JP4466252B2 - Manufacturing method of high carbon hot rolled steel sheet - Google Patents
Manufacturing method of high carbon hot rolled steel sheet Download PDFInfo
- Publication number
- JP4466252B2 JP4466252B2 JP2004219469A JP2004219469A JP4466252B2 JP 4466252 B2 JP4466252 B2 JP 4466252B2 JP 2004219469 A JP2004219469 A JP 2004219469A JP 2004219469 A JP2004219469 A JP 2004219469A JP 4466252 B2 JP4466252 B2 JP 4466252B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- transformation
- cooling
- mass
- bainite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、加工性に優れた高炭素熱延鋼板の製造方法に関する。 The present invention relates to a method for producing a high carbon hot-rolled steel sheet having excellent workability.
一般に、熱延鋼板は、加熱炉においてスラブを所定の温度に加熱し、加熱されたスラブを粗圧延機で所定の厚みに圧延して粗バーとし、ついでこの粗バーを複数基のスタンドからなる仕上圧延機において仕上圧延して所定の厚みの熱延鋼板とし、この熱延鋼板をランナウトテーブル上の冷却スタンドにおいて冷却し、コイラで巻取ることにより製造される。仕上圧延後、熱延鋼板が冷却される際には、通常、鋼板の上面は円管状のパイプラミナーにより冷却し、鋼板の下面は搬送ロール間に設置したスプレーにて冷却される。このような冷却方法では、水が直接あたる部分では核沸騰状態だが、その他の広い部分では膜沸騰現象が起こっており、冷却速度は50℃/秒程度である。こうして製造された熱延鋼板の組織は、実質的にフェライトとパーライトの混相組織となっている。 In general, a hot-rolled steel sheet is obtained by heating a slab to a predetermined temperature in a heating furnace, rolling the heated slab to a predetermined thickness with a roughing mill to form a rough bar, and then forming the rough bar with a plurality of stands. It is manufactured by finishing and rolling in a finishing mill to obtain a hot-rolled steel sheet having a predetermined thickness, cooling the hot-rolled steel sheet at a cooling stand on a run-out table, and winding it with a coiler. When the hot-rolled steel sheet is cooled after finish rolling, the upper surface of the steel sheet is usually cooled by a tubular pipe laminator, and the lower surface of the steel sheet is cooled by a spray installed between the conveying rolls. In such a cooling method, a nucleate boiling state occurs in a portion directly exposed to water, but a film boiling phenomenon occurs in other wide portions, and the cooling rate is about 50 ° C./second. The structure of the hot-rolled steel sheet thus manufactured is substantially a mixed phase structure of ferrite and pearlite.
近年、高い強度と伸びフランジ性が要求される用途の熱延鋼板において、強度が高く加工性に優れている鋼板として、ベイナイト組織を主体とする高強度熱延鋼板が実用化されてきている。このようなベイナイト組織を主体とする変態組織(フェライト-ベイナイト、ベイナイト)を有する高強度熱延鋼板において、伸びフランジ性と強度を共に向上、すなわち伸びフランジ性−強度バランスを向上させるには、組織を微細化することが有効である。熱延鋼板の組織制御は一般に仕上圧延及びその後の冷却を制御することにより可能である。そこで、これらの製造方法を規定することにより加工性の向上を図る技術が提案されている。そして、これらの高強度熱延鋼板は、自動車の軽量化等を目的として種々の構造部材や部品への適用が進められており、最近では従来にもまして、生産性向上の観点からの加工レベルに対する要求が厳しくなっている。そのため、高強度熱延鋼板のプレス加工についても、加工度の増加等により、割れが発生しやすくなっている。従って、高強度熱延鋼板には高い焼入れ性と共に、極めて軟質で高い加工性が要求されている。 In recent years, high-strength hot-rolled steel sheets mainly composed of a bainite structure have been put into practical use as hot-rolled steel sheets for applications requiring high strength and stretch flangeability, as steel sheets having high strength and excellent workability. In a high-strength hot-rolled steel sheet having a transformation structure (ferrite-bainite, bainite) mainly composed of such a bainite structure, in order to improve both stretch flangeability and strength, that is, stretch flangeability-strength balance, It is effective to reduce the size. In general, the structure of a hot-rolled steel sheet can be controlled by controlling finish rolling and subsequent cooling. Therefore, a technique for improving workability by defining these manufacturing methods has been proposed. These high-strength hot-rolled steel sheets have been applied to various structural members and parts for the purpose of reducing the weight of automobiles, and recently, the processing level from the viewpoint of improving productivity is higher than before. The demand for is getting stricter. For this reason, cracking is likely to occur in press processing of high-strength hot-rolled steel sheets due to an increase in the degree of processing. Therefore, high strength hot-rolled steel sheets are required to have extremely hard and high workability as well as high hardenability.
特に、高強度熱延鋼板として、工具あるいは自動車部品(ギア、ミッション)等に使用される高炭素熱延鋼板は、打抜き、成形後、焼入れ焼戻し等の熱処理が施されるが、これらの部品加工を行うユーザの要求の一つに、打抜き後の成形において、穴拡げ加工(バーリング)性の向上がある。この穴拡げ加工性は、プレス成形性としては伸びフランジ性で評価されている。そのため、伸びフランジ性の優れた材料が望まれている。 In particular, high-carbon hot-rolled steel sheets used as tools or automobile parts (gears, missions), etc. as high-strength hot-rolled steel sheets are subjected to heat treatments such as stamping, forming, and quenching and tempering. One of the demands of the user who performs this is to improve the hole expansion process (burring) in the molding after punching. This hole expansion workability is evaluated as stretch flangeability as press formability. Therefore, a material excellent in stretch flangeability is desired.
このような、高炭素熱延鋼板の加工性の向上については、いくつかの技術が検討されている。 Several techniques have been studied for improving the workability of such a high carbon hot-rolled steel sheet.
例えば、冷間圧延を経たプロセスにおいて伸びフランジ性に優れた中・高炭素鋼板を製造する方法が提案されている。この技術は、Cを0.1〜0.8質量%含有する鋼からなり、金属組織が実質的にフェライト+パーライト組織であり、必要に応じて初析フェライトの面積率がC(質量%)により決まる所定の値以上で且つ、パーライトラメラの間隔が0.1μm以上の熱延鋼板に、15%以上の冷間圧延を施し、ついで3段階又は2段階の温度範囲で長時間保持する3段階又は2段階焼鈍を施すというものである(例えば、特許文献1参照。)。 For example, a method for producing a medium / high carbon steel sheet excellent in stretch flangeability in a process after cold rolling has been proposed. This technique is made of steel containing 0.1 to 0.8% by mass of C, the metal structure is substantially a ferrite + pearlite structure, and the area ratio of pro-eutectoid ferrite is C (% by mass) as required. 3 stages of cold rolling of 15% or more on a hot rolled steel sheet with a pearlite lamella spacing of 0.1 μm or more, and then holding for a long time in 3 or 2 temperature ranges. Alternatively, two-stage annealing is performed (for example, see Patent Document 1).
また、従来に比べて、初析フェライトの発生の少ない、伸びフランジ性に優れた高炭素鋼板の製造方法に関して、熱延段階での組織造り込みに関する技術が検討され、冷却速度120℃/秒以上で強冷却(急速冷却)し、強冷却停止温度を650℃以下として巻取温度を600℃以下とするか、又は強冷却停止温度を600℃以下として巻取温度を500℃以下とする方法が示されている(例えば、特許文献2参照。)。 In addition, regarding the manufacturing method of high carbon steel sheet with less proeutectoid ferrite generation and excellent stretch flangeability compared to conventional technology, the technology related to the structure building in the hot rolling stage has been studied, and the cooling rate is 120 ° C / second or more. In this method, strong cooling (rapid cooling) is performed and the strong cooling stop temperature is set to 650 ° C. or lower and the winding temperature is set to 600 ° C. or lower, or the strong cooling stop temperature is set to 600 ° C. or lower and the winding temperature is set to 500 ° C. or lower. (For example, refer to Patent Document 2).
また、鋼板を冷却する際に生じる変態を考慮した冷却制御方法には、鋼板を目標とする冷却条件で造り込むには温度計算により鋼板の全長にわたって冷却制御、温度制御する必要があり、変態発熱と冷却による鋼の正味の温度変化を計算より求め、変態温度域を予測し、これにより冷却条件を決定する鋼の変態組織制御方法が提案されている(例えば、特許文献3参照。)。
しかし、これらの技術には次のような問題がある。 However, these technologies have the following problems.
まず、前記特許文献1に記載の技術では、フェライト組織が初析フェライトからなり、炭化物を含まないため柔らかく延性に優れているが、伸びフランジ性は必ずしも良好ではない。
First, in the technique described in
また、前記特許文献2に記載の技術では、高炭素鋼板を製造する際には強冷却終了後の変態発熱が顕著となり、上記の温度範囲に温度を制御することは非常に困難であるにもかかわらず、冷却速度120℃/秒で冷却した後から巻取までの間に生じる変態発熱を考慮した温度の制御方法については何ら記載されていない。つまり、この技術を実機に適用しようとすると、強冷却終了後に約100℃の発熱が生じることがあり、その結果、鋼板の組織はパーライトへ変態し、パーライトのラメラ間隔の粗大化が促進してしまうため、伸びフランジ性が劣化してしまう。また、前記特許文献2に記載の技術では、コイラに巻取った後に変態発熱が起こり、その結果、鋼板の組織は巻取った直後の温度ではベイナイト変態が起こっても、その後パーライトへ変態し、パーライトのラメラ間隔の粗大化が促進してしまう可能性があるが、そのことについては想定していない。 Moreover, in the technique described in Patent Document 2, transformation heat generation after the end of strong cooling becomes significant when manufacturing a high carbon steel sheet, and it is very difficult to control the temperature within the above temperature range. Regardless, there is no description of a temperature control method that takes into account the transformation heat generated after cooling at a cooling rate of 120 ° C./second until winding. That is, if this technology is applied to an actual machine, heat generation of about 100 ° C. may occur after the end of strong cooling. Therefore, stretch flangeability will deteriorate. Further, in the technique described in Patent Document 2, transformation heat generation occurs after winding on a coiler, and as a result, even if the bainite transformation occurs at the temperature immediately after winding, the structure of the steel sheet is transformed into pearlite, There is a possibility that coarsening of the pearlite lamella spacing may be promoted, but this is not assumed.
一方、前記特許文献3に記載の技術では、鋼の変態組織制御方法が提案されているが、冷却中に起こる変態を予測し、巻取温度を制御することを主としているだけで、冷却後に起こる変態の制御方法については記載されていない。 On the other hand, in the technique described in Patent Document 3, a steel transformation structure control method has been proposed, but the transformation that occurs during cooling is predicted and only the control of the coiling temperature is performed. It does not describe how to control the transformation.
本発明は、これら従来技術の問題点を解決するためになされたものであり、高炭素熱延鋼板を製造するに際し、変態発熱を念頭において、仕上圧延終了後の鋼板の温度を目的の温度範囲に制御することにより、熱延段階にて初析フェライトを発生させることなく、厳しいプレス加工用途にも適用可能であり、伸びフランジ性を始めとする加工性に優れた高炭素熱延鋼板の製造方法を提供することを目的とするものである。 The present invention was made to solve these problems of the prior art, and when producing a high-carbon hot-rolled steel sheet, considering the transformation heat generation, the temperature of the steel sheet after finishing rolling is the target temperature range. By controlling to, it can be applied to severe press working applications without generating proeutectoid ferrite in the hot rolling stage, and manufacturing high carbon hot rolled steel sheets with excellent workability including stretch flangeability It is intended to provide a method.
上記課題を解決するために、本発明者等は、高炭素熱延鋼板の伸びフランジ性に及ぼすミクロ組織の影響について鋭意研究を進めるとともに、変態発熱の挙動について詳細に研究を進め、その過程で、高炭素熱延鋼板の伸びフランジ性に影響を及ぼす因子は、炭化物の形状および量のみならず、炭化物の分散状態であり、高炭素熱延鋼板の組織を所定量のベイナイトを有する組織に制御することによって、焼鈍後に炭化物の均一微細分散とフェライト粒の粗大化を達成することができ、その結果、高い焼入れ性を有しつつ、極めて軟質で、伸びフランジ性を始めとする加工性に優れた高炭素熱延鋼板を得ることができることを知見した。そして、上記の組織に制御するための製造方法を検討し、強冷却終了後に変態が生ずる際、急激に変態発熱する場合(例えば10sで100℃)には、強冷却後の温度制御が難しく、目的とする組織の作りこみが困難となることから、短時間での急激な変態発熱が発生せず、強冷却後の変態発熱挙動が緩やかであり、温度制御しやすいような成分系の高炭素鋼を用いることにより、目的とする所定量のベイナイトを有する組織の作りこみが容易にできることを見出した。 In order to solve the above-mentioned problems, the present inventors have conducted extensive research on the influence of the microstructure on the stretch flangeability of high-carbon hot-rolled steel sheets, and have conducted detailed research on the behavior of transformation heat generation. Factors affecting the stretch flangeability of high carbon hot-rolled steel sheet are not only the shape and amount of carbide, but also the dispersed state of carbide, and the structure of high-carbon hot-rolled steel sheet is controlled to a structure having a predetermined amount of bainite. This makes it possible to achieve uniform fine dispersion of carbide and coarsening of ferrite grains after annealing, and as a result, it is extremely soft and excellent in workability including stretch flangeability while having high hardenability. It has been found that a high carbon hot rolled steel sheet can be obtained. And when the manufacturing method for controlling to the above-mentioned structure is examined, and transformation occurs after the completion of strong cooling, in the case of sudden transformation heat generation (for example, 100 ° C. at 10 s), temperature control after strong cooling is difficult, Since it becomes difficult to build the target structure, rapid transformation heat generation does not occur in a short time, the transformation heat generation behavior after strong cooling is gradual, and the high carbon content of the component system that makes temperature control easy It has been found that by using steel, it is possible to easily create a structure having a desired amount of bainite.
本発明は、上記の観点に立脚してなされたものであり、前記課題を解決するために、以下のような特徴を有している。 The present invention has been made based on the above viewpoint, and has the following features in order to solve the above problems.
[1]Cを0.2〜0.7質量%含有し、Crを0.01質量%以上0.6質量%未満添加した鋼を、仕上温度(Ar3変態点−20℃)以上で熱間圧延した後、変態開始温度が上部ベイナイト温度になるように強冷却を行い、変態開始前に強冷却を終了した後、コイラによる巻取りまでの間は上部ベイナイト温度で保持されるように冷却制御することを特徴とする高炭素熱延鋼帯の製造方法。 [ 1 ] A steel containing 0.2 to 0.7% by mass of C and containing Cr in an amount of 0.01% to less than 0.6% by mass is heated at a finishing temperature (Ar 3 transformation point −20 ° C.) or higher. After cold rolling, strong cooling is performed so that the transformation start temperature becomes the upper bainite temperature, and after the strong cooling is finished before the transformation starts, the coil is cooled so that it is maintained at the upper bainite temperature until coiling. A method for producing a high-carbon hot-rolled steel strip characterized by controlling.
[2]Cを0.2〜0.7質量%含有し、Crを0.01質量%以上0.6質量%未満添加した鋼を、仕上温度(Ar3変態点−20℃)以上で熱間圧延した後、変態開始温度が下部ベイナイト温度になるように強冷却を行い、変態開始前に強冷却を終了した後、コイラによる巻取りまでの間は下部ベイナイト温度で保持されるように冷却制御することを特徴とする高炭素熱延鋼帯の製造方法。 [ 2 ] Steel containing 0.2 to 0.7% by mass of C and containing Cr in an amount of 0.01% to less than 0.6% by mass is heated at a finishing temperature (Ar 3 transformation point −20 ° C.) or higher. After hot rolling, strong cooling is performed so that the transformation start temperature becomes the lower bainite temperature, and after the strong cooling is finished before the transformation starts, cooling is performed so that the lower bainite temperature is maintained until winding by the coiler. A method for producing a high-carbon hot-rolled steel strip characterized by controlling.
[3]変態開始後から変態終了までの温度の変動幅を50℃以内に制御することを特徴とする前記[1]または[2]に記載の高炭素熱延鋼帯の製造方法。 [ 3 ] The method for producing a high carbon hot-rolled steel strip according to [1] or [2] , wherein a temperature fluctuation range from the start of transformation to the end of transformation is controlled within 50 ° C.
本発明においては、所定量のCrを添加することで、強冷却後の変態発熱挙動が緩やかで、温度制御が行いやすいようにした成分系の高炭素鋼を用いて、仕上圧延終了後の熱延鋼板の温度履歴を所定の値に制御するようにしているので、熱延鋼板の組織を所定量のベイナイトを有する組織に制御し、焼鈍後に炭化物の均一微細分散とフェライト粒の粗大化を的確に達成することができ、その結果、高い焼入れ性を有しつつ、極めて軟質で、伸びフランジ性を始めとする加工性に優れた高炭素熱延鋼板の提供が可能となる。 In the present invention, by adding a predetermined amount of Cr, the transformation heat generation behavior after strong cooling is moderate, and the high-temperature steel of the component system that is easy to control the temperature is used, and the heat after finishing rolling is finished. Since the temperature history of the rolled steel sheet is controlled to a predetermined value, the structure of the hot-rolled steel sheet is controlled to a structure having a predetermined amount of bainite, and after annealing, uniform fine dispersion of carbide and coarsening of ferrite grains can be accurately performed. As a result, it is possible to provide a high carbon hot-rolled steel sheet having high hardenability, extremely soft, and excellent workability including stretch flangeability.
以下、本発明を特定するための事項について説明する。 Hereinafter, matters for specifying the present invention will be described.
まず、化学成分について説明する。 First, chemical components will be described.
C含有量:0.2〜0.7質量%
Cは、炭化物を形成し、焼入れ後の硬度を付与する重要な元素である。C含有量が0.2質量%未満では、熱延後の組織において、初析フェライトの生成が顕著となり炭化物の分布が不均一となる。さらに、その場合、焼入れ後に機械構造用部品として充分な強度を得られない。C含有量が0.7質量%を超えると、熱延後の鋼板の硬度が高く脆く、焼鈍後でも充分な加工性が得られない。また、焼入れ後の強度も飽和する。従って、C含有量を0.2〜0.7質量%に規定する。
C content: 0.2-0.7 mass%
C is an important element that forms carbides and imparts hardness after quenching. When the C content is less than 0.2% by mass, proeutectoid ferrite is prominently formed in the structure after hot rolling, and the distribution of carbides becomes uneven. Furthermore, in that case, sufficient strength cannot be obtained as a machine structural part after quenching. If the C content exceeds 0.7% by mass, the steel sheet after hot rolling is high in hardness and brittle, and sufficient workability cannot be obtained even after annealing. In addition, the strength after quenching is saturated. Therefore, the C content is specified to be 0.2 to 0.7 mass%.
Cr添加量:0.01〜1.0質量%
Crは焼入れ性を高める元素であり、鋼板の強度に寄与する効果を有する。そして、強冷却後の変態挙動(温度変化)に影響を与える元素である。図1に、変態発熱の持続時間と変態発熱による温度上昇量に及ぼすCrの添加量の影響を示す。図1によれば、Crを添加すると変態発熱による温度上昇量が抑えられ、また変態発熱の持続時間が長くなる。つまり、緩やかに温度上昇することが分かる。
特に、Crを0.6質量%以上添加すると、変態発熱量が30℃未満となり、強冷却(急速冷却)終了後は格別の温度制御を行わずとも放冷のままで所定の温度範囲の温度にすることが可能となる。
また、Cr添加量が0.6質量%未満の場合には、強冷却終了後の変態によって比較的短い時間に多量の熱が発生するが、強冷却終了後に適切な冷却制御(緩冷却)を行うことによって所定の温度範囲に温度制御することが可能である。ただし、Cr添加量が0.15質量%未満の場合には、強冷却終了後の変態によって短い時間に多量の熱が発生し、強冷却終了後に適切な冷却制御(緩冷却)を行うことが難しいため、Cr添加量が0.15%以上とすることが好ましい。さらに、Cr添加量が0.01質量%未満の場合には、強冷却終了後の変態によって短い時間に多量の熱が発生し、強冷却終了後に適切な冷却制御(緩冷却)を行うことが極めて難しいため、Cr添加量は0.01質量%以上とする。
一方、Crは、合金コストが高くコスト増を招くと共に、添加量が1.0質量%を超えると溶接性を劣化させると共に、変態開始までの時間が長くなり、コイラに巻取り後に変態を開始して、変態開始時の鋼板の組織が変化してしまうため、Cr添加量は1.0質量%以下とする。
Cr addition amount: 0.01 to 1.0 mass%
Cr is an element that enhances hardenability and has the effect of contributing to the strength of the steel sheet. And it is an element which affects the transformation behavior (temperature change) after strong cooling. FIG. 1 shows the effect of the amount of Cr added on the duration of transformation heat generation and the temperature rise due to transformation heat generation. According to FIG. 1, when Cr is added, the temperature rise due to transformation heat generation is suppressed, and the duration of transformation heat generation is prolonged. That is, it can be seen that the temperature rises gradually.
In particular, when Cr is added in an amount of 0.6% by mass or more, the heat generation amount of transformation becomes less than 30 ° C., and after completion of strong cooling (rapid cooling), the temperature in a predetermined temperature range is maintained without being subjected to special temperature control. It becomes possible to.
In addition, when the amount of Cr added is less than 0.6% by mass, a large amount of heat is generated in a relatively short time due to transformation after the end of strong cooling, but appropriate cooling control (slow cooling) is performed after the end of strong cooling. It is possible to control the temperature within a predetermined temperature range. However, when the amount of Cr added is less than 0.15% by mass, a large amount of heat is generated in a short time due to transformation after the end of strong cooling, and appropriate cooling control (slow cooling) can be performed after the end of strong cooling. Since it is difficult, it is preferable that the amount of Cr added is 0.15% or more. Furthermore, when the amount of Cr added is less than 0.01% by mass, a large amount of heat is generated in a short time due to transformation after the end of strong cooling, and appropriate cooling control (slow cooling) can be performed after the end of strong cooling. Since it is extremely difficult, the Cr addition amount is 0.01% by mass or more.
On the other hand, Cr has a high alloy cost and causes an increase in cost, and when the added amount exceeds 1.0 mass%, the weldability is deteriorated, and the time until the transformation starts becomes long. And since the structure | tissue of the steel plate at the time of a transformation start will change, Cr addition amount shall be 1.0 mass% or less.
B: 添加する場合、0.0025質量%以下
Bは、焼入れ性を高める元素であり、鋼板の強度に寄与する効果を有するので、必要に応じて添加することができる。しかし、これらの元素は、合金コストが高くコスト増を招くと共に、過量にBを添加すればB化合物が粒界に偏析し、脆化を招く。従って、Bを添加する場合は、Bを0.0025質量%以下とすることが好ましい。
B: When added, 0.0025% by mass or less B is an element that enhances hardenability and has an effect of contributing to the strength of the steel sheet, and therefore can be added as necessary. However, these elements have high alloy costs and increase costs, and if an excessive amount of B is added, the B compound segregates at the grain boundaries and causes embrittlement. Therefore, when adding B, it is preferable to make B into 0.0025 mass% or less.
Ti、Nb、V、Zr: 添加する場合は、合計で0.01〜0.2質量%
本発明では、前述の化学成分に加えて、強度調整あるいは炭化物形成による固溶C、N低減を通した非時効化及び深絞り性向上のため、必要に応じて、Ti、Nb、V、Zrを添加することができる。これらの元素は、合計の添加量が0.01質量%未満では効果がなく、0.2質量%を超えると効果が飽和する。従って、Ti、Nb、V、Zrを添加する場合は、これらの添加量を合計で0.01〜0.2質量%とすることが好ましい。
Ti, Nb, V, Zr: When added, 0.01 to 0.2% by mass in total
In the present invention, in addition to the above-described chemical components, Ti, Nb, V, Zr may be added as necessary for non-aging and deep drawability improvement through solid solution C, N reduction by strength adjustment or carbide formation. Can be added. These elements have no effect when the total amount added is less than 0.01% by mass, and the effect is saturated when the amount exceeds 0.2% by mass. Therefore, when adding Ti, Nb, V, and Zr, it is preferable that these addition amounts are 0.01-0.2 mass% in total.
なお、上記以外に、Si、Mn、P、S、Al、Nなどの元素が本発明の効果を妨げない範囲で含まれていてもよい。 In addition to the above, elements such as Si, Mn, P, S, Al, and N may be included as long as the effects of the present invention are not hindered.
次に、目的とする熱延鋼板の組織について説明する。 Next, the structure of the target hot-rolled steel sheet will be described.
焼鈍前の高炭素熱延鋼板の組織については、むしろベイナイト相を有する組織の方がパーライト単相の組織よりも、焼鈍後に好ましい組織が得られる。ベイナイト相の体積率が20%以上になると、焼鈍時に炭化物が微細に球状化されると共に、フェライト粒が均一に粗大化する。従って、ベイナイト相の体積率が20%以上となるように制御する。 As for the structure of the high carbon hot-rolled steel sheet before annealing, a structure having a bainite phase is more preferable after annealing than a structure of a pearlite single phase. When the volume fraction of the bainite phase is 20% or more, carbides are finely spheroidized during annealing, and ferrite grains are coarsened uniformly. Therefore, the volume ratio of the bainite phase is controlled to be 20% or more.
さらに、ベイナイト相の体積率を70%以上とすることで、炭化物の分散状態が一層均一微細化し、均一な粗大フェライト粒が得られ、極めて優れた加工性及び焼入性を付与することできる。従って、より好ましくは、ベイナイト相の体積率が70%以上となるように制御する。 Furthermore, by setting the volume fraction of the bainite phase to 70% or more, the dispersion state of the carbides can be made more uniform and fine, and uniform coarse ferrite grains can be obtained, and extremely excellent workability and hardenability can be imparted. Therefore, more preferably, the volume ratio of the bainite phase is controlled to be 70% or more.
次に、本発明における製造条件について説明する。 Next, manufacturing conditions in the present invention will be described.
なお、以下では、変態組織が上部ベイナイトとなる温度域(上部ベイナイト温度)及び変態組織が下部ベイナイトとなる温度域(下部ベイナイト温度)については、Cを0.32〜0.38質量%含有する鋼の一例について説明するが、炭素量及び他の元素の量によりこれらの温度域は変化するので、その鋼の炭素量及び添加元素の量に対応して、変態組織が上部ベイナイトとなる温度域及び下部ベイナイトとなる温度域をあらかじめ求めておけばよい。 In the following description, C is contained in an amount of 0.32 to 0.38% by mass for the temperature range where the transformation structure is upper bainite (upper bainite temperature) and the temperature range where the transformation structure is lower bainite (lower bainite temperature). Although an example of steel will be described, these temperature ranges vary depending on the amount of carbon and the amount of other elements. Therefore, the temperature range where the transformation structure becomes upper bainite corresponding to the amount of carbon and the amount of added elements of the steel. And the temperature range used as a lower bainite should just be calculated | required beforehand.
近年、省合金元素、鋼種統合、材質ばらつき低減、高機能化等を行う目的で、例えば板厚3mmにおいて冷却速度700℃/sを超えるような強冷却が可能となった。従って、Cを0.2〜0.7質量%含有する鋼を、仕上圧延終了直後から一定時間以内に冷却を開始し、冷却開始後は少なくとも冷却途中にパーライト変態が生じないように強冷却(急速冷却)を行うことが、微細なベイナイトを主体とする組織の生成に有効である。 In recent years, for the purpose of reducing alloying elements, integrating steel types, reducing material variations, and increasing functionality, for example, it has become possible to perform strong cooling exceeding a cooling rate of 700 ° C./s at a plate thickness of 3 mm. Therefore, the steel containing 0.2 to 0.7% by mass of C starts cooling within a certain time immediately after finishing rolling, and after cooling starts, it is strongly cooled so that pearlite transformation does not occur at least during cooling ( (Rapid cooling) is effective for generating a structure mainly composed of fine bainite.
そして、強冷却の終了温度に応じて、上部ベイナイト組織と下部ベイナイト組織の2種類のベイナイト組織が出現する。例えば、Cを0.32〜0.38質量%含有する鋼の場合、強冷却終了温度が500〜570℃では上部ベイナイト組織となり、強冷却終了温度が400℃〜500℃では下部ベイナイト組織となる。ただし、強冷却終了後の変態発熱によって、上部ベイナイト組織となる温度範囲(例えば、Cを0.32〜0.38質量%含有する鋼の場合は、500〜570℃)、あるいは下部ベイナイト組織となる温度範囲(例えば、Cを0.32〜0.38質量%含有する鋼の場合は、400℃〜500℃)に温度を制御することができなかった場合には、以下のような問題が生じる。すなわち、上記温度範囲内に温度を保持せず、その上限を超えると、強冷却後の放冷あるいは緩冷却の途中で新たに生成される組織がベイナイトからフェライトやパーライトと変わり、その温度上昇が大きいほど、パーライトのラメラ間隔が大きくなるため伸びフランジ性が劣化する。一方、上記温度範囲より温度が低くなると、マルテンサイト組織が生成し、焼鈍後の伸びフランジ性が劣化する。 Then, two types of bainite structures, an upper bainite structure and a lower bainite structure, appear according to the end temperature of strong cooling. For example, in the case of steel containing 0.32 to 0.38% by mass of C, an upper bainite structure is obtained when the strong cooling end temperature is 500 to 570 ° C, and a lower bainite structure is obtained when the strong cooling end temperature is 400 ° C to 500 ° C. . However, due to transformation heat generation after the end of strong cooling, a temperature range that becomes an upper bainite structure (for example, 500 to 570 ° C. in the case of steel containing 0.32 to 0.38% by mass of C), or a lower bainite structure When the temperature cannot be controlled within a temperature range (for example, 400 ° C. to 500 ° C. in the case of steel containing 0.32 to 0.38% by mass of C), the following problems occur. Arise. That is, when the temperature is not maintained within the above temperature range and the upper limit is exceeded, the newly generated structure changes from bainite to ferrite or pearlite during the course of standing or slow cooling after strong cooling, and the temperature rises. The larger the lamella spacing of the pearlite, the greater the flange flangeability. On the other hand, when the temperature is lower than the above temperature range, a martensitic structure is generated, and the stretch flangeability after annealing deteriorates.
そこで、上記の点を念頭において、製造条件は以下のようにする。 Therefore, with the above points in mind, the manufacturing conditions are as follows.
仕上温度:(Ar3変態点−20℃)以上
熱間圧延の仕上温度が(Ar3変態点−20℃)より低い温度では、仕上圧延までに鋼板中の一部でフェライト変態が進行するため炭化物を含まないフェライト粒が増加し、伸びフランジ性が劣化する。そこで(Ar3変態点−20℃)以上の温度で仕上圧延する。これにより、組織の均一化を図ることができ伸びフランジ性の向上が図られる。
Finishing temperature: (Ar 3 transformation point −20 ° C.) or higher At the finishing temperature of hot rolling lower than (Ar 3 transformation point −20 ° C.), ferrite transformation proceeds in a part of the steel sheet until finish rolling. Ferrite grains not containing carbides increase and stretch flangeability deteriorates. Therefore, finish rolling is performed at a temperature equal to or higher than (Ar 3 transformation point −20 ° C.). Thereby, the structure can be made uniform and the stretch flangeability can be improved.
強冷却終了時期:変態開始前
強冷却途中に変態が開始すると、初析フェライトが生成し、伸びフランジ性が劣化する原因となる。また、目的とする体積率20%以上のベイナイト相が得られなくなる。従って、変態開始以前に強冷却を終了することで、鋼板の表層部と板厚中央部で変態開始時の鋼板の組織が両者ともベイナイト主体の組織とすることができる。
End of strong cooling: Before the start of transformation If transformation starts during strong cooling, pro-eutectoid ferrite is formed, which causes deterioration of stretch flangeability. Moreover, the target bainite phase with a volume ratio of 20% or more cannot be obtained. Therefore, by ending strong cooling before the start of transformation, the steel sheet structure at the start of transformation can be a bainite-based structure at both the surface layer portion and the plate thickness center portion of the steel plate.
強冷却終了温度:
強冷却終了温度については、変態開始時の温度が570℃を超えると、コイラでの巻取りまでの間あるいは巻取り後にフェライトが生成するばかりか、パーライトのラメラ間隔が粗大化し、ベイナイト相の体積率が20%未満に低下する。そのため、球状化焼鈍後に均一分散した微細炭化物が得られなくなり焼入性が低下する。従って、変態開始時の温度が570℃以下となるように強冷却終了温度を制御する。
その際、変態開始時の温度が500℃以上(上部ベイナイト温度)となるように強冷却終了温度を制御することで、ベイナイト相の体積率が20%以上となり、フェライト粒が均一に粗大化して軟質化するため優れた加工性が得られる。
さらに、変態開始時の温度が500℃以下(下部ベイナイト温度)になるように強冷却終了温度を制御することで、ベイナイト相の体積率が70%以上となり、球状化焼鈍の際、フェライト粒が均一に粗大化して極軟質化するため極めて優れた加工性が得られる。
一方、400℃未満の低温域まで強冷却すると、マルテンサイトが生成するため加工性が劣化する。従って、強冷却終了温度は400℃以上とすることが好ましい。
Strong cooling end temperature:
Regarding the strong cooling end temperature, when the temperature at the start of transformation exceeds 570 ° C., not only ferrite is generated before or after winding in the coiler, but also the pearlite lamellar spacing becomes coarse and the volume of the bainite phase is increased. The rate drops below 20%. Therefore, finely dispersed fine carbides cannot be obtained after spheroidizing annealing, and the hardenability is lowered. Therefore, the strong cooling end temperature is controlled so that the temperature at the start of transformation is 570 ° C. or lower.
At that time, by controlling the strong cooling end temperature so that the temperature at the start of transformation is 500 ° C. or more (upper bainite temperature), the volume fraction of the bainite phase becomes 20% or more, and the ferrite grains are uniformly coarsened. Excellent processability is obtained due to softening.
Furthermore, by controlling the strong cooling end temperature so that the temperature at the start of transformation is 500 ° C. or less (lower bainite temperature), the volume fraction of the bainite phase becomes 70% or more, and during spheroidizing annealing, the ferrite grains Since it is uniformly coarsened and extremely softened, extremely excellent workability can be obtained.
On the other hand, if it is strongly cooled to a low temperature range of less than 400 ° C., martensite is generated, so that workability deteriorates. Therefore, the strong cooling end temperature is preferably 400 ° C. or higher.
変態開始から巻取りまでの間の温度:
また、高炭素鋼板では、変態開始から終了までの発熱が顕著であり、例えば冷却停止温度を550℃とした場合でも、巻取りまでの間に50℃程度変態発熱してしまう可能性がある。変態発熱による温度上昇を抑制せず、570℃超えとなってしまった場合、パーライトのラメラ間隔の粗大化を促進してしまうため伸びフランジ性が劣化する。
以上より、変態開始後の鋼板の組織がランナウト走行中に変化しないよう、変態開始時の温度が500℃〜570℃(上部ベイナイト温度)となるように強冷却終了温度を制御した場合は、変態開始から巻取りまでの温度を500℃〜570℃(上部ベイナイト温度)の範囲で保持し、変態開始時の温度が400〜500℃(下部ベイナイト温度)となるように強冷却終了温度を制御した場合は、変態開始から巻取りまでの温度を400〜500℃(下部ベイナイト温度)の範囲で保持する。
Temperature from the start of transformation to winding:
Further, in the high carbon steel plate, heat generation from the start to the end of the transformation is remarkable. For example, even when the cooling stop temperature is set to 550 ° C., there is a possibility that transformation heat is generated by about 50 ° C. until winding. When the temperature rise due to transformation heat generation is not suppressed and the temperature exceeds 570 ° C., the flaming spacing of the pearlite is promoted, and the stretch flangeability deteriorates.
From the above, when the strong cooling end temperature is controlled so that the temperature at the start of transformation is 500 ° C. to 570 ° C. (upper bainite temperature) so that the structure of the steel sheet after transformation does not change during run-out running, The temperature from the start to the winding is maintained in the range of 500 ° C. to 570 ° C. (upper bainite temperature), and the strong cooling end temperature is controlled so that the temperature at the start of transformation is 400 to 500 ° C. (lower bainite temperature). In this case, the temperature from the start of transformation to winding is maintained in the range of 400 to 500 ° C. (lower bainite temperature).
巻取温度:
変態開始後の鋼板の組織がランナウト走行中に変化しないよう冷却制御して巻取るが、巻取温度が570℃を超えると初析フェライトが生成すると共にパーライトのラメラ間隔が大きくなり、体積率20%以上のベイナイト相が得られなくなる。そのため、焼鈍後の炭化物が粗大化して焼入性が劣化するばかりか、充分な軟質化が得られず加工性が低下する。従って、巻取温度を570℃以下とする。
さらに、巻取温度を500℃以下とすることにより、ベイナイト相の体積率が70%以上となると共に、炭化物の分散状態が一層均一微細化し、極めて優れた加工性及び焼入性が得られる。なお、巻取温度の下限は特に規定しないが、低温になるほど鋼板の形状が劣化するため、400℃以上とすることが好ましい。
Winding temperature:
Winding is performed under cooling control so that the structure of the steel sheet after transformation does not change during run-out running, but when the winding temperature exceeds 570 ° C., proeutectoid ferrite is generated and the pearlite lamellar spacing increases, and the volume ratio is 20 % Of bainite phase cannot be obtained. Therefore, not only does the carbide after annealing coarsen and the hardenability deteriorates, but sufficient softening cannot be obtained and the workability decreases. Accordingly, the winding temperature is set to 570 ° C. or lower.
Furthermore, by setting the coiling temperature to 500 ° C. or less, the volume fraction of the bainite phase becomes 70% or more, and the dispersion state of the carbides becomes more uniform and fine, and extremely excellent workability and hardenability can be obtained. In addition, although the minimum in particular of coiling temperature is not prescribed | regulated, since the shape of a steel plate deteriorates, so that it becomes low temperature, it is preferable to set it as 400 degreeC or more.
基本的な製造条件は以上の通りであるが、必要に応じてさらに製造条件を加えることができる。 The basic manufacturing conditions are as described above, but further manufacturing conditions can be added as necessary.
例えば、さらに、鋼に添加する合金等により、変態開始後から変態終了までの温度の変動幅を50℃以内に温度制御する。これにより、引張強度の変動幅を抑えることができる。ここで、変動幅は最高値と最低値の差であり、変動幅50℃以内というのは、中心値±25℃以内と同じ意味である。この高炭素熱延鋼板は、組織が均一であり、引張強度の変動幅が小さいので、曲げ加工時のスプリングバックが一定となる等、コイル内でのプレス加工性の変動を小さくすることができる。 For example, the temperature fluctuation range from the start of the transformation to the end of the transformation is controlled within 50 ° C. by an alloy added to the steel. Thereby, the fluctuation range of tensile strength can be suppressed. Here, the fluctuation range is the difference between the maximum value and the minimum value, and the fluctuation range within 50 ° C. means the same as the central value ± 25 ° C. or less. This high-carbon hot-rolled steel sheet has a uniform structure and a small fluctuation range of tensile strength, so that the fluctuation of press workability in the coil can be reduced, such as a constant springback during bending. .
そして、図2に、本発明の高炭素熱延鋼板の製造方法において用いるのに好適な製造設備の一例を示す。 FIG. 2 shows an example of production equipment suitable for use in the method for producing a high carbon hot-rolled steel sheet of the present invention.
図2に示す製造設備は、仕上圧延機1と、仕上圧延機1の出側に冷却速度が150℃/秒以上の強冷却が可能な強冷却装置9と、冷却装置9の下流側に設置され、コイラ5での巻取りまでの間に変態発熱による温度上昇を抑制して所定の温度に冷却するための緩冷却装置2(通常100〜150m程度のランナウトテーブルで、冷却速度が100℃/秒以下の能力を有し、冷却使用バンクと冷却水量が可変)と、仕上圧延機出側の鋼板の表面温度を測定する温度計6と、緩冷却装置2の中間位置での鋼板の表面温度を測定する温度計7と、コイラ5により鋼板を巻取るときのコイラ巻取温度を測定するための温度計8とを備えている。
The manufacturing equipment shown in FIG. 2 is installed on the downstream side of the
強冷却装置9は、製造する高炭素熱延鋼板の全ての板厚に対して大きな冷却速度を有することが好ましい。例えば、150℃/秒以上の能力を有すると、鋼板の先端が200から300mpm程度で進行する場合、仕上温度900℃から巻取温度450℃まで約3秒、つまり約10〜20mの長さの非常にコンパクトな冷却設備とすることが可能で、大幅な冷却長の削減となるからである。
It is preferable that the
緩冷却装置2は、鋼の種類や強冷却終了温度によって変化する変態発熱挙動から発熱する温度分を冷却するように冷却量を設定する必要があるので、種々の分割された水冷バンクにより冷却箇所及び冷却量を制御できることが冷却装置であることが好ましい。例えば、従来のラミナー冷却装置を緩冷却装置2としてもよい。 Since the slow cooling device 2 needs to set the cooling amount so as to cool the temperature of the heat generated from the transformation heat generation behavior that changes depending on the type of steel and the end temperature of strong cooling, It is preferable that the cooling device be able to control the cooling amount. For example, a conventional laminar cooling device may be used as the slow cooling device 2.
以下に、上記の製造装置を用いて、本発明の高炭素熱延鋼板の製造方法を実施する場合の例を示す。 Below, the example in the case of implementing the manufacturing method of the high carbon hot rolled sheet steel of this invention using said manufacturing apparatus is shown.
第1の例(参考例)としては、Cを0.32〜0.38質量%含有し、Crを0.6〜1.0質量%添加した鋼を、仕上圧延機1により仕上温度(Ar3変態点−20℃)以上で圧延した後、冷却速度150℃/秒以上の能力を有する強冷却装置9により変態開始温度が500℃〜570℃(上部ベイナイト温度)になるように強冷却を行い、変態開始前に強冷却を終了した後、コイラ5による巻取りまでの間は緩冷却装置2による冷却制御は行わずに放冷する。 As a first example (reference example) , a steel containing 0.32 to 0.38% by mass of C and 0.6 to 1.0% by mass of Cr was added to a finishing temperature (Ar (3 transformation point−20 ° C.) After rolling at a temperature higher than 150 ° C./sec, strong cooling is performed so that the transformation start temperature is 500 ° C. to 570 ° C. (upper bainite temperature). After the strong cooling is completed before the transformation starts, the cooling is not performed by the slow cooling device 2 until the coiler 5 winds up, and the cooling is performed.
これによって、ベイナイト相の体積率が20%以上となり、フェライト粒が均一に粗大化して軟質化するため、優れた加工性を有する高炭素熱延鋼板が得られる。 As a result, the volume fraction of the bainite phase is 20% or more, and the ferrite grains are uniformly coarsened and softened, so that a high carbon hot rolled steel sheet having excellent workability can be obtained.
第2の例としては、Cを0.32〜0.38質量%含有し、Crを0.01質量%以上0.6質量%未満添加した鋼を、仕上圧延機1により仕上温度(Ar3変態点−20℃)以上で圧延した後、冷却速度150℃/秒以上の能力を有する強冷却装置9により変態開始温度が500℃〜570℃(上部ベイナイト温度)になるように強冷却を行い、変態開始前に強冷却を終了した後、コイラ5による巻取りまでの間は500℃〜570℃(上部ベイナイト温度)で保持されるように緩冷却装置2により冷却制御は行う。
As a second example, a steel containing 0.32 to 0.38 mass% of C and added with Cr of 0.01 mass% or more and less than 0.6 mass% is subjected to a finishing temperature (Ar 3 After rolling at a transformation point of −20 ° C. or higher, strong cooling is performed so that the transformation start temperature is 500 ° C. to 570 ° C. (upper bainite temperature) by a
これによって、ベイナイト相の体積率が20%以上となり、フェライト粒が均一に粗大化して軟質化するため、優れた加工性を有する高炭素熱延鋼板が得られる。 As a result, the volume fraction of the bainite phase is 20% or more, and the ferrite grains are uniformly coarsened and softened, so that a high carbon hot rolled steel sheet having excellent workability can be obtained.
第3の例(参考例)としては、Cを0.32〜0.38質量%含有し、Crを0.6〜1.0質量%添加した鋼を、仕上圧延機1により仕上温度(Ar3変態点−20℃)以上で圧延した後、冷却速度150℃/秒以上の能力を有する強冷却装置9により変態開始温度が400℃〜500℃(下部ベイナイト温度)になるように強冷却を行い、変態開始前に強冷却を終了した後、コイラ5による巻取りまでの間は緩冷却装置2による冷却制御は行わずに放冷する。
As a third example (reference example) , a steel containing 0.32 to 0.38% by mass of C and 0.6 to 1.0% by mass of Cr was added to a finishing temperature (Ar (3 transformation point−20 ° C.) After rolling, the
これによって、ベイナイト相の体積率が70%以上となり、球状化焼鈍の際、フェライト粒が均一に粗大化して極軟質化するため、極めて優れた加工性を有する高炭素熱延鋼板が得られる。 As a result, the volume fraction of the bainite phase is 70% or more, and the ferrite grains are uniformly coarsened and extremely softened during spheroidizing annealing, so that a high carbon hot rolled steel sheet having extremely excellent workability can be obtained.
第4の例としては、Cを0.32〜0.38質量%含有し、Crを0.01質量%以上0.6質量%未満添加した鋼を、仕上圧延機1により仕上温度(Ar3変態点−20℃)以上で圧延した後、冷却速度150℃/秒以上の能力を有する強冷却装置9により変態開始温度が400℃〜500℃(下部ベイナイト温度)になるように強冷却を行い、変態開始前に強冷却を終了した後、コイラ5による巻取りまでの間は400℃〜500℃(下部ベイナイト温度)で保持されるように緩冷却装置2により冷却制御は行う。
As a fourth example, a steel containing 0.32 to 0.38% by mass of C and containing Cr in an amount of 0.01% by mass or more and less than 0.6% by mass is subjected to a finishing temperature (Ar 3 After the rolling at a transformation point of −20 ° C. or higher, strong cooling is performed by the
これによって、ベイナイト相の体積率が70%以上となり、球状化焼鈍の際、フェライト粒が均一に粗大化して極軟質化するため、極めて優れた加工性を有する高炭素熱延鋼板が得られる。 As a result, the volume fraction of the bainite phase is 70% or more, and the ferrite grains are uniformly coarsened and extremely softened during spheroidizing annealing, so that a high carbon hot rolled steel sheet having extremely excellent workability can be obtained.
さらに、上記の例において、鋼に添加する合金や緩冷却装置2による冷却制御により、変態開始後からコイラ5による変態終了までの温度の変動幅を50℃以内に温度制御を行うこともできる。これにより、引張強度の変動幅を抑えることができる。 Further, in the above example, the temperature control from the start of the transformation to the end of the transformation by the coiler 5 can be controlled within 50 ° C. by the cooling control by the alloy added to the steel or the slow cooling device 2. Thereby, the fluctuation range of tensile strength can be suppressed.
なお、本発明の実施に当たっては、連続鋳造から粗圧延まで直接圧延を行う直送圧延プロセス、又はスラブの再加熱を伴う製造プロセスにおいても、加工性を優れたレベルとするためには、化学成分を特定範囲に制御することが望ましい。本発明では、前述のようにCとCrの含有量を制御しているが、その他、本発明の効果を妨げない範囲で、例えば熱間加工性を向上させるため等の目的で、微量合金元素を添加することもできる。 In carrying out the present invention, in order to achieve excellent workability in a direct feed rolling process in which direct rolling is performed from continuous casting to rough rolling, or in a manufacturing process involving reheating of the slab, the chemical component is It is desirable to control to a specific range. In the present invention, the contents of C and Cr are controlled as described above, but in addition, for the purpose of, for example, improving hot workability within a range that does not hinder the effects of the present invention, a trace alloy element Can also be added.
このように成分調製された高炭素鋼を造塊-分塊圧延、又は、連続鋳造によりスラブとする。このスラブに熱間圧延を行うが、その際、スラブ加熱温度は、スケール発生による表面状態の劣化を避けるため、1280℃以下とすることが望ましい。 The high carbon steel thus prepared is made into a slab by ingot-bundling rolling or continuous casting. The slab is hot-rolled, and at that time, the slab heating temperature is desirably 1280 ° C. or less in order to avoid deterioration of the surface state due to generation of scale.
また、粗圧延後の粗バー又は仕上圧延中の被圧延材を、誘導加熱装置により加熱することにより、コイル内の機械的性質の均一化が図られる。 In addition, the mechanical properties in the coil can be made uniform by heating the rough bar after rough rolling or the material to be rolled during finish rolling with an induction heating device.
さらに、仕上温度をAr3 変態点直上の狭い温度範囲に制御することにより、本発明の組織微細化の効果をより効果的に発揮させることができる。 Furthermore, by controlling the finishing temperature within a narrow temperature range immediately above the Ar 3 transformation point, the effect of the structure refinement of the present invention can be exhibited more effectively.
本発明の効果は、原理的に、仕上圧延前の粗バーによる加熱あるいは保熱の有無やその手法にはよらずに得られる。従って、誘導加熱に限らずコイルボックス等を用いた連続圧延プロセスに対しても、効果的に使用できる。また、仕上圧延直前又は仕上圧延中に、被圧延材を誘導加熱装置により加熱するとき、エッジ加熱を行ってもよく、特に板厚2mm以下の薄鋼板を製造する場合に効果的である。 The effect of the present invention can be obtained in principle regardless of the presence or absence of heating or heat retention by a rough bar before finish rolling. Therefore, it can be effectively used not only for induction heating but also for a continuous rolling process using a coil box or the like. Further, when the material to be rolled is heated by an induction heating device immediately before or during finish rolling, edge heating may be performed, which is particularly effective when a thin steel plate having a thickness of 2 mm or less is manufactured.
また、仕上圧延後の強冷却を行う際に、仕上圧延後、0.1秒を超え1.0秒未満の時間内で冷却を開始すると、加工性をより一層向上できる。さらに、球状化促進あるいは硬度低減のため、巻取り後にコイルを徐冷カバー等の手段で保温してもよい。 Moreover, when performing strong cooling after finish rolling, workability can be further improved if cooling is started within 0.1 seconds and exceeding 1.0 seconds after finish rolling. Furthermore, in order to promote spheroidization or reduce hardness, the coil may be kept warm by means such as a slow cooling cover after winding.
なお、本発明の高炭素鋼の成分調製には、転炉あるいは電気炉のどちらでも使用可能である。また、連続鋳造スラブをそのまま又は温度低下を抑制する目的で保熱しつつ圧延する直送圧延を行ってもよい。あるいは、薄鋳片鋳造技術等の適用により粗圧延を省略して仕上圧延を行ってもよい。 In addition, either a converter or an electric furnace can be used for preparing the components of the high carbon steel of the present invention. Moreover, you may perform the direct feed rolling which rolls a continuous casting slab as it is or heat-retaining in order to suppress a temperature fall. Or you may abbreviate | omit rough rolling by application of a thin slab casting technique etc., and perform finish rolling.
表1に示す化学成分を有する高炭素鋼A、B、Cを溶製した。そして、これらの高炭素鋼を図2に示した製造設備を用いて、表2に示す製造条件で圧延を行い(通板速度は250mpm)、その後焼鈍を行って、板厚3.2mmの鋼板を5種類(鋼板No.1〜5)製造した。 High carbon steels A, B, and C having chemical components shown in Table 1 were melted. Then, these high carbon steels are rolled using the production equipment shown in FIG. 2 under the production conditions shown in Table 2 (the plate speed is 250 mpm), and then annealed to obtain a steel plate having a thickness of 3.2 mm. Were manufactured (steel plates No. 1-5).
鋼板No.1は、参考例1であり、Crを1.0質量%添加した高炭素鋼Aを用い、仕上圧延後、変態開始温度が上部ベイナイト温度になるように強冷却装置9で強冷却を行い、変態開始前に強冷却を終了した後、コイラ5による巻取りまでの間は緩冷却装置2による冷却制御を行わずに放冷したものである。
Steel plate No. 1 is Reference Example 1 , using high carbon steel A added with 1.0% by mass of Cr, and after finish rolling, performing strong cooling with
鋼板No.2は、参考例2であり、Crを1.0質量%添加した高炭素鋼Aを用い、仕上圧延後、変態開始温度が下部ベイナイト温度になるように強冷却装置9で強冷却を行い、変態開始前に強冷却を終了した後、コイラ5による巻取りまでの間は緩冷却装置2による冷却制御を行わずに放冷したものである。
Steel plate No. 2 is Reference Example 2 , using high carbon steel A added with 1.0% by mass of Cr, and after finish rolling, performing strong cooling with
鋼板No.3は、本発明例1であり、Crを0.15質量%添加した高炭素鋼Bを用い、仕上圧延後、変態開始温度が上部ベイナイト温度になるように強冷却装置9で強冷却を行い、変態開始前に強冷却を終了した後、コイラ5による巻取りまでの間を緩冷却装置2によって冷却制御したものである。
Steel plate No. 3 is Invention Example 1 , using high carbon steel B added with 0.15% by mass of Cr, and after finish rolling, strong cooling is performed with
鋼板No.4は、比較例1であり、本発明におけるCr添加量の上限1.0質量%を超えた、Crを1.5質量%添加した高炭素鋼Cを用い、仕上圧延後、変態開始温度が上部ベイナイト温度になるように強冷却装置9で強冷却を行い、変態開始前に強冷却を終了した後、コイラ5による巻取りまでの間は緩冷却装置2による冷却制御を行わずに放冷したものである。
Steel plate No. 4 is Comparative Example 1, using high carbon steel C added with 1.5% by mass of Cr exceeding the upper limit of 1.0% by mass of Cr addition in the present invention, and after the finish rolling, the transformation start temperature is After the strong cooling is performed by the
鋼板No.5は、比較例2であり、Crを0.15質量%添加した高炭素鋼Bを用い、仕上圧延後、変態開始温度が上部ベイナイト温度になるように強冷却装置9で強冷却を行い、変態開始前に強冷却を終了した後、コイラ5による巻取りまでの間は、緩冷却装置2による冷却制御を行わずに、放冷したものである。
Steel plate No. 5 is Comparative Example 2, using high carbon steel B added with 0.15% by mass of Cr, and after finish rolling, perform strong cooling with
そして、図3に本発明例1、参考例1、2及び比較例1、2の各鋼板の強冷却開始直後からの温度履歴を示している。その内の参考例1、参考例2と比較例1の温度履歴を抜き出して比較したものが図4であり、本発明例1と比較例2の温度履歴を抜き出して比較したものが図5である。 FIG. 3 shows the temperature history immediately after the start of strong cooling of each steel sheet of Invention Example 1, Reference Examples 1 and 2, and Comparative Examples 1 and 2. FIG. 4 shows a comparison of the temperature histories of Reference Example 1, Reference Example 2 and Comparative Example 1, and FIG. 5 shows a comparison of the temperature histories of Invention Example 1 and Comparative Example 2. is there.
図2及び表2によれば、参考例1については、強冷却終了後、所定時間(潜伏時間:仕上温度と冷却速度から予測した平衡変態温度以下に鋼板温度が到達する時間から変態開始するまでの時間を潜伏時間と定義する)経過後、500〜570℃の範囲内で変態が始まっており、また、参考例2については、強冷却終了後、所定時間(潜伏時間)経過後400〜500℃の範囲内で変態が始まっており、それぞれその温度履歴も緩やかであり、緩冷却装置2を使わずとも、所望の温度範囲内で温度が推移している。 2 and Table 2, with respect to Reference Example 1 , after the end of strong cooling, a predetermined time (latency time: from the time when the steel sheet temperature reaches below the equilibrium transformation temperature predicted from the finishing temperature and the cooling rate until the transformation starts. after defining the time latency and) has elapsed, and the start of the transformation in the range of 500-570 ° C., also for the reference example 2, the strength after the cooling completion of the predetermined time period (latency) has elapsed 400-500 Transformation has begun within the range of ° C., the temperature history of each of them is also gentle, and the temperature has changed within the desired temperature range without using the slow cooling device 2.
本発明例1については、強冷却終了直後に変態が開始し、温度上昇が約12sで90℃程度生ずるが、発熱挙動を制御しない場合(Crを添加しない場合)は約10sで約110℃の温度上昇が急激に起こることに比べると温度上昇が緩やかで、緩冷却装置2の使用バンクと使用流量を制御し、18個の冷却バンクのうち2番目、4番目、5番目で、それぞれ10、5、8℃冷却した結果、目標温度範囲に、すなわち500〜570℃の範囲内に温度制御できている。 For Example 1 of the present invention , the transformation starts immediately after the end of strong cooling, and the temperature rise occurs at about 90 ° C. in about 12 s. However, when the exothermic behavior is not controlled (when Cr is not added), it is about 110 ° C. in about 10 s. Compared to the sudden rise in temperature, the rise in temperature is moderate, and the use bank and flow rate of the slow cooling device 2 are controlled, and the second, fourth, and fifth of the 18 cooling banks are 10, respectively. As a result of cooling at 5 or 8 ° C., the temperature can be controlled within the target temperature range, that is, within the range of 500 to 570 ° C.
比較例1については、強冷却終了後、所定時間(潜伏時間)経過後変態が始まり、その発熱挙動も緩やかであるが、コイラ5に巻取った後、変態発熱したため、その変態発熱を放冷できず、結果的に鋼板の温度が上昇している。 In Comparative Example 1, after the end of strong cooling, the transformation started after a lapse of a predetermined time (latency time), and the heat generation behavior was slow, but after winding around the coiler 5, the transformation heat was generated. As a result, the temperature of the steel plate is increased.
比較例2については、変態開始温度が本発明例3と同じであるが、強冷却終了直後に変態を開始し、その後、緩冷却装置2を使用しなかったため温度が約90℃近く上昇し、所定の温度範囲に温度制御がなされていない。 For Comparative Example 2, the transformation start temperature is the same as Example 3 of the present invention, but the transformation started immediately after the end of strong cooling, and then the slow cooling device 2 was not used, so the temperature rose approximately 90 ° C, The temperature is not controlled within the predetermined temperature range.
そして、これらの鋼板からサンプルを採取し、熱延鋼板のベイナイト相の体積率の測定と焼鈍板の硬度測定を行った。その測定結果を表3に示す。 And the sample was extract | collected from these steel plates, the measurement of the volume ratio of the bainite phase of a hot-rolled steel plate, and the hardness measurement of the annealing board were performed. The measurement results are shown in Table 3.
なお、熱延鋼板のベイナイト相の体積率の測定については、サンプルの板厚断面を研磨・腐食後、走査型電子顕微鏡にてベイナイト相の体積率の測定を行った。また、焼鈍板の硬度測定については、焼鈍板のサンプルの板面を、ロックウェルBスケール硬度(HRB)で5点測定し、平均値を求めそのサンプルの硬度とした。 In addition, about the measurement of the volume ratio of the bainite phase of a hot-rolled steel plate, the volume ratio of the bainite phase was measured with the scanning electron microscope after grinding | polishing and corroding the plate | board thickness cross section of a sample. For the hardness measurement of the annealed plate, the sample surface of the annealed plate was measured at five points using Rockwell B scale hardness (HRB), and the average value was obtained as the hardness of the sample.
この結果、表3に示すように、本発明例1と参考例1、2は、ベイナイト相の体積率が20%以上となっており、特に、強冷却終了温度と巻取温度を下部ベイナイト温度に設定した参考例2は、ベイナイト相の体積率が70%以上となっている。 As a result, as shown in Table 3, in the present invention example 1 and the reference examples 1 and 2 , the volume fraction of the bainite phase is 20% or more, and particularly, the strong cooling end temperature and the coiling temperature are set to the lower bainite temperature. In Reference Example 2 set to 1, the volume fraction of the bainite phase is 70% or more.
これに対して、比較例1は、Cr添加量が1.5質量%と多すぎたために、変態開始時の鋼板の組織が巻取り後に変化してしまい、ベイナイト相の体積率が20%未満となっている。また、比較例2は、変態開始後の温度制御を行わなかったために、ベイナイト相の体積率が20%未満となっている。 On the other hand, in Comparative Example 1, since the Cr addition amount was too large as 1.5% by mass, the structure of the steel sheet at the start of transformation changed after winding, and the volume fraction of the bainite phase was less than 20%. It has become. Moreover, since the comparative example 2 did not perform temperature control after the start of transformation, the volume fraction of the bainite phase is less than 20%.
そして、焼鈍後の硬度については、本発明例1と参考例1、2では、比較例1、2に比べて、それぞれ10ポイント以上低くなっており、軟質化していることが確認できる。特に、ベイナイト相の体積率が70%以上で焼鈍温度の高い参考例2は、焼鈍後の硬度が低く、極めて軟質となっている。 And about the hardness after annealing, in Example 1 of this invention and the reference examples 1 and 2 , compared with the comparative examples 1 and 2 , it is 10 points or less lower, respectively, and it can confirm that it has softened. In particular, Reference Example 2 in which the volume fraction of the bainite phase is 70% or higher and the annealing temperature is high is low in hardness after annealing and extremely soft.
1 仕上圧延機
2 緩冷却装置
5 コイラ
6 温度計
7 温度計
8 温度計
9 強冷却装置
DESCRIPTION OF
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004219469A JP4466252B2 (en) | 2004-07-28 | 2004-07-28 | Manufacturing method of high carbon hot rolled steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004219469A JP4466252B2 (en) | 2004-07-28 | 2004-07-28 | Manufacturing method of high carbon hot rolled steel sheet |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009293615A Division JP5381690B2 (en) | 2009-12-25 | 2009-12-25 | Manufacturing method of high carbon hot rolled steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006037171A JP2006037171A (en) | 2006-02-09 |
JP4466252B2 true JP4466252B2 (en) | 2010-05-26 |
Family
ID=35902479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004219469A Expired - Fee Related JP4466252B2 (en) | 2004-07-28 | 2004-07-28 | Manufacturing method of high carbon hot rolled steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4466252B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5128797B2 (en) * | 2006-09-12 | 2013-01-23 | 株式会社神戸製鋼所 | Method for cooling hot-rolled steel sheet |
JP5742123B2 (en) * | 2010-07-16 | 2015-07-01 | Jfeスチール株式会社 | High-tensile hot-rolled steel sheet for high-strength welded steel pipe for line pipe and method for producing the same |
-
2004
- 2004-07-28 JP JP2004219469A patent/JP4466252B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006037171A (en) | 2006-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5292698B2 (en) | Extremely soft high carbon hot-rolled steel sheet and method for producing the same | |
JP4650006B2 (en) | High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same | |
JP5339005B1 (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same | |
JP2007277696A (en) | Dead soft high-carbon hot-rolled steel sheet and its manufacturing method | |
CN111406124B (en) | High-strength cold-rolled steel sheet and method for producing same | |
JP5358914B2 (en) | Super soft high carbon hot rolled steel sheet | |
JP5381690B2 (en) | Manufacturing method of high carbon hot rolled steel sheet | |
WO2007000954A1 (en) | Process for manufacture of cold-rolled high-carbon steel plate | |
JP3915460B2 (en) | High strength hot rolled steel sheet and method for producing the same | |
JP4854333B2 (en) | High strength steel plate, unannealed high strength steel plate and method for producing them | |
JP2003013145A (en) | Method for manufacturing high-carbon hot-rolled steel sheet superior in stretch flange formability | |
JP3879447B2 (en) | Method for producing high carbon cold-rolled steel sheet with excellent stretch flangeability | |
JP4529517B2 (en) | High carbon steel plate manufacturing method and manufacturing equipment | |
JP2006097109A (en) | High-carbon hot-rolled steel sheet and manufacturing method therefor | |
JP4622609B2 (en) | Method for producing soft high workability high carbon hot rolled steel sheet with excellent stretch flangeability | |
JP4466252B2 (en) | Manufacturing method of high carbon hot rolled steel sheet | |
JP2001073077A (en) | High carbon steel sheet for working small in plane anisotropy and its production | |
TWI711708B (en) | Method for increasing spheroidization rate of chrome molybdenum steel material | |
JP2006009057A (en) | Method for producing high strength cold-rolled steel sheet excellent in bending and fatigue resistant characteristics | |
JP2002069534A (en) | Thin steel sheet and method for producing the same | |
JP3596509B2 (en) | Manufacturing method of high strength hot rolled steel sheet | |
JP6610067B2 (en) | Cold rolled steel sheet manufacturing method and cold rolled steel sheet | |
JP3596045B2 (en) | Manufacturing method of bake hardening type cold rolled steel sheet with excellent formability | |
JPH08269538A (en) | Production of hot rolled steel plate excellent in stretch-flange formability | |
JP4333299B2 (en) | Manufacturing method of high carbon steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060921 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070528 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090903 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091027 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100202 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100215 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4466252 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140305 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |