JP2001073077A - High carbon steel sheet for working small in plane anisotropy and its production - Google Patents

High carbon steel sheet for working small in plane anisotropy and its production

Info

Publication number
JP2001073077A
JP2001073077A JP2000018281A JP2000018281A JP2001073077A JP 2001073077 A JP2001073077 A JP 2001073077A JP 2000018281 A JP2000018281 A JP 2000018281A JP 2000018281 A JP2000018281 A JP 2000018281A JP 2001073077 A JP2001073077 A JP 2001073077A
Authority
JP
Japan
Prior art keywords
steel sheet
jis
rolling
temperature
carbon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000018281A
Other languages
Japanese (ja)
Other versions
JP3800902B2 (en
Inventor
Nobuyuki Nakamura
展之 中村
Takeshi Fujita
毅 藤田
Norifumi Shiotani
昇史 塩谷
Yasuyuki Takada
康幸 高田
Katsutoshi Ito
克俊 伊藤
Yoshihiro Hosoya
佳弘 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000018281A priority Critical patent/JP3800902B2/en
Publication of JP2001073077A publication Critical patent/JP2001073077A/en
Application granted granted Critical
Publication of JP3800902B2 publication Critical patent/JP3800902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a high carbon cold rolled steel sheet small in plane anisotropy to tensile characteristics and to provide a method for producing it. SOLUTION: At the time of producing a high carbon steel sheet having a componential system prescribed by JIS G 4501 (carbon steel for machine structures), JIS G (carbon tool steel) and JIS G 4802 (cold rolled steel strips for springs) by rolling and cold rolling, the steel sheet after hot finish rolling is coiled at 500 to 650 deg.C, next the steel sheet after the coiling is subjected to descaling, is thereafter subjected to primary annealing at 630 to 700 deg.C for >=20 hr, is subjected to cold rolling at a draft of >=50% and is subsequently subjected to secondary annealing at 600 to 710 deg.C. In this way, a high carbon steel sheet for working in which the plane anisotropy index Δr of the r value is >-0.15 to <0.15 can be obtd., where Δr denotes the value prescribed by Δr=(r0+r90-2×r45)/4. Moreover, r0, r45 and r90 respectively denote the r value in the 0 deg. direction (L direction), 45 deg. direction (S direction) and 90 deg. direction (C direction) to the rolling direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、引張特性の面内異
方性が小さい加工用高炭素鋼板およびその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high carbon steel sheet for processing having small in-plane anisotropy in tensile properties and a method for producing the same.

【0002】[0002]

【従来の技術】従来から高炭素鋼板は、ワッシャー、チ
ェーン部品をはじめとした機械構造用部品などに使用さ
れている。しかし、高炭素冷延鋼板は、低炭素鋼に比べ
て一般に硬質なため成形性に劣るだけでなく、熱間圧
延、焼鈍および冷間圧延に起因して、機械的性質の面内
異方性を生じるため、従来から鋳造、鍛造で製造されて
いる高い寸法精度が要求されるギア部品への適用は困難
であった。そのため、成形に対する機械的性質の面内異
方性を小さくすることが大きな課題であった。
2. Description of the Related Art Conventionally, high carbon steel sheets have been used for parts for machine structures such as washers and chain parts. However, high-carbon cold-rolled steel sheets are generally harder than low-carbon steels and therefore have poor formability. In addition, due to hot rolling, annealing and cold rolling, in-plane anisotropy of mechanical properties is caused. Therefore, it has been difficult to apply the present invention to gear parts that are conventionally manufactured by casting and forging and require high dimensional accuracy. Therefore, it has been a major problem to reduce in-plane anisotropy of mechanical properties for molding.

【0003】そこで、これまでに、高炭素鋼板に関し
て、以下の技術が提案されている。 (1)材料とプロセス、Vol.1(1988)、p.
1729(以下、従来技術1という) 一般に0.65%もの高濃度の炭素を含有し、組織がフ
ェライト/セメンタイト組織を呈する鋼板(S65C)
では、低炭素鋼板に比べて成形性が低く、面内異方性も
大きい。この文献には、熱間圧延後、冷間圧延(冷延率
50%)および650℃で24hrのバッチ焼鈍を施
し、さらに二次冷間圧延(冷延率65%)および680
℃で24hrのバッチ焼鈍を行うことにより、加工性に
優れた高炭素冷延鋼板を製造することが記載されてい
る。また、セメンタイトを黒鉛化することを目的とし
て、S65C中の化学成分を調整し、熱間圧延後、冷間
圧延(冷延率50%)および650℃で24hrのバッ
チ焼鈍を施し、さらに二次冷間圧延(冷延率65%)お
よび680℃で24hrの二次バッチ焼鈍を行うことに
より、引張強度が低下し、r値と伸びが向上し、かつr
値の面内異方性も低炭素鋼板と同等となる高炭素冷延鋼
板の製造方法についても示されている。
Therefore, the following techniques have been proposed for high carbon steel sheets. (1) Materials and processes, Vol. 1 (1988), p.
1729 (hereinafter referred to as "prior art 1") Generally, a steel sheet containing carbon at a high concentration of 0.65% and exhibiting a ferrite / cementite structure (S65C)
Has lower formability and greater in-plane anisotropy than low carbon steel sheets. According to this document, after hot rolling, cold rolling (cold rolling rate of 50%) and batch annealing at 650 ° C. for 24 hours are performed, and secondary cold rolling (cold rolling rate of 65%) and 680
It is described that a high-carbon cold-rolled steel sheet having excellent workability is produced by performing batch annealing at 24 ° C. for 24 hours. In addition, for the purpose of graphitizing cementite, the chemical composition in S65C was adjusted, and after hot rolling, cold rolling (cold rolling reduction of 50%) and batch annealing at 650 ° C. for 24 hours were performed. By performing cold rolling (cold rolling rate of 65%) and secondary batch annealing at 680 ° C. for 24 hours, the tensile strength decreases, the r value and elongation improve, and r
A method for producing a high-carbon cold-rolled steel sheet having an in-plane anisotropy of a value equivalent to that of a low-carbon steel sheet is also shown.

【0004】(2)特開平10−152757号公報
(以下、従来技術2という) この公報には、高炭素鋼板の機械的性質の異方性の原因
は圧延方向に細長く展伸した硫化物系非金属介在物の存
在であるとし、C、Si、Mn、P、Cr、Ni、M
o、V、Ti、Alを規制するとともに、S含有量を重
量で0.002%以下まで低減させ、介在物の圧延方向
の平均長さを6μm以下とし、圧延方向の長さが4μm
以下の介在物の個数が、全介在物個数の80%以上とす
ることにより、衝撃値と全伸びについて圧延方向に直交
する方向の機械的性質に対する圧延方向の機械的性質の
比で0.9〜1.0の範囲になるように面内異方性を小
さくした高炭素鋼板を製造することが記載されている。
(2) Japanese Patent Application Laid-Open No. Hei 10-152775 (hereinafter referred to as "prior art 2") According to this publication, the cause of the anisotropy of the mechanical properties of a high carbon steel sheet is that the sulfide based material which is elongated in the rolling direction is elongated. It is assumed that nonmetallic inclusions are present, and C, Si, Mn, P, Cr, Ni, M
In addition to regulating o, V, Ti, and Al, the S content is reduced to 0.002% or less by weight, the average length of the inclusions in the rolling direction is 6 μm or less, and the length in the rolling direction is 4 μm.
When the number of the following inclusions is 80% or more of the total number of inclusions, the ratio of the mechanical property in the rolling direction to the mechanical property in the direction perpendicular to the rolling direction is 0.9 for the impact value and the total elongation. It is described that a high carbon steel sheet with reduced in-plane anisotropy so as to fall within the range of 1.0 to 1.0 is produced.

【0005】(3)特開平6−271935号公報(以
下、従来技術3という) この公報には、C、Si、Mn、Cr、Mo、Ni、
B、Alを特定した高炭素鋼板を熱間圧延する際に、熱
間仕上げ温度をAr変態点以上とし、熱間圧延終了か
ら巻取りまでを30℃/sec以上で冷却し、550〜
700℃の温度域で巻取るとともに、脱スケールし、そ
の後、600〜680℃の温度で焼鈍し、40%以上の
圧下率で冷間圧延し、さらに600〜680℃の温度で
焼鈍した後、調圧することにより、焼入れ、焼戻し等の
熱処理時に寸法変化の小さい高炭素冷延鋼板を製造する
ことが記載されている。
(3) JP-A-6-271935 (hereinafter referred to as prior art 3) This publication discloses C, Si, Mn, Cr, Mo, Ni,
When hot rolling a high carbon steel sheet in which B and Al are specified, the hot finishing temperature is set to an Ar 3 transformation point or higher, and cooling from the end of hot rolling to winding is performed at 30 ° C./sec or higher, and 550 to 550 ° C.
After winding in a temperature range of 700 ° C, descaling, annealing at a temperature of 600 to 680 ° C, cold rolling at a reduction of 40% or more, and further annealing at a temperature of 600 to 680 ° C, It is described that by adjusting the pressure, a high-carbon cold-rolled steel sheet having a small dimensional change during heat treatment such as quenching or tempering is produced.

【0006】しかしながら、上述した従来技術は以下の
ような問題点を有している。すなわち、従来技術1で
は、フェライト/セメンタイト組織を有するS65Cに
ついては、r値の平均値は1.3程度と高いものの、圧
延方向に対し0°方向(L方向)、45°方向(S方
向)、90°方向(C方向)のそれぞれの方向について
のr値であるr0、r45、r90からΔr=(r0+
r90−2×r45)/4で規定されるr値の面内異方
性指数Δrが−0.47であり、また、前記r値の最大
格差であるΔmaxが1.17であって、r値の面内の
異方性は非常に大きい。また、冷間圧延−焼鈍プロセス
を2回も行うため、製造コストが高くなるという問題点
を有している。一方、黒鉛化した高炭素鋼板について
は、r値がさらに向上し、Δrが0.34、Δmax
0.85といずれも小さくなってはいるが、依然として
r値の面内異方性は大きい。
[0006] However, the above-mentioned conventional technology has the following problems. That is, in the prior art 1, for S65C having a ferrite / cementite structure, the average value of the r value is as high as about 1.3, but the 0 ° direction (L direction) and the 45 ° direction (S direction) with respect to the rolling direction. From the r values r0, r45, and r90 in the respective directions of the 90 ° direction (C direction), Δr = (r0 +
r90-2 × r45) / 4 plane anisotropy index Δr of defined as r value is -0.47, and the the maximum disparity of r value delta max is 1.17, The in-plane anisotropy of the r value is very large. Further, since the cold rolling-annealing process is performed twice, there is a problem that the manufacturing cost is increased. On the other hand, for the graphitized high-carbon steel sheet, the r value is further improved, and Δr is 0.34 and Δmax is 0.85, both of which are small, but the in-plane anisotropy of the r value still remains. large.

【0007】また、従来技術2では、衝撃値と全伸びに
対する面内異方性について考慮しているのみで、鋼板の
成形性の重要な指標となるr値やn値等に対する面内異
方性については検討されていない。
Further, the prior art 2 only considers the in-plane anisotropy with respect to the impact value and the total elongation. Sex is not considered.

【0008】さらに、従来技術3は、焼入れ焼戻し等の
熱処理時に寸法変化が小さい高炭素鋼板の製造方法が記
載されているが、成形性に対する面内異方性に関しては
検討されていない。
Further, in Prior Art 3, there is described a method for producing a high carbon steel sheet having a small dimensional change during heat treatment such as quenching and tempering, but no consideration is given to in-plane anisotropy with respect to formability.

【0009】ところで、近年、高炭素鋼板のユーザーに
おいては、低コスト化のために成形工程の簡略化が検討
されるようになっており、それにともない素材としての
高炭素鋼板には、上述のような成形性の面内異方性が小
さいことに加え、複雑形状を少ない工程でも成形できる
優れた成形性が強く要求されている。
In recent years, users of high-carbon steel sheets have been studying simplification of the forming process in order to reduce costs. In addition to the low in-plane anisotropy of the moldability, there is a strong demand for excellent moldability capable of molding a complicated shape in a small number of steps.

【0010】高炭素鋼板の成形性を向上させるための技
術として以下の技術が提案されている。 (4)特開平5−9588号公報(以下、従来技術4と
いう) この公報には、熱間圧延後の鋼帯を10℃/sec以上
の冷却速度で20〜500℃の温度範囲に冷却し、その
後500℃以上(Ac変態点+30℃)の温度範囲に
再加熱して、その温度で巻取り、さらに冷間圧延後65
0℃以上(Ac 変態点+30℃)の温度範囲で1時間
以上熱処理することによりセメンタイトの球状化を促進
させ、軟質・高延性化して成形性を向上させる方法が記
載されている。
[0010] Techniques for improving the formability of high carbon steel sheets
The following techniques have been proposed as techniques. (4) JP-A-5-9588 (hereinafter referred to as prior art 4)
In this publication, the steel strip after hot rolling is kept at 10 ° C / sec or more.
At a cooling rate of 20 to 500 ° C.,
After 500 ℃ or more (Ac1(Transformation point + 30 ℃)
Reheat, wind at that temperature, and after cold rolling 65
0 ° C or more (Ac 1(Transformation point + 30 ° C) for 1 hour
Heat treatment promotes cementite spheroidization
To improve the formability by softening and increasing ductility.
It is listed.

【0011】しかし、本発明者等が上記従来技術4に記
載された方法と同様の方法を用いて高炭素鋼板の延性に
ついて検討したところ、S35C相当材で、せいぜい伸
びが35%程度であり、ユーザーにおける成形工程の簡
略化に対応できる程度の優れた延性を有する高炭素鋼板
が必ずしも得られなかった。
However, the present inventors examined the ductility of a high carbon steel sheet using a method similar to the method described in the above-mentioned prior art 4, and found that a material equivalent to S35C had an elongation of at most about 35%. A high carbon steel sheet having excellent ductility enough to respond to simplification of the forming process by the user has not always been obtained.

【0012】[0012]

【発明が解決しようとする課題】本発明はかかる事情に
鑑みてなされるものであって、引張特性に対する面内異
方性の小さい加工用高炭素鋼板およびその製造方法を提
供することを目的とする。さらに、面内異方性の小さい
ことに加え延性に優れた加工用高炭素鋼板の製造方法を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a high carbon steel sheet for processing having a small in-plane anisotropy with respect to tensile properties and a method for producing the same. I do. Still another object of the present invention is to provide a method for producing a high carbon steel sheet for processing which has excellent ductility in addition to low in-plane anisotropy.

【0013】[0013]

【課題を解決するための手段】本発明者らは、JIS
G 4051(機械構造用炭素鋼)、JIS G 44
01(炭素工具鋼鋼材)、JIS G 4802(ばね
用冷間圧延鋼帯)で規定されるC量が0.2%以上の成
分系を有する高炭素冷延鋼板について、引張特性の面内
異方性、またはこれに加えて延性が良好になる条件につ
いて検討を重ねた結果、熱延後の巻取り温度、一次焼鈍
温度、冷間圧延率および二次焼鈍温度を適正に制御する
ことが有効であることを見出した。
Means for Solving the Problems The present inventors have adopted JIS.
G 4051 (Carbon steel for machine structure), JIS G 44
No. 01 (carbon tool steel) and high carbon cold rolled steel sheet having a component system with a C content of 0.2% or more specified in JIS G 4802 (cold rolled steel strip for spring), the in-plane difference in tensile properties. As a result of repeated examinations on the conditions under which the ductility or good ductility is improved, it is effective to properly control the winding temperature, primary annealing temperature, cold rolling reduction, and secondary annealing temperature after hot rolling. Was found.

【0014】また、熱間粗圧延後に粗バーまたは圧延材
をAr変態点以上の温度で誘導加熱した上で、これら
熱延後の巻取り温度、一次焼鈍温度、冷間圧延率および
二次焼鈍温度を適正に制御することにより、板厚方向の
組織が均一であり、引張特性に対する異方性が一層小さ
い高炭素鋼板を得ることができることを見出した。
After the hot rough rolling, the rough bar or the rolled material is induction-heated at a temperature not lower than the Ar 3 transformation point, and then the winding temperature, the primary annealing temperature, the cold rolling reduction, and the secondary rolling temperature after the hot rolling are performed. It has been found that by appropriately controlling the annealing temperature, a high-carbon steel sheet having a uniform structure in the sheet thickness direction and a smaller anisotropy in tensile properties can be obtained.

【0015】さらに、仕上圧延後、巻取りまでの冷却条
件、巻取温度、一次焼鈍温度、冷間圧延率および二次焼
鈍温度を適正に制御することにより、引張特性に対する
異方性が極めて小さいのみならず、延性に優れた高炭素
鋼板を得ることができることを見出した。
Furthermore, by appropriately controlling the cooling conditions after finish rolling and winding up, the winding temperature, the primary annealing temperature, the cold rolling reduction and the secondary annealing temperature, the anisotropy with respect to the tensile properties is extremely small. In addition, it has been found that a high carbon steel sheet having excellent ductility can be obtained.

【0016】また、以上により得られる高炭素鋼板は、
Δrが−0.15超〜0.15未満、さらにはr値のΔ
maxが0.2未満という極めて小さい値となることが
確認された。
The high carbon steel sheet obtained as described above is
Δr is more than −0.15 to less than 0.15, and further, Δ of the r value
It was confirmed that max had an extremely small value of less than 0.2.

【0017】本発明は上記知見に基づいてなされたもの
であり、第1発明は、JIS G4051(機械構造用
炭素鋼)、JIS G 4401(炭素工具鋼鋼材)、
JIS G 4802(ばね用冷間圧延鋼帯)で規定さ
れる成分系を有する高炭素鋼板であって、r値の面内異
方性指数Δrが−0.15超〜0.15未満であること
を特徴とする面内異方性の小さい加工用高炭素鋼板を提
供する。ただし、Δrは、Δr=(r0+r90−2×
r45)/4により規定される値を示す。ここでr0、
r45、r90は、それぞれ、圧延方向に対し、0°方
向(L方向)、45°方向(S方向)、90°方向(C
方向)のr値を示す。
The present invention has been made based on the above findings, and the first invention is based on JIS G4051 (carbon steel for machine structure), JIS G 4401 (carbon tool steel),
A high-carbon steel sheet having a component system defined by JIS G4802 (cold rolled steel strip for spring), wherein an in-plane anisotropy index Δr of r value is more than −0.15 to less than 0.15. A high carbon steel sheet for processing having a small in-plane anisotropy is provided. Here, Δr is Δr = (r0 + r90−2 ×
r45) / 4. Where r0,
r45 and r90 are 0 ° direction (L direction), 45 ° direction (S direction), and 90 ° direction (C direction) with respect to the rolling direction, respectively.
Direction).

【0018】第2発明は、JIS G 4051(機械
構造用炭素鋼)、JIS G 4401(炭素工具鋼鋼
材)、JIS G 4802(ばね用冷間圧延鋼帯)で
規定される成分系を有する熱間仕上圧延後の鋼板を50
0〜650℃で巻取り、次いで巻取り後の鋼板を脱スケ
ールした後、630〜700℃で20hr以上の一次焼
鈍を施し、50%以上の圧下率で冷間圧延し、その後6
00〜710℃で二次焼鈍を施すことを特徴とする面内
異方性の小さい加工用高炭素鋼板の製造方法を提供す
る。
[0018] The second invention is a heat treatment having a component system specified by JIS G 4051 (carbon steel for machine structure), JIS G 4401 (carbon tool steel), and JIS G 4802 (cold rolled steel strip for spring). 50 steel sheets after finish rolling
After winding at 0 to 650 ° C., and then descaling the wound steel sheet, primary annealing is performed at 630 to 700 ° C. for 20 hours or more, and cold rolling is performed at a rolling reduction of 50% or more.
Provided is a method for producing a high carbon steel sheet for processing having small in-plane anisotropy, which comprises performing secondary annealing at 00 to 710 ° C.

【0019】第3発明は、JIS G 4051(機械
構造用炭素鋼)、JIS G 4401(炭素工具鋼鋼
材)、JIS G 4802(ばね用冷間圧延鋼帯)で
規定される成分系を有する高炭素鋼板であって、r値の
Δmaxが0.2未満であることを特徴とする面内異方
性の小さい加工用高炭素鋼を提供する。ただし、Δ
maxは、圧延方向に対し、0°方向(L方向)、45
°方向(S方向)、90°方向(C方向)の値の最大格
差を示す。
The third invention is a high-pressure steel having a component system defined by JIS G 4051 (carbon steel for machine structural use), JIS G 4401 (carbon tool steel), and JIS G 4802 (cold rolled steel strip for spring). Provided is a high carbon steel for processing, which is a carbon steel sheet and has a small in-plane anisotropy, wherein Δmax of r value is less than 0.2. Where Δ
max is 0 ° direction (L direction) with respect to the rolling direction, 45
The maximum disparity between the values in the ° direction (S direction) and in the 90 ° direction (C direction) is shown.

【0020】第4発明は、JIS G 4051(機械
構造用炭素鋼)、JIS G 4401(炭素工具鋼鋼
材)、JIS G 4802(ばね用冷間圧延鋼帯)で
規定される成分系を有する熱間仕上圧延後の鋼板を50
0〜650℃で巻取り、次いで巻取り後の鋼板を脱スケ
ールした後、630〜700℃で20hr以上の一次焼
鈍を施し、50%以上の圧下率で冷間圧延し、その後以
下の(1)式を満足する温度で二次焼鈍することを特徴
とする面内異方性の小さい加工用高炭素鋼板の製造方法
を提供する。 960−0.5×T≦T≦1153−0.72×T …(1) ただし、T:一次焼鈍温度(℃)、T:二次焼鈍温
度(℃)
The fourth invention provides a heat treatment having a component system defined by JIS G 4051 (carbon steel for mechanical structure), JIS G 4401 (carbon tool steel), and JIS G 4802 (cold rolled steel strip for spring). 50 steel sheets after finish rolling
After winding at 0 to 650 ° C., and then descaling the steel sheet after the winding, primary annealing is performed at 630 to 700 ° C. for 20 hours or more, cold-rolled at a reduction of 50% or more, and then (1) The present invention provides a method for producing a high carbon steel sheet for processing having a small in-plane anisotropy, wherein the secondary annealing is performed at a temperature satisfying the expression (2). 960−0.5 × T 1 ≦ T 2 ≦ 1153-0.72 × T 1 (1) where T 1 : primary annealing temperature (° C.), T 2 : secondary annealing temperature (° C.)

【0021】第5発明は、 JIS G 4051(機
械構造用炭素鋼)、JIS G 4401(炭素工具鋼
鋼材)、JIS G 4802(ばね用冷間圧延鋼帯)
で規定される成分系を有する鋳造スラブを連続鋳造ま
ま、または冷却後所定の温度に加熱した後、粗圧延機に
よって粗圧延して、粗バーとし、引き続いて、連続熱間
仕上げ圧延機によって仕上圧延するに際して、仕上げ圧
延機の入り側、あるいは仕上げ圧延機のスタンド間で、
上記粗バーまたは、圧延材をAr変態点以上の温度に
誘導加熱し、熱間仕上圧延後の鋼板を500〜650℃
の温度で巻取り、次いで巻取り後の鋼板を脱スケールし
た後、630〜700℃で20hr以上の一次焼鈍を施
し、次いで焼鈍後の鋼板を50%以上の圧下率で冷間圧
延し、その後以下の(2)式を満足する温度で二次焼鈍
することを特徴とする面内異方性の小さい加工用高炭素
鋼板の製造方法を提供する。 950−0.49×T≦T≦1160−0.72×T …(2) ただし、T:一次焼鈍温度(℃)、T:二次焼鈍温
度(℃)
The fifth invention is based on JIS G 4051 (carbon steel for machine structure), JIS G 4401 (carbon tool steel), and JIS G 4802 (cold rolled steel strip for spring).
The casting slab having the component system defined in the above is continuously cast or heated to a predetermined temperature after cooling, and then roughly rolled by a rough rolling mill to form a rough bar, and subsequently finished by a continuous hot finishing rolling mill. When rolling, between the entrance of the finishing mill or between the stands of the finishing mill,
The rough bar or the rolled material is induction-heated to a temperature not lower than the Ar 3 transformation point, and the steel plate after hot finish rolling is heated to 500 to 650 ° C.
After the coiled steel sheet is descaled, the steel sheet is subjected to primary annealing at 630 to 700 ° C. for 20 hours or more, and then the annealed steel sheet is cold-rolled at a rolling reduction of 50% or more. A method for producing a high carbon steel sheet for processing having small in-plane anisotropy, characterized by performing secondary annealing at a temperature satisfying the following expression (2). 950−0.49 × T 1 ≦ T 2 ≦ 1160−0.72 × T 1 (2) where T 1 : primary annealing temperature (° C.), T 2 : secondary annealing temperature (° C.)

【0022】第6発明は、JIS G 4051(機械
構造用炭素鋼)、JIS G 4401(炭素工具鋼鋼
材)、JIS G 4802(ばね用冷間圧延鋼帯)で
規定される成分系を有する鋼を熱間圧延工程にてAr
変態点以上の仕上温度で圧延し、仕上圧延された鋼板を
7℃/s以上の冷却速度でAr−100℃まで冷却
し、冷却した後の鋼板を560〜640℃の温度域で2
〜10秒保持し、その後熱間仕上圧延後の鋼板を500
〜630℃で巻取り、次いで巻取り後の鋼板を脱スケー
ルした後、640〜700℃で20hr以上の一次焼鈍
を施し、次いで焼鈍後の鋼板を50%以上の圧下率で冷
間圧延し、その後以下の(3)式を満足する温度で二次
焼鈍することを特徴とする延性に優れた面内異方性の小
さい加工用高炭素鋼板の製造方法を提供する。 1015−0.58×T≦T≦1230−0.83×T …(3) ただし、T:一次焼鈍温度(℃)、T:二次焼鈍温
度(℃)
The sixth invention is a steel having a component system defined by JIS G 4051 (carbon steel for machine structure), JIS G 4401 (carbon tool steel), and JIS G 4802 (cold rolled steel strip for spring). Ar 3 in the hot rolling process
Rolled at a finishing temperature of the transformation point or higher, the finish-rolled steel sheet is cooled to Ar 3 -100 ° C. at a cooling rate of 7 ° C./s or more, and the cooled steel sheet is cooled in a temperature range of 560 to 640 ° C.
Hold for 10 seconds and then finish the steel plate after hot finish rolling
After winding at 6630 ° C. and then descaling the steel sheet after winding, the steel sheet is subjected to primary annealing at 640 to 700 ° C. for 20 hours or more, and then the annealed steel sheet is cold-rolled at a rolling reduction of 50% or more, Thereafter, there is provided a method for producing a high carbon steel sheet for processing having excellent in ductility and small in-plane anisotropy, characterized by performing secondary annealing at a temperature satisfying the following expression (3). 1015−0.58 × T 1 ≦ T 2 ≦ 1230−0.83 × T 1 (3) where T 1 : primary annealing temperature (° C.), T 2 : secondary annealing temperature (° C.)

【0023】[0023]

【発明の実施の形態】以下、本発明について具体的に説
明する。まず、本発明の第1の高炭素鋼板について説明
する。第1の高炭素鋼板は、JIS G 4051(機
械構造用炭素鋼)、JISG 4401(炭素工具鋼鋼
材)、JIS G 4802(ばね用冷間圧延鋼帯)で
規定されるC量が0.2%以上の成分系を有する高炭素
鋼板であって、r値の面内異方性指数Δrが−0.15
超〜0.15未満である。ただし、Δrは、Δr=(r
0+r90−2×r45)/4により規定される値を示
す。ここでr0、r45、r90は、それぞれ、圧延方
向に対し、0°方向(L方向)、45°方向(S方
向)、90°方向(C方向)のr値を示す。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described specifically. First, the first high carbon steel sheet of the present invention will be described. The first high-carbon steel sheet has a C content of 0.2 defined in JIS G 4051 (carbon steel for machine structure), JIS G 4401 (carbon tool steel), and JIS G 4802 (cold rolled steel strip for spring). % Or more, and the in-plane anisotropy index Δr of the r value is −0.15.
Ultra-less than 0.15. Where Δr is Δr = (r
0 + r90−2 × r45) / 4. Here, r0, r45, and r90 indicate r values in the 0 ° direction (L direction), the 45 ° direction (S direction), and the 90 ° direction (C direction) with respect to the rolling direction, respectively.

【0024】このようにΔrを−0.15超〜0.15
未満と極めて小さくすることにより、従来から鍛造、鋳
造で製造されている高い寸法精度が要求されるギア部品
への適用が可能となる。
As described above, Δr is more than -0.15 to 0.15.
By making it extremely small, that is, less than the above, it becomes possible to apply to gear parts which are conventionally manufactured by forging and casting and which require high dimensional accuracy.

【0025】このような第1の高炭素鋼板を製造するに
際しては、上記成分系を有する熱間仕上圧延後の鋼板を
500〜650℃で巻取り、次いで巻取り後の鋼板を脱
スケールした後、630〜700℃で20hr以上の一
次焼鈍を施し、50%以上の圧下率で冷間圧延し、その
後600〜710℃で二次焼鈍する。以下限定理由につ
いて説明する。
In producing such a first high carbon steel sheet, the steel sheet having the above-mentioned component system after hot finish rolling is wound at 500 to 650 ° C., and then the steel sheet after winding is descaled. Primary annealing at 630 to 700 ° C for 20 hours or more, cold rolling at a reduction of 50% or more, and then secondary annealing at 600 to 710 ° C. Hereinafter, the reason for limitation will be described.

【0026】(1)熱延巻取温度:500〜650℃ 巻取温度が500℃未満になるとパーライト組織が極め
て微細になるため、一次焼鈍でカーバイトが著しく微細
となり、二次焼鈍時の粒成長性が抑制されr値の面内異
方性が小さくなる集合組織が形成されないことから、5
00℃を下限とした。一方、温度が高くなりすぎると粗
大パーライトが生成してしまい、二次焼鈍後もラメラー
状のカーバイトが残留し、加工性が低下するため、65
0℃を上限とした。
(1) Hot-rolling winding temperature: 500 to 650 ° C. If the winding temperature is lower than 500 ° C., the pearlite structure becomes extremely fine, so that the carbide becomes extremely fine in the primary annealing, and the grains in the secondary annealing Since the texture that suppresses the growth property and reduces the in-plane anisotropy of the r value is not formed, 5
00 ° C was the lower limit. On the other hand, if the temperature is too high, coarse pearlite is generated, and lamellar carbide remains after the secondary annealing, and the workability is reduced.
The upper limit was 0 ° C.

【0027】(2)一次焼鈍条件:630〜700℃、
20hr以上 巻取り後の熱延板に対しては、酸洗等の脱スケール後に
炭化物の球状化を目的とした一次焼鈍を行う。一次焼鈍
温度が700℃よりも高くなると再結晶、粒成長が顕著
に生じて、S方向のr値がLおよびC方向のr値の平均
値より小さくなる、いわゆるV型のr値の異方性が増大
してしまうため、700℃を上限とした。一方、一次焼
鈍温度が630℃未満になると炭化物の球状化が困難と
なり、二次焼鈍後もラメラー状のカーバイトが残留し、
加工性が低下するため、630℃を下限とした。なお、
焼鈍時間は球状化を促進するために20hr以上とし
た。
(2) Primary annealing conditions: 630-700 ° C.
For the hot rolled sheet after winding for 20 hours or more, primary annealing is performed for the purpose of spheroidizing the carbide after descaling such as pickling. When the primary annealing temperature is higher than 700 ° C., recrystallization and grain growth occur remarkably, and the r value in the S direction becomes smaller than the average value of the r values in the L and C directions. Therefore, the upper limit was set at 700 ° C. On the other hand, if the primary annealing temperature is less than 630 ° C., it becomes difficult to make the carbide spheroidized, and lamellar carbide remains after the secondary annealing,
630 ° C. was made the lower limit because the workability was reduced. In addition,
The annealing time was set to 20 hours or more to promote spheroidization.

【0028】(3)冷間圧延率:50%以上 冷延率が高くなるほどr値の面内異方性が小さくなる集
合組織が形成されるが、r値の面内異方性を十分に小さ
くするためには少なくとも50%以上の冷間圧延率が必
要である。なお、上限は特に限定しないが、80%超え
るような高い冷延率では、通板性が著しく低下するの
で、80%以下であることが好ましい。
(3) Cold rolling reduction: 50% or more As the cold rolling reduction increases, a texture in which the in-plane anisotropy of the r value decreases is formed. In order to make it smaller, a cold rolling reduction of at least 50% or more is required. The upper limit is not particularly limited, but at a high cold rolling reduction of more than 80%, the sheet passing property is remarkably reduced, so that it is preferably 80% or less.

【0029】(4)二次焼鈍条件:600〜710℃ 冷延板に対しては、再結晶を目的とした二次焼鈍を行
う。二次焼鈍温度が710℃よりも高くなると再結晶、
粒成長が顕著に生じて、C方向のr値がLおよびS方向
のr値よりも著しく大きくなり、r値の異方性が増大し
てしまうため、710℃を上限とした。一方、二次焼鈍
温度が600℃未満になると未再結晶部が残留し、加工
性が低下するため、600℃を下限とした。なお、焼鈍
は連続焼鈍および箱焼鈍のいずれでもよい。
(4) Secondary annealing condition: 600 to 710 ° C. The cold rolled sheet is subjected to secondary annealing for recrystallization. When the secondary annealing temperature is higher than 710 ° C, recrystallization,
Grain growth occurs remarkably, the r value in the C direction becomes significantly larger than the r values in the L and S directions, and the anisotropy of the r value increases. On the other hand, if the secondary annealing temperature is lower than 600 ° C., unrecrystallized portions remain and workability deteriorates. The annealing may be either continuous annealing or box annealing.

【0030】次に、本発明の第2の高炭素鋼板について
説明する。第2の高炭素鋼板は、JIS G 4051
(機械構造用炭素鋼)、JISG 4401(炭素工具
鋼鋼材)、JIS G 4802(ばね用冷間圧延鋼
帯)で規定されるC量が0.2%以上の成分系を有する
高炭素鋼板であって、r値のΔmaxが0.2未満であ
る。ただし、Δmaxは、圧延方向に対し、0°方向
(L方向)、45°方向(S方向)、90°方向(C方
向)の最大格差を示す。
Next, the second high carbon steel sheet of the present invention will be described. The second high carbon steel sheet is JIS G 4051
(Carbon steel for machine structural use), high carbon steel sheet with a C content of 0.2% or more specified by JIS G 4401 (carbon tool steel) and JIS G 4802 (cold rolled steel strip for spring) Therefore, the Δmax of the r value is less than 0.2. However, delta max is to the rolling direction, 0 ° direction (L direction), 45 ° direction (S direction), shows a maximum difference of 90 ° direction (C direction).

【0031】このようにr値のΔmaxを0.2未満と
極めて小さくすることにより、従来から鍛造、鋳造で製
造されている極めて高い寸法精度が要求されるギア部品
への適用が可能となる。
As described above, by making the r value Δ max extremely small, less than 0.2, it is possible to apply the present invention to gear parts that are conventionally manufactured by forging or casting and that require extremely high dimensional accuracy. .

【0032】このような第2の高炭素鋼板を製造するに
際しては、以下の第1、第2および第3の方法を適用す
ることができる。
In manufacturing such a second high carbon steel sheet, the following first, second and third methods can be applied.

【0033】まず、第1の方法について説明する。第1
の方法においては、上記成分系を有する熱間仕上圧延後
の鋼板を500〜650℃で巻取り、次いで巻取り後の
鋼板を脱スケールした後、630〜700℃で20hr
以上の一次焼鈍を施し、50%以上の圧下率で冷間圧延
し、その後以下の(1)式を満足する温度で二次焼鈍す
る。 960−0.5×T≦T≦1153−0.72×T …(1) (ただし、T:一次焼鈍温度(℃)、T:二次焼鈍
温度。以下同じ。)以下限定理由について説明する。
First, the first method will be described. First
In the method of the above, the steel plate after hot finish rolling having the above-mentioned component system is wound at 500 to 650 ° C, and then the steel sheet after winding is descaled, and then at 630 to 700 ° C for 20 hours.
The above primary annealing is performed, cold rolling is performed at a rolling reduction of 50% or more, and then secondary annealing is performed at a temperature satisfying the following expression (1). 960−0.5 × T 1 ≦ T 2 ≦ 1153-0.72 × T 1 (1) (However, T 1 : primary annealing temperature (° C.), T 2 : secondary annealing temperature; the same applies hereinafter) The reason for limitation will be described.

【0034】(1)熱延巻取温度:500〜650℃ 前記第1の高炭素鋼板を製造する方法と同様、巻取温度
が500℃未満になるとr値の面内異方性が小さくなる
集合組織が形成されないことから、500℃を下限とし
た。一方、650℃を超えると加工性が低下するため、
650℃を上限とした。
(1) Hot Rolling Winding Temperature: 500 to 650 ° C. As in the first method for producing a high carbon steel sheet, when the winding temperature is lower than 500 ° C., the in-plane anisotropy of the r value decreases. Since no texture was formed, the lower limit was set at 500 ° C. On the other hand, if the temperature exceeds 650 ° C., the workability is reduced.
The upper limit was 650 ° C.

【0035】(2)一次焼鈍条件:630〜700℃、
20hr以上 巻取り後の熱延板に対しては、酸洗等の脱スケール後に
炭化物の球状化を目的とした一次焼鈍を行うが、前記第
1の高炭素鋼板の製造方法と同様、一次焼鈍温度が70
0℃よりも高くなると、いわゆるV型のr値の異方性が
増大してしまうため、700℃を上限とした。一方、一
時焼鈍温度が630℃未満になると加工性が低下するた
め、630℃を下限とした。なお、焼鈍時間は球状化を
促進するために20hr以上とした。
(2) Primary annealing conditions: 630-700 ° C.
The primary rolled steel sheet after winding is subjected to primary annealing for the purpose of spheroidizing carbides after descaling such as pickling, but the primary annealing is performed in the same manner as in the first method for producing a high carbon steel sheet. Temperature 70
If the temperature is higher than 0 ° C., the anisotropy of the so-called V-type r-value increases. On the other hand, if the temporary annealing temperature is lower than 630 ° C., the workability deteriorates. The annealing time was set to 20 hours or more to promote spheroidization.

【0036】(3)冷間圧延率:50%以上 前記第1の高炭素鋼板の製造方法と同様、r値の面内異
方性を十分に小さくするためには50%以上とする。な
お、上限は特に限定しないが、前記第1の高炭素鋼板の
製造方法と同様に、通板性を良好に保つ観点からは80
%以下であることが好ましい。
(3) Cold rolling ratio: 50% or more As in the first method for producing a high carbon steel sheet, the r value is made 50% or more in order to sufficiently reduce the in-plane anisotropy of the r value. The upper limit is not particularly limited. However, as in the case of the first method for manufacturing a high carbon steel sheet, from the viewpoint of maintaining good sheet passability, the upper limit is 80.
% Is preferable.

【0037】(4)二次焼鈍条件: 960−0.5×T≦T≦1153−0.72×T
二次焼鈍条件は、r値の面内異方性を小さくするために
一次焼鈍温度に対して適正に制御すべき必須条件であ
る。そこで、面内異方性に及ぼす一次焼鈍条件と二次焼
鈍条件の影響について調査した。その調査結果につい
て、以下に説明する。
(4) Secondary annealing conditions: 960-0.5 × T1≤T2≦ 1153-0.72 × T
1  The secondary annealing condition is to reduce the in-plane anisotropy of the r value.
It is an essential condition that should be properly controlled for the primary annealing temperature.
You. Therefore, the primary annealing conditions and secondary annealing
The effect of the blunt condition was investigated. About the survey results
This will be described below.

【0038】質量%で、C:0.34%、Si:0.1
9%、Mn:0.73%、P:0.012%、S:0.
001%、Al:0.021%の鋼を溶解後、仕上温
度:850℃、巻取温度:580℃で熱間圧延し、酸洗
後、一次焼鈍を630〜700℃で40hr行い、冷間
圧延の圧下率を60%とし、二次焼鈍を610〜710
℃で40hr行った鋼板について、引張試験にて面内異
方性を調査した。その結果を図1に示す。図1はr値の
面内異方性に関する一次焼鈍温度Tと二次焼鈍温度T
の関係示す図である。図1に示すように二次焼鈍温度
が(960−0.5×T)以上、(1153−
0.72×T)以下の範囲でΔrmaxが0.2未満
となり、面内異方性が小さくなることが明らかになっ
た。したがって、二次焼鈍温度Tを960−0.5×
≦T≦1153−0.72×Tの範囲とする。
なお、上記Δrmaxは、L、S、C方向のr値の最大
格差を示す。また、焼鈍は連続焼鈍および箱焼鈍のいず
れでもよい。
In mass%, C: 0.34%, Si: 0.1
9%, Mn: 0.73%, P: 0.012%, S: 0.
After melting steel of 001% and Al: 0.021%, hot-rolling is performed at a finishing temperature of 850 ° C. and a winding temperature of 580 ° C., and after pickling, primary annealing is performed at 630 to 700 ° C. for 40 hours. The rolling reduction was set to 60%, and the secondary annealing was performed at 610 to 710.
The in-plane anisotropy of the steel sheet subjected to 40 ° C. for 40 hours was examined by a tensile test. The result is shown in FIG. FIG. 1 shows the primary annealing temperature T 1 and the secondary annealing temperature T regarding the in-plane anisotropy of the r value.
Is a diagram showing the relationship of two. As shown in FIG. 1, the secondary annealing temperature T 2 is (960−0.5 × T 1 ) or more and (1153-
It became clear that Δr max was less than 0.2 in the range of 0.72 × T 1 ) or less, and in-plane anisotropy was reduced. Therefore, the secondary annealing temperature T 2 960-0.5 ×
T 1 ≦ T 2 ≦ 1153-0.72 × T 1
Note that Δr max indicates the maximum difference between r values in the L, S, and C directions. Annealing may be either continuous annealing or box annealing.

【0039】次に、第2の方法について説明する。第2
の方法においては、上記成分系を有する鋳造スラブを連
続鋳造まま、または冷却後所定の温度に加熱した後、粗
圧延機によって粗圧延して、粗バーとし、引き続いて、
連続熱間仕上げ圧延機によって仕上圧延するに際して、
仕上げ圧延機の入り側、あるいは仕上げ圧延機のスタン
ド間で、上記粗バーまたは、圧延材をAr変態点以上
の温度に誘導加熱し、熱間仕上圧延後の鋼板を500〜
650℃の温度で巻取り、次いで巻取り後の鋼板を脱ス
ケールした後、630〜700℃で20hr以上の一次
焼鈍を施し、次いで焼鈍後の鋼板を50%以上の圧下率
で冷間圧延し、その後以下の(2)式を満足する温度で
二次焼鈍する。 950−0.49×T≦T≦1160−0.72×T …(2) これにより、板厚方向の組織が均一であり、引張特性の
面内異方性が第1の方法よりも一層小さい高炭素鋼板を
得ることができる。以下限定理由について説明する。
Next, the second method will be described. Second
In the method, the casting slab having the above-mentioned component system is continuously cast, or after cooling to a predetermined temperature after cooling, rough-rolled by a rough rolling mill to form a coarse bar, and subsequently,
When finishing rolling by a continuous hot finishing rolling mill,
The rough bar or the rolled material is induction-heated to a temperature equal to or higher than the Ar 3 transformation point on the entrance side of the finish rolling mill or between stands of the finish rolling mill, and the steel plate after hot finish rolling is 500 to
After winding at a temperature of 650 ° C., and then descaling the wound steel sheet, primary annealing is performed at 630 to 700 ° C. for 20 hours or more, and then the annealed steel sheet is cold-rolled at a rolling reduction of 50% or more. Then, secondary annealing is performed at a temperature satisfying the following expression (2). 950−0.49 × T 1 ≦ T 2 ≦ 1160−0.72 × T 1 (2) Thereby, the structure in the plate thickness direction is uniform, and the in-plane anisotropy of the tensile properties is reduced by the first method. A smaller high carbon steel sheet can be obtained. Hereinafter, the reason for limitation will be described.

【0040】(1)誘導加熱 誘導加熱処理は、熱間圧延中のγ粒径および組織を板厚
方向に均一化させ、巻取後の鋼板の組織の均一化を図
り、二次焼鈍後に引張特性に対する面内異方性が小さく
なる集合組織を板厚方向に均一に形成させる。具体的に
は、粗圧延後、続熱間仕上げ圧延機によって仕上圧延す
るに際し、仕上圧延前に仕上げ圧延機の入り側で粗バー
に対して、あるいは仕上圧延中に仕上げ圧延機のスタン
ド間で圧延材に対して、Ar変態点以上の温度の誘導
加熱を少なくとも1回以上行う。加熱温度をAr変態
点以上としたのは、γ粒径および組織の均一化のためで
ある。また、加熱時間は少なくとも3秒以上とするのが
望ましい。なお、加熱処理は、昇温および降温保持も含
む。
(1) Induction Heating The induction heating treatment is to make the γ grain size and the structure during hot rolling uniform in the thickness direction, to make the structure of the steel sheet after winding uniform, and to perform the tensile treatment after the secondary annealing. A texture in which in-plane anisotropy with respect to characteristics is reduced is uniformly formed in the thickness direction. Specifically, after rough rolling, when finishing rolling by a continuous hot finish rolling mill, before finishing rolling, for the rough bar at the entrance side of the finishing rolling mill, or during finishing rolling between the stands of the finishing rolling mill. The rolled material is subjected to at least one induction heating at a temperature equal to or higher than the Ar 3 transformation point. The reason for setting the heating temperature to the Ar 3 transformation point or higher is to make the γ particle size and the structure uniform. The heating time is desirably at least 3 seconds or more. Note that the heat treatment also includes raising and lowering the temperature.

【0041】(2)熱延巻取温度:500〜650℃ 前記第1の高炭素鋼板を製造する方法と同様、巻取温度
が500℃未満になるとr値の面内異方性が小さい集合
組織が形成されず、650℃を超えると加工性が低下す
るため、巻取温度を500〜650℃の範囲とする。
(2) Hot-rolling winding temperature: 500 to 650 ° C. Similar to the method for producing the first high-carbon steel sheet, when the winding temperature is lower than 500 ° C., an aggregate having a small in-plane anisotropy of the r value. Since the structure is not formed and the workability is lowered when the temperature exceeds 650 ° C, the winding temperature is set in the range of 500 to 650 ° C.

【0042】(3)一次焼鈍条件:630〜700℃、
20hr以上 脱スケール後の熱延板に対し、炭化物の球状化を目的と
した一次焼鈍を行うが、前記第1の高炭素鋼板を製造す
る方法と同様、一次焼鈍温度が700℃よりも高くなる
といわゆるV型のr値の異方性が増大してしまい、一方
630℃未満になると加工性が低下するため、一次焼鈍
温度を630〜700℃とし、球状化の促進の観点から
焼鈍時間を20hr以上とする。
(3) Primary annealing conditions: 630-700 ° C.
For the hot rolled sheet after descaling for at least 20 hours, primary annealing is performed for the purpose of spheroidizing carbides. When the primary annealing temperature becomes higher than 700 ° C., as in the method for producing the first high carbon steel sheet. Since the anisotropy of the so-called V-type r-value increases, while the workability decreases when the temperature is lower than 630 ° C, the primary annealing temperature is set to 630 to 700 ° C, and the annealing time is set to 20 hours from the viewpoint of promoting spheroidization. Above.

【0043】(4)冷間圧延率:50%以上 前記第1の高炭素鋼板を製造する方法と同様、r値の面
内異方性を十分に小さくするために冷間圧延率を50%
以上とする。また、前記第1の高炭素鋼板を製造する方
法と同様、通板性を良好に保つ観点からは80%以下で
あることが好ましい。
(4) Cold rolling reduction: 50% or more As in the method for producing the first high carbon steel sheet, the cold rolling reduction is 50% in order to sufficiently reduce the in-plane anisotropy of the r value.
Above. Further, as in the method for producing the first high-carbon steel sheet, the content is preferably 80% or less from the viewpoint of maintaining good sheet passability.

【0044】(5)二次焼鈍条件: 950−0.49×T≦T≦1160−0.72×
前記第1の方法と同様、二次焼鈍条件は、r値の面内異
方性を小さくするために一次焼鈍温度に対して適正に制
御すべき必須要件である。そこで、面内異方性に及ぼす
一次焼鈍条件と二次焼鈍条件の影響について調査した。
その調査結果について以下に説明する。
(5) Secondary annealing conditions: 950-0.49 × T1≤T2≦ 1160−0.72 ×
T1  As in the first method, the secondary annealing conditions are based on the in-plane difference in r value.
Appropriate control of primary annealing temperature to reduce anisotropy
This is a mandatory requirement to be controlled. Therefore, the effect on in-plane anisotropy
The effects of primary annealing conditions and secondary annealing conditions were investigated.
The results of the survey are described below.

【0045】重量%で、C:0.35%、Si:0.1
8%、Mn:0.72%、P:0.011%、S:0.
001%、Al:0.022%の鋼を溶解後、スラブを
仕上圧延前に、粗バーを誘導加熱により1010℃で1
5秒の加熱処理を行い、850℃の仕上温度で仕上圧延
し、仕上圧延後、580℃の巻取温度で巻取り、酸洗
後、一次焼鈍を630〜700℃で40hr行い、冷間
圧延の圧下率を60%とし、二次焼鈍を610〜710
℃で40hr行った鋼板について、引張試験にて引張特
性の面内異方性を測定し、X線回折にて鋼板表面、板厚
1/4、板厚1/2の各位置の圧延面に平行な面につい
て積分反射強度を調査した。表1は、積分反射強度の板
厚方向の測定結果を示す。粗バーの誘導加熱を行うこと
により、(222)積分反射強度の最大格差が減少して
おり、組織が板厚方向に均一化して形成されている。図
2は本方法に従って粗バーを誘導加熱した場合のr値の
面内異方性に関する一次焼鈍温度Tと二次焼鈍温度T
の関係を示す。上記第1の方法に従って誘導加熱しな
い場合、図1に示すように、二次焼鈍温度が(960−
0.5×T)以上でかつ(1153−0.72×
)以下の範囲で、Δr maxが0.2未満となる
が、粗バーの誘導加熱を行うことにより、二次焼鈍温度
が(950−0.49×T)以上でかつ(116
0−0.72×T)以下の範囲に広がるとともに、Δ
maxが0.2未満から0.15未満へ減少し、より
広い範囲で面内異方性が一層小さくなることが明らかに
なった。このため、第2の方法では二次焼鈍温度T
950−0.49×T≦T≦1160−0.72×
と第1の方法よりも広い範囲に規定している。な
お、上記Δrmaxは、L、S、C方向のr値の最大格
差を示す。また、焼鈍は連続焼鈍および箱焼鈍のいずれ
でもよい。
By weight%, C: 0.35%, Si: 0.1
8%, Mn: 0.72%, P: 0.011%, S: 0.
After melting 001%, Al: 0.022% steel, slab
Prior to finish rolling, the coarse bar is heated at 1010 ° C for 1
5 seconds heat treatment, finish rolling at 850 ° C finishing temperature
After finish rolling, take up at 580 ° C take-up temperature and pickle
After that, primary annealing is performed at 630 to 700 ° C. for 40 hours,
The rolling reduction was set to 60%, and the secondary annealing was performed at 610 to 710.
Temperature of steel plate for 40 hrs.
In-plane anisotropy of the steel sheet, and the surface and thickness of the steel sheet by X-ray diffraction
About the plane parallel to the rolling surface at each position of 1/4,
To investigate the integrated reflection intensity. Table 1 shows the plate of integrated reflection intensity.
The measurement results in the thickness direction are shown. Induction heating of coarse bar
As a result, the maximum disparity of the (222) integrated reflection intensity is reduced.
That is, the structure is formed to be uniform in the thickness direction. Figure
2 is the value of r when the coarse bar is induction-heated according to the present method.
Primary annealing temperature T for in-plane anisotropy1And secondary annealing temperature T
2Shows the relationship. Do not conduct induction heating according to the first method.
In this case, as shown in FIG. 1, the secondary annealing temperature is (960-
0.5 × T1) Or more and (1153-0.72 ×
T1) In the following range, Δr maxIs less than 0.2
However, by performing induction heating of the coarse bar, the secondary annealing temperature
T2Is (950−0.49 × T1) Or more and (116)
0-0.72 × T1) While spreading to the following range, Δ
rmaxDecreases from less than 0.2 to less than 0.15, more
Clearly smaller in-plane anisotropy over a wide range
became. Therefore, in the second method, the secondary annealing temperature T2To
950-0.49 x T1≤T2≦ 1160−0.72 ×
T1And a wider range than the first method. What
The above ΔrmaxIs the maximum case of the r value in the L, S, and C directions.
Show the difference. Annealing is either continuous annealing or box annealing.
May be.

【0046】[0046]

【表1】 [Table 1]

【0047】次に、第3の方法について説明する。第3
の方法においては、上記成分系を有する鋼を熱間圧延工
程にてAr変態点以上の仕上温度で圧延し、仕上圧延
された鋼板を7℃/s以上の冷却速度でAr−100
℃まで冷却し、冷却した後の鋼板を560〜640℃の
温度域で2〜10秒保持し、その後熱間仕上圧延後の鋼
板を500〜630℃で巻取り、次いで巻取り後の鋼板
を脱スケールした後、640〜700℃で20hr以上
の一次焼鈍を施し、次いで焼鈍後の鋼板を50%以上の
圧下率で冷間圧延し、その後以下の(3)式を満足する
温度で二次焼鈍する。 1015−0.58×T≦T≦1230−0.83×T …(3) これにより、上述のように引張特性に対する面内異方性
が極めて小さいのみならず、延性に優れた高炭素鋼板を
得ることができる。以下限定理由について説明する。
Next, the third method will be described. Third
In the method, Ar 3 -100 steels were rolled at Ar 3 transformation point or more finishing temperature at hot rolling step, a finish rolled steel plate at 7 ° C. / s or more cooling rate with the component
C., the cooled steel sheet is kept in a temperature range of 560 to 640 ° C. for 2 to 10 seconds, and then the steel sheet after hot finish rolling is wound at 500 to 630 ° C., and then the steel sheet after winding is wound. After descaling, the steel sheet is subjected to primary annealing at 640 to 700 ° C. for 20 hours or more, and then the annealed steel sheet is cold-rolled at a reduction ratio of 50% or more, and then subjected to secondary annealing at a temperature satisfying the following equation (3). Anneal. 1015−0.58 × T 1 ≦ T 2 ≦ 1230−0.83 × T 1 (3) Due to this, not only the in-plane anisotropy with respect to the tensile properties is extremely small, but also the ductility is excellent. High carbon steel sheet can be obtained. Hereinafter, the reason for limitation will be described.

【0048】(1)熱延仕上温度:Ar変態点以上 熱間圧延において、Ar変態点未満のα域圧延が行わ
れると、板厚方向で不均一なパーライト組織となり、そ
の後の冷間圧延、焼鈍工程を経ても組織は均一化され
ず、延性が低下する。したがって、仕上温度はAr
態点以上とする。
(1) Hot rolling finish temperature: Ar 3 transformation point or more In hot rolling, when α-region rolling is performed below the Ar 3 transformation point, a non-uniform pearlite structure is formed in the sheet thickness direction. Even after the rolling and annealing steps, the structure is not uniform, and the ductility is reduced. Therefore, the finishing temperature is set to the Ar 3 transformation point or higher.

【0049】(2)熱間圧延後Ar変態点−100℃
までの冷却速度:7℃/sec以上 熱間圧延後の鋼板は、その後行われる球状化焼鈍(一次
焼鈍)で、延性に好ましい組織を形成させるためにポリ
ゴナルフェライトの生成を抑制し、均一なパーライトを
有することが必要である。そのためには、パーライト変
態のノーズ近傍の温度範囲に保持して、短時間でパーラ
イト変態を終了させればよい。しかし、熱間圧延後のA
変態点−100℃までの冷却速度が7℃/sec未
満の場合、冷却中の初析ポリゴナルフェライトが生成
し、熱延板組織がポリゴナルフェライト+パーライトの
混合組織となり、二次焼鈍後はフェライト粒径が不均一
な混粒組織となるため延性が低下する。したがって、熱
間圧延後Ar変態点−100℃までの冷却速度を7℃
/sec以上とする。
(2) Transformation point of Ar 3 after hot rolling—100 ° C.
Cooling rate up to: 7 ° C./sec or more The steel sheet after hot rolling is suppressed in the subsequent spheroidizing annealing (primary annealing) to suppress the formation of polygonal ferrite in order to form a microstructure favorable for ductility, and to form a uniform steel sheet. It is necessary to have perlite. For that purpose, the pearlite transformation may be completed in a short time while maintaining the temperature in the temperature range near the nose of the pearlite transformation. However, A after hot rolling
r 3 If the cooling rate until transformation point -100 ° C. of less than 7 ° C. / sec, pro-eutectoid polygonal ferrite during cooling is produced, hot-rolled steel sheet structure becomes a mixed structure of polygonal ferrite + pearlite, secondary annealing After that, a mixed grain structure having a non-uniform ferrite grain size is obtained, resulting in a decrease in ductility. Therefore, after hot rolling, the cooling rate from the Ar 3 transformation point to −100 ° C. is set to 7 ° C.
/ Sec or more.

【0050】(3)冷却保持温度および保持時間:56
0〜640℃、2秒〜10秒 冷却後の保持温度が、560℃未満の場合、ポリゴナル
フェライトの生成は生じないが、パーライトのコロニー
サイズが小さくなり、球状化焼鈍時にコロニー境界部の
カーバイトが著しく粗大化し、延性が低下する。一方、
640℃を超える場合、一部ポリゴナルフェライトが生
成するとともにパーライトも粗大化し、延性が低下す
る。また、保持時間が2秒未満の場合ではパーライト変
態が終了せず、10秒を超える場合ではパーライトの粗
大化を招き、均一なパーライトが得られない。したがっ
て、冷却保持温度を560〜640℃とし、保持時間を
2秒〜10秒とする。
(3) Cooling holding temperature and holding time: 56
0 to 640 ° C., 2 seconds to 10 seconds If the holding temperature after cooling is lower than 560 ° C., polygonal ferrite is not generated, but the pearlite colony size becomes small and the curl at the colony boundary during spheroidizing annealing is reduced. The tool becomes extremely coarse and ductility decreases. on the other hand,
When the temperature exceeds 640 ° C., polygonal ferrite is partially generated, and pearlite is coarsened, and ductility is reduced. If the holding time is less than 2 seconds, the pearlite transformation does not end, and if it exceeds 10 seconds, the pearlite becomes coarse and uniform pearlite cannot be obtained. Therefore, the cooling holding temperature is set to 560 to 640 ° C., and the holding time is set to 2 seconds to 10 seconds.

【0051】なお、560〜640℃の温度範囲におけ
る保持は、必ずしもこの温度範囲の一定温度で行われる
必要はなく、温度傾斜があってもこの温度範囲に2〜1
0秒保持されていればよい。実際に、この温度範囲で短
時間保持するには、例えば、熱間圧延後の散水による冷
却をこの温度範囲で短時間中止し、または水量を低減し
温度制御を行えばよい。
The holding in the temperature range of 560 to 640 ° C. does not necessarily have to be performed at a constant temperature in this temperature range.
It only has to be held for 0 seconds. Actually, in order to keep the temperature in this temperature range for a short time, for example, cooling by watering after hot rolling may be stopped for a short time in this temperature range, or the temperature may be controlled by reducing the amount of water.

【0052】(4)熱延巻取温度:500〜630℃ 前記第1の高炭素鋼板を製造する方法と同様、巻取温度
が500℃未満になるとr値の面内異方性が小さい集合
組織が形成されず、650℃を超えると加工性が低下す
るため、巻取温度を500〜650℃の範囲とする。
(4) Hot-rolling winding temperature: 500 to 630 ° C. Similar to the method for producing the first high-carbon steel sheet, when the winding temperature is lower than 500 ° C., a set having small in-plane anisotropy of r value is obtained. Since the structure is not formed and the workability is lowered when the temperature exceeds 650 ° C, the winding temperature is set in the range of 500 to 650 ° C.

【0053】(5)一次焼鈍条件:640〜700℃、
20hr以上 脱スケール後の熱延板に対し、炭化物の球状化を目的と
した一次焼鈍を行うが、前記第1の高炭素鋼板を製造す
る方法と同様、一次焼鈍温度が700℃よりも高くなる
といわゆるV型のr値の異方性が増大してしまう。一方
640℃未満になると炭化物の球状化が不十分となり、
二次焼鈍後の組織が一部混粒となり、延性が低下する。
したがって、一次焼鈍温度を640〜700℃とする。
また、前記第1の高炭素鋼板を製造する方法と同様、球
状化の促進の観点から焼鈍時間を20hr以上とする。
(5) Primary annealing conditions: 640 to 700 ° C.
For the hot rolled sheet after descaling for at least 20 hours, primary annealing is performed for the purpose of spheroidizing carbides. When the primary annealing temperature becomes higher than 700 ° C., as in the method for producing the first high carbon steel sheet. The so-called V-type r-value anisotropy increases. On the other hand, when the temperature is lower than 640 ° C., the spheroidization of the carbide becomes insufficient,
Part of the structure after the secondary annealing becomes mixed grains, and the ductility decreases.
Therefore, the primary annealing temperature is set to 640 to 700 ° C.
Further, similarly to the method of manufacturing the first high carbon steel sheet, the annealing time is set to 20 hours or more from the viewpoint of promoting spheroidization.

【0054】(6)冷間圧延率:50%以上 前記第1の高炭素鋼板を製造する方法と同様、r値の面
内異方性を十分に小さくするために冷間圧延率を50%
以上とする。また、前記第1の高炭素鋼板を製造する方
法と同様、通板性を良好に保つ観点から80%以下であ
ることが好ましい。
(6) Cold rolling reduction: 50% or more Like the first method for producing a high carbon steel sheet, the cold rolling reduction is 50% in order to sufficiently reduce the in-plane anisotropy of the r value.
Above. Further, as in the method for producing the first high-carbon steel sheet, the content is preferably 80% or less from the viewpoint of maintaining good sheet passability.

【0055】(7)二次焼鈍条件: 1015−0.58×T≦T≦1230−0.83
×T 前記第1の方法と同様、二次焼鈍条件は、r値の面内異
方性を小さくするために一次焼鈍温度に対して適正に制
御すべき必須要件である。そこで、面内異方性に及ぼす
一次焼鈍条件と二次焼鈍条件の影響について調査した。
その調査結果について以下に説明する。
(7) Secondary annealing conditions: 1015−0.58 × T1≤T2≤1230-0.83
× T1  As in the first method, the secondary annealing conditions are based on the in-plane difference in r value.
Appropriate control of primary annealing temperature to reduce anisotropy
This is a mandatory requirement to be controlled. Therefore, the effect on in-plane anisotropy
The effects of primary annealing conditions and secondary annealing conditions were investigated.
The results of the survey are described below.

【0056】質量%で、C:0.34%、Si:0.1
9%、Mn:0.73%、P:0.012%、S:0.
001%、Al:0.021%の鋼を溶解後、850℃
の仕上温度で仕上圧延し、仕上圧延後、冷却速度を7℃
/sec以上でAr変態点−100℃まで冷却し、冷
却後560〜640℃の温度域で2〜10秒の保持し、
580℃の巻取温度で巻取り、酸洗後、一次焼鈍を64
0〜700℃で40hr行い、冷間圧延の圧下率を60
%とし、二次焼鈍を610〜710℃で40hr行った
鋼板について、引張試験にて面内異方性を調査した。そ
の結果を図3に示す。図3はr値の面内異方性に関する
一次焼鈍温度Tと二次焼鈍温度Tの関係を示す。図
3に示すように、二次焼鈍温度Tが(1015−0.
58×T )以上、(1230−0.83×T)以下
の範囲で、Δrmaxが0.2未満となり、面内異方性
が小さくなることが明らかになった。したがって、二次
焼鈍温度Tを、1015−0.58×T≦T≦1
230−0.83×Tの範囲とする。なお、上記Δr
maxは、L、S、C方向のr値の最大格差を示す。ま
た、焼鈍は連続焼鈍および箱焼鈍のいずれでもよい。
By mass%, C: 0.34%, Si: 0.1
9%, Mn: 0.73%, P: 0.012%, S: 0.
After melting 001%, Al: 0.021% steel, 850 ° C
Finish rolling at a finishing temperature of 3 ° C. After finishing rolling, the cooling rate is 7 ° C.
/ Sec or more for Ar3Transformation point-Cool down to -100 ° C and cool
After the rejection, it is kept in the temperature range of 560 to 640 ° C. for 2 to 10 seconds,
After winding at a winding temperature of 580 ° C. and pickling, primary annealing is performed at 64 ° C.
Performed at 0 to 700 ° C for 40 hours, and the rolling reduction of cold rolling was 60
%, And the secondary annealing was performed at 610 to 710 ° C. for 40 hours.
The in-plane anisotropy of the steel sheet was examined by a tensile test. So
FIG. 3 shows the results. FIG. 3 shows the in-plane anisotropy of the r value.
Primary annealing temperature T1And secondary annealing temperature T2Shows the relationship. Figure
As shown in FIG. 3, the secondary annealing temperature T2Is (1015-0.
58 × T 1) Or more, (1230−0.83 × T)1)Less than
ΔrmaxIs less than 0.2 and in-plane anisotropy
Was found to be smaller. Therefore, secondary
Annealing temperature T2Is 1015−0.58 × T1≤T2≦ 1
230-0.83 × T1Range. The above Δr
maxIndicates the maximum difference between r values in the L, S, and C directions. Ma
The annealing may be either continuous annealing or box annealing.

【0057】なお、本発明においては、鋼板を製造する
際に、スラブを加熱した後に圧延する方法としては、連
続鋳造後短時間の加熱処理を施す方法、またはこの加熱
工程を省略して、直ちに圧延する方法のいずれの方法を
採用してもよいが、特にスラブを室温まで冷却せずに再
加熱する方法は、省エネルギーの観点からより好まし
い。また、熱間圧延中において、均熱を目的として、バ
ーヒーター等により加熱しても何ら問題はない。バーヒ
ーターによる加熱は、コイルbox等を用いた連続熱延
プロセスに対しても効果的に使用することができる。こ
の際、粗圧延バーの加熱は上記以外に、コイルboxの
前後や粗圧延機の間または後に行ってもよい。またコイ
ルboxの後で溶接機の前後で粗圧延バーの加熱を行っ
ても本発明の効果は十分に発揮される。さらに、このよ
うにして製造された鋼板の表面に対し摺動性向上のた
め、亜鉛めっき後、りん酸塩処理を施してもよい。亜鉛
めっきは、電気亜鉛めっき法、溶融亜鉛めっき法等によ
って施すことができる。
In the present invention, when a steel sheet is manufactured, the method of rolling after heating the slab is a method of performing a short-time heat treatment after continuous casting, or immediately omitting this heating step. Any method of rolling may be employed, but a method of reheating the slab without cooling it to room temperature is particularly preferable from the viewpoint of energy saving. During hot rolling, there is no problem even if heating is performed by a bar heater or the like for the purpose of soaking. The heating by the bar heater can be effectively used for a continuous hot rolling process using a coil box or the like. In this case, the heating of the rough rolling bar may be performed before and after the coil box, during or after the rough rolling mill, in addition to the above. Even if the rough rolling bar is heated before and after the welding machine after the coil box, the effect of the present invention is sufficiently exhibited. Further, in order to improve the slidability of the surface of the steel sheet manufactured in this manner, a phosphate treatment may be performed after zinc plating. Galvanization can be performed by an electrogalvanizing method, a hot-dip galvanizing method, or the like.

【0058】[0058]

【実施例】以下、本発明の具体的な実施例について、比
較例と比較しつつ説明する。 (実施例1)この実施例では第1の高炭素鋼板を製造す
る方法の例について示す。JIS G4051のS35
C相当の成分系(質量で、C:0.35%、Si:0.
20%、Mn:0.76%、P:0.016%、S:
0.003%、Al:0.026%)のスラブを連続鋳
造により製造し、このスラブを1100℃に加熱し、熱
間圧延し、冷却した後、表2に示す条件で巻取り、一次
焼鈍、冷間圧延、二次焼鈍を順次行い、その後、1.5
%の調質圧延を施して、板厚1.0mmの鋼板を作製し
た。なお、サンプルNo.Iは、従来材である。
EXAMPLES Specific examples of the present invention will be described below in comparison with comparative examples. (Embodiment 1) In this embodiment, an example of a method of manufacturing a first high carbon steel sheet will be described. S35 of JIS G4051
C equivalent component system (by mass, C: 0.35%, Si: 0.
20%, Mn: 0.76%, P: 0.016%, S:
(0.003%, Al: 0.026%) was manufactured by continuous casting, and this slab was heated to 1100 ° C., hot-rolled, cooled, wound up under the conditions shown in Table 2, and subjected to primary annealing. , Cold rolling, and secondary annealing are sequentially performed.
%, And a 1.0 mm-thick steel sheet was produced. The sample No. I is a conventional material.

【0059】[0059]

【表2】 [Table 2]

【0060】これらの試料について、圧延方向に対し0
°方向(L方向)、45°方向(S方向)、90°(C
方向)に沿ってJIS5号試験片を採取し、引張速度1
0mm/minで引張試験を行い、各方向の引張特性を
測定し、面内異方性について評価した。結果を表3に示
す。なお、表3中の降伏強度、引張強度および全伸びの
各欄に記載したΔmaxとは、それぞれの引張特性値の
L、S、C方向における最大格差を示している。また、
表3中のr値の欄に記載したΔrとは、Δr=(r0+
r90−2×r45)/4により規定される値である。
ここで、前記r0、r45、r90は、それぞれ圧延方
向に対し、0°方向(L方向)、45°方向(S方
向)、90°方向(C方向)におけるr値を示す。
With respect to these samples, 0
° direction (L direction), 45 ° direction (S direction), 90 ° (C
JIS No. 5 test piece was taken along the
A tensile test was performed at 0 mm / min, tensile properties in each direction were measured, and in-plane anisotropy was evaluated. Table 3 shows the results. Incidentally, the yield strength in Table 3, the tensile strength and delta max described in the respective columns of all elongation, L of each of the tensile characteristic value, S, indicates the maximum disparity in the C direction. Also,
Δr described in the column of r value in Table 3 means Δr = (r0 +
r90−2 × r45) / 4.
Here, r0, r45, and r90 indicate r values in the 0 ° direction (L direction), the 45 ° direction (S direction), and the 90 ° direction (C direction) with respect to the rolling direction, respectively.

【0061】[0061]

【表3】 [Table 3]

【0062】表3に示すように本発明例であるNo.A
〜No.Cは、降伏強度および引張強度のΔmaxが1
0MPa以下、伸びのΔmaxが1.5%以下、r値の
Δrが−0.15超〜0.15未満であり、面内での引
張特性の異方性が小さいことが確認された。
As shown in Table 3, No. 1 of the present invention example. A
-No. C is, delta max of yield strength and tensile strength 1
0MPa below, the elongation of the delta max 1.5% or less, [Delta] r of the r value is less than -0.15 ultra 0.15, anisotropy of tensile properties in the plane is small is confirmed.

【0063】一方、比較例では、Δrが大きくなってお
り、面内異方性に劣っていることが確認された。例え
ば、巻取り温度が低い場合(No.D)には、伸びのΔ
maxが2.0%、r値のΔrが0.18となり、一時
焼鈍温度が高い場合(No.E)にはr値のΔrが0.
20となり、冷間圧延率が40%と低い場合(No.
F)には降伏強度のΔmaxが14、引張強度のΔ
maxが16、r値のΔrが0.19とそれぞれ大きく
なり、二次焼鈍温度が高い場合(No.G)にはr値の
Δrが0.23と大きくなり、二次焼鈍温度が低い場合
(No.H)にはr値のΔrが−0.29と大きくな
り、いずれの場合も面内異方性が大きかった。また、従
来材のNo.Iも、r値のΔrが0.18と高く、面内
異方性が大きかった。 (実施例2)この実施例では第2の高炭素鋼板を製造す
る第1の方法の例について示す。JIS G4051の
S35C相当の成分系(質量で、C:0.34%、S
i:0.19%、Mn:0.73%、P:0.012
%、S:0.001%、Al:0.021%)のスラブ
を連続鋳造により製造し、このスラブを1100℃に加
熱し、熱間圧延し、冷却した後、表4に示す条件で巻取
り、一次焼鈍、冷間圧延、二次焼鈍を順次行い、その
後、1.5%の調質圧延を施して、板厚2.5mmの1
6種類の鋼板を作製した。なお、サンプルNo.16
は、従来材である。
On the other hand, in the comparative example, Δr was large, and it was confirmed that the in-plane anisotropy was poor. For example, when the winding temperature is low (No. D), the elongation Δ
When the maximum annealing is 2.0% and the r value Δr is 0.18, and when the temporary annealing temperature is high (No. E), the r value Δr is 0.1%.
20 when the cold rolling reduction is as low as 40% (No.
In F), Δmax of the yield strength is 14, and Δ of the tensile strength is
When the max is 16 and the r-value Δr is as large as 0.19, respectively, and when the secondary annealing temperature is high (No. G), the r-value Δr is as large as 0.23 and the secondary annealing temperature is low. In (No. H), the r value Δr was as large as −0.29, and in each case, the in-plane anisotropy was large. In addition, the conventional materials No. I also had a high r value, Δr, of 0.18 and a large in-plane anisotropy. (Embodiment 2) In this embodiment, an example of a first method for producing a second high carbon steel sheet will be described. A component system equivalent to S35C of JIS G4051 (by mass, C: 0.34%, S
i: 0.19%, Mn: 0.73%, P: 0.012
%, S: 0.001%, Al: 0.021%) was manufactured by continuous casting, and this slab was heated to 1100 ° C., hot-rolled, cooled, and then rolled under the conditions shown in Table 4. , Primary annealing, cold rolling, and secondary annealing are sequentially performed, and then, a temper rolling of 1.5% is performed to obtain a sheet having a thickness of 2.5 mm.
Six types of steel sheets were produced. The sample No. 16
Is a conventional material.

【0064】[0064]

【表4】 [Table 4]

【0065】これらの試料について、圧延方向に対し0
°方向(L方向)、45°方向(S方向)、90°(C
方向)に沿ってJIS5号試験片を採取し、引張速度1
0mm/minで引張試験を行い、各方向の引張特性を
測定し、面内異方性について評価した。結果を表5に示
す。なお、表5中の降伏強度、引張強度、全伸び、およ
びr値の各欄に記載したΔmaxとは、それぞれの引張
特性値のL、S、C方向における最大格差を示してい
る。
With respect to these samples, 0
° direction (L direction), 45 ° direction (S direction), 90 ° (C
JIS No. 5 test piece was taken along the
A tensile test was performed at 0 mm / min, tensile properties in each direction were measured, and in-plane anisotropy was evaluated. Table 5 shows the results. Incidentally, the yield strength in Table 5, tensile strength, total elongation, and the delta max described in the respective columns of r values, L of each of the tensile characteristic value, S, indicates the maximum disparity in the C direction.

【0066】[0066]

【表5】 [Table 5]

【0067】表5に示すように本発明例であるNo.1
〜No.7は、降伏強度および引張強度のΔmaxが1
0MPa以下、伸びのΔmaxが1.5%以下、r値の
Δ axが0.2未満であり、面内での引張特性の異方
性が極めて小さいことが確認された。
As shown in Table 5, No. 1 of the present invention was used. 1
-No. 7, Δ max of the yield strength and tensile strength 1
0MPa below, the elongation of the delta max 1.5% or less, delta m ax of r value is less than 0.2, the anisotropy of the tensile properties in the plane is very small is confirmed.

【0068】一方、比較例では、引張特性のいずれかに
ついてΔmaxが大きくなり、面内異方性に劣っている
ことが確認された。例えば、一次焼鈍温度が高い場合
(No.11)には、r値のΔmaxが0.30とな
り、冷延率が30%と低い場合(No.13)には、降
伏強度、引張強度およびr値のΔmaxがそれぞれ1
8、13および0.59と大きくなり、いずれも面内異
方性が大きかった。また、従来材のNo.16も、r値
のΔmaxが0.42と高く、面内異方性が大きかっ
た。
On the other hand, in the comparative example, Δmax was increased in any of the tensile properties, and it was confirmed that the in-plane anisotropy was poor. For example, if the primary annealing temperature is high (No.11), the delta max is 0.30, and the r value, when the cold rolling reduction is 30% and lower (No.13) is the yield strength, tensile strength and Δ max of r value is 1
8, 13, and 0.59, which were all large in-plane anisotropy. In addition, the conventional materials No. Sample No. 16 also had a high r value Δmax of 0.42 and large in-plane anisotropy.

【0069】(実施例3)この実施例も第2の高炭素鋼
板を製造する第1の方法の例について示す。JIS G
4802のS65C−CSP相当の成分系(質量で、
C:0.64%、Si:0.20%、Mn:0.75
%、P:0.010%、S:0.003%、Al:0.
019%)のスラブを連続鋳造により製造し、このスラ
ブを1100℃に加熱し、熱間圧延し、冷却した後、表
6に示す条件で巻取り、一次焼鈍、冷間圧延、二次焼鈍
を順次行い、板厚2.5mmの16種類の鋼板を作製し
た。なお、サンプルNo.32は従来材である。
(Embodiment 3) This embodiment also shows an example of the first method for producing the second high carbon steel sheet. JIS G
4802 S65C-CSP equivalent component system (by mass
C: 0.64%, Si: 0.20%, Mn: 0.75
%, P: 0.010%, S: 0.003%, Al: 0.
Slab is manufactured by continuous casting, and the slab is heated to 1100 ° C., hot-rolled, cooled, and then wound under the conditions shown in Table 6, and subjected to primary annealing, cold rolling, and secondary annealing. This was performed sequentially to produce 16 types of steel plates having a thickness of 2.5 mm. The sample No. 32 is a conventional material.

【0070】[0070]

【表6】 [Table 6]

【0071】これらの試料について、圧延方向に対し0
°方向(L方向)、45°方向(S方向)、90°(C
方向)に沿ってJIS5号試験片を採取し、引張速度1
0mm/minで引張試験を行い、各方向の引張特性を
測定し、面内異方性について評価した。その結果を表7
に示す。なお、表7中の降伏強度、引張強度、全伸び、
およびr値の各欄に記載したΔmaxとは、それぞれの
引張特性値のL、S、C方向における最大格差を示して
いる。
With respect to these samples, 0
° direction (L direction), 45 ° direction (S direction), 90 ° (C
JIS No. 5 test piece was taken along the
A tensile test was performed at 0 mm / min, tensile properties in each direction were measured, and in-plane anisotropy was evaluated. Table 7 shows the results.
Shown in In Table 7, the yield strength, tensile strength, total elongation,
And the the delta max described in the columns of r values, L of each of the tensile characteristic value, S, indicates the maximum disparity in the C direction.

【0072】[0072]

【表7】 [Table 7]

【0073】表7に示すように本発明例であるNo.1
7〜No.23は、降伏強度および引張強度のΔmax
が20MPa以下、伸びのΔmaxが2.0%以下、r
値のΔmaxが0.2未満であり、面内での引張特性の
異方性が極めて小さいことが確認された。
As shown in Table 7, No. 1 of the present invention was used. 1
7-No. 23, the yield strength and tensile strength Δ max
Is 20 MPa or less, the elongation Δmax is 2.0% or less, r
The value Δmax was less than 0.2, and it was confirmed that the in-plane anisotropy of tensile properties was extremely small.

【0074】一方、比較例では、引張特性のいずれかに
ついてΔmaxが大きくなり、面内異方性に劣っている
ことが確認された。例えば、一次焼鈍温度が高い場合
(No.27)には、r値のΔmaxが0.31とな
り、冷延率が30%と低い場合(No.29)には、降
伏強度、引張強度およびr値のΔmaxがそれぞれ2
2、15および0.32と大きくなり、いずれも面内異
方性が大きかった。また、従来材のNo.32も、r値
のΔmaxが0.44と高く、面内異方性が大きかっ
た。
On the other hand, in the comparative example, Δmax was increased in any of the tensile properties, and it was confirmed that the in-plane anisotropy was poor. For example, if the primary annealing temperature is high (No.27), the delta max is 0.31 in r value, when the cold rolling reduction is 30% and lower (No.29) is the yield strength, tensile strength and Δ max of r value is 2
2, 15 and 0.32, all of which had large in-plane anisotropy. In addition, the conventional materials No. Sample No. 32 also had a high r value Δmax of 0.44 and large in-plane anisotropy.

【0075】(実施例4)この実施例では第2の高炭素
鋼板を製造する第2の方法の例について示す。JIS
G4051のS35C相当の成分系(質量で、C:0.
35%、Si:0.18%、Mn:0.72%、P:
0.011%、S:0.001%、Al:0.022
%)のスラブを連続鋳造により製造し、このスラブを1
100℃に加熱した後、表8に示す条件で熱間圧延、一
次焼鈍、冷間圧延、二次焼鈍を順次行い、その後、1.
5%の調質圧延を施して、板厚2.5mmの23種類の
鋼板を作製した。なお、サンプルNo.55は従来材で
ある。
(Embodiment 4) In this embodiment, an example of a second method for producing a second high carbon steel sheet will be described. JIS
G4051 component system equivalent to S35C (by mass, C: 0.
35%, Si: 0.18%, Mn: 0.72%, P:
0.011%, S: 0.001%, Al: 0.022
%) Of the slab is manufactured by continuous casting, and
After heating to 100 ° C., hot rolling, primary annealing, cold rolling, and secondary annealing are sequentially performed under the conditions shown in Table 8;
By performing temper rolling of 5%, 23 types of steel plates having a thickness of 2.5 mm were produced. The sample No. 55 is a conventional material.

【0076】[0076]

【表8】 [Table 8]

【0077】これらの試料について、引張試験にて面内
異方性を、X線回折にて板厚方向の組織の均一性を調査
した。引張試験は、圧延方向に対し0°方向(L方
向)、45°方向(S方向)、90°(C方向)に沿っ
てJIS5号試験片を採取し、引張速度10mm/mi
nで引張試験を行い、各方向の引張特性を測定した。そ
の結果を表9に示す。なお、表9中の降伏強度、引張強
度、全伸び、およびr値の各欄に記載したΔmax
は、それぞれの引張特性値のL、S、C方向における最
大格差を示している。また、表9には、板厚方向の組織
の均一性について、鋼板表面、板厚1/4、板厚1/2
の各位置の圧延面に平行な面についてそれぞれ積分反射
強度を調査した結果を併せて示す。
With respect to these samples, the in-plane anisotropy was examined by a tensile test, and the uniformity of the structure in the thickness direction was examined by X-ray diffraction. In the tensile test, JIS No. 5 test pieces were sampled along the 0 ° direction (L direction), 45 ° direction (S direction), and 90 ° (C direction) with respect to the rolling direction, and the tensile speed was 10 mm / mi.
n, a tensile test was performed, and tensile properties in each direction were measured. Table 9 shows the results. Incidentally, the yield strength in Table 9, tensile strength, total elongation, and the delta max described in the respective columns of r values, L of each of the tensile characteristic value, S, indicates the maximum disparity in the C direction. Table 9 shows, regarding the uniformity of the structure in the thickness direction, the steel sheet surface, the thickness 1/4, and the thickness 1/2.
The results obtained by examining the integrated reflection intensity of the surface parallel to the rolling surface at each position are also shown.

【0078】[0078]

【表9】 [Table 9]

【0079】表9に示すように本発明例であるNo.3
3〜No.46は、降伏強度および引張強度のΔmax
が10MPa以下、伸びのΔmaxが1.5%以下、r
値のΔmaxが0.2未満であり、面内での引張特性の
異方性が極めて小さいことが確認された。さらに、粗圧
延前に誘導加熱を施す方法は、引張特性の面内異方性の
低減だけでなく、板厚方向の組織の均一性の向上の観点
からより好ましいことが確認された。
As shown in Table 9, No. 1 of the present invention was used. Three
3-No. 46, the yield strength and tensile strength Δ max
There 10MPa or less, Δ max of growth of 1.5% or less, r
The value Δmax was less than 0.2, and it was confirmed that the in-plane anisotropy of tensile properties was extremely small. Furthermore, it was confirmed that the method of performing induction heating before rough rolling is more preferable from the viewpoint of not only reducing the in-plane anisotropy of the tensile properties but also improving the uniformity of the structure in the thickness direction.

【0080】一方、比較例では、引張特性のいずれかに
ついてΔmaxが大きくなり、面内異方性に劣っている
ことが確認された。例えば、一次焼鈍温度が高い場合
(No.50)には、r値のΔmaxが0.28とな
り、冷延率が30%と低い場合(No.52)には、降
伏強度、引張強度およびr値のΔmaxがそれぞれ1
6、11および0.34と大きくなり、いずれも面内異
方性が大きかった。また、従来材のNo.55も、r値
のΔmaxが0.40と高く、面内異方性が大きかっ
た。
On the other hand, in the comparative example, Δmax was increased in any of the tensile properties, and it was confirmed that the in-plane anisotropy was poor. For example, if the primary annealing temperature is high (No.50), the delta max 0.28 next to the r value, when the cold rolling reduction is 30% and lower (No.52) is the yield strength, tensile strength and Δ max of r value is 1
6, 11, and 0.34, all of which had large in-plane anisotropy. In addition, the conventional materials No. 55 also, delta max of r value was as high as 0.40, in-plane anisotropy is large.

【0081】(実施例5)この実施例も第2の高炭素鋼
板を製造する第2の方法の例について示す。JIS G
4802のS65C−CSP相当の成分系(質量で、
C:0.64%、Si:0.20%、Mn:0.75
%、P:0.010%、S:0.003%、Al:0.
019%)のスラブを連続鋳造により製造し、このスラ
ブを1100℃に加熱した後、表10に示す条件で熱間
圧延、冷却、巻取り、一次焼鈍、冷間圧延、二次焼鈍を
順次行い、板厚2.5mmの23種類の鋼板を作製し
た。なお、サンプルNo.78は従来材である。
(Embodiment 5) This embodiment also shows an example of a second method for producing a second high carbon steel sheet. JIS G
4802 S65C-CSP equivalent component system (by mass
C: 0.64%, Si: 0.20%, Mn: 0.75
%, P: 0.010%, S: 0.003%, Al: 0.
(019%) by continuous casting, and after heating this slab to 1100 ° C., hot rolling, cooling, winding, primary annealing, cold rolling, and secondary annealing are sequentially performed under the conditions shown in Table 10. And 23 types of steel plates having a thickness of 2.5 mm. The sample No. 78 is a conventional material.

【0082】[0082]

【表10】 [Table 10]

【0083】これらの試料について、引張試験にて面内
異方性を、X線回折にて板厚方向の組織の均一性を調査
した。引張試験は、圧延方向に対し0°方向(L方
向)、45°方向(S方向)、90°(C方向)に沿っ
てJIS5号試験片を採取し、引張速度10mm/mi
nで引張試験を行い、各方向の引張特性を測定した。そ
の結果を表11に示す。なお、表11中の降伏強度、引
張強度、全伸び、およびr値の各欄に記載したΔmax
とは、それぞれの引張特性値のL、S、C方向における
最大格差を示している。また、表11には、板厚方向の
組織の均一性について、鋼板表面、板厚1/4、板厚1
/2の各位置の圧延面に平行な面についてそれぞれ積分
反射強度を調査した結果を併せて示す。
For these samples, the in-plane anisotropy was examined by a tensile test, and the uniformity of the structure in the thickness direction was examined by X-ray diffraction. In the tensile test, JIS No. 5 test pieces were sampled along the 0 ° direction (L direction), 45 ° direction (S direction), and 90 ° (C direction) with respect to the rolling direction, and the tensile speed was 10 mm / mi.
n, a tensile test was performed, and tensile properties in each direction were measured. Table 11 shows the results. Note that Δ max described in each column of the yield strength, tensile strength, total elongation, and r value in Table 11 was used.
Indicates the maximum difference between the tensile property values in the L, S, and C directions. Table 11 shows the uniformity of the structure in the sheet thickness direction with respect to the steel sheet surface, the sheet thickness 1 /, and the sheet thickness 1.
The results obtained by examining the integrated reflection intensity of the plane parallel to the rolling plane at each position of / 2 are also shown.

【0084】[0084]

【表11】 [Table 11]

【0085】表11に示すように本発明例であるNo.
56〜No.69は、降伏強度および引張強度のΔ
maxが20MPa以下、伸びのΔmaxが1.5%以
下、r値のΔmaxが0.2未満であり、面内での引張
特性の異方性が極めて小さいことが確認された。さらに
粗圧延前に誘導加熱を施す方法は、引張特性の面内異方
性の低減だけでなく、板厚方向の組織の均一性の向上の
観点からより好ましいことが確認された。
As shown in Table 11, No. 1 of the present invention example.
56-No. 69 is Δ of yield strength and tensile strength
max is 20MPa or less, the elongation of the delta max 1.5% or less, delta max of r value is less than 0.2, the anisotropy of the tensile properties in the plane is very small is confirmed. Furthermore, it was confirmed that the method of performing induction heating before the rough rolling is more preferable from the viewpoint of not only reducing the in-plane anisotropy of the tensile properties but also improving the uniformity of the structure in the thickness direction.

【0086】一方、比較例では、引張特性のいずれかに
ついてΔmaxが大きくなり、面内異方性に劣っている
ことが確認された。例えば、一次焼鈍温度が高い場合
(No.73)には、r値のΔmaxが0.34とな
り、冷延率が30%と低い場合(No.75)には、降
伏強度、引張強度およびr値のΔmaxがそれぞれ1
9、13および0.41と大きくなり、いずれも面内異
方性が大きかった。また、従来材のNo.78も、r値
のΔmaxが0.42と高く、面内異方性が大きかっ
た。
On the other hand, in the comparative example, Δmax was increased in any of the tensile properties, and it was confirmed that the in-plane anisotropy was poor. For example, if the primary annealing temperature is high (No.73), the delta max is 0.34 in r value, when the cold rolling reduction is 30% and lower (No.75) is the yield strength, tensile strength and Δ max of r value is 1
9, 13, and 0.41 and all had large in-plane anisotropy. In addition, the conventional materials No. Sample No. 78 also had a high r-value Δmax of 0.42 and large in-plane anisotropy.

【0087】(実施例6)この実施例では第2の高炭素
鋼板を製造する第3の方法の例について示す。JIS
G4051のS35C相当の成分系(質量で、C:0.
34%、Si:0.19%、Mn:0.73%、P:
0.012%、S:0.001%、Al:0.021
%)のスラブを連続鋳造により製造し、このスラブを1
100℃に加熱し、熱間圧延した後、表12に示す条件
で仕上圧延、冷却、巻取り、一次焼鈍、冷間圧延、二次
焼鈍を順次行い、その後、1.5%の調質圧延を施し
て、板厚2.5mmの22種類の鋼板を作製した。な
お、サンプルNo.100は従来材である。
(Embodiment 6) In this embodiment, an example of a third method for producing a second high carbon steel sheet will be described. JIS
G4051 component system equivalent to S35C (by mass, C: 0.
34%, Si: 0.19%, Mn: 0.73%, P:
0.012%, S: 0.001%, Al: 0.021
%) Of the slab is manufactured by continuous casting, and
After heating to 100 ° C. and hot rolling, finish rolling, cooling, winding, primary annealing, cold rolling, and secondary annealing are sequentially performed under the conditions shown in Table 12, followed by 1.5% temper rolling. To produce 22 types of steel plates having a thickness of 2.5 mm. The sample No. 100 is a conventional material.

【0088】[0088]

【表12】 [Table 12]

【0089】これらの試料について、圧延方向に対し0
°方向(L方向)、45°方向(S方向)、90°(C
方向)に沿ってJIS5号試験片を採取し、引張速度1
0mm/minで引張試験を行い、各方向の引張特性を
測定し、面内異方性について評価した。その結果を表1
3に示す。なお、表13中の降伏強度、引張強度、全伸
び、およびr値の各欄に記載したΔmaxとは、それぞ
れの引張特性値のL、S、C方向における最大格差を示
している。
For these samples, 0
° direction (L direction), 45 ° direction (S direction), 90 ° (C
JIS No. 5 test piece was taken along the
A tensile test was performed at 0 mm / min, tensile properties in each direction were measured, and in-plane anisotropy was evaluated. Table 1 shows the results.
3 is shown. Incidentally, the yield strength in Table 13, the tensile strength, total elongation, and the delta max described in the respective columns of r values, L of each of the tensile characteristic value, S, indicates the maximum disparity in the C direction.

【0090】[0090]

【表13】 [Table 13]

【0091】表13に示すように本発明例であるNo.
79〜No.92は、降伏強度および引張強度のΔ
maxが10MPa以下、伸びのΔmaxが1.5%以
下、r値のΔmaxが0.2未満であり、面内での引張
特性の異方性が極めて小さいことが確認された。さら
に、仕上圧延された鋼板を7℃/s以上の冷却速度でA
−100℃まで冷却し、冷却した後の鋼板を560
〜640℃の温度域で2〜10秒保持し、その後熱間仕
上圧延後の鋼板を500〜630℃で巻きとることは、
延性の向上の観点から、より好ましいことが確認され
た。
As shown in Table 13, No. 1 of the present invention example.
79-No. 92 is the Δ of the yield strength and the tensile strength.
max is 10MPa or less, the elongation of the delta max 1.5% or less, delta max of r value is less than 0.2, the anisotropy of the tensile properties in the plane is very small is confirmed. Further, the finish-rolled steel sheet is cooled at a cooling rate of 7 ° C./s or more to A
r 3 −100 ° C. and the cooled steel sheet
Holding at a temperature range of 6640 ° C. for 2 to 10 seconds, and then winding the steel plate after hot finish rolling at 500〜630 ° C.,
From the viewpoint of improvement of ductility, it was confirmed that it was more preferable.

【0092】一方、比較例では、延性が低くなっている
こと、または、引張特性のいずれかについてΔmax
大きくなり、面内異方性に劣っていることが確認され
た。例えば、一次焼鈍温度が高い場合(No.96)に
は、r値のΔmaxが0.37となり、冷延率が40%
と低い場合(No.99)には、降伏強度、引張強度お
よびr値のΔmaxがそれぞれ14、18および0.3
6と大きくなり、いずれも面内異方性が大きかった。ま
た、従来材のNo.100も、伸びが約36%程度であ
り、r値のΔmaxが0.42と高く、面内異方性が大
きかった。このように、本発明例は、同様な成分系およ
び板厚の比較例より、高い伸びを示し、引張特性の異方
性も低減していることが確認された。
On the other hand, in the comparative example, it was confirmed that the ductility was low, or Δmax was large in any of the tensile properties, and the in-plane anisotropy was poor. For example, if the primary annealing temperature is high (No.96) is, delta max is 0.37 in r value, the cold rolling reduction is 40%
When the lower case (No.99), yield strength, tensile strength and delta max is respectively 14, 18 and 0.3 for r value
In each case, the in-plane anisotropy was large. In addition, the conventional materials No. 100 also extends is approximately 36%, delta max of r value was as high as 0.42, in-plane anisotropy is large. Thus, it was confirmed that the inventive examples exhibited higher elongation and reduced anisotropy in tensile properties as compared with comparative examples having the same component system and plate thickness.

【0093】(実施例7)この実施例も第2の高炭素鋼
板を製造する第3の方法の例について示す。JIS G
4802のS65C−CSP相当の成分系(質量で、
C:0.64%、Si:0.20%、Mn:0.75
%、P:0.010%、S:0.003%、Al:0.
019%)のスラブを連続鋳造により製造し、このスラ
ブを1100℃に加熱し、熱間圧延した後、表14に示
す条件で仕上圧延、冷却、巻取り、一次焼鈍、冷間圧
延、二次焼鈍を順次行い、板厚2.5mmの22種類の
鋼板を作製した。この際に、熱間圧延後の冷却速度はラ
インアウトテーブル上の水量および水圧を調整し変化さ
せた。なお、サンプルNo.122は従来材である。
(Embodiment 7) This embodiment also shows an example of the third method for producing the second high carbon steel sheet. JIS G
4802 S65C-CSP equivalent component system (by mass
C: 0.64%, Si: 0.20%, Mn: 0.75
%, P: 0.010%, S: 0.003%, Al: 0.
Slab is manufactured by continuous casting, and the slab is heated to 1100 ° C. and hot-rolled. Then, under the conditions shown in Table 14, finish rolling, cooling, winding, primary annealing, cold rolling, and secondary rolling are performed. Annealing was sequentially performed to produce 22 types of steel plates having a thickness of 2.5 mm. At this time, the cooling rate after hot rolling was changed by adjusting the amount of water and the water pressure on the line-out table. The sample No. 122 is a conventional material.

【0094】[0094]

【表14】 [Table 14]

【0095】これらの試料について、圧延方向に対し0
°方向(L方向)、45°方向(S方向)、90°(C
方向)に沿ってJIS5号試験片を採取し、引張速度1
0mm/minで引張試験を行い、各方向の引張特性を
測定し、面内異方性について評価した。その結果を表1
5に示す。なお、表15中の降伏強度、引張強度、全伸
び、およびr値の各欄に記載したΔmaxとは、それぞ
れの引張特性値のL、S、C方向における最大格差を示
している。
For these samples, 0 to the rolling direction
° direction (L direction), 45 ° direction (S direction), 90 ° (C
JIS No. 5 test piece was taken along the
A tensile test was performed at 0 mm / min, tensile properties in each direction were measured, and in-plane anisotropy was evaluated. Table 1 shows the results.
It is shown in FIG. Incidentally, the yield strength in Table 15, the tensile strength, total elongation, and the delta max described in the respective columns of r values, L of each of the tensile characteristic value, S, indicates the maximum disparity in the C direction.

【0096】[0096]

【表15】 [Table 15]

【0097】表15に示すように本発明例であるNo.
101〜No.114は、降伏強度および引張強度のΔ
maxが20MPa以下、伸びのΔmaxが2.0%以
下、r値のΔmaxが0.2未満であり、面内での引張
特性の異方性が極めて小さいことが確認された。さら
に、仕上圧延された鋼板を7℃/s以上の冷却速度でA
−100℃まで冷却し、冷却した後の鋼板を560
〜640℃の温度域で2〜10秒保持し、その後熱間仕
上圧延後の鋼板を500〜630℃で巻きとることは、
延性の向上の観点から、より好ましいことが確認され
た。
As shown in Table 15, no.
101-No. 114 is the Δ of the yield strength and the tensile strength.
max is 20MPa or less, the elongation of the delta max 2.0% or less, delta max of r value is less than 0.2, the anisotropy of the tensile properties in the plane is very small is confirmed. Further, the finish-rolled steel sheet is cooled at a cooling rate of 7 ° C./s or more to A
r 3 −100 ° C. and the cooled steel sheet
Holding at a temperature range of 6640 ° C. for 2 to 10 seconds, and then winding the steel plate after hot finish rolling at 500〜630 ° C.,
From the viewpoint of improvement of ductility, it was confirmed that it was more preferable.

【0098】一方、比較例では、引張特性のいずれかに
ついてΔmaxが大きくなり、面内異方性に劣っている
ことが確認された。例えば、一次焼鈍温度が高い場合
(No.118)には、r値のΔmaxが0.44とな
り、冷延率が40%と低い場合(No.121)には、
降伏強度、引張強度およびr値のΔmaxがそれぞれ1
8、18および0.32と大きくなり、いずれも面内異
方性が大きかった。また、従来材のNo.122も、r
値のΔmaxが0.44と高く、面内異方性が大きかっ
た。
On the other hand, in the comparative example, Δmax was increased in any of the tensile properties, and it was confirmed that the in-plane anisotropy was poor. For example, if the primary annealing temperature is high (No.118), the delta max 0.44 next to the r value, when the cold rolling reduction is 40% and less (No.121) is
Yield strength, delta max tensile strength and r values respectively 1
8, 18, and 0.32, all of which had large in-plane anisotropy. In addition, the conventional materials No. 122 is also r
The value Δmax was as high as 0.44, and the in-plane anisotropy was large.

【0099】[0099]

【発明の効果】以上説明したように、本発明によれば、
引張特性の面内異方性が小さい加工用高炭素鋼板を得る
ことができる。また、引張特性の面内異方性の小さいこ
とに加え延性に優れた加工用高炭素鋼板を得ることがで
きる。したがって、本発明によって得られた高炭素鋼板
は、高い寸法精度が要求されるギア部品等に供すること
により、このギア部品等を、鋼板の一体成形より製造す
ることができ、従来の鋳造鍛造プロセスに比べて、安価
に製造することが可能となる。また、ギアの歯部に高周
波焼入れする場合、高周波コイルと円周部の距離が一定
に保たれることにより、歯部特性をも円周方向で均質化
することができる。
As described above, according to the present invention,
A high carbon steel sheet for processing having small in-plane anisotropy of tensile properties can be obtained. In addition, a high carbon steel sheet for processing excellent in ductility in addition to low in-plane anisotropy of tensile properties can be obtained. Therefore, the high-carbon steel sheet obtained by the present invention can be manufactured by integrally forming a steel sheet by providing the gear part or the like to a gear part or the like that requires high dimensional accuracy. It can be manufactured at a lower cost than in the case of When induction hardening is performed on the teeth of the gear, the distance between the high-frequency coil and the circumferential portion is kept constant, so that the characteristics of the teeth can be homogenized in the circumferential direction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第2の高炭素鋼板を製造する第1の方
法において、r値の面内異方性に及ぼす、一次焼鈍温度
および二次焼鈍温度の影響を示す図。
FIG. 1 is a view showing the influence of a primary annealing temperature and a secondary annealing temperature on an in-plane anisotropy of an r value in a first method for producing a second high carbon steel sheet of the present invention.

【図2】本発明の第2の高炭素鋼板を製造する第2の方
法において、r値の面内異方性に及ぼす、一次焼鈍温度
および二次焼鈍温度の影響を示す図。
FIG. 2 is a view showing the influence of the primary annealing temperature and the secondary annealing temperature on the in-plane anisotropy of the r value in the second method of manufacturing the second high carbon steel sheet of the present invention.

【図3】本発明の第2の高炭素鋼板を製造する第3の方
法において、r値の面内異方性に及ぼす、一次焼鈍温度
および二次焼鈍温度の関係を示す図。
FIG. 3 is a view showing a relationship between a primary annealing temperature and a secondary annealing temperature affecting an in-plane anisotropy of an r value in a third method of manufacturing a second high carbon steel sheet according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塩谷 昇史 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 高田 康幸 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 伊藤 克俊 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 細谷 佳弘 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K037 EA06 FC07 FE01 FE02 FE03 FF02 FG03 FJ04 FJ05  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Noboru Shioya 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Inside Nihon Kokan Co., Ltd. (72) Inventor Yasuyuki Takada 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Katsutoshi Ito 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Yoshihiro Hosoya 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Japan 4K037 EA06 FC07 FE01 FE02 FE03 FF02 FG03 FJ04 FJ05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 JIS G 4051(機械構造用炭素
鋼)、JIS G4401(炭素工具鋼鋼材)、JIS
G 4802(ばね用冷間圧延鋼帯)で規定される成
分系を有する高炭素鋼板であって、r値の面内異方性指
数Δrが−0.15超〜0.15未満であることを特徴
とする面内異方性の小さい加工用高炭素鋼板。ただし、
Δrは、Δr=(r0+r90−2×r45)/4によ
り規定される値を示す。ここでr0、r45、r90
は、それぞれ、圧延方向に対し、0°方向(L方向)、
45°方向(S方向)、90°方向(C方向)のr値を
示す。
1. JIS G 4051 (carbon steel for machine structure), JIS G4401 (carbon tool steel), JIS
A high-carbon steel sheet having a component system defined by G4802 (cold rolled steel strip for spring), wherein the in-plane anisotropy index Δr of the r value is more than −0.15 to less than 0.15. A high carbon steel sheet for processing with small in-plane anisotropy characterized by the following characteristics. However,
Δr indicates a value defined by Δr = (r0 + r90−2 × r45) / 4. Where r0, r45, r90
Are 0 ° direction (L direction) with respect to the rolling direction, respectively.
The r values in the 45 ° direction (S direction) and the 90 ° direction (C direction) are shown.
【請求項2】 JIS G 4051(機械構造用炭素
鋼)、JIS G4401(炭素工具鋼鋼材)、JIS
G 4802(ばね用冷間圧延鋼帯)で規定される成
分系を有する熱間仕上圧延後の鋼板を500〜650℃
で巻取り、 次いで巻取り後の鋼板を脱スケールした後、630〜7
00℃で20hr以上の一次焼鈍を施し、 50%以上の圧下率で冷間圧延し、 その後600〜710℃で二次焼鈍することを特徴とす
る面内異方性の小さい加工用高炭素鋼板の製造方法。
2. JIS G 4051 (carbon steel for machine structure), JIS G4401 (carbon tool steel), JIS
G-4802 (cold-rolled steel strip for springs).
After descaling the rolled steel sheet, 630 to 7
High carbon steel sheet for working with small in-plane anisotropy characterized by subjecting to primary annealing at 00 ° C for 20 hours or more, cold rolling at a reduction of 50% or more, and then secondary annealing at 600 to 710 ° C. Manufacturing method.
【請求項3】 JIS G 4051(機械構造用炭素
鋼)、JIS G4401(炭素工具鋼鋼材)、JIS
G 4802(ばね用冷間圧延鋼帯)で規定される成
分系を有する高炭素鋼板であって、r値のΔmax
0.2未満であることを特徴とする面内異方性の小さい
加工用高炭素鋼板。ただし、Δmaxは、圧延方向に対
し、0°方向(L方向)、45°方向(S方向)、90
°方向(C方向)の値の最大格差を示す。
3. JIS G 4051 (carbon steel for machine structure), JIS G4401 (carbon tool steel), JIS
G 4802 A high carbon steel sheet having a component system defined by (cold spring rolled steel strip), small planar anisotropy, wherein the delta max of r value is less than 0.2 High carbon steel sheet for processing. However, Δ max is 0 ° (L direction), 45 ° direction (S direction), 90 ° with respect to the rolling direction.
Indicates the maximum disparity in the value in the ° direction (C direction).
【請求項4】 JIS G 4051(機械構造用炭素
鋼)、JIS G4401(炭素工具鋼鋼材)、JIS
G 4802(ばね用冷間圧延鋼帯)で規定される成
分系を有する熱間仕上圧延後の鋼板を500〜650℃
で巻取り、 次いで巻取り後の鋼板を脱スケールした後、630〜7
00℃で20hr以上の一次焼鈍を施し、 50%以上の圧下率で冷間圧延し、 その後以下の(1)式を満足する温度で二次焼鈍するこ
とを特徴とする面内異方性の小さい加工用高炭素鋼板の
製造方法。 960−0.5×T≦T≦1153−0.72×T …(1) ただし、T:一次焼鈍温度(℃)、T:二次焼鈍温
度(℃)
4. JIS G 4051 (carbon steel for machine structure), JIS G4401 (carbon tool steel), JIS
G-4802 (cold-rolled steel strip for springs).
After descaling the rolled steel sheet, 630 to 7
Primary annealing at 00 ° C. for 20 hours or more, cold rolling at a rolling reduction of 50% or more, and then secondary annealing at a temperature satisfying the following formula (1): Manufacturing method of small high carbon steel sheet for processing. 960−0.5 × T 1 ≦ T 2 ≦ 1153-0.72 × T 1 (1) where T 1 : primary annealing temperature (° C.), T 2 : secondary annealing temperature (° C.)
【請求項5】 JIS G 4051(機械構造用炭素
鋼)、JIS G4401(炭素工具鋼鋼材)、JIS
G 4802(ばね用冷間圧延鋼帯)で規定される成
分系を有する鋳造スラブを連続鋳造まま、または冷却後
所定の温度に加熱した後、粗圧延機によって粗圧延し
て、粗バーとし、 引き続いて、連続熱間仕上げ圧延機によって仕上圧延す
るに際して、仕上げ圧延機の入り側、あるいは仕上げ圧
延機のスタンド間で、上記粗バーまたは、圧延材をAr
変態点以上の温度に誘導加熱し、 熱間仕上圧延後の鋼板を500〜650℃の温度で巻取
り、 次いで巻取り後の鋼板を脱スケールした後、630〜7
00℃で20hr以上の一次焼鈍を施し、 次いで焼鈍後の鋼板を50%以上の圧下率で冷間圧延
し、 その後以下の(2)式を満足する温度で二次焼鈍するこ
とを特徴とする面内異方性の小さい加工用高炭素鋼板の
製造方法。 950−0.49×T≦T≦1160−0.72×T …(2) ただし、T:一次焼鈍温度(℃)、T:二次焼鈍温
度(℃)
5. JIS G 4051 (carbon steel for machine structure), JIS G4401 (carbon tool steel), JIS
A casting slab having a component system defined by G 4802 (cold rolled steel strip for spring) is continuously cast or heated to a predetermined temperature after cooling, and then roughly rolled by a rough rolling mill to form a rough bar, Subsequently, when finish rolling is performed by a continuous hot finishing rolling mill, the rough bar or the rolled material is Ar at the entrance side of the finishing rolling mill or between stands of the finishing rolling mill.
Induction heating to a temperature of 3 transformation point or more, winding of the steel plate after hot finish rolling at a temperature of 500 to 650 ° C., and then descaling the wound steel plate, and then 630 to 7
Primary annealing at 00 ° C. for 20 hours or more, then cold rolling the annealed steel sheet at a rolling reduction of 50% or more, and then secondary annealing at a temperature satisfying the following equation (2). Manufacturing method of high carbon steel sheet for processing with small in-plane anisotropy. 950−0.49 × T 1 ≦ T 2 ≦ 1160−0.72 × T 1 (2) where T 1 : primary annealing temperature (° C.), T 2 : secondary annealing temperature (° C.)
【請求項6】 JIS G 4051(機械構造用炭素
鋼)、JIS G4401(炭素工具鋼鋼材)、JIS
G 4802(ばね用冷間圧延鋼帯)で規定される成
分系を有する鋼を熱間圧延工程にてAr変態点以上の
仕上温度で圧延し、仕上圧延された鋼板を7℃/s以上
の冷却速度でAr−100℃まで冷却し、冷却した後
の鋼板を560〜640℃の温度域で2〜10秒保持
し、 その後熱間仕上圧延後の鋼板を500〜630℃で巻取
り、 次いで巻取り後の鋼板を脱スケールした後、640〜7
00℃で20hr以上の一次焼鈍を施し、 次いで焼鈍後の鋼板を50%以上の圧下率で冷間圧延
し、 その後以下の(3)式を満足する温度で二次焼鈍するこ
とを特徴とする延性に優れた面内異方性の小さい加工用
高炭素鋼板の製造方法。 1015−0.58×T≦T≦1230−0.83×T …(3) ただし、T:一次焼鈍温度(℃)、T:二次焼鈍温
度(℃)
6. JIS G 4051 (carbon steel for machine structure), JIS G4401 (carbon tool steel), JIS
G 4802 (cold rolled steel strip for springs) is rolled at a finishing temperature of not less than the Ar 3 transformation point in a hot rolling step at a finishing temperature of not less than 7 ° C./s. At a cooling rate of Ar 3 -100 ° C., keeping the cooled steel sheet in a temperature range of 560 to 640 ° C. for 2 to 10 seconds, and then winding the steel sheet after hot finish rolling at 500 to 630 ° C. Then, after descaling the wound steel sheet, 640 to 7
Primary annealing is performed at 00 ° C. for 20 hours or more, and then the annealed steel sheet is cold-rolled at a rolling reduction of 50% or more, and then subjected to secondary annealing at a temperature satisfying the following expression (3). A method for producing a high carbon steel sheet for processing having excellent ductility and small in-plane anisotropy. 1015−0.58 × T 1 ≦ T 2 ≦ 1230−0.83 × T 1 (3) where T 1 : primary annealing temperature (° C.), T 2 : secondary annealing temperature (° C.)
JP2000018281A 1999-03-19 2000-01-27 High carbon steel sheet for processing with small in-plane anisotropy and method for producing the same Expired - Fee Related JP3800902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000018281A JP3800902B2 (en) 1999-03-19 2000-01-27 High carbon steel sheet for processing with small in-plane anisotropy and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP7519199 1999-03-19
JP11-184854 1999-06-30
JP18485499 1999-06-30
JP11-75191 1999-06-30
JP2000018281A JP3800902B2 (en) 1999-03-19 2000-01-27 High carbon steel sheet for processing with small in-plane anisotropy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001073077A true JP2001073077A (en) 2001-03-21
JP3800902B2 JP3800902B2 (en) 2006-07-26

Family

ID=27301730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000018281A Expired - Fee Related JP3800902B2 (en) 1999-03-19 2000-01-27 High carbon steel sheet for processing with small in-plane anisotropy and method for producing the same

Country Status (1)

Country Link
JP (1) JP3800902B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002337054A (en) * 2001-05-15 2002-11-26 Maruto Hasegawa Kosakusho:Kk Hand tool
WO2004001084A1 (en) * 2002-06-25 2003-12-31 Jfe Steel Corporation High-strength cold rolled steel sheet and process for producing the same
JP2014058745A (en) * 2013-12-12 2014-04-03 Nippon Steel & Sumitomo Metal Method of manufacturing cold rolled steel sheet
JP2014098210A (en) * 2013-12-12 2014-05-29 Nippon Steel & Sumitomo Metal Structural member
KR20170138510A (en) 2015-05-26 2017-12-15 신닛테츠스미킨 카부시키카이샤 Steel sheet and manufacturing method thereof
JP2020164938A (en) * 2019-03-29 2020-10-08 日鉄日新製鋼株式会社 Medium carbon steel sheet and method for producing the same
US10837077B2 (en) 2015-05-26 2020-11-17 Nippon Steel Corporation Steel sheet and method for production thereof
CN113286910A (en) * 2019-03-29 2021-08-20 日本制铁株式会社 Steel sheet and method for producing same
CN113574190A (en) * 2019-03-29 2021-10-29 日本制铁株式会社 High carbon steel sheet and method for producing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002337054A (en) * 2001-05-15 2002-11-26 Maruto Hasegawa Kosakusho:Kk Hand tool
WO2004001084A1 (en) * 2002-06-25 2003-12-31 Jfe Steel Corporation High-strength cold rolled steel sheet and process for producing the same
CN100408711C (en) * 2002-06-25 2008-08-06 杰富意钢铁株式会社 High-strength cold rolled steel sheet and process for producing the same
US7559997B2 (en) 2002-06-25 2009-07-14 Jfe Steel Corporation High-strength cold rolled steel sheet and process for producing the same
JP2014058745A (en) * 2013-12-12 2014-04-03 Nippon Steel & Sumitomo Metal Method of manufacturing cold rolled steel sheet
JP2014098210A (en) * 2013-12-12 2014-05-29 Nippon Steel & Sumitomo Metal Structural member
KR20170138510A (en) 2015-05-26 2017-12-15 신닛테츠스미킨 카부시키카이샤 Steel sheet and manufacturing method thereof
US10837077B2 (en) 2015-05-26 2020-11-17 Nippon Steel Corporation Steel sheet and method for production thereof
JP2020164938A (en) * 2019-03-29 2020-10-08 日鉄日新製鋼株式会社 Medium carbon steel sheet and method for producing the same
WO2020203445A1 (en) * 2019-03-29 2020-10-08 日本製鉄株式会社 Medium-carbon steel sheet and method for manufacturing same
CN113286910A (en) * 2019-03-29 2021-08-20 日本制铁株式会社 Steel sheet and method for producing same
CN113574190A (en) * 2019-03-29 2021-10-29 日本制铁株式会社 High carbon steel sheet and method for producing same
CN113286910B (en) * 2019-03-29 2023-03-17 日本制铁株式会社 Steel sheet and method for producing same
JP7368692B2 (en) 2019-03-29 2023-10-25 日本製鉄株式会社 Manufacturing method of medium carbon steel plate

Also Published As

Publication number Publication date
JP3800902B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
US11401569B2 (en) High-strength cold-rolled steel sheet and method for manufacturing same
WO2009008548A1 (en) Process for producing high-strength cold rolled steel sheet with low yield strength and with less material quality fluctuation
CN112795731A (en) Cold-rolled steel plate for lampshade and production method thereof
JP4858126B2 (en) Steel sheet for high strength and high ductility can and method for producing the same
JP2001073077A (en) High carbon steel sheet for working small in plane anisotropy and its production
JP3474545B2 (en) Machine parts
JP2000328172A (en) High carbon cold rolled steel strip small in deep drawing plane anisotropy and its production
JP3797165B2 (en) High carbon steel sheet for processing with small in-plane anisotropy and method for producing the same
JP2005120453A (en) Cold rolled steel sheet having developed {100}&lt;011&gt; orientation and excellent shape freezing property, and its manufacturing method
JP3879381B2 (en) Thin steel plate and method for producing thin steel plate
JP4048675B2 (en) High carbon steel sheet for machining with low in-plane anisotropy with excellent hardenability and toughness and method for producing the same
JPH0756050B2 (en) Manufacturing method of high strength cold rolled steel sheet for non-aging, high bake hardening and press working by continuous annealing
RU2256707C1 (en) Method of production of the steel with homogeneous properties
JPS5980726A (en) Production of high strength cold rolled steel sheet having excellent deep drawability and small plate anisotropy
CN103282522B (en) The manufacture method with the hot-rolled steel sheet of excellent aging resistance and the hot-rolled steel sheet using the method to manufacture
JP3818025B2 (en) Method for producing cold-rolled steel sheet with small anisotropy
JPS59133324A (en) Manufacture of high-tension cold-rolled steel plate with superior formability
WO2020203445A1 (en) Medium-carbon steel sheet and method for manufacturing same
JP4466252B2 (en) Manufacturing method of high carbon hot rolled steel sheet
WO2020202641A1 (en) High-carbon steel sheet and method for manufacturing same
JPH0441618A (en) Production of cold rolled high carbon steel sheet
JPH0583609B2 (en)
KR20230095153A (en) Hot rolled steel with excellent cold bendability, steel tube, steel member after heat treatment, and method for manufacturing thereof
JP3270685B2 (en) Method for producing cold-rolled steel sheet for deep drawing and hot-dip galvanized steel sheet with excellent ridging resistance
JP2985730B2 (en) Manufacturing method of high carbon cold rolled steel strip

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060424

R150 Certificate of patent or registration of utility model

Ref document number: 3800902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees