JPH08271209A - Light waveguide path type displacement sensor and hemispherical lens used for the sensor - Google Patents

Light waveguide path type displacement sensor and hemispherical lens used for the sensor

Info

Publication number
JPH08271209A
JPH08271209A JP7286895A JP7286895A JPH08271209A JP H08271209 A JPH08271209 A JP H08271209A JP 7286895 A JP7286895 A JP 7286895A JP 7286895 A JP7286895 A JP 7286895A JP H08271209 A JPH08271209 A JP H08271209A
Authority
JP
Japan
Prior art keywords
optical waveguide
light
lens
waveguide substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7286895A
Other languages
Japanese (ja)
Inventor
Akio Watanabe
章夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP7286895A priority Critical patent/JPH08271209A/en
Publication of JPH08271209A publication Critical patent/JPH08271209A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To measure even the surface shape of a pipe inner surface and a hole side surface by providing a hemispherical lens for reflecting and focusing measurement light in the direction vertical to the longitudinal direction of a light waveguide path substrate. CONSTITUTION: A light waveguide path substrate A is provided with end faces 1a and 1b in parallel with a longitudinal direction and inclined end faces 1c and 1d, and consists of an electrooptical crystal substrate 1 and light waveguide paths 2 and 3. The waveguide path 3 has an edge part vertical to the end face 1d, and the waveguide path 2 forms a certain angle to the end face 1d. The substrate A is housed in a cylindrical sensor case 10 whose outer diameter is approximately 6mm, with the emission edge of the waveguide path 2 at the center of the case 10. A hemispherical lens 12 is provided at a position where the distance between the emission edge and the center of the spherical surface of the lens 12 is approximately 7.5mm on the emission light axis at approximately 6.05 degrees from the emission edge. By adjusting the angle between the normal of the reflection surface of the lens 12 and incident measurement light to be approximately 48 degrees, the measurement light is totally reflected on the reflection surface of the lens and is focused at a position which is approximately 3.2mm in a direction vertical to the longitudinal direction of the substrate A, thus the side surface of a hole with the inner diameter of at least about 7mm, can be measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光学的干渉により被測
定物の変位測定を行う光導波路型変位センサおよびそれ
に用いるレンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide type displacement sensor for measuring displacement of an object to be measured by optical interference and a lens used therefor.

【0002】[0002]

【従来の技術】マイケルソン干渉計をニオブ酸リチウム
(LiNbO3)やタンタル酸リチウム(LiTaO3)等の電気光
学結晶基板上に構成した、複雑な光学系の位置合わせが
不要でかつ小型な変位計として、光導波路型変位センサ
がある。マイケルソン干渉計では測定光の光軸と直角な
境界面が存在すると、境界面からの反射光が被測定物か
らの反射光に混入し測定精度の低下を招く。そこで光導
波路型変位センサにおいては、測定光用入出力端面を斜
面にして境界面からの反射光を抑制している。そのため
光導波路からの出射される測定光は屈折により光導波路
基板の長手方向と必ずしも平行とはならないために、集
光レンズを該測定光の光軸に一致させると、測定光の被
測定物への入射方向が光導波路基板の長手方向と一致し
なくなり、組立が困難になると共に被測定物に対する変
位センサの位置決めが困難になるという問題が生じてい
た。この問題を解決するために、屈折率分布型レンズの
一方の端面を斜めに研磨する方法がある。このような技
術としては、例えば、本出願人が特願平6−16544
において提案したものがある。
2. Description of the Related Art A Michelson interferometer constructed on an electro-optic crystal substrate such as lithium niobate (LiNbO 3 ) or lithium tantalate (LiTaO 3 ) does not require complicated optical system alignment and is small displacement. There is an optical waveguide type displacement sensor as a meter. In the Michelson interferometer, if there is a boundary surface perpendicular to the optical axis of the measurement light, the reflected light from the boundary surface is mixed with the reflected light from the object to be measured, and the measurement accuracy is deteriorated. Therefore, in the optical waveguide type displacement sensor, the input / output end face for measurement light is inclined to suppress the reflected light from the boundary face. Therefore, the measurement light emitted from the optical waveguide is not always parallel to the longitudinal direction of the optical waveguide substrate due to refraction. Since the incident direction of does not coincide with the longitudinal direction of the optical waveguide substrate, there is a problem that the assembly becomes difficult and the positioning of the displacement sensor with respect to the measured object becomes difficult. In order to solve this problem, there is a method of obliquely polishing one end surface of the gradient index lens. Examples of such a technique include, for example, Japanese Patent Application No. Hei 6-16544.
There is one proposed in.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記光導
波路型変位センサは、パイプの内側、シリンダなどの穴
や凹みの側面等のの表面粗さや形状の測定には使用でき
なかった。それは、上記光導波路型変位センサをパイプ
や穴の中に挿入することができても、測定光は光導波路
基板の長手方向に平行な方向に集光されるため、測定光
をパイプの内側や穴の側面に照射することができないか
らである。
However, the above-mentioned optical waveguide type displacement sensor cannot be used for measuring the surface roughness and shape of the inside of a pipe, the side surface of a hole or recess of a cylinder or the like. Even if the optical waveguide type displacement sensor can be inserted into a pipe or a hole, the measuring light is condensed in a direction parallel to the longitudinal direction of the optical waveguide substrate. This is because the side surface of the hole cannot be irradiated.

【0004】本発明は、上記の問題点に鑑み、その目的
とするところは、パイプの内側や穴の側面の表面粗さや
形状を測定することができる光導波路型変位センサを提
供することである。
The present invention has been made in view of the above problems, and an object thereof is to provide an optical waveguide type displacement sensor capable of measuring the surface roughness and shape of the inside of a pipe and the side surface of a hole. .

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の光導波路型変位センサは、光導波路基板の
長手方向の両端面のうち少なくとも一方の端面を該長手
方向に対して斜面とし該斜面に測定光用入出力端を形成
した光導波路基板と、光源から出力される光源光を該光
導波路基板に導く光ファイバと、該光導波路基板から出
力される干渉信号光を受光装置に導く光ファイバと、該
光導波路基板表面に設けられた参照光及び/あるいは測
定光を変調するための変調用電極に変調用電気信号を印
加するための電送線とを備えた光導波路型変位センサに
おいて、光導波路基板の長手方向と垂直な方向に測定光
を折り返し、かつ集光するための半球状レンズを備えて
いる。
In order to achieve the above object, an optical waveguide type displacement sensor of the present invention is such that at least one of the end faces of the optical waveguide substrate in the longitudinal direction is an inclined surface with respect to the longitudinal direction. An optical waveguide substrate having a measuring light input / output end formed on the slope, an optical fiber for guiding the light source light output from the light source to the optical waveguide substrate, and a light receiving device for receiving the interference signal light output from the optical waveguide substrate Optical waveguide type displacement provided with an optical fiber for guiding to an optical waveguide and a transmission line for applying a modulation electric signal to a modulation electrode for modulating the reference light and / or the measurement light provided on the surface of the optical waveguide substrate. The sensor includes a hemispherical lens for returning and condensing the measurement light in a direction perpendicular to the longitudinal direction of the optical waveguide substrate.

【0006】また、他の構成として、該光導波路基板の
測定光用入出力端面と該半球状レンズの間に、該測定光
用入出力端面から斜めに出射する測定光を完全な平行光
ではない準コリメイト光線に変える屈折率分布型レンズ
を備えてもよい。
As another structure, between the measuring light input / output end surface of the optical waveguide substrate and the hemispherical lens, the measuring light obliquely emitted from the measuring light input / output end surface is completely parallel light. A gradient index lens that converts light into a non-collimated ray may be provided.

【0007】また、該光導波路基板上にはその表面に少
なくとも光導波路と方向性結合器が形成され、その長手
方向の一端には光源光用入力端と干渉信号光用出力端が
形成され、他端面には該測定光入出力端と参照光用反射
鏡が形成されている。該半球状レンズは半球状レンズの
外周面が球面と該球面の曲率の中心を含む平面とから構
成されている。
At least an optical waveguide and a directional coupler are formed on the surface of the optical waveguide substrate, and a light source light input end and an interference signal light output end are formed at one longitudinal end thereof. The measuring light input / output end and a reference light reflecting mirror are formed on the other end surface. The outer peripheral surface of the hemispherical lens is composed of a spherical surface and a plane including the center of curvature of the spherical surface.

【0008】[0008]

【作用】光源から出射された光は、光ファイバを介して
光導波路基板に導かれ、光導波路基板内の方向性結合器
で二つの光導波路に分岐され、光導波路基板の長手方向
に対する測定光用入出力端面の法線が角度θtとなるよ
うに形成されている測定光用入出力端面に導かれる。一
方の光は該端面に垂直に入射し、該端面に設けられてい
る反射鏡に反射され、参照光として再び方向性結合器へ
戻っていく。
The light emitted from the light source is guided to the optical waveguide substrate through the optical fiber and is branched into two optical waveguides by the directional coupler in the optical waveguide substrate. It is guided to the measuring light input / output end surface which is formed such that the normal line of the input / output end surface for measurement has an angle θ t . One of the lights enters the end face perpendicularly, is reflected by a reflecting mirror provided on the end face, and returns to the directional coupler again as reference light.

【0009】他方の光は光導波路基板の長手方向に平行
に形成された光導波路を伝搬して、該端面に臨む。した
がって該端面に対して角度θtで入射し、式(1)に示
す角度θr(図3参照)の方向に測定光として出射され
る。
The other light propagates through the optical waveguide formed parallel to the longitudinal direction of the optical waveguide substrate and faces the end face. Therefore, the light enters the end face at an angle θ t and is emitted as measurement light in the direction of the angle θ r (see FIG. 3) shown in Expression (1).

【0010】 θr=sin-1[nw/n0・sin(θt)]− θt (1) ここで、角度θrは光導波路基板の長手方向に対する測
定光の測定光用入出力端面からの出射角であり、nw
0は光導波路基板および空気の屈折率である。
Θ r = sin −1 [n w / n 0 · sin (θ t )] − θ t (1) Here, the angle θ r is the input / output of the measurement light with respect to the longitudinal direction of the optical waveguide substrate. Is the exit angle from the end face, n w ,
n 0 is the refractive index of the optical waveguide substrate and air.

【0011】光導波路基板の測定光入出力端面から出射
された測定光は、次に半球状レンズの球面に入射する。
ここで測定光が半球状レンズの球面の中心を通過するよ
うに半球状レンズを配置すると、測定光は入射面に対し
垂直に入射することになるため屈折は生じない。また半
球状レンズが、半球状レンズのレンズ底面が球面の曲率
の中心を含むような平面として形成されているため、レ
ンズ底面に反射膜を施すことで該レンズ底面が反射面と
なり、測定光は球面の中心で反射されることになる。し
たがって、測定光は反射角によらず半球状レンズの出射
面に垂直に出射する。
The measurement light emitted from the measurement light input / output end face of the optical waveguide substrate then enters the spherical surface of the hemispherical lens.
If the hemispherical lens is arranged so that the measuring light passes through the center of the spherical surface of the hemispherical lens, the measuring light will enter perpendicularly to the incident surface, and thus refraction will not occur. Further, since the hemispherical lens is formed as a flat surface such that the lens bottom surface of the hemispherical lens includes the center of curvature of the spherical surface, by applying a reflective film to the lens bottom surface, the lens bottom surface becomes a reflection surface, and the measurement light is It will be reflected at the center of the sphere. Therefore, the measurement light is emitted perpendicularly to the emission surface of the hemispherical lens regardless of the reflection angle.

【0012】半球状レンズによる測定光の反射方向の代
表例を図3および図4に示す。図3に示すように、光導
波路基板の測定光入出力端面から出射された測定光を、
半球状レンズの底面であるレンズ反射面において、光導
波路基板の該端面で測定光が屈折させられた方向と同じ
方向に、更に進行方向を曲げる場合には、レンズ反射面
に入射する測定光と該レンズ反射面の法線とのなす角度
θnを式(2)を満たす角度とすることにより、測定光
をレンズ反射面で光導波路基板の長手方向と垂直の方向
に反射し、被測定物に向けて出射・集光することができ
る。
Representative examples of the direction of reflection of the measuring light by the hemispherical lens are shown in FIGS. 3 and 4. As shown in FIG. 3, the measurement light emitted from the measurement light input / output end face of the optical waveguide substrate is
On the lens reflecting surface that is the bottom surface of the hemispherical lens, in the same direction as the direction in which the measuring light is refracted at the end face of the optical waveguide substrate, when further bending the traveling direction, By setting the angle θ n formed by the normal line of the lens reflection surface to an angle that satisfies the expression (2), the measurement light is reflected by the lens reflection surface in the direction perpendicular to the longitudinal direction of the optical waveguide substrate, and the DUT is measured. It is possible to emit and collect light toward.

【0013】 θn=(90+θr)/2 (2) また、図4のように、測定光がレンズ反射面において、
光導波路基板の該端面で測定光が屈折させられた方向と
逆の方向に曲げる場合には、角度θnを式(3)を満た
すようにすることで、測定光を光導波路基板の長手方向
と垂直の方向に反射することができる。
Θ n = (90 + θ r ) / 2 (2) Further, as shown in FIG.
When the measurement light is bent in the direction opposite to the direction in which the measurement light is refracted at the end face of the optical waveguide substrate, the angle θ n is made to satisfy the expression (3) so that the measurement light is emitted in the longitudinal direction of the optical waveguide substrate. And can be reflected in the vertical direction.

【0014】 θn=(90−θr)/2 (3) ここで、半球状レンズの屈折率nLとおくと、角θn
が式(4)を満足すれば、測定光をレンズ反射面で全反
射させることができる。
[0014] θ n = (90- θ r) / 2 (3) Here, if the refractive index of the hemispherical lens is denoted by nL, angles θn
Is satisfied with the equation (4), the measurement light can be totally reflected by the lens reflecting surface.

【0015】 nL・sinθn)>1 (4) 全反射させることができれば、レンズ反射面に施す反射
膜を省略することができるため、図4に示す方向よりは
図3に示す方向に測定光を反射させた方が、角θnが
大きく、全反射させ易くなり、半球状レンズのコストを
安価にすることができる。
[0015] nL · sin ( θn)> 1 (4) If total reflection can be performed, the reflection film applied to the lens reflection surface can be omitted, so the measurement light is reflected in the direction shown in FIG. 3 rather than the direction shown in FIG. who is that a large angles .theta.n, easily totally reflects the cost of the semi-spherical lens can be made inexpensive.

【0016】被測定物で反射された光は前記と逆の経路
を辿って光導波路基板に入射する。光導波路基板に戻っ
た測定光は前記の参照光と干渉し、その干渉光は受光素
子に向けて光導波路基板から出射される。この干渉光の
強度変化を検出することにより、被測定物の変位が測定
することができるのである。
The light reflected by the object to be measured enters the optical waveguide substrate following the path opposite to the above. The measurement light returning to the optical waveguide substrate interferes with the reference light, and the interference light is emitted from the optical waveguide substrate toward the light receiving element. The displacement of the object to be measured can be measured by detecting the change in the intensity of the interference light.

【0017】なお本発明を用いず、測定光を光導波路基
板の長手方向と垂直な方向に折り返し、かつ集光するに
は、図5に示すように折り返した後で集光レンズを設け
る方法、図6に示すように集光レンズを経た後で折り返
す方法の2通りの方法が考えられる。ところが前者は、
光導波路基板から出射した測定光は徐々に拡がり、ビー
ム径が大きくなっていくため、ビーム径の大きな測定光
を全て集光するには開口径の大きな集光レンズ用いざる
を得ない。開口径の大きな集光レンズは焦点距離が長く
なるため、測定可能な穴の径が大きくなるという問題が
ある。
In order to return the measurement light in the direction perpendicular to the longitudinal direction of the optical waveguide substrate without using the present invention and to collect the light, a method of providing a condenser lens after the light is folded back as shown in FIG. As shown in FIG. 6, two methods are conceivable: a method of folding back after passing through a condenser lens. However, the former is
Since the measurement light emitted from the optical waveguide substrate gradually spreads and the beam diameter increases, it is necessary to use a condenser lens with a large aperture diameter to collect all the measurement light with a large beam diameter. Since a condensing lens having a large aperture diameter has a long focal length, there is a problem that the diameter of a measurable hole becomes large.

【0018】一方後者は、集光レンズから焦点までの距
離を長くする必要が生じる。このため、測定光は緩やか
な角度で集光する他なく、被測定物表面からの反射光の
一部しか光導波路に戻らないような光学系、すなわち開
口の小さな光学系を採用せざるを得ない。その結果、S
N比の劣化、被測定物の測定可能傾斜角の低下を招いて
しまう。
On the other hand, in the latter case, it is necessary to increase the distance from the condenser lens to the focal point. For this reason, the measurement light has to be condensed at a gentle angle, and an optical system in which only a part of the reflected light from the surface of the object to be measured returns to the optical waveguide, that is, an optical system with a small aperture must be adopted. Absent. As a result, S
This leads to deterioration of the N ratio and reduction of the measurable tilt angle of the measured object.

【0019】また図5、図6何れの方法も、折り返し用
の反射鏡と集光レンズの少なくとも二つの光学部品が必
要であり、これらの方法では部品のコストと同時に、二
つの部品を設置する必要があるため、組立工程のコスト
も押し上げていまう。
Further, both of the methods shown in FIGS. 5 and 6 require at least two optical components such as a reflecting mirror for reflection and a condenser lens. In these methods, two components are installed at the same time as the cost of the components. Since it is necessary, we will increase the cost of the assembly process.

【0020】[0020]

【実施例】【Example】

(実施例1) 図1を用いて本発明の第1の実施例につ
いて説明をする。用いられる光導波路基板Aは、本件出
願人が出願した特願平5−284643で提案したもの
と実質的に同じであり、ニオブ酸リチウム(LiNbO3)や
タンタル酸リチウム(LiTaO3)等の電気光学結晶基板1
に光導波路2,3が形成されたものである。光導波路基
板Aは長手方向に平行な端面1a,1bと、長手方向に
対して斜めに研磨加工された二つの端面1c,1dとを
有している。
(Embodiment 1) A first embodiment of the present invention will be described with reference to FIG. The optical waveguide substrate A used is substantially the same as that proposed in Japanese Patent Application No. 5-284843 filed by the applicant of the present application, such as lithium niobate (L i NbO3) and lithium tantalate (L i TaO3). Electro-optic crystal substrate 1
The optical waveguides 2 and 3 are formed on the. The optical waveguide substrate A has end faces 1a and 1b parallel to the longitudinal direction and two end faces 1c and 1d that are polished obliquely to the longitudinal direction.

【0021】光導波路3は端部を斜面1dに対し0度の
角度、つまり垂直に臨ませており、端面1dには光導波
路3の光を効率よく反射できる金属ないし誘電体の反射
鏡5が形成してある。また該光導波路3上には変調用電
極6が形成してあり、該変調用電極6には変調用電気信
号を印加するための電送線7が接続されている。
The end portion of the optical waveguide 3 faces the inclined surface 1d at an angle of 0 degree, that is, perpendicularly, and the end surface 1d is provided with a metal or dielectric reflecting mirror 5 capable of efficiently reflecting the light of the optical waveguide 3. Has been formed. A modulation electrode 6 is formed on the optical waveguide 3, and a transmission line 7 for applying a modulation electric signal is connected to the modulation electrode 6.

【0022】一方、光導波路2は斜面1dに角度を持っ
て形成されている。光導波路端面1dからの反射戻り光
強度は、光導波路2と端面1dのなす角θtに強く依
存しており、ニオブ酸リチウム基板を用いた場合にθ
tを5度以上とすれば反射戻り光は十分に抑制できる。
ニオブ酸リチウム基板の屈折率は約2.2でありθt
を5度とするθrは6.05度となる。
On the other hand, the optical waveguide 2 is formed on the slope 1d at an angle. Reflected return light intensity from the light waveguide end face 1d is strongly dependent on the angle of θt of the optical waveguide 2 and the end face 1d, in the case of using a lithium niobate substrate θ
If t is 5 degrees or more, reflected return light can be sufficiently suppressed.
Refractive index of the lithium niobate substrate is about 2.2, [theta] t
And it is referred to as 5 degrees θr will be 6.05 degrees.

【0023】半球状レンズ12は、屈折nL=1.
5、半径R=1.5mmの球レンズを半割にした形状を
有しており、レンズ反射面12dは球面の中心12eを
含むように形成されている。さらにレンズ入出射面12
cである球面には無反射膜が施されている。ここで半球
状レンズの屈折nLが1.5であるから、式(4)よ
りレンズ反射面12dの法線とレンズ反射面12dに入
射する測定光のなす角θnを42度以上とすれば、測
定光をレンズ反射面12dにおいて全反射させることが
できる。
The hemispherical lens 12 has a refractive index nL = 1.
5, it has a shape obtained by dividing a spherical lens having a radius R = 1.5 mm in half, and the lens reflecting surface 12d is formed so as to include the center 12e of the spherical surface. Further, the lens entrance / exit surface 12
An antireflection film is applied to the spherical surface which is c. Here the refractive index nL of the hemispherical lens is 1.5, them and Equation (4) from the measuring beam angle degree θn of entering the normal lens reflecting surface 12d of the lens reflection surface 12d 42 degrees For example, the measurement light can be totally reflected by the lens reflection surface 12d.

【0024】光導波路基板Aは、外径が半径3mmの円
筒型センサケース10内に、光導波路2の出射端が該円
筒型センサケース10の中心に位置するように収められ
ている。半球状レンズ12は、光導波路2の出射端か
θrが6.05度の方向に出射される測定光の光軸上
の、該出射端から半球状レンズ12の球面の中心12e
までの距L1が7.5mmとなる位置に設置した。し
たがって、円筒型センサケース10の半径方向の中心軸
からの半球状レンズの球面の中心12eまでの距離dは
0.79mmとなる。ここで半球状レンズ12は、半割
にした円筒型部材11に固定し、円筒型センサケース1
0に設けた丸穴内で前記円筒型部材11を回転させるこ
とにより、角度の調整を行った。この方法により、半球
状レンズ12を、角θnを48度に実装すると、測定
光はレンズ反射面12dで全反射し、かつ光導波路基板
Aの長手方向と垂直の方向L2が3.2mmの位置に
集光される。したがって円筒型センサケース10の外径
は半径3mmであるから、円筒型センサケース10の外
周から測定光の焦点までの距離である作動距離WDは約
1mmにできた。このことはシリンダなど内径の直径が
7mm以上の穴の側面の測定が可能であることを示して
いる。
The optical waveguide substrate A is housed in a cylindrical sensor case 10 having an outer diameter of 3 mm so that the emission end of the optical waveguide 2 is located at the center of the cylindrical sensor case 10. Hemispherical lens 12, exit end or these optical waveguide 2
The center 12e of the spherical surface of the hemispherical lens 12 on the optical axis of the measurement light emitted in the direction of θr of 6.05 degrees.
Distance L1 up has been installed at a position to be 7.5mm. Therefore, the distance d from the center axis of the cylindrical sensor case 10 in the radial direction to the center 12e of the spherical surface of the hemispherical lens is 0.79 mm. Here, the hemispherical lens 12 is fixed to the halved cylindrical member 11, and the cylindrical sensor case 1
The angle was adjusted by rotating the cylindrical member 11 in the round hole provided at 0. In this way, the semi-spherical lens 12, implementing angles θn to 48 degrees, the measuring light is totally reflected by the lens reflection surface 12d, and the longitudinal and vertical direction of the optical waveguide substrate A, L2 is 3.2mm Is focused at the position. Therefore, since the outer diameter of the cylindrical sensor case 10 is 3 mm, the working distance WD, which is the distance from the outer circumference of the cylindrical sensor case 10 to the focus of the measurement light, can be set to about 1 mm. This indicates that it is possible to measure the side surface of a hole such as a cylinder having an inner diameter of 7 mm or more.

【0025】このように作製した光導波路型変位センサ
で位相変調を行い、Si基板上にSiを蒸着し作製した
標準試料の蒸着膜の段差を測定したところ、測定精度が
数nm以下と良好な特性をもつことが確認できた。ま
た、従来測定が困難であった放電加工により作製した直
径が7mmの丸穴の側壁を測定したところ、0.5μm
の表面粗さで加工できていることが確認できた。
The optical waveguide displacement sensor thus manufactured was used for phase modulation, and the step difference of the deposited film of the standard sample prepared by depositing Si on the Si substrate was measured. It was confirmed that it had the characteristics. Moreover, when the side wall of a circular hole with a diameter of 7 mm manufactured by electric discharge machining, which was difficult to measure in the past, was measured, it was 0.5 μm.
It was confirmed that the surface was processed with the surface roughness of.

【0026】(実施例2) 図2を用いて、本発明の第
二の実施例について説明する。屈折率分布型レンズの一
種であるセルフォックレンズ13には、光軸の屈折率が
1.557で、径方向の屈折率分布n(r)が、光軸か
らの距離をrとしたとき、n(r)=1.557−0.
046r2で表される、光軸方向の長さが4mmのも
のを用いた。ここで端面13cの法線の光導波路基板A
の長手方向に対する角θSは以下に示す式(5)を満
たすよう、10.6度に研磨加工し、他方の端面13d
は0度とし、さらに端面13c、13dには無反射コー
トを施した。
Second Embodiment A second embodiment of the present invention will be described with reference to FIG. In the SELFOC lens 13, which is a kind of gradient index lens, the refractive index of the optical axis is 1.557, and the radial refractive index distribution n (r) is r, where the distance from the optical axis is r. n (r) = 1.557-0.
046 represented by 0 r2, the length of the optical axis direction is used as the 4 mm. Here, the optical waveguide substrate A having a normal line to the end face 13c
The angles θS in the longitudinal direction so as to satisfy the equation (5) shown below, and polished to 10.6 degrees, the other end face 13d
Is 0 degree, and the end faces 13c and 13d are coated with a non-reflective coating.

【0027】 n0・sin(6.05θS)nS・sinθS) (5) ただしn0nSはそれぞれ空気およびセルフォックレ
ンズの光軸の屈折率でそれぞれ1.0、1.557であ
る。
[0027] n0.sin (6.05 + .theta.S) = nS.sin ( .theta.S) (5) where n0 and nS are 1.0 and 1.557, respectively, which are the refractive indexes of the optical axis of air and the SELFOC lens, respectively.

【0028】上記セルフォックレンズ13は、端面13
cを光導波路基板Aの測定光用入出射面1dに相対させ
て配置した。このとき、セルフォックレンズ13から出
射する測定光は、光導波路基板Aの長手方向と平行にな
り、また測定光の拡がり角は、光導波路基板Aから出射
したときの測定光の拡がり角より低減され、完全な平行
光に近い準コリメイト光線となる。この準コリメイト光
線に対し、実施例1に記載したのと同じ半球状レンズ1
L1が6mmとなるように配置した。さらに半球状
レンズ12のレンズ反射面12dの法線と光導波路基板
Aの長手方向のなす角度を45度となるように半球状レ
ンズ12を実装した。このとき、角θnも45度とな
るため、光導波路基板Aの長手方向と垂直の方向で
2が3.6mmの位置に測定光は集光される。したがっ
て、円筒型センサケース10の外径を半径3mmとする
と、作動距離WDは0.6mmになり、内径の直径が
6.6mmの穴の側壁の測定が可能であることを示して
いる。
The SELFOC lens 13 has an end face 13
c is arranged so as to face the measurement light entrance / exit surface 1d of the optical waveguide substrate A. At this time, the measurement light emitted from the SELFOC lens 13 becomes parallel to the longitudinal direction of the optical waveguide substrate A, and the divergence angle of the measurement light is smaller than the divergence angle of the measurement light emitted from the optical waveguide substrate A. And becomes a quasi-collimate ray that is close to perfect parallel light. For this quasi-collimate ray, the same hemispherical lens 1 as described in Example 1
2 was placed such that L1 was 6 mm. Further, the hemispherical lens 12 was mounted so that the angle formed by the normal line of the lens reflecting surface 12d of the hemispherical lens 12 and the longitudinal direction of the optical waveguide substrate A was 45 degrees. In this case, since the angles θn of 45 degrees, in the direction of the longitudinal direction and the vertical of the optical waveguide substrate A, L
The measurement light is condensed at a position where 2 is 3.6 mm. Therefore, when the outer diameter of the cylindrical sensor case 10 is 3 mm, the working distance WD is 0.6 mm, and it is possible to measure the side wall of the hole having the inner diameter of 6.6 mm.

【0029】セルフォックレンズ13から出射される測
定光が完全にコリメイトされるよう、セルフォックレン
ズの光軸方向の長さを6.46mm(0.25ピッチ)
とすると、集光特性は改善され、横方向の分解能が向上
するが、この場合、該セルフォックレンズ13の端面1
3dからの反射戻り光が光導波路基板Aの測定光用入出
射端面1dに集光され、光導波路2に戻るため、測定精
度の劣化を招くという問題が生じることになる。上記の
ようにセルフォックレンズ13の光軸方向の長さを4m
mとすると、反射戻り光は、光導波路基板Aの測定光用
入出射端面1dでビーム直径が250μmに拡がるた
め、光導波路2に戻る光量は僅かとなり、測定精度を劣
化させることはない。
The length of the SELFOC lens in the optical axis direction is 6.46 mm (0.25 pitch) so that the measurement light emitted from the SELFOC lens 13 is completely collimated.
Then, the condensing characteristic is improved and the lateral resolution is improved. In this case, however, in this case, the end surface 1 of the SELFOC lens 13 is
Since the reflected return light from 3d is condensed on the measurement light input / output end face 1d of the optical waveguide substrate A and returns to the optical waveguide 2, there arises a problem that the measurement accuracy is deteriorated. As described above, the length of the SELFOC lens 13 in the optical axis direction is 4 m.
When m, the reflected return light has a beam diameter of 250 μm at the measurement light entrance / exit end face 1d of the optical waveguide substrate A, so that the amount of light returning to the optical waveguide 2 is small and the measurement accuracy is not deteriorated.

【0030】[0030]

【発明の効果】以上のように本発明を用いることによ
り、例えば直径が6.6mmの穴の側面の表面粗さや形
状を測定することができる光導波路型変位センサを実現
することができた。また、同時に測定光の集光と光路の
折り曲げが一つの部品でできるため、光学部品点数と組
立コストの削減が可能となった。
As described above, by using the present invention, it is possible to realize an optical waveguide type displacement sensor capable of measuring the surface roughness and shape of the side surface of a hole having a diameter of 6.6 mm, for example. At the same time, since the measurement light can be condensed and the optical path can be bent by one component, the number of optical components and the assembly cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の第1の実施例を示した概略図
である。
FIG. 1 is a schematic diagram showing a first embodiment of the present invention.

【図2】図2は、本発明の第2の実施例を示した概略図
である。
FIG. 2 is a schematic diagram showing a second embodiment of the present invention.

【図3】図3は、半球状レンズの配置方向と測定光の反
射方向の一例を示す図である。
FIG. 3 is a diagram showing an example of an arrangement direction of hemispherical lenses and a reflection direction of measurement light.

【図4】図4は、半球状レンズの配置方向と測定光の反
射方向の別の例を示す図である。
FIG. 4 is a diagram showing another example of an arrangement direction of hemispherical lenses and a reflection direction of measurement light.

【図5】図5は、測定光折り返し用プリズムと集光用レ
ンズを用いた光導波路型変位センサの一例を示した概略
図である。
FIG. 5 is a schematic view showing an example of an optical waveguide type displacement sensor using a measurement light folding prism and a condenser lens.

【図6】図6は、測定光折り返し用プリズムと集光用レ
ンズを用いた光導波路型変位センサの別の例を示した概
略図である。
FIG. 6 is a schematic view showing another example of an optical waveguide displacement sensor using a measuring light folding prism and a condenser lens.

【符号の説明】[Explanation of symbols]

A 光導波路基板 L 測定光 L1 光導波路基板の測定光用入出射端面から半球状レ
ンズの球面の中心までの距離 L2 半球レンズの球面の中心から焦点までの距離 d 円筒型センサケースの中心軸からの半球状レンズの
球面の中心までの距離 WD 作動距離 F1、F2 光ファイバ 1 ニオブ酸リチウム結晶基板 1a、1b、1c、1d 光導波路基板端面 2、3 光導波路 4 方向性結合器 5 反射鏡 6 変調用電極 7 電送線 10 円筒型センサケース 11 円筒型部材 12 半球状レンズ 12c レンズ入出射面 (球面) 12d レンズ反射面 12e 球面の中心 13 セルフォックレンズ 13c、13d セルフォックレンズ端面 14 折り返し用プリズム 15 集光用レンズ
 A Optical waveguide substrate L Measuring light  A hemispherical lens from the input / output end face for measurement light of the L1 optical waveguide substrate.
Distance to the center of the spherical surface  Distance from the center of the spherical surface of the L2 hemispherical lens to the focal point d of the hemispherical lens from the central axis of the cylindrical sensor case
Distance to center of spherical surface WD Working distance F1, F2 Optical fiber 1 Lithium niobate crystal substrate 1a, 1b, 1c, 1d Optical waveguide substrate end face 2, 3 Optical waveguide 4 Directional coupler 5 Reflector 6 Modulation electrode 7 Transmission Line 10 Cylindrical sensor case 11 Cylindrical member 12 Hemispherical lens 12c Lens entrance / exit surface (spherical surface) 12d Lens reflection surface 12e Center of spherical surface 13 SELFOC lens 13c, 13d SELFOC lens end surface 14 Folding prism 15 Focusing lens

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 長手方向の両端面のうち少なくとも一方
の端面を該長手方向に対して斜面とし該斜面に測定光用
入出力端を形成した光導波路基板と、光源から出力され
る光源光を該光導波路基板に導く光ファイバと、該光導
波路基板から出力される干渉信号光を受光装置に導く光
ファイバと、該光導波路基板表面に設けられた参照光及
び/あるいは測定光を変調するための変調用電極に変調
用電気信号を印加するための電送線とを備えた光導波路
型変位センサにおいて、光導波路基板の長手方向と垂直
な方向に測定光を折り返し、かつ集光するための半球状
レンズを備えたことを特徴とする光導波路型変位セン
サ。
1. An optical waveguide substrate in which at least one of the two end faces in the longitudinal direction is inclined with respect to the longitudinal direction and a measuring light input / output end is formed on the inclined face, and light source light output from a light source is provided. An optical fiber that guides the optical waveguide substrate, an optical fiber that guides the interference signal light output from the optical waveguide substrate to a light receiving device, and a reference light and / or a measuring light provided on the surface of the optical waveguide substrate In the optical waveguide type displacement sensor including a transmission line for applying a modulation electric signal to the modulation electrode, a hemisphere for returning and condensing the measurement light in a direction perpendicular to the longitudinal direction of the optical waveguide substrate. An optical waveguide type displacement sensor, which is equipped with a lens.
【請求項2】 該光導波路基板の測定光用入出力端面と
該半球状レンズの間に、該測定光用入出力端面から斜め
に出射する測定光を完全な平行光ではない準コリメイト
光線に変える屈折率分布型レンズを備えたことを特徴と
する請求項1に記載の光導波路型変位センサ。
2. The measuring light obliquely emitted from the measuring light input / output end surface between the measuring light input / output end surface of the optical waveguide substrate and the hemispherical lens is converted into a quasi-collimate light beam which is not a perfect parallel light. The optical waveguide type displacement sensor according to claim 1, further comprising a gradient index lens for changing the refractive index distribution type lens.
【請求項3】 該光導波路基板上には表面に少なくとも
光導波路と方向性結合器が形成され、該光導波路基板の
長手方向の一端には光源光用入力端と干渉信号光用出力
端が形成され、他端面には該測定光入出力端と参照光用
反射鏡が形成されていることを特徴とする請求項1ある
いは2に記載の光導波路型変位センサ。
3. An optical waveguide and a directional coupler are formed on the surface of the optical waveguide substrate, and a light source light input end and an interference signal light output end are provided at one longitudinal end of the optical waveguide substrate. The optical waveguide type displacement sensor according to claim 1 or 2, wherein the measurement light input / output end and a reference light reflecting mirror are formed on the other end surface.
【請求項4】 球面と該球面の曲率の中心を含む平面と
から外周面が形成されており、屈折率が1より大きなこ
とを特徴とする請求項1に記載の半球状レンズ。
4. The hemispherical lens according to claim 1, wherein an outer peripheral surface is formed of a spherical surface and a plane including a center of curvature of the spherical surface, and the refractive index is larger than 1.
JP7286895A 1995-03-30 1995-03-30 Light waveguide path type displacement sensor and hemispherical lens used for the sensor Pending JPH08271209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7286895A JPH08271209A (en) 1995-03-30 1995-03-30 Light waveguide path type displacement sensor and hemispherical lens used for the sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7286895A JPH08271209A (en) 1995-03-30 1995-03-30 Light waveguide path type displacement sensor and hemispherical lens used for the sensor

Publications (1)

Publication Number Publication Date
JPH08271209A true JPH08271209A (en) 1996-10-18

Family

ID=13501739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7286895A Pending JPH08271209A (en) 1995-03-30 1995-03-30 Light waveguide path type displacement sensor and hemispherical lens used for the sensor

Country Status (1)

Country Link
JP (1) JPH08271209A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526468A (en) * 2004-03-04 2007-09-13 カール マール ホールディング ゲーエムベーハー Optical measuring head
US8933417B2 (en) 2009-01-26 2015-01-13 Wallac Oy Combined lens and reflector, and an optical apparatus using the same
JP2017181172A (en) * 2016-03-29 2017-10-05 キヤノンマーケティングジャパン株式会社 Lens unit, measuring device, and measuring system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526468A (en) * 2004-03-04 2007-09-13 カール マール ホールディング ゲーエムベーハー Optical measuring head
US8933417B2 (en) 2009-01-26 2015-01-13 Wallac Oy Combined lens and reflector, and an optical apparatus using the same
JP2017181172A (en) * 2016-03-29 2017-10-05 キヤノンマーケティングジャパン株式会社 Lens unit, measuring device, and measuring system

Similar Documents

Publication Publication Date Title
US20090142066A1 (en) Single Aperture Multiple Optical Waveguide Transceiver
US6396580B1 (en) Method and device for polychromatic fluorescence correlation spectroscopy
US6654518B1 (en) Tap output collimator
US6198862B1 (en) Optical position detector
JPS6095322A (en) Optical measuring method measuring displacement of body and sensor thereof
EP0061384B1 (en) Optical automatic focusing sensor
JPH08271209A (en) Light waveguide path type displacement sensor and hemispherical lens used for the sensor
US5812255A (en) Process and device for determining the refractive index of different mediums
US4688883A (en) Integrated optics stress transducer
KR100992839B1 (en) Spectroscopic Ellipsometer with a Microspot Module
JP2001264551A (en) Optical waveguide for optical spectrometer whose incident aperture are integrally shaped
JPH07120379A (en) Optical system for high-sensitivity reflection measuring apparatus
JP2001074605A (en) Apparatus for measuring wavefront aberration
JPH08271215A (en) Light waveguide path type displacement sensor
KR100355329B1 (en) Device for reading pattern with projections
JPH08261713A (en) Optical waveguide type displacement sensor
KR100355025B1 (en) Null lens optical system for testing a surface of a concave mirror with a ellipsoid
JPS60211304A (en) Measuring instrument for parallelism
JP2831705B2 (en) Inspection method and apparatus for transmitted wavefront aberration of conical lens
KR100303823B1 (en) Optical system of checking light
JPS5916881Y2 (en) variable optical attenuator
JPS6235657B2 (en)
KR100355026B1 (en) Null lens optical system for testing a surface of a concave mirror with a hyperboloid
RU2022247C1 (en) Method and device for measuring parameters of modes of planar optical waveguides
JPH1030959A (en) Method and device for measuring refractive index