
And a planar end surface 14b. In the measured optical system 12 including the solid immersion lens 14, the measurement light flux L12 is applied to the end surface 14b of the solid immersion lens.
Collects light. Now, the plano-convex lens 13 is disposed with the liquid 16 interposed between the plano-convex lens 13 and the end face 14 b of the solid immersion lens 14. At this time, the spherical surface 13b of the plano-convex lens 13
Of the solid immersion lens 14
Is adjusted so as to be positioned on the end surface 14b of the lens and coincide with the focal point F12.

【0037】このように、ソリッドイマージョンレンズ
14の端面14bを液体16に密着させるので、測定光
束L2が端面14bで反射することはなく、液体16側
に透過させることができる。したがって、上記した第1
実施形態の場合と同様に、測定光束L12は平凸レンズ
13の球面13bで反射し(測定光束L13)、ソリッ
ドイマージョンレンズ14を含む被測定光学系12を再
び通過する。そして、被測定光学系12を通過した測定
光束L14に基づいて波面収差が測定される。
As described above, since the end face 14b of the solid immersion lens 14 is brought into close contact with the liquid 16, the measuring light beam L2 can be transmitted to the liquid 16 without being reflected by the end face 14b. Therefore, the first
As in the case of the embodiment, the measurement light beam L12 is reflected by the spherical surface 13b of the plano-convex lens 13 (measurement light beam L13), and passes through the measured optical system 12 including the solid immersion lens 14 again. Then, the wavefront aberration is measured based on the measurement light beam L14 that has passed through the measured optical system 12.

【0038】このように、第2実施形態の波面収差測定
装置によれば、ソリッドイマージョンレンズ14を含む
被測定光学系12のNAが1を越える場合でも、1を越
えない場合でも、その波面収差を精度良く測定すること
ができる。
As described above, according to the wavefront aberration measuring apparatus of the second embodiment, whether the NA of the optical system under measurement 12 including the solid immersion lens 14 exceeds 1, or does not exceed 1, Can be accurately measured.

【0039】また、ソリッドイマージョンレンズ14の
端面14bと平凸レンズ13との間を満たす液体16の
屈折率が平凸レンズ13の屈折率N1に充分近いため、
この液体16層を測定光束L12,L13が通過する際
に収差が生じることはない。なお、液体16の屈折率と
平凸レンズ13の屈折率N1にある程度の差があって
も、液体16層の厚みを充分小さくするように、ソリッ
ドイマージョンレンズ14と平凸レンズ13を密着すれ
ば、液体16層を測定光束L12,L13が通過する際
に生じる収差を小さくすることができる。ただし、液体
16層の厚みを充分小さくした場合でも、球面13の曲
率中心A13をソリッドイマージョンレンズ14の端面
14b上に位置させるため、微小凹部15を浅くするこ
とが好ましい。
Further, since the refractive index of the liquid 16 filling the space between the end surface 14b of the solid immersion lens 14 and the plano-convex lens 13 is sufficiently close to the refractive index N1 of the plano-convex lens 13,
No aberration occurs when the measurement light beams L12 and L13 pass through the 16 layers of liquid. Even if there is some difference between the refractive index of the liquid 16 and the refractive index N1 of the plano-convex lens 13, if the solid immersion lens 14 and the plano-convex lens 13 are brought into close contact with each other so that the thickness of the liquid 16 layer is sufficiently small, the liquid The aberration generated when the measurement light beams L12 and L13 pass through the 16 layers can be reduced. However, even when the thickness of the liquid 16 layer is made sufficiently small, it is preferable to make the minute concave portion 15 shallow so that the center of curvature A13 of the spherical surface 13 is located on the end surface 14b of the solid immersion lens 14.

【0040】さらに、上記した第2実施形態では、平凸
レンズ13の平面13aに液体16用の微小凹部15を
設ける例を説明したが、微小凹部15は省略することも
できる。微小凹部15を省略した場合、平凸レンズ13
の平面13aに液体16を薄く塗布し、この液体16を
挟んで平凸レンズ13とソリッドイマージョンレンズ1
4とを配置すれば、同様の測定が行える。
Further, in the above-described second embodiment, an example has been described in which the minute concave portion 15 for the liquid 16 is provided on the plane 13a of the plano-convex lens 13, but the minute concave portion 15 can be omitted. When the minute concave portion 15 is omitted, the plano-convex lens 13
The liquid 16 is thinly applied to the flat surface 13a of the lens, and the plano-convex lens 13 and the solid immersion lens 1
4 and the same measurement can be performed.

【0041】また、平凸レンズ13とソリッドイマージ
ョンレンズ14との間に液体16を挟んで配置する例を
説明したが、液体16を省略して平凸レンズ13の平面
13aとソリッドイマージョンレンズ14の端面14b
とを密着させる場合でも、波面収差の測定は可能であ
る。この場合、平凸レンズ13の屈折率N1が、次式
(2)の条件を満足することが好ましい(ソリッドイマ
ージョンレンズ14の最大NAをNAmaxとする)。こ
のとき、平凸レンズ13とソリッドイマージョンレンズ
14との境界面での全反射を回避することができる。
Also, an example has been described in which the liquid 16 is disposed between the plano-convex lens 13 and the solid immersion lens 14, but the liquid 16 is omitted, and the plane 13a of the plano-convex lens 13 and the end surface 14b of the solid immersion lens 14 are omitted.
The wavefront aberration can be measured even in the case of close contact. In this case, it is preferable that the refractive index N1 of the plano-convex lens 13 satisfies the condition of the following expression (2) (the maximum NA of the solid immersion lens 14 is NAmax). At this time, total reflection at the interface between the plano-convex lens 13 and the solid immersion lens 14 can be avoided.

【0042】NAmax/N1≦1 …… (2) (第3実施形態)次に、第3実施形態について説明す
る。第3実施形態は、請求項6に対応する。
NAmax / N1 ≦ 1 (3) (Third Embodiment) Next, a third embodiment will be described. The third embodiment corresponds to claim 6.

【0043】第3実施形態の波面収差測定装置も、ソリ
ッドイマージョンレンズ14(図2(b)参照)を含む被
測定光学系12の波面収差を測定するためのものであ
る。この第3実施形態の波面収差測定装置には、上記し
た波面収差測定装置10の平凸レンズ13に代えて、図
3に示されるように、容器18が設けられ、この容器1
8内に液体17が保持される。
The wavefront aberration measuring apparatus according to the third embodiment is also for measuring the wavefront aberration of the optical system under measurement 12 including the solid immersion lens 14 (see FIG. 2B). In the wavefront aberration measuring apparatus of the third embodiment, a container 18 is provided instead of the plano-convex lens 13 of the wavefront aberration measuring apparatus 10 as shown in FIG.
The liquid 17 is held in the inside 8.

【0044】ここで、容器18の底部は、凹状の球面1
8aとなっている。この球面18aの曲率中心A18
は、液体17の液面17a上に位置する。また、液体1
7には、比較的大きな屈折率を有するもの(例えば、油
侵顕微鏡で用いられるマッチングオイル)が用いられ
る。なお、液体17の液面17aは、測定光束L12を
透過させる透過面である。また、容器18の球面18a
は、液面17aを透過した測定光束L12を反射させる
反射面である。
Here, the bottom of the container 18 has a concave spherical surface 1.
8a. The center of curvature A18 of the spherical surface 18a
Is located on the liquid surface 17 a of the liquid 17. In addition, liquid 1
For 7, one having a relatively large refractive index (for example, matching oil used in an oil immersion microscope) is used. The liquid surface 17a of the liquid 17 is a transmitting surface through which the measurement light beam L12 is transmitted. Also, the spherical surface 18a of the container 18
Is a reflection surface that reflects the measurement light beam L12 transmitted through the liquid surface 17a.

【0045】さて、ソリッドイマージョンレンズ14を
含む被測定光学系12は、ソリッドイマージョンレンズ
14の端面14bを液体17の液面17aに密着させて
配置される。このとき、容器18の球面18aの曲率中
心A18がソリッドイマージョンレンズ14の端面14
b上に位置し、かつ焦点F12に一致する。このよう
に、ソリッドイマージョンレンズ14の端面14bを液
体17に密着させるので、測定光束L2が端面14bで
反射することはなく、液体17側に透過させることがで
きる。
The measured optical system 12 including the solid immersion lens 14 is disposed such that the end face 14 b of the solid immersion lens 14 is in close contact with the liquid surface 17 a of the liquid 17. At this time, the center of curvature A18 of the spherical surface 18a of the container 18 corresponds to the end surface 14 of the solid immersion lens 14.
b and coincides with the focal point F12. As described above, the end face 14b of the solid immersion lens 14 is brought into close contact with the liquid 17, so that the measurement light beam L2 does not reflect on the end face 14b and can be transmitted to the liquid 17 side.

【0046】したがって、上記した実施形態の場合と同
様に、測定光束L12は容器18の球面18aで反射し
(測定光束L13)、ソリッドイマージョンレンズ14
を含む被測定光学系12を再び通過する。そして、被測
定光学系12を通過した測定光束L14に基づいて波面
収差が測定される。このように、第3実施形態の波面収
差測定装置によれば、ソリッドイマージョンレンズ14
を含む被測定光学系12のNAが1を越える場合でも、
1を越えない場合でも、その波面収差を精度良く測定す
ることができる。
Therefore, similarly to the above-described embodiment, the measurement light beam L12 is reflected by the spherical surface 18a of the container 18 (measurement light beam L13), and the solid immersion lens 14
Again pass through the optical system to be measured 12. Then, the wavefront aberration is measured based on the measurement light beam L14 that has passed through the measured optical system 12. Thus, according to the wavefront aberration measuring device of the third embodiment, the solid immersion lens 14
Even if the NA of the optical system under measurement 12 including
Even when the value does not exceed 1, the wavefront aberration can be accurately measured.

【0047】なお、容器18内の液体17の液面17a
が、球面18aの曲率中心A18よりも高くても、ソリ
ッドイマージョンレンズ14の位置調整を行うことで、
ソリッドイマージョンレンズ14の端面14b上に球面
18の曲率中心A18を位置させ、同様の測定を行うこ
とができる。
The liquid level 17a of the liquid 17 in the container 18
Is higher than the center of curvature A18 of the spherical surface 18a, but by adjusting the position of the solid immersion lens 14,
The same measurement can be performed by positioning the center of curvature A18 of the spherical surface 18 on the end surface 14b of the solid immersion lens 14.

【0048】[0048]

【発明の効果】以上のように、請求項1〜請求項6の発
明によれば、NAの大きな明るい光学系やソリッドイマ
ージョンレンズを含む光学系であっても精度良く波面収
差を測定することができ、かつ、安価に構成できる波面
収差測定装置を提供することができる。
As described above, according to the first to sixth aspects of the present invention, it is possible to accurately measure the wavefront aberration even in an optical system having a large NA and an optical system including a solid immersion lens. It is possible to provide a wavefront aberration measuring device that can be configured at a low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態の波面収差測定装置を示す構成図
である。
FIG. 1 is a configuration diagram illustrating a wavefront aberration measurement device according to a first embodiment.

【図2】第2実施形態の波面収差測定装置を示す構成図
である。
FIG. 2 is a configuration diagram illustrating a wavefront aberration measurement device according to a second embodiment.

【図3】第3実施形態の波面収差測定装置を示す構成図
である。
FIG. 3 is a configuration diagram illustrating a wavefront aberration measurement apparatus according to a third embodiment.

【図4】従来の波面収差測定装置を示す構成図である。FIG. 4 is a configuration diagram showing a conventional wavefront aberration measuring device.

【符号の説明】[Explanation of symbols]

10、20 波面収差測定装置 11、21 波面干渉部 12,22 被測定光学系 13 平凸レンズ 14 ソリッドイマージョンレンズ 15 微小凹部 16、17 液体 18 容器 23 折り返しミラー 10, 20 Wavefront aberration measuring device 11, 21 Wavefront interference unit 12, 22 Optical system to be measured 13 Plano-convex lens 14 Solid immersion lens 15 Micro concave portion 16, 17 Liquid 18 Container 23 Folding mirror

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年9月1日(1999.9.1)[Submission date] September 1, 1999 (1999.9.1)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0034】(第2実施形態)次に、第2実施形態につ
いて説明する。第2実施形態は、請求項1〜請求項
対応する。第2実施形態の波面収差測定装置は、ソリッ
ドイマージョンレンズ14を含む被測定光学系12の波
面収差を測定するためのものである。
(Second Embodiment) Next, a second embodiment will be described. The second embodiment corresponds to claims 1 to 4 . The wavefront aberration measuring device according to the second embodiment is for measuring the wavefront aberration of the measured optical system 12 including the solid immersion lens 14.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0042[Correction target item name] 0042

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0042】NAmax/N1≦1 …… (2) (第3実施形態)次に、第3実施形態について説明す
る。
NAmax / N1 ≦ 1 (3) (Third Embodiment) Next, a third embodiment will be described.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0048[Correction target item name] 0048

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0048】[0048]

【発明の効果】以上のように、請求項1〜請求項の発
明によれば、NAの大きな明るい光学系やソリッドイマ
ージョンレンズを含む光学系であっても精度良く波面収
差を測定することができ、かつ、安価に構成できる波面
収差測定装置を提供することができる。
As described above, according to the first to fourth aspects of the present invention, the wavefront aberration can be accurately measured even in a bright optical system having a large NA or an optical system including a solid immersion lens. It is possible to provide a wavefront aberration measuring device that can be configured at a low cost.

フロントページの続き Fターム(参考) 2F064 AA11 BB03 CC04 EE09 GG15 GG44 HH03 JJ01 2F065 AA65 BB22 CC21 DD02 DD03 FF51 GG04 HH02 HH13 JJ03 JJ09 JJ26 LL04 LL16 LL19 QQ21 QQ32 2G086 HH06 2H087 KA12 TA03 Continued on the front page F term (reference) 2F064 AA11 BB03 CC04 EE09 GG15 GG44 HH03 JJ01 2F065 AA65 BB22 CC21 DD02 DD03 FF51 GG04 HH02 HH13 JJ03 JJ09 JJ26 LL04 LL16 LL19 QQ21 QQ32 2G087 HH06 TA

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被測定光学系を通過した第1光束を反射
して前記被測定光学系に戻す反射光学系を備え、該反射
光学系での反射後に前記被測定光学系を通過した第2光
束の波面と参照波面とを干渉させることにより、前記被
測定光学系の波面収差を測定する波面収差測定装置であ
って、 前記反射光学系は、平面および凸状の球面を有すると共
に、前記球面の曲率中心が前記平面上に位置する平凸レ
ンズにて構成され、かつ、前記平面が前記被測定光学系
側となる向きに配置され、 前記平面は、前記第1光束を透過させる透過面であり、 前記球面は、前記平面を透過した第1光束を反射させる
反射面であることを特徴とする波面収差測定装置。
A reflection optical system that reflects the first light flux that has passed through the optical system to be measured and returns the first light flux to the optical system to be measured, and that has passed through the optical system to be measured after being reflected by the optical system to be measured. A wavefront aberration measuring apparatus for measuring a wavefront aberration of the optical system to be measured by causing a wavefront of a light beam to interfere with a reference wavefront, wherein the reflecting optical system has a flat surface and a convex spherical surface, and the spherical surface. Is formed of a plano-convex lens whose center of curvature is located on the plane, and is arranged so that the plane is on the side of the optical system to be measured. The plane is a transmission surface that transmits the first light flux. The wavefront aberration measuring device, wherein the spherical surface is a reflecting surface that reflects the first light beam transmitted through the plane.
【請求項2】 請求項1に記載の波面収差測定装置にお
いて、 前記平凸レンズは、前記被測定光学系の焦点に前記球面
の曲率中心を一致させて配置されることを特徴とする波
面収差測定装置。
2. The wavefront aberration measuring apparatus according to claim 1, wherein the plano-convex lens is arranged so that a center of curvature of the spherical surface coincides with a focal point of the optical system to be measured. apparatus.
【請求項3】 請求項2に記載の波面収差測定装置にお
いて、 前記平凸レンズは、前記被測定光学系に含まれるソリッ
ドイマージョンレンズの端面に前記平面を密着させて配
置されることを特徴とする波面収差測定装置。
3. The wavefront aberration measuring apparatus according to claim 2, wherein the plano-convex lens is disposed such that the flat surface is in close contact with an end surface of a solid immersion lens included in the optical system to be measured. Wavefront aberration measurement device.
【請求項4】 請求項3に記載の波面収差測定装置にお
いて、 前記平凸レンズは、前記平面と前記ソリッドイマージョ
ンレンズの前記端面との間に、前記平凸レンズと屈折率
がほぼ同じである液体を挟んで配置され、 前記平凸レンズの屈折率nは、前記ソリッドイマージョ
ンレンズの最大NAをNAmaxとするとき、「NAmax/
n≦1」の条件を満足することを特徴とする波面収差測
定装置。
4. The wavefront aberration measuring apparatus according to claim 3, wherein the plano-convex lens is a liquid having a refractive index substantially equal to that of the plano-convex lens between the plane and the end face of the solid immersion lens. When the maximum NA of the solid immersion lens is NAmax, the refractive index n of the plano-convex lens is “NAmax /
A wavefront aberration measuring device satisfying a condition of n ≦ 1.
JP24670599A 1999-08-31 1999-08-31 Apparatus for measuring wavefront aberration Pending JP2001074605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24670599A JP2001074605A (en) 1999-08-31 1999-08-31 Apparatus for measuring wavefront aberration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24670599A JP2001074605A (en) 1999-08-31 1999-08-31 Apparatus for measuring wavefront aberration

Publications (1)

Publication Number Publication Date
JP2001074605A true JP2001074605A (en) 2001-03-23

Family

ID=17152420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24670599A Pending JP2001074605A (en) 1999-08-31 1999-08-31 Apparatus for measuring wavefront aberration

Country Status (1)

Country Link
JP (1) JP2001074605A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250678A (en) * 2001-02-27 2002-09-06 Olympus Optical Co Ltd Wave front measuring instrument and wave front measuring method
US7276717B2 (en) 2004-11-05 2007-10-02 Canon Kabushiki Kaisha Measuring apparatus, exposure apparatus and device manufacturing method
US7623218B2 (en) 2004-11-24 2009-11-24 Carl Zeiss Smt Ag Method of manufacturing a miniaturized device
CN104215430A (en) * 2014-08-26 2014-12-17 中国科学院长春光学精密机械与物理研究所 Optical efficiency detection method for reflecting surface of primary mirror of large-aperture photoelectric telescope
CN110375964A (en) * 2019-07-18 2019-10-25 浙江大学 It is a kind of based on extension how the wavefront error detection device and detection method of bohr-Zernike polynominal optimization phase recovery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250678A (en) * 2001-02-27 2002-09-06 Olympus Optical Co Ltd Wave front measuring instrument and wave front measuring method
US7276717B2 (en) 2004-11-05 2007-10-02 Canon Kabushiki Kaisha Measuring apparatus, exposure apparatus and device manufacturing method
US7623218B2 (en) 2004-11-24 2009-11-24 Carl Zeiss Smt Ag Method of manufacturing a miniaturized device
CN104215430A (en) * 2014-08-26 2014-12-17 中国科学院长春光学精密机械与物理研究所 Optical efficiency detection method for reflecting surface of primary mirror of large-aperture photoelectric telescope
CN104215430B (en) * 2014-08-26 2016-12-07 中国科学院长春光学精密机械与物理研究所 A kind of heavy caliber photo-electric telescope primary mirror reflecting surface optical efficiency detection method
CN110375964A (en) * 2019-07-18 2019-10-25 浙江大学 It is a kind of based on extension how the wavefront error detection device and detection method of bohr-Zernike polynominal optimization phase recovery
CN110375964B (en) * 2019-07-18 2021-01-01 浙江大学 Wavefront error detection device and detection method based on extended Neiboll-Zernike mode optimized phase recovery

Similar Documents

Publication Publication Date Title
US7072042B2 (en) Apparatus for and method of measurement of aspheric surfaces using hologram and concave surface
US6785006B2 (en) Wavefront measuring apparatus and wavefront measuring method
CN112484647B (en) Interferometer displacement measurement system and method
US20070146724A1 (en) Vibration-resistant interferometer apparatus
JPH02228505A (en) Interferometer
US6909510B2 (en) Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses
JP2001074605A (en) Apparatus for measuring wavefront aberration
US4820049A (en) Coating and method for testing plano and spherical wavefront producing optical surfaces and systems having a broad range of reflectivities
JP2004294155A (en) Apparatus and method for measuring refractive index and thickness
JPH0789052B2 (en) Phase conjugate interferometer for parabolic shape inspection measurement
JP2000097622A (en) Interferometer
JPH1090113A (en) Interferometer
JP3072925B2 (en) Interferometer for transmitted wavefront measurement
JP3871183B2 (en) Method and apparatus for measuring three-dimensional shape of optical element
JP3295993B2 (en) Surface accuracy measuring device
JP2000097657A (en) Interferometer
JPH05164991A (en) Interferometer device
KR100355025B1 (en) Null lens optical system for testing a surface of a concave mirror with a ellipsoid
JP2000214046A (en) Optical element evaluating method
JP4853941B2 (en) Interferometer device for wavefront measurement
JP2000097612A (en) Reflection type pinhole, its manufacturing method and interferometer using the pinhole
JP2000088513A (en) Aspherical wave generating lens system assembling adjusting equipment
JPH08271209A (en) Light waveguide path type displacement sensor and hemispherical lens used for the sensor
JP2000097650A (en) Device for measuring shape of aspheric surface
JPH11325848A (en) Aspherical surface shape measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804