JP4048675B2 - High carbon steel sheet for machining with low in-plane anisotropy with excellent hardenability and toughness and method for producing the same - Google Patents

High carbon steel sheet for machining with low in-plane anisotropy with excellent hardenability and toughness and method for producing the same Download PDF

Info

Publication number
JP4048675B2
JP4048675B2 JP2000018280A JP2000018280A JP4048675B2 JP 4048675 B2 JP4048675 B2 JP 4048675B2 JP 2000018280 A JP2000018280 A JP 2000018280A JP 2000018280 A JP2000018280 A JP 2000018280A JP 4048675 B2 JP4048675 B2 JP 4048675B2
Authority
JP
Japan
Prior art keywords
steel sheet
jis
carbon steel
temperature
plane anisotropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000018280A
Other languages
Japanese (ja)
Other versions
JP2001073076A (en
Inventor
展之 中村
毅 藤田
康幸 高田
克俊 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000018280A priority Critical patent/JP4048675B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to CNB018000355A priority patent/CN1157491C/en
Priority to PCT/JP2001/000404 priority patent/WO2001055466A1/en
Priority to KR10-2001-7011808A priority patent/KR100430986B1/en
Priority to EP01946901A priority patent/EP1191115A4/en
Publication of JP2001073076A publication Critical patent/JP2001073076A/en
Priority to US09/961,843 priority patent/US6652671B2/en
Priority to US10/665,865 priority patent/US7147730B2/en
Application granted granted Critical
Publication of JP4048675B2 publication Critical patent/JP4048675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば円盤加工や円筒成形され、高い寸法精度が要求されるとともに、その後焼入れ焼戻し等の熱処理が施される部品に適合される、焼入れ性と靭性に優れ、引張特性の面内異方性が小さい加工用高炭素鋼板およびその製造方法に関する。
【0002】
【従来の技術】
従来から高炭素鋼板は、ワッシャー、チェーン部品をはじめとした機械構造用部品などに使用されている。このような高炭素鋼板には、高い焼入れ性が要求され、最近では焼入れ後の硬さの向上のみならず、焼入れ作業の低コスト化の観点から、低温短時間での焼入れ性が望まれている。また、近年、安全基準の見直しが行われており、焼入れ後の部品が高い靭性を有していることも重要となる。
【0003】
一方、高炭素冷延鋼板は、低炭素鋼に比べて一般に硬質なため成形性に劣るだけでなく、熱間圧延、焼鈍および冷間圧延に起因して、機械的性質の面内異方性を生じるため、従来から鋳造、鍛造で製造されている高い寸法精度が要求されるギア部品への適用は困難であった。
【0004】
そのため、焼入れ性および靭性を向上させること、および成形性に対する機械的性質の面内異方性を小さくすることが大きな課題であった。
【0005】
そこで、これまでに、高炭素鋼板において焼入れ性や靭性を向上させ、あるいは機械的性質の面内異方性を小さくするため、以下の技術が提案されている。
【0006】
(1)特開平5−9588号公報(以下、従来技術1という)
この公報には、熱間圧延後の鋼帯を10℃/sec以上の冷却速度で20〜500℃の温度範囲に冷却し、微細パーライトとし、その後再加熱を行い巻取って炭化物の球状化を促進し、高炭素鋼板の焼入れ性を高める技術が記載されている。
【0007】
(2)特開平5−98388号公報(以下、従来技術2という)
この公報には、C:0.30〜0.70%を含有する高炭素鋼板に対し、Nb、Tiを添加して、炭窒化物を形成しオーステナイト粒成長を抑制し、高炭素鋼板の靭性を高める技術が記載されている。
【0008】
(3)材料とプロセス、Vol.1(1988)、p.1729(以下、従来技術3という)
一般に0.65%もの高濃度の炭素を含有し、組織がフェライト/セメンタイト組織を呈する鋼板(S65C)では、低炭素鋼板に比べて成形性が低い。この文献には、熱間圧延後、冷間圧延(冷延率50%)および650℃で24hrのバッチ焼鈍を施し、さらに二次冷間圧延(冷延率65%)および680℃で24hrのバッチ焼鈍を行うことにより、加工性に優れた高炭素冷延鋼板を製造することが記載されている。また、セメンタイトを黒鉛化することを目的として、S65C中の化学成分を調整し、熱間圧延後、冷間圧延(冷延率50%)および650℃で24hrのバッチ焼鈍を施し、さらに二次冷間圧延(冷延率65%)および680℃で24hrの二次バッチ焼鈍を行うことにより、引張強度が低下し、r値と伸びが向上し、かつr値の面内異方性も低炭素鋼板と同等となる高炭素冷延鋼板の製造方法についても開示されている。
【0009】
(4)特開平10−152757号公報(以下、従来技術4という)
この公報には、高炭素鋼板の機械的性質の異方性の原因は圧延方向に細長く展伸した硫化物系非金属介在物の存在であるとし、C、Si、Mn、P、Cr、Ni、Mo、V、Ti、Alを規制するとともに、S含有量を重量で0.002%以下まで低減させ、介在物の圧延方向の平均長さを6μm以下とし、圧延方向の長さが4μm以下の介在物の個数を全介在物個数の80%以上とすることにより、衝撃値と全伸びについて圧延方向に直交する方向の機械的性質に対する圧延方向の機械的性質の比で0.9〜1.0の範囲になるように面内異方性を小さくした高炭素鋼板を製造することが記載されている。
【0010】
(5)特開平6−271935号公報(以下、従来技術5という)
この公報には、C、Si、Mn、Cr、Mo、Ni、B、Alを特定した高炭素鋼板を熱間圧延する際に、熱間仕上げ温度をAr変態点以上とし、熱間圧延終了から巻取りまでを30℃/sec以上で冷却し、550〜700℃の温度域で巻取るとともに、脱スケールし、その後、600〜680℃の温度で焼鈍し、40%以上の圧下率で冷間圧延し、さらに600〜680℃の温度で焼鈍した後、調圧することにより、焼入れ、焼戻し等の熱処理時に寸法変化異方性の小さい高炭素冷延鋼板を製造することが記載されている。
【0011】
【発明が解決しようとする課題】
しかしながら、上述した従来技術は以下の問題点を有している。
従来技術1では、そのまま巻取って冷却するため、再加熱を行っても、炭化物の球状化のための保持時間が通常の球状化焼鈍時間に比べて極めて短く、炭化物の球状化率はまだ低いレベルにあるため、十分な焼入れ性が得られない場合がある。また、急冷後の再加熱には通電加熱設備が必要であり、製造コストが膨大となる。
【0012】
従来技術2では、オーステナイト粒成長を抑制するために、高価なNb、Tiを添加していることからコストが増大する。
【0013】
従来技術3では、フェライト/セメンタイト組織を有するS65Cについては、r値の平均値は1.3程度と高いものの、圧延方向に対し0°方向(L方向)、45°方向(S方向)、90°方向(C方向)のそれぞれの方向についてのr値であるr0、r45、r90からΔr=(r0+r90−2×r45)/4で規定されるr値の面内異方性指数Δrが−0.47であり、また、前記r値の最大格差であるΔmaxが1.17であって、r値の面内の異方性は非常に大きい。また、冷間圧延−焼鈍プロセスを2回も行うため、製造コストが高くなるという問題点を有している。一方、黒鉛化した高炭素鋼板については、r値がさらに向上し、Δrが0.34、Δmaxが0.85といずれも小さくなってはいるが、依然としてr値の面内異方性は大きい。また、黒鉛はオーステナイト中への溶解速度が遅いため、焼入れ性は著しく低下する。
【0014】
従来技術4では、衝撃値と全伸びのみに対する面内異方性について考慮しているだけであり、鋼板の成形性の重要な指標となるr値やn値等に対する面内異方性については検討されていない。
【0015】
従来技術5では、焼入れ焼戻し等の熱処理時に寸法変化が小さい高炭素鋼板の製造方法が記載されているが、成形性に対する面内異方性に関しては検討されていない。
【0016】
本発明はかかる事情に鑑みてなされるものであって、焼入れ性および靭性に優れ、かつ成形性に大きな影響を及ぼす引張特性に対する面内異方性の小さい高炭素鋼板およびその製造方法を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明者らは、JIS G 4051(機械構造用炭素鋼)、JIS G 4401(炭素工具鋼鋼材)、JIS G 4802(ばね用冷間圧延鋼帯)で規定されるC量が0.2%以上の成分系を有する高炭素冷延鋼板について、焼入れ性および靭性、ならびに引張特性の面内異方性が良好になる条件について検討を重ねた結果、熱間仕上げ圧延後の巻取温度、一次焼鈍温度、冷間圧延率、および二次焼鈍温度を適正に制御すること、または熱間粗圧延後に粗バーまたは圧延材をAr変態点以上の温度で誘導加熱して板厚方向の組織の均一性を高めた上で、これら熱延後の巻取り温度、一次焼鈍温度、冷間圧延率および二次焼鈍温度を適正に制御し、かつ鋼板中における炭化物の存在状態を適切に調整することが有効であることを見出した。また、これにより、Δrが−0.15超〜0.15未満、さらにはr値のΔmaxが0.2未満という極めて小さい値となることが確認された。
【0018】
本発明は上記知見に基づいてなされたものであり、第1発明は、JIS G 4051(機械構造用炭素鋼)、JIS G 4401(炭素工具鋼鋼材)、JIS G 4802(ばね用冷間圧延鋼帯)で規定される成分系を有する高炭素鋼板であって、
粒径1.5μm以上の炭化物が2500μm中50以上存在し、かつ粒径0.6μm以下の炭化物が80%以上を占め、さらにr値の面内異方性指数Δrが−0.15超〜0.15未満であることを特徴とする、焼入性と靭性に優れる面内異方性の小さい加工用高炭素鋼板を提供する。
ただし、Δrは、Δr=(r0+r90−2×r45)/4により規定される値を示す。ここでr0、r45、r90は、それぞれ、圧延方向に対し、0°方向(L方向)、45°方向(S方向)、90°方向(C方向)のr値を示す。
【0019】
第2発明は、第1発明に係る焼入性と靭性に優れる面内異方性の小さい加工用高炭素鋼板の製造方法であって、
JIS G 4051(機械構造用炭素鋼)、JIS G 4401(炭素工具鋼鋼材)、JIS G 4802(ばね用冷間圧延鋼帯)で規定される成分系を有する熱間仕上圧延後の鋼板を520〜600℃の温度で巻取り、
次いで巻取り後の鋼板を脱スケールした後、640〜690℃(690℃は除く)で20hr以上の一次焼鈍を行い、
焼鈍した鋼板を50%以上の圧下率で冷間圧延し、
その後、620〜680℃の温度範囲で二次焼鈍を施すことを特徴とする、焼入性と靭性に優れる面内異方性の小さい加工用高炭素鋼板の製造方法を提供する。
【0020】
第3発明は、JIS G 4051(機械構造用炭素鋼)、JIS G 4401(炭素工具鋼鋼材)、JIS G 4802(ばね用冷間圧延鋼帯)で規定される成分系を有する高炭素鋼板であって、
粒径1.5μm以上の炭化物が2500μm中50以上存在し、かつ粒径0.6μm以下の炭化物が80%以上を占め、さらにr値のΔmaxが0.2未満であることを特徴とする、焼入性と靭性に優れる面内異方性の小さい加工用高炭素鋼板を提供する。
ただし、Δmaxは、圧延方向に対し、0°方向(L方向)、45°方向(S方向)、90°方向(C方向)の値の最大格差を示す。
【0021】
第4発明は、第3発明に係る焼入性と靭性に優れる面内異方性の小さい加工用高炭素鋼板の製造方法であって、
JIS G 4051(機械構造用炭素鋼)、JIS G 4401(炭素工具鋼鋼材)、JIS G 4802(ばね用冷間圧延鋼帯)で規定される成分系を有する熱間仕上圧延後の鋼板を520〜600℃の温度で巻取り、
次いで巻取り後の鋼板を脱スケールした後、640〜690℃(690℃は除く)で20hr以上の一次焼鈍を行い、
焼鈍した鋼板を50%以上の圧下率で冷間圧延し、
その後以下の(1)式を満足し、かつ620〜680℃の温度範囲で二次焼鈍を施すことを特徴とする、焼入性と靭性に優れる面内異方性の小さい加工用高炭素鋼板の製造方法を提供する。
1024−0.6×T≦T≦1202−0.80×T ・・・(1)
ただし、T:一次焼鈍温度(℃)、T:二次焼鈍温度(℃)
【0022】
第5発明は、第3発明に係る焼入性と靭性に優れる面内異方性の小さい加工用高炭素鋼板の製造方法であって、
JIS G 4051(機械構造用炭素鋼)、JIS G 4401(炭素工具鋼鋼材)、JIS G 4802(ばね用冷間圧延鋼帯)で規定される成分系を有する鋳造スラブを連続鋳造まま、または冷却後所定の温度に加熱した後、粗圧延機によって粗圧延して、粗バーとし、
引き続いて、連続熱間仕上げ圧延機によって仕上圧延する際に、仕上げ圧延機の入り側、または仕上げ圧延機のスタンド間で、粗バーまたは圧延材をAr変態点以上の温度で誘導加熱し、
熱間仕上圧延後の鋼板を500〜650℃の温度で巻取り、
次いで巻取り後の鋼板を脱スケールした後、630〜700℃で20hr以上の一次焼鈍を行い、
焼鈍した鋼板を50%以上の圧下率で冷間圧延し、
その後以下の(2)式を満足し、かつ620〜680℃の温度範囲で二次焼鈍を施すことを特徴とする、焼入性と靭性に優れる面内異方性の小さい加工用高炭素鋼板の製造方法を提供する。
1010−0.59×T≦T≦1210−0.80×T ・・・(2)
ただし、T:一次焼鈍温度(℃)、T:二次焼鈍温度(℃)
【0023】
なお、面内異方性とは、圧延方向に対し0°方向(L方向)、45°方向(S方向)、90°方向(C方向)の引張特性の最大格差を示すものである。
【0024】
【発明の実施の形態】
以下、本発明について具体的に説明する。
本発明の第一の高炭素鋼板は、JIS G 4051(機械構造用炭素鋼)、JIS G 4401(炭素工具鋼鋼材)、JIS G 4802(ばね用冷間圧延鋼帯)で規定されるC量が0.2%以上の成分系を有する高炭素鋼板であって、粒径1.5μm以上の炭化物が2500μm中50以上存在し、かつ粒径0.6μm以下の炭化物が80%以上を占め、さらにr値の面内異方性指数Δrが−0.15超〜0.15未満であることを特徴とするものである。
ただし、Δrは、Δr=(r0+r90−2×r45)/4により規定される値を示す。ここでr0、r45、r90は、それぞれ、圧延方向に対し、0°方向(L方向)、45°方向(S方向)、90°方向(C方向)のr値を示す。
以下限定理由について説明する
【0025】
(1)粒径1.5μm以上の炭化物が2500μm中に50以上存在し、かつ粒径0.6μm以下の炭化物が80%以上占める
炭化物粒径および粒度分布は、低温短時間の加熱における焼入れ性および靭性に大きく影響を及ぼす。そこでまず、炭化物の焼入れ性に及ぼす炭化物粒径の影響について調査した。
【0026】
重量%で、C:0.36%、Si:0.20%、Mn:0.75%、P:0.011%、S:0.002%、Al:0.020%の鋼を溶解後、仕上温度:850℃、巻取温度:560℃で熱間圧延し、酸洗後、一次焼鈍を640〜690℃で40hr行い、冷間圧延の圧下率を60%とし、二次焼鈍を610〜690℃で40hr行った。得られた鋼板を50×100mmの大きさに切断後加熱炉で820℃に昇温し、10秒間保持後に約20℃の油中へ焼入れた。焼入れ後の試験片における硬さをロックウェルCスケール(HRc)で10点測定した焼入れ性を評価した。評価は平均硬さ(HRc)50以上を合格とした。
【0027】
図1は、2500μm範囲内の炭化物について最小粒径からの累積炭化物数量が80%となる粒径と硬さとの関係を示す。粒径が0.6μm以下になると硬さ(HRc)50以上が確保されている。すなわち粒径0.6μm以下の炭化物が全炭化物の80%以上を占めることで、加熱保持中に炭化物がオーステナイト中へ速やかに固溶し、焼入れ性が向上する。しかし、全炭化物が0.6μm以下のように微細であると、短時間加熱中にすべて炭化物が溶解してしまい、オーステナイト粒が著しく粗大になる。
【0028】
図2は2500μm中の粒径1.5μm以上の炭化物の個数と旧オーステナイト粒径との関係を示す。炭化物数が減少するに連れて旧オーステナイト粒径は粗大化する。とくに炭化物数が50未満で急激に粗大化する。旧オーステナイト粒径は鋼の靭性に大きな影響を及ぼし、細かいほど靭性が高くなる。つまり、靭性に関しては粒径1.5μm以上の炭化物を適度に分散させる必要があるが、少なくとも2500μm中に50以上存在しないと、オーステナイトの微細化効果が得られない。
【0029】
なお、炭化物の粒径および粒径分布の測定方法については、特に限定されるものではないが、サンプルの板厚断面を研磨・腐食後、1500〜5000倍の走査型電子顕微鏡写真を撮影し、その写真から炭化物粒径および粒径分布を測定することが好ましい。実際にサンプル中の炭化物粒径を測定するに際しては、写真に撮影されている粒径の平均をもって平均粒径とする。また、粒度分布の測定は、少なくとも2500μm以上でないと炭化物の測定数が少なく適当な粒度分布が得られない。一方、測定領域の上限については、板厚断面の60%程度の測定で本発明の粒度分布を満たせば十分である。また、腐食液としてはピクラル腐食液を用いるのが良い。
【0030】
(2)r値の面内異方性指数Δrが−0.15超〜0.15未満
このようにr値のΔrを−0.15超〜0.15未満と極めて絶対値の小さい値とすることにより、従来から鋳造、鍛造で製造されている高い寸法精度が要求されるギア部品への適用が可能となる。
【0031】
このような第1の高炭素鋼板を製造するに際しては、上記成分系を有する熱間仕上圧延後の鋼板を520〜600℃の温度で巻取り、次いで巻取り後の鋼板を脱スケールした後、640〜690℃で20hr以上の一次焼鈍を行い、焼鈍した鋼板を50%以上の圧下率で冷間圧延し、その後、620〜680℃の温度範囲で二次焼鈍を施す。以下限定理由について説明する。
【0032】
(1)熱延巻取温度:520〜600℃
巻取温度が520℃未満になるとパーライト組織が極めて微細になるため、一次焼鈍でカーバイドが著しく微細となり、二次焼鈍後に1.5μm以上の炭化物が得られないため、520℃を下限とした。一方、温度が高くなりすぎると粗大パーライトが生成してしまい、二次焼鈍後に粒径0.6μm以下の炭化物が得られなくなるため、600℃を上限とした。
【0033】
(2)一次焼鈍条件:640〜690℃、20hr以上
巻き取り後の熱延板に対しては、酸洗等の脱スケール後に炭化物の球状化を目的とした一次焼鈍を行う。一次焼鈍温度が690℃よりも高くなると炭化物の球状化が進みすぎてしまい、二次焼鈍後も0.6μm以下の炭化物が得られない。そのため、690℃を上限とした。一方、温度が640℃未満になると炭化物の球状化が困難となり、二次焼鈍後も1.5μm以上の炭化物が得られないため、640℃を下限とした。なお、焼鈍時間は均一に球状化するため20hr以上とした。
【0034】
(3)冷間圧延率:50%以上
冷間圧延率が高くなるほどr値の面内異方性が小さくなる集合組織が形成されるが、r値の面内異方性を十分に小さくするためには少なくとも50%以上の冷間圧延率が必要である。なお、上限は特に限定しないが、80%超えるような高い冷延率では、通板性が著しく低下するので、80%以下であることが好ましい。
【0035】
(4)二次焼鈍条件:620〜680℃
冷延板に対しては、再結晶を目的とした二次焼鈍を行なう。二次焼鈍温度が680℃よりも高くなると炭化物が著しく粗大化するとともに、再結晶、粒成長が顕著に生じて、C方向のr値がLおよびS方向のr値より著しく大きくなり、r値の異方性が増大してしまうため、680℃を上限とした。一方、二次焼鈍温度が620℃未満になると炭化物がいずれも微細となり、また、再結晶・粒成長が不十分となり、加工性が低下するため、620℃を下限とした。なお、焼鈍は連続焼鈍および箱焼鈍のいずれでもよい。
【0036】
本発明の第二の高炭素鋼板は、JIS G 4051(機械構造用炭素鋼)、JIS G 4401(炭素工具鋼鋼材)、JIS G 4802(ばね用冷間圧延鋼帯)で規定されるC量が0.2%以上の成分系を有する高炭素鋼板であって、粒径1.5μm以上の炭化物が2500μm中50以上存在し、かつ粒径0.6μm以下の炭化物が80%以上を占め、さらにr値のΔmaxが0.2未満であることを特徴とするものである。
ただし、Δmaxは、圧延方向に対し、0°方向(L方向)、45°方向(S方向)、90°方向(C方向)の最大格差を示す。以下限定理由について説明する。
【0037】
(1)粒径1.5μm以上の炭化物が2500μm中に50以上存在し、かつ粒径0.6μm以下の炭化物が80%以上占める
炭化物粒径および粒度分布についてこのように規定するのは、前記第一の高炭素鋼板と同様に、粒径1.5μm以上の炭化物を2500μm中に50以上存在させることによりオーステナイトを微細化して靭性を向上するとともに、粒径0.6μm以下の炭化物を全炭化物の80%以上とすることにより焼入れ性を向上するためである。
【0038】
(2)r値のΔmaxが0.2未満
このようにr値のΔmaxを0.2未満と極めて小さい値とすることにより、従来から鋳造、鍛造で製造されている高い寸法精度が要求されるギア部品への適用が可能となる。
【0039】
このような第2の高炭素鋼板を製造するに際しては、以下の第1および第2の方法を適用することができる。
【0040】
まず、第1の方法について説明する。
第1の方法においては、上記成分系を有する熱間仕上圧延後の鋼板を520〜600℃の温度で巻取り、次いで巻取り後の鋼板を脱スケールした後、640〜690℃で20hr以上の一次焼鈍を行い、焼鈍した鋼板を50%以上の圧下率で冷間圧延し、その後以下の(1)式を満足し、かつ620〜680℃の温度範囲で二次焼鈍を施す。
1024−0.6×T≦T≦1202−0.80×T …(1)
(ただし、T:一次焼鈍温度(℃)、T:二次焼鈍温度(℃)。以下同じ。)
【0041】
(1)熱延巻取温度:520〜600℃
前記第1の高炭素鋼板の製造方法と同様に、巻取温度が520℃未満になると二次焼鈍後に1.5μm以上の炭化物が得られないため、520℃を下限とした。一方、巻取温度が高くなりすぎると二次焼鈍後に粒径0.6μm以下の炭化物が得られなくなるため。600℃を上限とした。
【0042】
(2)一次焼鈍条件:640〜690℃、20hr以上
前記第1の高炭素鋼板の製造方法と同様に、酸洗等の脱スケール後に炭化物の球状化を目的とした一次焼鈍を行う。一次焼鈍温度が690℃よりも高くなると二次焼鈍後も0.6μm以下の炭化物が得られない。一方、一次焼鈍温度が640℃未満になると、二次焼鈍後も1.5μm以上の炭化物が得られない。このため、一次焼鈍温度を640〜690℃とした。また、焼鈍時間は均一に球状化するために20hr以上とした。
【0043】
(3)冷間圧延率:50%以上
前記第1の高炭素鋼板の製造方法と同様に、r値の面内異方性を十分に小さくするためには少なくとも50%以上の冷間圧延率が必要である。なお、冷間圧延率の上限は特に規定しないが、通板性を良好に保つ観点から80%以下であることが好ましい。
【0044】
(4)二次焼鈍条件:1024−0.6×T≦T≦1202−0.80×Tかつ620℃≦T≦680℃
二次焼鈍条件は、r値の面内異方性を小さくするために一次焼鈍温度に対して適正に制御すべき必須条件である。そこで、面内異方性に及ぼす一次焼鈍条件と二次焼鈍条件の影響について調査した。その調査結果について、以下に説明する。
【0045】
質量%で、C:0.36%、Si:0.20%、Mn:0.75%、P:0.011%、S:0.002%、Al:0.020%の鋼を溶解後、仕上温度:850℃、巻取温度:560℃で熱間圧延し、酸洗後、一次焼鈍を640〜690℃で40hr行い、冷間圧延の圧下率を60%とし、二次焼鈍を610〜690℃で40hr行った鋼板について、引張試験にて面内異方性を調査した。その結果を図3に示す。図3はr値の面内異方性に関する一次焼鈍温度Tと二次焼鈍温度Tの関係示す図である。図3に示すように二次焼鈍温度Tが(1024−0.6×T)以上、(1202−0.80×T)以下の範囲でr値のΔmax(図3中にはΔrmaxと示す)が0.2未満となり、面内異方性が小さくなることが明らかになった。したがって、二次焼鈍温度を1024−0.6×T≦T≦1202−0.80×Tの範囲とする。なお、上記r値のΔmaxは、L、S、C方向のr値の最大格差を示す。
【0046】
また、二次焼鈍温度により炭化物の粒径および粒径分布が変化する。すなわち、二次焼鈍温度が680℃より高くなると炭化物が粗大化してしまい、0.6μm以下の炭化物が得られない。一方、温度が620℃未満になると1.5μm以上の炭化物が得られない。このため、二次焼鈍温度Tを620℃〜680℃の範囲に規定した。なお、焼鈍は連続焼鈍および箱焼鈍のいずれでもよい。
【0047】
次に、第2の方法について説明する。
第2の方法は、上記成分系を有する鋳造スラブを連続鋳造まま、または冷却後所定の温度に加熱した後、粗圧延機によって粗圧延して、粗バーとし、引き続いて、連続熱間仕上げ圧延機によって仕上圧延する際に、仕上げ圧延機の入り側、または仕上げ圧延機のスタンド間で、粗バーまたは圧延材をAr変態点以上の温度で誘導加熱し、熱間仕上圧延後の鋼板を500〜650℃の温度で巻取り、次いで巻取り後の鋼板を脱スケールした後、630〜700℃で20hr以上の一次焼鈍を行い、焼鈍した鋼板を50%以上の圧下率で冷間圧延し、その後以下の(2)式を満足し、かつ620〜680℃の温度範囲で二次焼鈍を施す。
1010−0.59×T≦T≦1210−0.80×T …(2)
以下限定理由について説明する。
【0048】
(1)誘導加熱
誘導加熱処理は、熱間圧延中に鋼板のγ粒径および組織を板厚方向に均一化させることにより、二次焼鈍後のセメンタイトの分散形態のバラツキを板厚方向に小さくし、かつ二次焼鈍後に引張特性に対する面内異方性が小さくなる集合組織を板厚方向に均一に形成させる。具体的には、粗圧延後、熱間仕上げ圧延機によって仕上げ圧延するに際し、仕上圧延前に仕上げ圧延機の入り側で粗バーに対して、あるいは仕上げ圧延中に仕上げ圧延機のスタンド間で圧延材に対して、Ar変態点以上の温度の誘導加熱を少なくとも1回以上行う。加熱温度をAr変態点以上としたのは、γ粒径および組織の均一化のためである。また、加熱時間は少なくとも3秒以上とするのが好ましい。なお、加熱処理は、昇温および降温保持も含む。
【0049】
(2)熱延巻取温度:520〜600℃
第1の方法と同様、巻取温度が520℃未満になると、二次焼鈍後に1.5μm以上の炭化物が得られず、600℃以上になると二次焼鈍後に粒径0.6μm以下の炭化物が得られなくなるため、巻取温度を520〜600℃の範囲とする。
【0050】
(3)一次焼鈍条件:630700℃、20hr以上
脱スケール後の熱延板に対し、炭化物の球状化を目的とした一次焼鈍を行うが、第1の方法と同様、一次焼鈍温度が700℃よりも高くなると二次焼鈍後も0.6μm以下の炭化物が得られず、630℃未満になると二次焼鈍後も1.5μm以上の炭化物が得られないため、一次焼鈍温度を630700℃とし、球状化の促進の観点から焼鈍時間を20hr以上とする。
【0051】
(4)冷間圧延率:50%以上
第1の方法の場合と同様、r値の面内異方性を十分に小さくするために冷間圧延率を50%以上とする。また、第1の方法と同様、通板性を良好に保つ観点から80%以下であることが好ましい。
【0052】
(5)二次焼鈍条件:1010−0.59×T≦T≦1210−0.80×T、かつ620℃≦T≦680℃満足する温度
第1の方法と同様、二次焼鈍条件は、r値の面内異方性を小さくするために一次焼鈍温度に対して適正に制御すべき必須要件である。そこで、面内異方性に及ぼす一次焼鈍条件と二次焼鈍条件の影響について調査した。その調査結果について以下に説明する。
【0053】
質量%で、C:0.36%、Si:0.20%、Mn:0.75%、P:0.011%、S:0.002%、Al:0.020%の鋼を溶解後、スラブを仕上圧延前に、粗バーを誘導加熱により1010℃で15秒の加熱処理を行い、850℃の仕上温度で仕上圧延し、仕上圧延後、560℃の巻取温度で巻取り、酸洗後、一次焼鈍を640〜700℃で40hr行い、冷間圧延の圧下率を60%とし、二次焼鈍を610〜690℃で40hr行った鋼板について、引張試験にて面内異方性をX線回折にて鋼板表面、板厚1/4、板厚1/2の各位置の圧延面に平行な面についての積分反射強度を調査した。表1は、積分反射強度の板厚方向の測定結果を示す。粗バーの誘導加熱を行うことにより、(222)積分反射強度の最大格差が減少しており、組織が板厚方向に均一化して形成されている。図4は本方法に従って粗バーを誘導加熱した場合のr値の面内異方性に関する一次焼鈍温度Tと二次焼鈍温度Tとの関係を示す。上記第1の方法に従って誘導加熱しない場合、図3に示すように、二次焼鈍温度が(1024−0.6×T)以上でかつ(1202−0.80×T)以下の範囲で、r値のΔmaxが0.2未満となるが、粗バーの誘導加熱を行うことにより、二次焼鈍温度Tが(1010−0.59×T)以上でかつ(1210−0.80×T)以下の範囲に広がるとともに、r値のΔmax(図4中にはΔrmaxとして示す。)が0.2未満から0.15未満へ減少し、より広い範囲で面内異方性が一層小さくなることが明らかになった。このため、第2の方法では二次焼鈍温度Tを1010−0.59×T≦T≦1210−0.80×Tと、第1の方法よりも広い範囲に規定している。
【0054】
【表1】

Figure 0004048675
【0055】
また、二次焼鈍温度により炭化物の粒径および粒径分布が変化するのは第1の方法の場合と同様であり、0.6μm以下の炭化物および1.5μm以上の炭化物を析出させるために、二次焼鈍温度Tを620℃〜680℃の範囲に規定した。なお、焼鈍は連続焼鈍および箱焼鈍のいずれでもよい。
【0056】
なお、本発明においては、鋼板を製造する際に、スラブを加熱した後に圧延する方法としては、連続鋳造後短時間の加熱処理を施す方法、またはこの加熱工程を省略して、直ちに圧延する方法のいずれの方法を採用してもよいが、特にスラブを室温まで冷却せずに再加熱する方法は、省エネルギーの観点からより好ましい。また、熱間圧延中において、均熱を目的として、バーヒーター等により加熱しても何ら問題はない。バーヒーターによる加熱は、コイルbox等を用いた連続熱延プロセスに対しても効果的に使用することができる。この際、粗圧延バーの加熱は上記以外に、コイルboxの前後や粗圧延機の間または後に行ってもよい。また、コイルboxの後で溶接機の前後で粗圧延バーの加熱を行っても本発明の効果は十分に発揮される。さらに、このようにして製造された鋼板の表面に対し摺動性向上のため、亜鉛めっき後、りん酸塩処理を施してもよい。亜鉛めっきは、電気亜鉛めっき法、溶融亜鉛めっき法等によって施すことができる。
【0057】
【実施例】
以下、本発明の具体的な実施例について、比較例と比較しつつ説明する。
(実施例1)
この実施例では第1の高炭素鋼板およびその製造方法の例について示す。
JIS G4051のS35C相当の成分系(質量%で、C:0.35%、Si:0.20%、Mn:0.76%、P:0.016%、S:0.003%、Al:0.026%)のスラブを連続鋳造により製造し、このスラブを1100℃に加熱した後、熱間圧延し、冷却した後、表2に示す条件で巻取り、一次焼鈍、冷間圧延、二次焼鈍を順次行い、その後、1.5%の調質圧延を施して、板厚1.0mmの鋼板を作製した。なお、サンプルNo.Hは従来材である。
【0058】
【表2】
Figure 0004048675
【0059】
これらの試料について、以下のようにして炭化物粒径測定および粒度分布測定、引張試験、焼入れ試験、焼入れ後の旧オーステナイト粒径測定を行った。その結果を表3に示す。
【0060】
(a)炭化物粒径測定および粒度分布測定
サンプルの板厚断面を研磨・腐食後、走査型電子顕微鏡にてミクロ組織を撮影し、2500μmの範囲から炭化物の粒径および粒度分布の測定を行った。
【0061】
(b)引張強度
圧延方向に対し0°方向(L方向)、45°方向(S方向)、90°方向(C方向)に沿ってJIS5号試験片を採取し、引張速度10mm/minで引張試験を行い、各方向の引張特性を測定し、面内異方性について評価した。なお、表3中の降伏強度、引張強度および全伸びの各欄に記載したΔmaxとは、それぞれの引張特性値のL、S、C方向における最大格差を示している。また、表3中のr値の欄に記載したΔrとは、Δr=(r0+r90−2×r45)/4により規定される値である。ここで、前記r0、r45、r90は、それぞれ圧延方向に対し、0°方向(L方向)、45°方向(S方向)、90°方向(C方向)におけるr値を示す。
【0062】
(c)焼入れ試験
上記鋼板を50×100mmの大きさに切断後、加熱炉で820℃に昇温し、10秒保持後に約20℃の油中へ焼入れした。焼入れ後の試験片の表面における硬さをロックウェルCスケール(HRC)で10点測定し、焼入れ性を評価した。評価は平均硬さで行った。硬さ(HRC)50以上を合格とした。
【0063】
(d)旧オーステナイト粒径の測定
上記焼入れ後のサンプルの板厚断面を研磨・腐食後、光学顕微鏡にてミクロ組織を撮影し、JISG0551に従い、旧オーステナイト粒度番号を測定した。
【0064】
【表3】
Figure 0004048675
【0065】
表3に示すように本発明例であるNo.A〜No.Cは、炭化物の粒径および粒度分布が適正であるため、焼入れ後の硬さおよび旧オーステナイト粒径の値が良好であり、焼入れ性および靱性に優れていることが確認された。また、これらは降伏強度および引張強度のΔmaxが10MPa以下、伸びのΔmaxが1.5%以下、r値のΔrが−0.15超〜0.15未満であり、面内での引張特性の異方性が極めて小さいことが確認された。
【0066】
一方、比較例では、引張特性のいずれかについてのΔmax、あるいはΔrが大きく、面内での引張特性の異方性に劣っているかことが確認された。例えば、巻取温度が低い場合(No.D)には、伸びのΔmaxが1.7、r値のΔrが0.16とそれぞれ大きくなっており、また、1.5μm以上の炭化物が少ないために旧オーステナイト粒径が粗大化し、靭性が損なわれる。また、一次焼鈍温度が高い場合(No.E)には、r値のΔrが0.18と大きく、また、粗大炭化物が増加するため微細炭化物が減少し、焼き入れ性が著しく低下した。さらに、冷間圧延圧下率が40%と低い場合(No.F)には、降伏強度のΔmaxが11、引張強度のΔmaxが14、伸びのΔmaxが1.7、r値のΔrが0.20とそれぞれ大きく、二次焼鈍温度が高い場合(No.G)には、粗大炭化物が増大し、焼き入れ後の硬さが大幅に低下するとともに、r値のΔrが0.23となり、面内異方性が大きかった。また、従来材のNo.Hは、降伏強度のΔmaxが17、引張強度のΔmaxが15、伸びのΔmaxが1.9、r値のΔrが0.16とそれぞれ高く、面内異方性が大きかった。
(実施例2)
この実施例では第2の高炭素鋼板の第1の製造方法の例について示す。
JIS G4051のS35C相当の成分系(質量で、C:0.36%、Si:0.20%、Mn:0.75%、P:0.011%、S:0.002%、Al:0.020%)のスラブを連続鋳造により製造し、このスラブを1100℃に加熱した後、表4に示す条件で熱間圧延、一次焼鈍、冷間圧延、二次焼鈍を順次行い、その後、1.5%の調質圧延を施して、板厚2.5mmの19種類の鋼板を作製した。
【0067】
【表4】
Figure 0004048675
【0068】
これらの試料について、実施例1と同様にして炭化物粒径測定および粒度分布測定、引張試験、焼入れ試験、焼入れ後の旧オーステナイト粒径測定を行った。その結果を表5に示す。なお、サンプルNo.19は、従来材である。
【0069】
【表5】
Figure 0004048675
【0070】
表5に示すように本発明例であるNo.1〜No.7は、炭化物の粒径および粒度分布が適正であるため、焼入れ後の硬さおよび旧オーステナイト粒径の値が良好であり、焼入れ性および靱性に優れていることが確認された。また、これらは降伏強度および引張強度のΔmaxが10MPa以下、伸びのΔmaxが1.5%以下、r値のΔmaxが0.2未満であり、引張特性の異方性が極めて小さいことが確認された。
【0071】
一方、比較例では、引張特性のいずれかについてΔmaxが大きく面内異方性に劣っているか、焼入れ性または靱性に劣っていることが確認された。例えば、一次焼鈍温度が高い場合(No.11)には、r値のΔmaxが0.30となり、冷延率が30%と低い場合(No.13)には、降伏強度、引張強度およびr値のΔmaxがそれぞれ18、13および0.38と大きくなり、いずれも面内異方性が大きかった。また、サンプルNo.16は二次焼鈍温度が高すぎるため、炭化物溶解が十分になされず焼入れ後の硬さが43と低く、サンプルNo.17は二次焼鈍温度が低すぎるため粒径0.6μm以下の炭化物が多くなりすぎてしまい、旧オーステナイト粒径が粗大化しており靭性が損なわれる。また、比較のために示した従来材(No.19)では、r値のΔmaxが0.42と高く、面内異方性が大きかった。
【0072】
(実施例3)
この実施例も第2の高炭素鋼板の第1の製造方法の例について示す。
JIS G4802のS65C−CSP相当の成分系(質量で、C:0.65%、Si:0.19%、Mn:0.73%、P:0.011%、S:0.002%、Al:0.020%)のスラブを連続鋳造により製造し、このスラブを1100℃に加熱した後、表6に示す条件で熱間圧延、一次焼鈍、冷間圧延、二次焼鈍を順次行い、その後1.5%の調質圧延を施して、板厚2.5mmの19種類の鋼板を作製した。
【0073】
【表6】
Figure 0004048675
【0074】
これらの試料について、実施例1と同様にして、炭化物粒径測定ならびに粒度分布測定、引張試験、焼入れ試験、焼入れ後の旧オーステナイト粒径測定を行った。その結果を表7に示す。なお、サンプルNo.38は、従来材である。
【0075】
【表7】
Figure 0004048675
【0076】
表7に示すように本発明例であるNo.20〜No.26は、炭化物の粒径および粒径分布が適正であるため、焼入れ後の硬さおよび旧オーステナイト粒径の値が良好であり、焼入れ性および靱性に優れていることが確認された。また、これらは降伏強度および引張強度のΔmaxが15MPa以下、伸びのΔmaxが1.5%以下、r値のΔmaxが0.2未満であり、面内での引張特性の異方性が極めて小さいことが確認された。
【0077】
一方、比較例では、引張特性のいずれかについてΔmaxが大きく面内異方性に劣っているか、焼入れ性または靱性に劣っていることが確認された。例えば、一次焼鈍温度が高い場合(No.30)には、r値のΔmaxが0.26となり、冷延率が30%と低い場合(No.32)には、降伏強度、引張強度およびr値のΔmaxがそれぞれ20、17および0.39と大きくなり、いずれも面内異方性が大きかった。また、サンプルNo.35は二次焼鈍温度が高すぎるため、炭化物溶解が十分になされず焼入れ後の硬さが51と低く、サンプルNo.36は二次焼鈍温度が低すぎるため粒径0.6μm以下の炭化物が多くなりすぎてしまい、旧オーステナイト粒径が粗大化しており靭性が損なわれる。また、比較のために示した従来材のNo.38も、r値のΔmaxが0.46と高く、面内異方性が大きかった。
【0078】
(実施例4)
この実施例では第2の高炭素鋼板の第2の製造方法の例について示す。
JIS G4051のS35C相当の成分系(質量で、C:0.36%、Si:0.20%、Mn:0.75%、P:0.011%、S:0.002%、Al:0.020%)のスラブを連続鋳造により製造し、このスラブを1100℃に加熱した後、表8に示す条件で熱間圧延、一次焼鈍、冷間圧延、二次焼鈍を順次行い、その後、1.5%の調質圧延を施して、板厚2.5mmの26種類の鋼板を作製した。
【0079】
【表8】
Figure 0004048675
【0080】
これらの試料について、実施例1と同様に、炭化物粒径測定および粒度分布測定、引張試験、焼入れ試験、焼入れ後の旧オーステナイト粒径測定を行った。その結果を表9に示す。なお、サンプルNo.64は、従来材である。
【0081】
【表9】
Figure 0004048675
【0082】
表9に示すように本発明例であるNo.39〜No.52は、炭化物の粒径および粒径分布が適正であるため、焼入れ後の硬さおよび旧オーステナイト粒径の値が良好であり、焼入れ性および靱性に優れていることが確認された。また、これらは降伏強度および引張強度のΔmaxが10MPa以下、伸びのΔmaxが1.5%以下、r値のΔmaxが0.2未満であり、面内での引張特性の異方性が極めて小さいことが確認された。さらに、粗圧延前に誘導加熱を施す方法は、引張特性の異方性の低減だけでなく板厚方向の組織の均一性の向上の観点からより好ましいことが確認された。
【0083】
一方、比較例では、引張特性のいずれかについてΔmaxが大きく面内異方性に劣っているか、焼入れ性または靱性に劣っていることが確認された。例えば、一次焼鈍温度が高い場合(No.56)には、r値のΔmaxが0.30となり、冷延率が30%と低い場合(No.58)には、降伏強度、引張強度およびr値のΔmaxがそれぞれ18、13および0.38と大きくなり、面内異方性が大きいことが確認された。また、サンプルNo.61は二次焼鈍温度が高すぎるため、炭化物溶解が十分になされず焼入れ後の硬さが44と低く、サンプルNo.62は二次焼鈍温度が低すぎるため粒径0.6μm以下の炭化物が多くなりすぎてしまい、旧オーステナイト粒径が粗大化しており靭性が損なわれる。また、比較のために示した従来材のNo.64では、r値のΔmaxが0.42と高く、面内異方性が大きいことが確認された。
【0084】
(実施例4)
この実施例も第2の高炭素鋼板の第2の製造方法の例について示す。
JIS G4802のS65C−CSP相当の成分系(質量で、C:0.65%、Si:0.19%、Mn:0.73%、P:0.011%、S:0.002%、Al:0.020%)のスラブを連続鋳造により製造し、このスラブを1100℃に加熱した後、表10に示す条件で熱間圧延、一次焼鈍、冷間圧延、二次焼鈍を順次行い、その後1.5%の調質圧延を施して、板厚2.5mmの26種類の鋼板を作製した。
【0085】
【表10】
Figure 0004048675
【0086】
これらの試料について、実施例1と同様に、炭化物粒径測定ならびに粒度分布測定、引張試験、焼入れ試験、焼入れ後の旧オーステナイト粒径測定を行った。その結果を表11に示す。なお、サンプルNo.90は、従来材である。
【0087】
【表11】
Figure 0004048675
【0088】
表11に示すように本発明例であるNo.65〜No.78は、炭化物の粒径および粒径分布が適正であるため、焼入れ後の硬さおよび旧オーステナイト粒径の値が良好であり、焼入れ性および靱性に優れていることが確認された。また、これらは降伏強度および引張強度のΔmaxが15MPa以下、伸びのΔmaxが1.5%以下、r値のΔmaxが0.2未満であり、面内での引張特性の異方性が極めて小さいことが確認された。さらに粗圧延前に誘導加熱を施す方法は、引張特性の異方性の低減だけでなく、板厚方向の組織の均一性の向上の観点からより好ましいことが確認された。
【0089】
一方、比較例では、引張特性のいずれかについてΔmaxが大きく面内異方性に劣っているか、焼入れ性または靱性に劣っていることが確認された。例えば、一次焼鈍温度が高い場合(No.82)には、r値のΔmaxが0.27となり、冷延率が30%と低い場合(No.84)には、降伏強度、引張強度およびr値のΔmaxがそれぞれ20、17および0.39と大きくなり、面内異方性が大きいことが確認された。また、サンプルNo.87は二次焼鈍温度が高すぎるため、炭化物溶解が十分になされず焼入れ後の硬さが52と低く、サンプルNo.88は二次焼鈍温度が低すぎるため粒径0.6μm以下の炭化物が多くなりすぎてしまい、旧オーステナイト粒径が粗大化しており靭性が損なわれる。また、比較のために示した従来材のNo.90では、r値のΔmaxが0.46と高く、面内異方性が大きいことが確認された。
【0090】
【発明の効果】
以上説明したように、本発明によれば、焼入れ性および靭性に優れ、かつ成形性に大きな影響を及ぼす引張特性に対する面内異方性の小さい高炭素鋼板を得ることができる。したがって、本発明によって得られた高炭素鋼板は、高い寸法精度が要求されるギア部品等に供することができる。また、本発明を適用することにより、ギア部品等を製造するに際して、鋼板の一体成形および焼入れ焼戻し処理により製造することができ、従来の鋳造鍛造プロセスに比べて、安価に製造することが可能となる。
【図面の簡単な説明】
【図1】S35C鋼板に820℃×10s保持後油焼入れを施した場合の硬さに及ぼす焼入れ前の炭化物粒径の影響を説明する図。
【図2】S35C鋼板に820℃×10s保持後油焼入れを施した場合の旧オーステナイト粒径に及ぼす焼入れ前の粒径1.5μm以上の炭化物数の影響を説明する図。
【図3】第2の高炭素鋼板を製造する第1の方法において、r値の面内異方性および炭化物の分散形態に及ぼす、一次焼鈍温度および二次焼鈍温度の影響を示す図。
【図4】第2の高炭素鋼板を製造する第2の方法において、r値の面内異方性および炭化物の分散形態に及ぼす、一次焼鈍温度および二次焼鈍温度の影響を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention is excellent in hardenability and toughness and has different in-plane tensile properties, for example, which is disk processing or cylindrical molding, and requires high dimensional accuracy, and is suitable for parts that are subsequently subjected to heat treatment such as quenching and tempering. The present invention relates to a high-carbon steel sheet for processing with a low degree of directivity and a method for producing the same.
[0002]
[Prior art]
Conventionally, high carbon steel sheets have been used for machine structural parts such as washers and chain parts. Such a high carbon steel sheet is required to have high hardenability, and recently, not only improvement of hardness after quenching but also quenching in a short time at low temperature is desired from the viewpoint of cost reduction of quenching work. Yes. In recent years, safety standards have been reviewed, and it is also important that parts after quenching have high toughness.
[0003]
On the other hand, high-carbon cold-rolled steel sheets are generally harder than low-carbon steels, so they are not only inferior in formability but also in-plane anisotropy of mechanical properties due to hot rolling, annealing, and cold rolling. Therefore, it has been difficult to apply to gear parts that are conventionally manufactured by casting and forging and requiring high dimensional accuracy.
[0004]
Therefore, it was a big subject to improve hardenability and toughness, and to reduce the in-plane anisotropy of mechanical properties with respect to moldability.
[0005]
Thus, the following techniques have been proposed so far in order to improve the hardenability and toughness of high carbon steel sheets or to reduce the in-plane anisotropy of mechanical properties.
[0006]
(1) Japanese Patent Application Laid-Open No. 5-9588 (hereinafter referred to as Prior Art 1)
In this publication, the steel strip after hot rolling is cooled to a temperature range of 20 to 500 ° C. at a cooling rate of 10 ° C./sec or more to form fine pearlite, and then reheated and wound up to spheroidize the carbide. Techniques that promote and enhance the hardenability of high carbon steel sheets are described.
[0007]
(2) Japanese Patent Laid-Open No. 5-98388 (hereinafter referred to as Conventional Technology 2)
In this publication, Nb and Ti are added to a high carbon steel sheet containing C: 0.30 to 0.70%, carbonitrides are formed to suppress austenite grain growth, and toughness of the high carbon steel sheet. Techniques for improving the performance are described.
[0008]
(3) Materials and Processes, Vol. 1 (1988), p. 1729 (hereinafter referred to as Conventional Technology 3)
In general, a steel sheet (S65C) containing a high concentration of 0.65% carbon and having a ferrite / cementite structure has a lower formability than a low-carbon steel sheet. In this document, after hot rolling, cold rolling (cold rolling rate 50%) and batch annealing at 650 ° C. for 24 hours are performed, and further, secondary cold rolling (cold rolling rate 65%) and 680 ° C. for 24 hours. It describes that a high carbon cold-rolled steel sheet excellent in workability is manufactured by performing batch annealing. For the purpose of graphitizing cementite, the chemical components in S65C are adjusted, and after hot rolling, cold rolling (cold rolling rate 50%) and batch annealing at 650 ° C. for 24 hours are performed, and further secondary Cold rolling (cold rolling ratio 65%) and secondary batch annealing at 680 ° C. for 24 hours reduces tensile strength, improves r-value and elongation, and lowers the in-plane anisotropy of r-value. A method for producing a high-carbon cold-rolled steel sheet that is equivalent to a carbon steel sheet is also disclosed.
[0009]
(4) Japanese Patent Application Laid-Open No. 10-152757 (hereinafter referred to as Prior Art 4)
In this publication, the cause of the anisotropy of the mechanical properties of the high carbon steel sheet is the presence of sulfide-based non-metallic inclusions elongated in the rolling direction, and C, Si, Mn, P, Cr, Ni , Mo, V, Ti, Al are regulated, S content is reduced to 0.002% or less by weight, the average length of inclusions in the rolling direction is 6 μm or less, and the length in the rolling direction is 4 μm or less. By setting the number of inclusions to 80% or more of the total number of inclusions, the ratio of the mechanical properties in the rolling direction to the mechanical properties in the direction perpendicular to the rolling direction with respect to the impact value and total elongation is 0.9 to 1. It describes that a high carbon steel sheet having a small in-plane anisotropy so as to be in a range of 0.0 is manufactured.
[0010]
(5) Japanese Patent Laid-Open No. 6-271935 (hereinafter referred to as Prior Art 5)
In this publication, when hot rolling a high carbon steel sheet that specifies C, Si, Mn, Cr, Mo, Ni, B, and Al, the hot finishing temperature is set to Ar.3The temperature from the end of hot rolling to the winding is cooled at 30 ° C / sec or more, wound in the temperature range of 550 to 700 ° C, descaled, and then annealed at a temperature of 600 to 680 ° C. Cold rolling at a rolling reduction of 40% or more, further annealing at a temperature of 600 to 680 ° C., and then adjusting the pressure to obtain a high carbon cold-rolled steel sheet having a small dimensional change anisotropy during heat treatment such as quenching and tempering. Manufacturing is described.
[0011]
[Problems to be solved by the invention]
However, the above-described prior art has the following problems.
In prior art 1, since it winds and cools as it is, even if it reheats, the retention time for spheroidizing of a carbide | carbonized_material is very short compared with the normal spheroidizing annealing time, and the spheroidization rate of a carbide | carbonized_material is still low. Due to the level, sufficient hardenability may not be obtained. Moreover, the reheating after the rapid cooling requires an electric heating equipment, and the manufacturing cost becomes enormous.
[0012]
In prior art 2, since expensive Nb and Ti are added in order to suppress austenite grain growth, cost increases.
[0013]
In prior art 3, for S65C having a ferrite / cementite structure, the average r value is as high as about 1.3, but the 0 ° direction (L direction), 45 ° direction (S direction), 90 ° with respect to the rolling direction. An in-plane anisotropy index Δr having an r value defined by Δr = (r0 + r90−2 × r45) / 4 from r0, r45, and r90, which are r values in each direction of the ° direction (C direction), is −0. .47, and Δ which is the maximum difference between the r values.maxIs 1.17, and the in-plane anisotropy of the r value is very large. Moreover, since the cold rolling-annealing process is performed twice, there is a problem that the manufacturing cost increases. On the other hand, for the graphitized high carbon steel sheet, the r value is further improved, and Δr is 0.34, ΔmaxHowever, the in-plane anisotropy of the r value is still large. Moreover, since graphite has a slow dissolution rate in austenite, the hardenability is significantly reduced.
[0014]
In the prior art 4, only the in-plane anisotropy with respect to only the impact value and the total elongation is taken into consideration. Not considered.
[0015]
Prior art 5 describes a method for producing a high-carbon steel sheet having a small dimensional change during heat treatment such as quenching and tempering, but no in-plane anisotropy with respect to formability has been studied.
[0016]
The present invention is made in view of such circumstances, and provides a high-carbon steel sheet having excellent hardenability and toughness and small in-plane anisotropy with respect to tensile properties that have a large effect on formability, and a method for producing the same. For the purpose.
[0017]
[Means for Solving the Problems]
The inventors of the present invention have a C amount of 0.2% defined by JIS G 4051 (carbon steel for machine structure), JIS G 4401 (carbon tool steel), and JIS G 4802 (cold rolled steel strip for springs). As a result of repeated investigations on the conditions for improving the in-plane anisotropy of the hardenability and toughness and tensile properties of the high carbon cold rolled steel sheet having the above component system, the coiling temperature after the hot finish rolling, the primary Appropriate control of annealing temperature, cold rolling rate, and secondary annealing temperature, or rough bar or rolled material after Ar hot rolling3After induction heating at a temperature above the transformation point to improve the uniformity of the structure in the thickness direction, the coiling temperature, primary annealing temperature, cold rolling rate and secondary annealing temperature after hot rolling are controlled appropriately. And it has been found that it is effective to appropriately adjust the state of carbides in the steel sheet. In addition, as a result, Δr is more than −0.15 and less than 0.15, and further, the r value ΔmaxHas been confirmed to be a very small value of less than 0.2.
[0018]
The present invention has been made on the basis of the above knowledge, and the first invention is JIS G 4051 (carbon steel for machine structure), JIS G 4401 (carbon tool steel), JIS G 4802 (cold rolled steel for springs). A high-carbon steel sheet having a component system defined by
Carbide with a particle size of 1.5 μm or more is 2500 μm2It is characterized in that 50 or more of the carbides having a particle size of 0.6 μm or less occupy 80% or more, and that the in-plane anisotropy index Δr of the r value is more than −0.15 and less than 0.15. The present invention provides a high carbon steel sheet for processing that has excellent hardenability and toughness and small in-plane anisotropy.
However, (DELTA) r shows the value prescribed | regulated by (DELTA) r = (r0 + r90-2 * r45) / 4. Here, r0, r45, and r90 indicate r values in the 0 ° direction (L direction), 45 ° direction (S direction), and 90 ° direction (C direction), respectively, with respect to the rolling direction.
[0019]
  The second invention isA method for producing a high-carbon steel sheet for processing that has excellent hardenability and toughness according to the first invention and has small in-plane anisotropy,
  A steel plate after hot finish rolling having a component system defined by JIS G 4051 (carbon steel for machine structure), JIS G 4401 (carbon tool steel), and JIS G 4802 (cold rolled steel strip for spring) is 520. Winding at a temperature of ~ 600 ° C,
  Next, after descaling the steel sheet after winding, 640-690 ° C (Except 690 ° C)In the primary annealing for 20 hours or more,
  Cold-roll the annealed steel sheet at a reduction rate of 50% or more,
  Then, the manufacturing method of the high carbon steel plate for a process with small in-plane anisotropy excellent in hardenability and toughness characterized by performing secondary annealing in the temperature range of 620-680 degreeC is provided.
[0020]
The third invention is a high carbon steel plate having a component system defined by JIS G 4051 (carbon steel for machine structure), JIS G 4401 (carbon tool steel), JIS G 4802 (cold rolled steel strip for spring). There,
Carbide with a particle size of 1.5 μm or more is 2500 μm2Among them, carbides having a particle size of 0.6 μm or less occupy 80% or more, and an r value ΔmaxThe present invention provides a high-carbon steel sheet for processing having low in-plane anisotropy and excellent hardenability and toughness.
However, ΔmaxIndicates the maximum difference in values in the 0 ° direction (L direction), 45 ° direction (S direction), and 90 ° direction (C direction) with respect to the rolling direction.
[0021]
  The fourth invention isA method for producing a high-carbon steel sheet for processing that has excellent hardenability and toughness according to the third invention and has small in-plane anisotropy,
  A steel plate after hot finish rolling having a component system defined by JIS G 4051 (carbon steel for machine structure), JIS G 4401 (carbon tool steel), and JIS G 4802 (cold rolled steel strip for spring) is 520. Winding at a temperature of ~ 600 ° C,
  Next, after descaling the steel sheet after winding, 640-690 ° C (Except 690 ° C)In the primary annealing for 20 hours or more,
  Cold-roll the annealed steel sheet at a reduction rate of 50% or more,
  Thereafter, the high carbon steel sheet for processing having low in-plane anisotropy and excellent hardenability and toughness, characterized by satisfying the following formula (1) and performing secondary annealing in a temperature range of 620 to 680 ° C. A manufacturing method is provided.
  1024-0.6 × T1≦ T2≦ 1202-0.80 × T1      ... (1)
  T1: Primary annealing temperature (° C), T2: Secondary annealing temperature (℃)
[0022]
  The fifth inventionA method for producing a high-carbon steel sheet for processing that has excellent hardenability and toughness according to the third invention and has small in-plane anisotropy,
  A cast slab having a component system defined by JIS G 4051 (carbon steel for machine structure), JIS G 4401 (carbon tool steel), and JIS G 4802 (cold rolled steel strip for spring) is continuously cast or cooled. After heating to a predetermined temperature after, rough rolling with a roughing mill to form a rough bar,
  Subsequently, when finishing and rolling by a continuous hot finish rolling mill, Ar or coarse material is removed between the entrance side of the finishing mill or between the stands of the finishing mill.3Induction heating at a temperature above the transformation point,
  The steel plate after hot finish rolling is wound at a temperature of 500 to 650 ° C.,
  Next, after descaling the steel sheet after winding, primary annealing is performed at 630 to 700 ° C. for 20 hours or more,
  Cold-roll the annealed steel sheet at a reduction rate of 50% or more,
  Then, the following high-carbon steel sheet for processing with low in-plane anisotropy excellent in hardenability and toughness, characterized by satisfying the following formula (2) and performing secondary annealing in a temperature range of 620 to 680 ° C. A manufacturing method is provided.
  1010-0.59 × T1≦ T2≦ 1210−0.80 × T1      ... (2)
  T1: Primary annealing temperature (° C), T2: Secondary annealing temperature (℃)
[0023]
The in-plane anisotropy indicates the maximum difference in tensile properties in the 0 ° direction (L direction), 45 ° direction (S direction), and 90 ° direction (C direction) with respect to the rolling direction.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
The first high carbon steel sheet of the present invention has a C content defined by JIS G 4051 (carbon steel for machine structure), JIS G 4401 (carbon tool steel), and JIS G 4802 (cold rolled steel strip for spring). Is a high carbon steel plate having a component system of 0.2% or more, and carbides having a particle size of 1.5 μm or more are 2500 μm.2It is characterized in that 50 or more of the carbides having a particle size of 0.6 μm or less occupy 80% or more, and that the in-plane anisotropy index Δr of the r value is more than −0.15 and less than 0.15. To do.
However, (DELTA) r shows the value prescribed | regulated by (DELTA) r = (r0 + r90-2 * r45) / 4. Here, r0, r45, and r90 indicate r values in the 0 ° direction (L direction), 45 ° direction (S direction), and 90 ° direction (C direction), respectively, with respect to the rolling direction.
The reason for limitation is explained below
[0025]
(1) Carbide with a particle size of 1.5 μm or more is 2500 μm280% or more of carbides having a particle size of 0.6 μm or less are present in 50 or more
The carbide particle size and particle size distribution have a great influence on the hardenability and toughness in low temperature and short time heating. Therefore, first, the influence of the carbide particle size on the hardenability of the carbide was investigated.
[0026]
After melting steel of C: 0.36%, Si: 0.20%, Mn: 0.75%, P: 0.011%, S: 0.002%, Al: 0.020% by weight% , Finishing temperature: 850 ° C., coiling temperature: 560 ° C., hot pickling, and after pickling, primary annealing is performed at 640-690 ° C. for 40 hours, cold rolling reduction is 60%, and secondary annealing is 610 40 hours at ~ 690 ° C. The obtained steel sheet was cut to a size of 50 × 100 mm, heated to 820 ° C. in a heating furnace, held for 10 seconds, and then quenched into oil at about 20 ° C. The hardenability was evaluated by measuring the hardness of the test piece after quenching at 10 points on the Rockwell C scale (HRc). Evaluation made the average hardness (HRc) 50 or more pass.
[0027]
1 shows 2500 μm2The relationship between the particle size and hardness at which the cumulative number of carbides from the minimum particle size becomes 80% for the carbides within the range is shown. When the particle size is 0.6 μm or less, a hardness (HRc) of 50 or more is secured. That is, when the carbide having a particle size of 0.6 μm or less occupies 80% or more of the total carbide, the carbide quickly dissolves in austenite during heating and holding, and the hardenability is improved. However, if the total carbide is as fine as 0.6 μm or less, all the carbide dissolves during heating for a short time, and the austenite grains become extremely coarse.
[0028]
2 shows 2500 μm2The relationship between the number of carbides having a particle size of 1.5 μm or more and the prior austenite particle size is shown. As the number of carbides decreases, the prior austenite grain size becomes coarser. In particular, when the number of carbides is less than 50, it rapidly becomes coarse. The prior austenite grain size greatly affects the toughness of steel, and the finer the toughness, the higher the toughness. That is, regarding toughness, it is necessary to moderately disperse carbides having a particle size of 1.5 μm or more, but at least 2500 μm.2If it is not 50 or more, the effect of refining austenite cannot be obtained.
[0029]
The method for measuring the particle size and particle size distribution of the carbide is not particularly limited, but after polishing and corroding the plate thickness section of the sample, take a scanning electron micrograph of 1500 to 5000 times, It is preferable to measure the carbide particle size and particle size distribution from the photograph. When actually measuring the carbide particle size in the sample, the average particle size taken in the photograph is taken as the average particle size. The particle size distribution is measured at least 2500 μm.2Otherwise, the number of measured carbides is small and an appropriate particle size distribution cannot be obtained. On the other hand, as for the upper limit of the measurement region, it is sufficient if the particle size distribution of the present invention is satisfied by measuring about 60% of the plate thickness cross section. Moreover, it is good to use picral corrosion liquid as corrosive liquid.
[0030]
(2) In-plane anisotropy index Δr of r value is more than −0.15 and less than 0.15
In this way, by setting the r value Δr to a value as extremely small as more than −0.15 to less than 0.15, gear parts that have been conventionally produced by casting and forging and that require high dimensional accuracy. Can be applied.
[0031]
In producing such a first high carbon steel sheet, after hot-rolling the steel sheet having the above component system at a temperature of 520 to 600 ° C., and then descaling the steel sheet after winding, Primary annealing is performed at 640 to 690 ° C. for 20 hours or more, and the annealed steel sheet is cold-rolled at a reduction rate of 50% or more, and then subjected to secondary annealing in a temperature range of 620 to 680 ° C. The reason for limitation will be described below.
[0032]
(1) Hot coiling temperature: 520-600 ° C
When the coiling temperature is less than 520 ° C., the pearlite structure becomes extremely fine, so that the carbide becomes extremely fine by the primary annealing, and carbides of 1.5 μm or more cannot be obtained after the secondary annealing. On the other hand, if the temperature becomes too high, coarse pearlite is generated, and carbides having a particle size of 0.6 μm or less cannot be obtained after secondary annealing, so the upper limit was set to 600 ° C.
[0033]
(2) Primary annealing conditions: 640-690 ° C., 20 hours or more
The hot-rolled sheet after winding is subjected to primary annealing for the purpose of spheroidizing the carbide after descaling such as pickling. When the primary annealing temperature is higher than 690 ° C., the spheroidization of the carbide proceeds too much, and a carbide of 0.6 μm or less cannot be obtained even after the secondary annealing. Therefore, 690 ° C. was set as the upper limit. On the other hand, when the temperature is less than 640 ° C., spheroidization of the carbide becomes difficult and a carbide of 1.5 μm or more cannot be obtained even after the secondary annealing. The annealing time was set to 20 hours or more in order to uniformly spheroidize.
[0034]
(3) Cold rolling rate: 50% or more
A texture is formed in which the in-plane anisotropy of the r value decreases as the cold rolling rate increases. However, in order to sufficiently reduce the in-plane anisotropy of the r value, at least 50% or more of cold rolling is performed. A rate is needed. In addition, although an upper limit is not specifically limited, Since a plate | board property will fall remarkably in the high cold rolling rate which exceeds 80%, it is preferable that it is 80% or less.
[0035]
(4) Secondary annealing conditions: 620-680 ° C
The cold-rolled sheet is subjected to secondary annealing for the purpose of recrystallization. When the secondary annealing temperature is higher than 680 ° C., the carbides are remarkably coarsened, and recrystallization and grain growth remarkably occur. The r value in the C direction becomes significantly larger than the r values in the L and S directions. The anisotropy of 680 ° C. was set as the upper limit. On the other hand, when the secondary annealing temperature is less than 620 ° C., all the carbides become fine, and recrystallization and grain growth become insufficient, and workability deteriorates. Therefore, 620 ° C. is set as the lower limit. The annealing may be either continuous annealing or box annealing.
[0036]
The second high-carbon steel sheet of the present invention has a C content defined by JIS G 4051 (carbon steel for machine structure), JIS G 4401 (carbon tool steel), and JIS G 4802 (cold rolled steel strip for springs). Is a high carbon steel plate having a component system of 0.2% or more, and carbides having a particle size of 1.5 μm or more are 2500 μm.2Among them, carbides having a particle size of 0.6 μm or less occupy 80% or more, and an r value ΔmaxIs less than 0.2.
However, ΔmaxIndicates the maximum disparity in the 0 ° direction (L direction), 45 ° direction (S direction), and 90 ° direction (C direction) with respect to the rolling direction. The reason for limitation will be described below.
[0037]
(1) Carbide with a particle size of 1.5 μm or more is 2500 μm280% or more of carbides having a particle size of 0.6 μm or less are present in 50 or more
The carbide particle size and the particle size distribution are defined in this way as in the case of the first high-carbon steel plate, a carbide having a particle size of 1.5 μm or more is 2500 μm.2This is because the austenite is refined by improving the toughness by making 50 or more present therein, and the hardenability is improved by making the carbide having a particle size of 0.6 μm or less 80% or more of the total carbide.
[0038]
(2) r value ΔmaxIs less than 0.2
In this way, the r value ΔmaxBy setting the value to a very small value of less than 0.2, it is possible to apply to gear parts that are conventionally manufactured by casting and forging and requiring high dimensional accuracy.
[0039]
In manufacturing such a second high carbon steel sheet, the following first and second methods can be applied.
[0040]
First, the first method will be described.
In the first method, the hot-rolled steel sheet having the above component system is wound at a temperature of 520 to 600 ° C., and then the steel sheet after winding is descaled and then at 640 to 690 ° C. for 20 hours or more. Primary annealing is performed, and the annealed steel sheet is cold-rolled at a reduction rate of 50% or more, and then the following equation (1) is satisfied and secondary annealing is performed in a temperature range of 620 to 680 ° C.
1024-0.6 × T1≦ T2≦ 1202-0.80 × T1      ... (1)
(However, T1: Primary annealing temperature (° C), T2: Secondary annealing temperature (° C). same as below. )
[0041]
(1) Hot coiling temperature: 520-600 ° C
Similarly to the method for producing the first high carbon steel sheet, when the coiling temperature is less than 520 ° C., carbide of 1.5 μm or more cannot be obtained after the secondary annealing, so 520 ° C. is set as the lower limit. On the other hand, if the coiling temperature becomes too high, carbides having a particle size of 0.6 μm or less cannot be obtained after secondary annealing. The upper limit was 600 ° C.
[0042]
(2) Primary annealing conditions: 640-690 ° C., 20 hours or more
Similar to the manufacturing method of the first high-carbon steel sheet, primary annealing for the purpose of spheroidizing the carbide is performed after descaling such as pickling. If the primary annealing temperature is higher than 690 ° C., a carbide of 0.6 μm or less cannot be obtained even after the secondary annealing. On the other hand, when the primary annealing temperature is less than 640 ° C., carbides of 1.5 μm or more cannot be obtained even after the secondary annealing. For this reason, the primary annealing temperature was set to 640-690 ° C. Also, the annealing time was set to 20 hours or more in order to uniformly spheroidize.
[0043]
(3) Cold rolling rate: 50% or more
Similar to the method for producing the first high carbon steel sheet, a cold rolling rate of at least 50% or more is required in order to sufficiently reduce the in-plane anisotropy of the r value. In addition, although the upper limit of a cold rolling rate is not prescribed | regulated in particular, it is preferable that it is 80% or less from a viewpoint of keeping plate | board property favorable.
[0044]
(4) Secondary annealing conditions: 1024-0.6 × T1≦ T2≦ 1202-0.80 × T1And 620 ° C. ≦ T2≦ 680 ℃
The secondary annealing condition is an essential condition that should be appropriately controlled with respect to the primary annealing temperature in order to reduce the in-plane anisotropy of the r value. Therefore, the effects of primary annealing conditions and secondary annealing conditions on in-plane anisotropy were investigated. The survey results will be described below.
[0045]
After melting steel of C: 0.36%, Si: 0.20%, Mn: 0.75%, P: 0.011%, S: 0.002%, Al: 0.020% by mass% , Finishing temperature: 850 ° C., coiling temperature: 560 ° C., hot pickling, and after pickling, primary annealing is performed at 640-690 ° C. for 40 hours, cold rolling reduction is 60%, and secondary annealing is 610 The in-plane anisotropy was examined by a tensile test for the steel plate subjected to 40 hours at ˜690 ° C. The result is shown in FIG. FIG. 3 shows the primary annealing temperature T related to the in-plane anisotropy of the r value.1And secondary annealing temperature T2It is a figure which shows the relationship. As shown in FIG. 3, the secondary annealing temperature T2Is (1024-0.6 × T1) Or more, (1202-0.80 × T1) Δ of r value in the following rangemax(Δr in FIG. 3maxIt is clear that the in-plane anisotropy is small. Therefore, the secondary annealing temperature is set to 1024−0.6 × T.1≦ T2≦ 1202-0.80 × T1The range. In addition, Δ of the r valuemaxIndicates the maximum difference in r values in the L, S, and C directions.
[0046]
Further, the particle size and particle size distribution of the carbide change depending on the secondary annealing temperature. That is, when the secondary annealing temperature is higher than 680 ° C., the carbide is coarsened, and a carbide of 0.6 μm or less cannot be obtained. On the other hand, when the temperature is lower than 620 ° C., carbides of 1.5 μm or more cannot be obtained. For this reason, the secondary annealing temperature T2Was specified in the range of 620 ° C to 680 ° C. The annealing may be either continuous annealing or box annealing.
[0047]
Next, the second method will be described.
In the second method, the cast slab having the above component system is continuously cast or heated to a predetermined temperature after cooling, and then roughly rolled into a rough bar by a roughing mill, followed by continuous hot finish rolling. When finishing rolling with a mill, rough bars or rolled material is put into Ar between the entrance of the finishing mill or between the stands of the finishing mill.3Inductive heating at a temperature above the transformation point, winding the steel sheet after hot finish rolling at a temperature of 500 to 650 ° C., then descaling the steel sheet after winding, followed by primary annealing at 630 to 700 ° C. for 20 hours or more Then, the annealed steel sheet is cold-rolled at a reduction rate of 50% or more, and then the following equation (2) is satisfied and secondary annealing is performed in a temperature range of 620 to 680 ° C.
1010-0.59 × T1≦ T2≦ 1210−0.80 × T1    ... (2)
The reason for limitation will be described below.
[0048]
(1) Induction heating
Induction heat treatment makes the dispersion of cementite dispersion after secondary annealing smaller in the plate thickness direction by making the γ grain size and structure of the steel plate uniform in the plate thickness direction during hot rolling, and the secondary A texture in which in-plane anisotropy with respect to tensile properties becomes small after annealing is uniformly formed in the thickness direction. Specifically, after rough rolling, when finishing rolling with a hot finish rolling mill, rolling between rough bars on the entry side of the finishing mill before finishing rolling, or between stands of the finishing mill during finish rolling For materials, Ar3Induction heating at a temperature equal to or higher than the transformation point is performed at least once. Heating temperature is Ar3The reason why the temperature is equal to or higher than the transformation point is to make the γ grain size and the structure uniform. The heating time is preferably at least 3 seconds. Note that the heat treatment includes temperature increase and temperature decrease holding.
[0049]
(2) Hot coiling temperature: 520-600 ° C
As in the first method, when the coiling temperature is less than 520 ° C., carbides of 1.5 μm or more cannot be obtained after secondary annealing, and when the coiling temperature is 600 ° C. or more, carbides having a particle size of 0.6 μm or less are obtained after secondary annealing. Since it cannot be obtained, the coiling temperature is set to a range of 520 to 600 ° C.
[0050]
  (3) Primary annealing conditions:630~700℃, 20hr or more
  Although the primary annealing for the purpose of spheroidizing the carbide is performed on the hot-rolled sheet after descaling, the primary annealing temperature is the same as in the first method.700If it becomes higher than ° C., a carbide of 0.6 μm or less cannot be obtained even after secondary annealing,630If it is less than ℃, carbide of 1.5μm or more cannot be obtained even after secondary annealing.630~700The annealing time is 20 hours or more from the viewpoint of promoting spheroidization.
[0051]
(4) Cold rolling rate: 50% or more
As in the case of the first method, the cold rolling rate is set to 50% or more in order to sufficiently reduce the in-plane anisotropy of the r value. Moreover, it is preferable that it is 80% or less from a viewpoint of maintaining plate | board property favorable like the 1st method.
[0052]
(5) Secondary annealing conditions: 1010-0.59 × T1≦ T2≦ 1210−0.80 × T1And 620 ° C. ≦ T2≦ 680 ℃
Similar to the first method, the secondary annealing condition is an essential requirement that should be appropriately controlled with respect to the primary annealing temperature in order to reduce the in-plane anisotropy of the r value. Therefore, the effects of primary annealing conditions and secondary annealing conditions on in-plane anisotropy were investigated. The survey results will be described below.
[0053]
After melting steel of C: 0.36%, Si: 0.20%, Mn: 0.75%, P: 0.011%, S: 0.002%, Al: 0.020% by mass% Before finishing rolling the slab, the rough bar is subjected to heat treatment at 1010 ° C. for 15 seconds by induction heating, finish rolling at a finishing temperature of 850 ° C., and after finishing rolling, winding at a winding temperature of 560 ° C. After washing, steel sheet subjected to primary annealing at 640 to 700 ° C. for 40 hr, cold rolling reduction ratio of 60%, and secondary annealing at 610 to 690 ° C. for 40 hr was measured for in-plane anisotropy in a tensile test. The integrated reflection intensity of the surface parallel to the rolling surface at each position of the steel sheet surface, the thickness 1/4 and the thickness 1/2 was examined by X-ray diffraction. Table 1 shows the measurement results of the integrated reflection intensity in the thickness direction. By performing induction heating of the coarse bar, the maximum difference in (222) integrated reflection intensity is reduced, and the structure is formed to be uniform in the plate thickness direction. FIG. 4 shows the primary annealing temperature T related to the in-plane anisotropy of the r value when the rough bar is induction-heated according to the present method.1And secondary annealing temperature T2Shows the relationship. When induction heating is not performed according to the first method, as shown in FIG. 3, the secondary annealing temperature is (1024−0.6 × T1) And (1202-0.80 × T1) Δ of r value within the following rangemaxIs less than 0.2, but by performing induction heating of the coarse bar, the secondary annealing temperature T2Is (1010-0.59 × T1) And (1210-0.80 × T1) Expands to the following range and r value Δmax(In FIG. 4, ΔrmaxAs shown. ) Decreased from less than 0.2 to less than 0.15, and it became clear that the in-plane anisotropy was further reduced over a wider range. For this reason, in the second method, the secondary annealing temperature T21010-0.59 × T1≦ T2≦ 1210−0.80 × T1And in a wider range than the first method.
[0054]
[Table 1]
Figure 0004048675
[0055]
In addition, the particle size and particle size distribution of the carbide change depending on the secondary annealing temperature, as in the case of the first method. In order to precipitate a carbide of 0.6 μm or less and a carbide of 1.5 μm or more, Secondary annealing temperature T2Was specified in the range of 620 ° C to 680 ° C. The annealing may be either continuous annealing or box annealing.
[0056]
In the present invention, when manufacturing a steel sheet, as a method of rolling after heating the slab, a method of performing a heat treatment for a short time after continuous casting, or a method of omitting this heating step and immediately rolling Any of these methods may be adopted, but the method of reheating the slab without cooling to room temperature is more preferable from the viewpoint of energy saving. Further, during hot rolling, there is no problem even if heating with a bar heater or the like for the purpose of soaking. Heating by a bar heater can be effectively used for a continuous hot rolling process using a coil box or the like. At this time, the heating of the rough rolling bar may be performed before or after the coil box or between or after the roughing mill, in addition to the above. Even if the rough rolling bar is heated before and after the welding machine after the coil box, the effect of the present invention is sufficiently exhibited. Furthermore, in order to improve slidability with respect to the surface of the steel plate thus manufactured, a phosphating treatment may be performed after galvanization. Zinc plating can be performed by electrogalvanizing or hot dip galvanizing.
[0057]
【Example】
Hereinafter, specific examples of the present invention will be described in comparison with comparative examples.
Example 1
In this embodiment, an example of the first high carbon steel sheet and the manufacturing method thereof will be described.
Component system equivalent to S35C of JIS G4051 (mass%, C: 0.35%, Si: 0.20%, Mn: 0.76%, P: 0.016%, S: 0.003%, Al: 0.026%) slab was manufactured by continuous casting, this slab was heated to 1100 ° C., then hot-rolled and cooled, and then wound up under the conditions shown in Table 2, primary annealing, cold rolling, two Subsequent annealing was performed sequentially, and then 1.5% temper rolling was performed to produce a steel plate having a thickness of 1.0 mm. Sample No. H is a conventional material.
[0058]
[Table 2]
Figure 0004048675
[0059]
For these samples, carbide particle size measurement and particle size distribution measurement, tensile test, quenching test, and prior austenite particle size measurement after quenching were performed as follows. The results are shown in Table 3.
[0060]
(A) Carbide particle size measurement and particle size distribution measurement
After polishing and corrosion of the plate thickness section of the sample, the microstructure was photographed with a scanning electron microscope, 2500 μm2From this range, the particle size and particle size distribution of the carbide were measured.
[0061]
(B) Tensile strength
JIS No. 5 specimens were sampled along the 0 ° direction (L direction), 45 ° direction (S direction), and 90 ° direction (C direction) with respect to the rolling direction, and subjected to a tensile test at a tensile speed of 10 mm / min. Directional tensile properties were measured and evaluated for in-plane anisotropy. In addition, Δ described in each column of yield strength, tensile strength and total elongation in Table 3maxIndicates the maximum disparity in the L, S, and C directions of the respective tensile property values. Further, Δr described in the column of r value in Table 3 is a value defined by Δr = (r0 + r90−2 × r45) / 4. Here, r0, r45, and r90 indicate r values in the 0 ° direction (L direction), 45 ° direction (S direction), and 90 ° direction (C direction), respectively, with respect to the rolling direction.
[0062]
(C) Quenching test
The steel sheet was cut into a size of 50 × 100 mm, heated to 820 ° C. in a heating furnace, and kept in oil at about 20 ° C. after holding for 10 seconds. The hardness on the surface of the test piece after quenching was measured at 10 points on the Rockwell C scale (HRC) to evaluate the hardenability. Evaluation was performed by average hardness. A hardness (HRC) of 50 or more was considered acceptable.
[0063]
(D) Measurement of prior austenite particle size
After polishing and corrosion of the plate thickness section of the sample after quenching, the microstructure was photographed with an optical microscope, and the prior austenite grain size number was measured in accordance with JISG0551.
[0064]
[Table 3]
Figure 0004048675
[0065]
As shown in Table 3, No. 1 is an example of the present invention. A-No. Since C had an appropriate particle size and particle size distribution of carbide, it was confirmed that the hardness after quenching and the value of the prior austenite particle size were good, and the hardenability and toughness were excellent. In addition, these are Δ of yield strength and tensile strength.maxIs 10 MPa or less, elongation ΔmaxIs 1.5% or less and the r value Δr is more than −0.15 to less than 0.15, and it was confirmed that the anisotropy of the in-plane tensile properties was extremely small.
[0066]
On the other hand, in the comparative example, Δ for any of the tensile propertiesmaxOr Δr was large, and it was confirmed that the anisotropy of the in-plane tensile properties was inferior. For example, when the coiling temperature is low (No. D), the elongation Δmax1.7, and the r value Δr is as large as 0.16, and since there are few carbides of 1.5 μm or more, the prior austenite grain size becomes coarse and the toughness is impaired. Further, when the primary annealing temperature was high (No. E), the r value Δr was as large as 0.18, and the coarse carbides increased, so that the fine carbides decreased and the hardenability was significantly lowered. Furthermore, when the cold rolling reduction is as low as 40% (No. F), the yield strength Δmax11 and Δ of tensile strengthmaxIs 14, Δ of elongationmaxIs 1.7, the r value Δr is as large as 0.20, and the secondary annealing temperature is high (No. G), the coarse carbides increase, and the hardness after quenching decreases significantly. The r value Δr was 0.23, and the in-plane anisotropy was large. In addition, the conventional material No. H is the yield strength Δmax17 and Δ of tensile strengthmaxIs 15 and elongation Δmax1.9 and r value of Δr were as high as 0.16, respectively, and the in-plane anisotropy was large.
(Example 2)
In this embodiment, an example of the first manufacturing method of the second high carbon steel sheet will be described.
Component system equivalent to JIS G4051 S35C (by mass, C: 0.36%, Si: 0.20%, Mn: 0.75%, P: 0.011%, S: 0.002%, Al: 0 .020%) slab was manufactured by continuous casting, and the slab was heated to 1100 ° C., and then subjected to hot rolling, primary annealing, cold rolling, and secondary annealing sequentially under the conditions shown in Table 4, followed by 1 19% steel sheets with a thickness of 2.5 mm were prepared by temper rolling of 0.5%.
[0067]
[Table 4]
Figure 0004048675
[0068]
These samples were subjected to carbide particle size measurement and particle size distribution measurement, tensile test, quenching test, and prior austenite particle size measurement after quenching in the same manner as in Example 1. The results are shown in Table 5. Sample No. 19 is a conventional material.
[0069]
[Table 5]
Figure 0004048675
[0070]
As shown in Table 5, examples of the present invention are No. 1-No. In No. 7, since the particle size and particle size distribution of the carbide are appropriate, the hardness after quenching and the value of the prior austenite particle size are good, and it was confirmed that the hardenability and toughness are excellent. In addition, these are Δ of yield strength and tensile strength.maxIs 10 MPa or less, elongation ΔmaxIs 1.5% or less, r value ΔmaxIs less than 0.2, and it was confirmed that the anisotropy of the tensile properties was extremely small.
[0071]
On the other hand, in the comparative example, ΔmaxIs large, inferior in in-plane anisotropy, or inferior in hardenability or toughness. For example, when the primary annealing temperature is high (No. 11), the r value ΔmaxWhen the cold rolling rate is as low as 30% (No. 13), the yield strength, tensile strength, and r value ΔmaxRespectively increased to 18, 13 and 0.38, and all had large in-plane anisotropy. Sample No. No. 16 has a secondary annealing temperature that is too high, so that the carbide is not sufficiently dissolved and the hardness after quenching is as low as 43. In No. 17, the secondary annealing temperature is too low, so the amount of carbide having a particle size of 0.6 μm or less increases, the prior austenite particle size becomes coarse, and the toughness is impaired. Further, in the conventional material (No. 19) shown for comparison, the r value ΔmaxWas as high as 0.42, and the in-plane anisotropy was large.
[0072]
(Example 3)
This example also shows an example of the first manufacturing method of the second high carbon steel sheet.
Component system equivalent to JIS G4802 S65C-CSP (by mass, C: 0.65%, Si: 0.19%, Mn: 0.73%, P: 0.011%, S: 0.002%, Al : 0.020%) slab was manufactured by continuous casting, this slab was heated to 1100 ° C., and then hot rolling, primary annealing, cold rolling, and secondary annealing were sequentially performed under the conditions shown in Table 6. The temper rolling of 1.5% was performed, and 19 types of steel plates with a thickness of 2.5 mm were produced.
[0073]
[Table 6]
Figure 0004048675
[0074]
These samples were subjected to carbide particle size measurement, particle size distribution measurement, tensile test, quenching test, and prior austenite particle size measurement after quenching in the same manner as in Example 1. The results are shown in Table 7. Sample No. 38 is a conventional material.
[0075]
[Table 7]
Figure 0004048675
[0076]
As shown in Table 7, No. 20-No. Since No. 26 has an appropriate particle size and particle size distribution of carbide, the hardness after quenching and the value of prior austenite particle size are good, and it was confirmed that the hardenability and toughness are excellent. In addition, these are Δ of yield strength and tensile strength.maxIs 15 MPa or less, elongation ΔmaxIs 1.5% or less, r value ΔmaxWas less than 0.2, and it was confirmed that the in-plane tensile property anisotropy was extremely small.
[0077]
On the other hand, in the comparative example, ΔmaxIs large, inferior in in-plane anisotropy, or inferior in hardenability or toughness. For example, when the primary annealing temperature is high (No. 30), the r value ΔmaxIs 0.26 and the cold rolling rate is as low as 30% (No. 32), the yield strength, tensile strength and r value ΔmaxWere increased to 20, 17 and 0.39, respectively, and all had large in-plane anisotropy. Sample No. No. 35 has a secondary annealing temperature that is too high, so that the carbide is not sufficiently dissolved and the hardness after quenching is as low as 51. Since the secondary annealing temperature of 36 is too low, the amount of carbide having a particle size of 0.6 μm or less is increased, and the prior austenite particle size is coarsened and the toughness is impaired. In addition, the conventional material No. shown for comparison. 38 is also the Δ of the r valuemaxWas as high as 0.46, and the in-plane anisotropy was large.
[0078]
Example 4
In this embodiment, an example of the second manufacturing method of the second high carbon steel sheet will be described.
Component system equivalent to JIS G4051 S35C (by mass, C: 0.36%, Si: 0.20%, Mn: 0.75%, P: 0.011%, S: 0.002%, Al: 0 .020%) slab was manufactured by continuous casting, and this slab was heated to 1100 ° C., and then subjected to hot rolling, primary annealing, cold rolling, and secondary annealing sequentially under the conditions shown in Table 8. A temper rolling of 5% was applied to produce 26 types of steel plates with a thickness of 2.5 mm.
[0079]
[Table 8]
Figure 0004048675
[0080]
These samples were subjected to carbide particle size measurement and particle size distribution measurement, tensile test, quenching test, and prior austenite particle size measurement after quenching in the same manner as in Example 1. The results are shown in Table 9. Sample No. 64 is a conventional material.
[0081]
[Table 9]
Figure 0004048675
[0082]
As shown in Table 9, No. 1 as an example of the present invention. 39-No. No. 52 had an appropriate particle size and particle size distribution of the carbide, so that the hardness after quenching and the prior austenite particle size were good, and it was confirmed that the hardenability and toughness were excellent. In addition, these are Δ of yield strength and tensile strength.maxIs 10 MPa or less, elongation ΔmaxIs 1.5% or less, r value ΔmaxWas less than 0.2, and it was confirmed that the in-plane tensile property anisotropy was extremely small. Furthermore, it was confirmed that the method of performing induction heating before rough rolling is more preferable from the viewpoint of not only reducing the anisotropy of tensile properties but also improving the uniformity of the structure in the thickness direction.
[0083]
On the other hand, in the comparative example, ΔmaxIs large, inferior in in-plane anisotropy, or inferior in hardenability or toughness. For example, when the primary annealing temperature is high (No. 56), the r value ΔmaxIs 0.30 and the cold rolling rate is as low as 30% (No. 58), the yield strength, tensile strength and r value ΔmaxRespectively increased to 18, 13 and 0.38, and it was confirmed that the in-plane anisotropy was large. Sample No. No. 61 has a secondary annealing temperature that is too high, so that the carbide is not sufficiently dissolved and the hardness after quenching is as low as 44. Since the secondary annealing temperature of 62 is too low, the amount of carbide having a particle size of 0.6 μm or less is increased, and the prior austenite particle size is coarsened and the toughness is impaired. In addition, the conventional material No. shown for comparison. 64, the r value ΔmaxWas as high as 0.42, and it was confirmed that the in-plane anisotropy was large.
[0084]
Example 4
This example also shows an example of the second manufacturing method of the second high carbon steel sheet.
Component system equivalent to JIS G4802 S65C-CSP (by mass, C: 0.65%, Si: 0.19%, Mn: 0.73%, P: 0.011%, S: 0.002%, Al : 0.020%) slab was manufactured by continuous casting, this slab was heated to 1100 ° C., and then hot rolling, primary annealing, cold rolling, and secondary annealing were sequentially performed under the conditions shown in Table 10. A temper rolling of 1.5% was applied to produce 26 types of steel plates with a thickness of 2.5 mm.
[0085]
[Table 10]
Figure 0004048675
[0086]
These samples were subjected to carbide particle size measurement, particle size distribution measurement, tensile test, quenching test, and prior austenite particle size measurement after quenching in the same manner as in Example 1. The results are shown in Table 11. Sample No. 90 is a conventional material.
[0087]
[Table 11]
Figure 0004048675
[0088]
As shown in Table 11, No. 1 as an example of the present invention. 65-No. No. 78 had an appropriate particle size and particle size distribution of the carbide, so that the hardness after quenching and the prior austenite particle size were good, and it was confirmed that the hardenability and toughness were excellent. In addition, these are Δ of yield strength and tensile strength.maxIs 15 MPa or less, elongation ΔmaxIs 1.5% or less, r value ΔmaxWas less than 0.2, and it was confirmed that the in-plane tensile property anisotropy was extremely small. Furthermore, it was confirmed that the method of performing induction heating before rough rolling is more preferable from the viewpoint of not only reducing the anisotropy of tensile properties but also improving the uniformity of the structure in the thickness direction.
[0089]
On the other hand, in the comparative example, ΔmaxIs large, inferior in in-plane anisotropy, or inferior in hardenability or toughness. For example, when the primary annealing temperature is high (No. 82), the r value ΔmaxIs 0.27 and the cold rolling rate is as low as 30% (No. 84), the yield strength, tensile strength and r value ΔmaxWere increased to 20, 17 and 0.39, respectively, and it was confirmed that the in-plane anisotropy was large. Sample No. No. 87 has a secondary annealing temperature that is too high, so that the carbide is not sufficiently dissolved and the hardness after quenching is as low as 52. Since the secondary annealing temperature of 88 is too low, the amount of carbide having a particle size of 0.6 μm or less is increased, and the prior austenite particle size is coarsened and the toughness is impaired. In addition, the conventional material No. shown for comparison. At 90, the r value ΔmaxWas as high as 0.46, and it was confirmed that the in-plane anisotropy was large.
[0090]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a high-carbon steel sheet that is excellent in hardenability and toughness and has small in-plane anisotropy with respect to tensile properties that greatly affect the formability. Therefore, the high carbon steel plate obtained by the present invention can be used for gear parts and the like that require high dimensional accuracy. In addition, by applying the present invention, when manufacturing gear parts and the like, it can be manufactured by integral forming and quenching and tempering of steel plates, and can be manufactured at a lower cost than conventional casting and forging processes. Become.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the influence of carbide grain size before quenching on the hardness when oil quenching is performed on an S35C steel sheet after holding at 820 ° C. × 10 s.
FIG. 2 is a diagram for explaining the influence of the number of carbides having a grain size of not less than 1.5 μm before quenching on the prior austenite grain size when oil quenching is performed on an S35C steel plate after holding at 820 ° C. × 10 s.
FIG. 3 is a diagram showing the influence of the primary annealing temperature and the secondary annealing temperature on the in-plane anisotropy of the r value and the dispersion form of carbides in the first method for producing the second high carbon steel sheet.
FIG. 4 is a diagram showing the influence of the primary annealing temperature and the secondary annealing temperature on the in-plane anisotropy of the r value and the dispersion form of carbides in the second method for producing the second high carbon steel sheet.

Claims (5)

JIS G 4051(機械構造用炭素鋼)、JIS G 4401(炭素工具鋼鋼材)、JIS G 4802(ばね用冷間圧延鋼帯)で規定される成分系を有する高炭素鋼板であって、
粒径1.5μm以上の炭化物が2500μm中50以上存在し、かつ粒径0.6μm以下の炭化物が80%以上を占め、さらにr値の面内異方性指数Δrが−0.15超〜0.15未満であることを特徴とする焼入性と靭性に優れる面内異方性の小さい加工用高炭素鋼板。
ただし、Δrは、Δr=(r0+r90−2×r45)/4により規定される値を示す。ここでr0、r45、r90は、それぞれ、圧延方向に対し、0°方向(L方向)、45°方向(S方向)、90°方向(C方向)のr値を示す。
JIS G 4051 (carbon steel for machine structure), JIS G 4401 (carbon tool steel), JIS G 4802 (cold rolled steel strip for spring), a high carbon steel plate having a component system defined by:
Carbides having a particle size of 1.5 μm or more are present in 50 or more in 2500 μm 2 , and carbides having a particle size of 0.6 μm or less account for 80% or more, and the in-plane anisotropy index Δr of r value exceeds −0.15. A high-carbon steel sheet for processing having low in-plane anisotropy and excellent hardenability and toughness, characterized by being less than ˜0.15.
However, (DELTA) r shows the value prescribed | regulated by (DELTA) r = (r0 + r90-2 * r45) / 4. Here, r0, r45, and r90 indicate r values in the 0 ° direction (L direction), 45 ° direction (S direction), and 90 ° direction (C direction), respectively, with respect to the rolling direction.
請求項1に記載の焼入性と靭性に優れる面内異方性の小さい加工用高炭素鋼板の製造方法であって、
JIS G 4051(機械構造用炭素鋼)、JIS G 4401(炭素工具鋼鋼材)、JIS G 4802(ばね用冷間圧延鋼帯)で規定される成分系を有する熱間仕上圧延後の鋼板を520〜600℃の温度で巻取り、
次いで巻取り後の鋼板を脱スケールした後、640〜690℃(690℃は除く)で20hr以上の一次焼鈍を行い、
焼鈍した鋼板を50%以上の圧下率で冷間圧延し、
その後、620〜680℃の温度範囲で二次焼鈍を施すことを特徴とする、焼入性と靭性に優れる面内異方性の小さい加工用高炭素鋼板の製造方法。
A method for producing a high-carbon steel sheet for processing having low in-plane anisotropy and excellent hardenability and toughness according to claim 1,
A steel plate after hot finish rolling having a component system defined by JIS G 4051 (carbon steel for machine structure), JIS G 4401 (carbon tool steel), and JIS G 4802 (cold rolled steel strip for spring) is 520. Winding at a temperature of ~ 600 ° C,
Then, after descaling the steel sheet after winding, primary annealing is performed at 640 to 690 ° C. ( excluding 690 ° C.) for 20 hours or more,
Cold-roll the annealed steel sheet at a reduction rate of 50% or more,
Then, the secondary annealing is performed in a temperature range of 620 to 680 ° C., and a method for producing a high-carbon steel sheet for processing having excellent in-plane anisotropy and low in-plane anisotropy.
JIS G 4051(機械構造用炭素鋼)、JIS G 4401(炭素工具鋼鋼材)、JIS G 4802(ばね用冷間圧延鋼帯)で規定される成分系を有する高炭素鋼板であって、
粒径1.5μm以上の炭化物が2500μm中50以上存在し、かつ粒径0.6μm以下の炭化物が80%以上を占め、さらにr値のΔmaxが0.2未満であることを特徴とする、焼入性と靭性に優れる面内異方性の小さい加工用高炭素鋼板。
ただし、Δmaxは、圧延方向に対し、0°方向(L方向)、45°方向(S方向)、90°方向(C方向)の値の最大格差を示す。
JIS G 4051 (carbon steel for machine structure), JIS G 4401 (carbon tool steel), JIS G 4802 (cold rolled steel strip for spring), a high carbon steel plate having a component system defined by:
And wherein the particle size 1.5μm or more carbide is present 2 in 50 or more 2500 [mu] m, and the particle size 0.6μm or less of carbides account for 80% or more, further r value of delta max is less than 0.2 A high-carbon steel sheet for processing that has excellent hardenability and toughness and small in-plane anisotropy.
However, (DELTA) max shows the maximum difference of the value of 0 degree direction (L direction), 45 degree direction (S direction), and 90 degree direction (C direction) with respect to a rolling direction.
請求項3に記載の焼入性と靭性に優れる面内異方性の小さい加工用高炭素鋼板の製造方法であって、
JIS G 4051(機械構造用炭素鋼)、JIS G 4401(炭素工具鋼鋼材)、JIS G 4802(ばね用冷間圧延鋼帯)で規定される成分系を有する熱間仕上圧延後の鋼板を520〜600℃の温度で巻取り、
次いで巻取り後の鋼板を脱スケールした後、640〜690℃(690℃は除く)で20hr以上の一次焼鈍を行い、
焼鈍した鋼板を50%以上の圧下率で冷間圧延し、
その後以下の(1)式を満足し、かつ620〜680℃の温度範囲で二次焼鈍を施すことを特徴とする、焼入性と靭性に優れる面内異方性の小さい加工用高炭素鋼板の製造方法。
1024−0.6×T≦T≦1202−0.80×T ・・・(1)
ただし、T:一次焼鈍温度(℃)、T:二次焼鈍温度(℃)
A method for producing a high-carbon steel sheet for processing having excellent in-hardenability and toughness according to claim 3 and having a small in-plane anisotropy,
A steel plate after hot finish rolling having a component system defined by JIS G 4051 (carbon steel for machine structure), JIS G 4401 (carbon tool steel), and JIS G 4802 (cold rolled steel strip for spring) is 520. Winding at a temperature of ~ 600 ° C,
Then, after descaling the steel sheet after winding, primary annealing is performed at 640 to 690 ° C. ( excluding 690 ° C.) for 20 hours or more,
Cold-roll the annealed steel sheet at a reduction rate of 50% or more,
Thereafter, the high carbon steel sheet for processing having low in-plane anisotropy and excellent hardenability and toughness, characterized by satisfying the following formula (1) and performing secondary annealing in a temperature range of 620 to 680 ° C. Manufacturing method.
1024-0.6 × T 1 ≦ T 2 ≦ 1202-0.80 × T 1 (1)
However, T 1 : Primary annealing temperature (° C.), T 2 : Secondary annealing temperature (° C.)
請求項3に記載の焼入性と靭性に優れる面内異方性の小さい加工用高炭素鋼板の製造方法であって、
JIS G 4051(機械構造用炭素鋼)、JIS G 4401(炭素工具鋼鋼材)、JIS G 4802(ばね用冷間圧延鋼帯)で規定される成分系を有する鋳造スラブを連続鋳造まま、または冷却後所定の温度に加熱した後、粗圧延機によって粗圧延して、粗バーとし、
引き続いて、連続熱間仕上げ圧延機によって仕上圧延する際に、仕上げ圧延機の入り側、または仕上げ圧延機のスタンド間で、粗バーまたは圧延材をAr変態点以上の温度で誘導加熱し、
熱間仕上圧延後の鋼板を500〜650℃の温度で巻取り、
次いで巻取り後の鋼板を脱スケールした後、630〜700℃で20hr以上の一次焼鈍を行い、
焼鈍した鋼板を50%以上の圧下率で冷間圧延し、
その後以下の(2)式を満足し、かつ620〜680℃の温度範囲で二次焼鈍を施すことを特徴とする、焼入性と靭性に優れる面内異方性の小さい加工用高炭素鋼板の製造方法。
1010−0.59×T≦T≦1210−0.80×T ・・・(2)
ただし、T:一次焼鈍温度(℃)、T:二次焼鈍温度(℃)
A method for producing a high-carbon steel sheet for processing having excellent in-hardenability and toughness according to claim 3 and having a small in-plane anisotropy,
Cast slabs having a component system defined by JIS G 4051 (carbon steel for machine structure), JIS G 4401 (carbon tool steel), and JIS G 4802 (cold rolled steel strip for springs) are continuously cast or cooled. After heating to a predetermined temperature after, rough rolling with a roughing mill to form a rough bar,
Subsequently, during finish rolling by a continuous hot finish rolling mill, the rough bar or the rolled material is induction-heated at a temperature equal to or higher than the Ar 3 transformation point on the entrance side of the finish mill or between the stands of the finish mill,
The steel plate after hot finish rolling is wound at a temperature of 500 to 650 ° C.,
Next, after descaling the steel sheet after winding, primary annealing is performed at 630 to 700 ° C. for 20 hours or more,
Cold-roll the annealed steel sheet at a reduction rate of 50% or more,
Then, the following high-carbon steel sheet for processing with low in-plane anisotropy excellent in hardenability and toughness, characterized by satisfying the following formula (2) and performing secondary annealing in a temperature range of 620 to 680 ° C. Manufacturing method.
1010−0.59 × T 1 ≦ T 2 ≦ 1210−0.80 × T 1 (2)
However, T 1 : Primary annealing temperature (° C.), T 2 : Secondary annealing temperature (° C.)
JP2000018280A 1999-06-30 2000-01-27 High carbon steel sheet for machining with low in-plane anisotropy with excellent hardenability and toughness and method for producing the same Expired - Fee Related JP4048675B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000018280A JP4048675B2 (en) 1999-06-30 2000-01-27 High carbon steel sheet for machining with low in-plane anisotropy with excellent hardenability and toughness and method for producing the same
PCT/JP2001/000404 WO2001055466A1 (en) 2000-01-27 2001-01-23 High carbon steel sheet and method for production thereof
KR10-2001-7011808A KR100430986B1 (en) 2000-01-27 2001-01-23 High Carbon Steel Sheet and Method for Production Thereof
EP01946901A EP1191115A4 (en) 2000-01-27 2001-01-23 High carbon steel sheet and method for production thereof
CNB018000355A CN1157491C (en) 2000-01-27 2001-01-23 High carbon steel sheet and method for production thereof
US09/961,843 US6652671B2 (en) 2000-01-27 2001-09-24 High carbon steel sheet
US10/665,865 US7147730B2 (en) 2000-01-27 2003-09-19 High carbon steel and production method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18485399 1999-06-30
JP11-184853 1999-06-30
JP2000018280A JP4048675B2 (en) 1999-06-30 2000-01-27 High carbon steel sheet for machining with low in-plane anisotropy with excellent hardenability and toughness and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001073076A JP2001073076A (en) 2001-03-21
JP4048675B2 true JP4048675B2 (en) 2008-02-20

Family

ID=26502749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000018280A Expired - Fee Related JP4048675B2 (en) 1999-06-30 2000-01-27 High carbon steel sheet for machining with low in-plane anisotropy with excellent hardenability and toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP4048675B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100851805B1 (en) 2006-12-27 2008-08-13 주식회사 포스코 Manufacturing method of high carbon steel sheet superior in impact toughness
JP6160783B2 (en) 2015-05-26 2017-07-12 新日鐵住金株式会社 Steel sheet and manufacturing method thereof
EP3305930A4 (en) 2015-05-26 2018-12-05 Nippon Steel & Sumitomo Metal Corporation Steel sheet and method for producing same
JP7368692B2 (en) * 2019-03-29 2023-10-25 日本製鉄株式会社 Manufacturing method of medium carbon steel plate
JP7355994B2 (en) * 2019-03-29 2023-10-04 日本製鉄株式会社 High carbon steel plate and its manufacturing method

Also Published As

Publication number Publication date
JP2001073076A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
KR101930186B1 (en) High-strength galvanized steel sheet and method for producing the same
JP6048580B2 (en) Hot rolled steel sheet and manufacturing method thereof
US11408045B2 (en) Steel sheet
KR100430986B1 (en) High Carbon Steel Sheet and Method for Production Thereof
EP3508601B1 (en) High-strength steel plate and production method thereof
US20180037969A1 (en) High-strength cold-rolled steel sheet and method of producing the same
US11401569B2 (en) High-strength cold-rolled steel sheet and method for manufacturing same
WO2016190397A9 (en) Steel sheet and manufacturing method therefor
EP1486574A1 (en) Process for producing high tensile hot-dip zinc-coated steel sheet of excellent ductility and antifatigue properties
US11332804B2 (en) High-strength cold-rolled steel sheet, high-strength coated steel sheet, and method for producing the same
US20220195552A1 (en) High-strength steel sheet and method for producing same
US20220056549A1 (en) Steel sheet, member, and methods for producing them
EP2998415A1 (en) High-strength, high-young's modulus steel plate, and manufacturing method thereof
EP1905850A1 (en) Process for manufacture of cold-rolled high-carbon steel plate
US20220090247A1 (en) Steel sheet, member, and methods for producing them
WO2021193310A1 (en) High-strength hot-rolled steel sheet and method for producing same
JP4696853B2 (en) Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet
JP3800902B2 (en) High carbon steel sheet for processing with small in-plane anisotropy and method for producing the same
JP3797165B2 (en) High carbon steel sheet for processing with small in-plane anisotropy and method for producing the same
JP4048675B2 (en) High carbon steel sheet for machining with low in-plane anisotropy with excellent hardenability and toughness and method for producing the same
US20220090223A1 (en) High-strength hot-dip galvanized steel sheet and method for manufacturing the same
JP7323094B1 (en) High-strength steel plate and its manufacturing method
JP7287334B2 (en) High-strength steel plate and its manufacturing method
WO2022270100A1 (en) High-strength steel sheet and method for producing same, and member
WO2023218785A1 (en) Slab for high-strength steel sheet and cooling method thereof, method for producing high-strength hot-rolled steel sheet, method for producing high-strength cold-rolled steel sheet, and method for producing high-strength plated steel sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4048675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees