JP2001072481A - Production of anti-oxidant silicon carbide-silicon composite material - Google Patents

Production of anti-oxidant silicon carbide-silicon composite material

Info

Publication number
JP2001072481A
JP2001072481A JP24698599A JP24698599A JP2001072481A JP 2001072481 A JP2001072481 A JP 2001072481A JP 24698599 A JP24698599 A JP 24698599A JP 24698599 A JP24698599 A JP 24698599A JP 2001072481 A JP2001072481 A JP 2001072481A
Authority
JP
Japan
Prior art keywords
sic
composite material
temperature
oxidation
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24698599A
Other languages
Japanese (ja)
Inventor
Toshiteru Ono
寿輝 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Konetsu Kogyo Co Ltd
Original Assignee
Tokai Konetsu Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Konetsu Kogyo Co Ltd filed Critical Tokai Konetsu Kogyo Co Ltd
Priority to JP24698599A priority Critical patent/JP2001072481A/en
Publication of JP2001072481A publication Critical patent/JP2001072481A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5066Silicon nitride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high efficiency production process for an antioxidant SiC-Si composite material in low costs that develops excellent durability in the active oxidation area of a low oxygen concentration. SOLUTION: A nitridation promoter is added to the surface of a SiC formed body and allowed to coat the surface of the SiC formed body, and the SiC formed body is heat-treated, as it is allowed to contact with metallic silicon at a temperature higher than the melting point of metallic silicon in an nitrogen atmosphere to sinter SiC and the pores are impregnated and filled with fused Si, then cooled down. During these steps, fused Si is held at 1,000-1,400 deg.C for a prescribed time, to solidify the impregnated and filled Si melt and simultaneously nitride the Si on the surface layer. In a preferred embodiment, a Ca compound or Fe compound is used as a nitridation promoter, and the thickness of the Si3N4 layer formed on the surface layer is adjusted to >=1 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高温加熱炉、例えば
電子部品やセラミックス製品などを熱処理する焼成炉の
部材をはじめ、高温用の各種部材として用いられ、特に
酸素濃度が低いアクティブ酸化領域で優れた耐久性を発
揮する耐酸化性SiC−Si複合材を能率よく、低コス
トで製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used as a member for a high-temperature heating furnace, for example, a baking furnace for heat-treating electronic parts and ceramic products, and various other members for high temperatures. The present invention relates to a method for efficiently and inexpensively producing an oxidation-resistant SiC-Si composite material exhibiting improved durability.

【0002】[0002]

【従来の技術】SiC焼結体は、耐熱性、高温強度、耐
熱衝撃性、耐摩耗性、耐蝕性などの材質特性に優れてお
り、高温用の各種構造部材として有用されている。通
常、SiC焼結体はSiC粉粒を原料として、成形、焼
成する方法で製造されているが、SiCは共有結合性が
強いために焼結性が低く、焼結体に気孔が形成され易
く、緻密な焼結体を得ることが困難である。そこで、S
iC焼結体の気孔中に溶融したSiを含浸させて充填
し、高緻密化を図ったSiC−Si複合材が高温用の各
種構造部材、例えば、焼成炉用の治具、さや、棚板、吊
り棒、るつぼ、均熱管などとして使用されている。
2. Description of the Related Art A SiC sintered body has excellent material properties such as heat resistance, high-temperature strength, thermal shock resistance, abrasion resistance and corrosion resistance, and is useful as various structural members for high temperatures. Normally, a SiC sintered body is manufactured by a method of molding and firing using SiC powder as a raw material. However, since SiC has a strong covalent bond, sinterability is low, and pores are easily formed in the sintered body. It is difficult to obtain a dense sintered body. Then, S
A high-density SiC-Si composite material is filled with molten Si in the pores of the iC sintered body by impregnating with molten Si, and various structural members for high temperature, for example, a jig for a firing furnace, a sheath, and a shelf board It is used as a hanging rod, crucible, heat equalizing tube, etc.

【0003】このSiC−Si複合材は、高温酸化性雰
囲気下では表層面のSiが酸化されてSiO2 に転化
し、酸素の拡散侵入を阻止する酸化保護膜として機能す
るため強い酸化抵抗性を備えている。しかしながら、酸
素濃度が低い、例えば酸素濃度が数%以下のアクティブ
酸化領域では、SiC及びSiは酸化されてCOガス及
びSiOガスを生成し、生成したSiOガスは加熱炉内
の被加熱物や炉部材などと反応して製品を汚染したり、
得率低下を招き、また、部材の耐用寿命を低下させたり
する難点がある。
[0003] In a SiC-Si composite material, Si in the surface layer is oxidized and converted into SiO 2 in a high-temperature oxidizing atmosphere, and functions as an oxidation protective film for preventing diffusion and intrusion of oxygen. Have. However, in an active oxidation region having a low oxygen concentration, for example, an oxygen concentration of several percent or less, SiC and Si are oxidized to generate CO gas and SiO gas, and the generated SiO gas is used for heating an object to be heated or a furnace in a heating furnace. Reacts with parts, etc. to contaminate the product,
There are drawbacks such as lowering the yield and reducing the useful life of the member.

【0004】すなわち、SiC−Si複合材の表面に露
出しているフリーのSiは非常に活性な状態となってい
るため、微量な酸素と反応して容易にSiOガスを発生
することとなる。したがって、例えば焼成炉を密閉状態
にしたような場合には、焼成炉内の雰囲気は容易に酸素
濃度が低い状態となり、SiOガスが発生し易い状況に
なる。
That is, the free Si exposed on the surface of the SiC—Si composite material is in a very active state, so that it reacts with a trace amount of oxygen to easily generate SiO gas. Therefore, for example, in a case where the firing furnace is closed, the atmosphere in the firing furnace easily becomes a state in which the oxygen concentration is low, and the SiO gas is easily generated.

【0005】そこで、本出願人は、これらの難点を解消
するために、SiCが70〜90重量%とSiが30〜
10重量%とからなるSiC−Si複合材の表面に露出
して存在するSiをSi3 4 に転化させたことを特徴
とする耐酸化性SiC−Si複合材、及び、骨材として
のSiC体にSiを溶融含浸させたSiC−Si複合材
を窒素雰囲気中で1400〜2100℃の温度で熱処理
する耐酸化性SiC−Si複合材の製造方法を提案(特
願平10−96525 号)した。この技術によれば、SiC−
Si複合材の表面に形成されたSi3 4 により、酸素
濃度の低い酸化領域においてもSiOガスの発生を効果
的に抑制し、耐酸化性の向上を図ることができる。
In order to solve these difficulties, the applicant of the present invention has proposed that SiC is 70 to 90% by weight and Si is 30 to 90% by weight.
Oxidation resistance SiC-Si composite material, characterized in that the Si existing exposed to SiC-Si surface of the composite material composed of 10 wt% was converted into Si 3 N 4, and, SiC as an aggregate A method for producing an oxidation-resistant SiC-Si composite material in which a SiC-Si composite material in which a body is melt-impregnated with Si is heat-treated at a temperature of 1400 to 2100 ° C in a nitrogen atmosphere has been proposed (Japanese Patent Application No. 10-96525). . According to this technology, SiC-
Owing to Si 3 N 4 formed on the surface of the Si composite material, generation of SiO gas can be effectively suppressed even in an oxidized region having a low oxygen concentration, and oxidation resistance can be improved.

【0006】しかしながら、SiC−Si複合材を窒素
雰囲気中で熱処理する際に、Siの融点1410℃以上
の温度に加熱すると、含浸しているSiが溶融、液化し
て一部が流出する。また、冷却する際には、溶融Siの
固化時に体積膨張が生じるために複合材表面からSiが
吹き出して空隙が発生し、材質強度が低下する欠点があ
る。このようにしてSiの流出及び吹き出しによりSi
C−Si複合材の表層部に空隙が発生すると、その部分
が起点となってチッピング(表面での組織の一部がはじ
け飛ぶ現象)が生じ、被処理物を汚染したり、材質強度
が低下するなどの問題が発生する。
However, when the SiC-Si composite material is heated to a temperature of 1410 ° C. or more when the SiC-Si composite material is heat-treated in a nitrogen atmosphere, the impregnated Si melts and liquefies, and a part of the Si flows out. In addition, when cooling, the volume expansion occurs during the solidification of the molten Si, so that Si is blown out from the composite material surface to generate voids, resulting in a decrease in material strength. In this way, the outflow and blowing of Si
When a void is formed in the surface layer of the C-Si composite material, the portion serves as a starting point to cause chipping (a phenomenon in which a part of the structure on the surface is repelled), thereby contaminating an object to be processed or reducing the material strength. Problems occur.

【0007】そこで、本出願人は、SiC−Si複合材
の表面にSi3 4 を形成する際の熱処理温度を下げ、
少なくともSiの融点を下回る温度で効率よく窒化する
方策について研究を行った結果、骨格のベースとなるS
iCの気孔中に溶融したSiを含浸充填したSiC−S
i複合材にCa塩を添加し、1〜10kg/cm2の窒素ガス
加圧下に1250〜1400℃の温度で熱処理すること
を特徴とする耐酸化性SiC−Si複合材の製造方法
(特願平11−66304 号)を開発した。この製造方法によ
れば、表面に露出して存在するSiを窒化してSi3
4 に転化する場合の熱処理温度がSiの融点以下である
ので、熱処理時にSiの流出や吹き出しによるSiC−
Si複合材表層部の空隙発生や強度低下を効果的に防止
することが可能となる。
Accordingly, the present applicant has lowered the heat treatment temperature when forming Si 3 N 4 on the surface of the SiC—Si composite,
As a result of research on a method of efficiently nitriding at a temperature lower than the melting point of Si, at least,
SiC-S impregnated and filled with molten Si in pores of iC
i. A method for producing an oxidation-resistant SiC—Si composite material, comprising adding a Ca salt to a composite material and heat-treating the composite material under a nitrogen gas pressure of 1 to 10 kg / cm 2 at a temperature of 1250 to 1400 ° C. No. 11-66304). According to this manufacturing method, the Si exposed on the surface is nitrided to form Si 3 N
4 is lower than the melting point of Si, the SiC-
It is possible to effectively prevent the generation of voids and a decrease in strength in the surface layer portion of the Si composite material.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記の
特願平11−66304号の方法によれば、SiC成形
体にSiを溶融含浸してSiC−Si複合材を作製する
際の熱処理と、SiC−Si複合材の表層部のSiを窒
化してSi3 4 に転化する際の熱処理と、少なくとも
2回の熱処理工程が必要となり、製造能率が低下すると
ともに熱エネルギーの消費量が増大し、製造コストの上
昇を招くなどの問題点がある。
However, according to the method disclosed in Japanese Patent Application No. 11-66304, heat treatment for producing a SiC-Si composite material by melting and impregnating Si into a SiC molded body, Heat treatment for nitriding Si in the surface layer portion of the Si composite material to convert it into Si 3 N 4 and at least two heat treatment steps are required, thereby reducing production efficiency and increasing heat energy consumption, There are problems such as an increase in manufacturing costs.

【0009】本発明者は、これらの問題点を解消するた
めに鋭意研究を進めた結果、SiC成形体に加熱溶融し
たSi融液を含浸充填してSiC−Si複合材を作製し
たのち、その冷却過程を利用して窒化反応を行い、表層
部のSiをSi3 4 に転化することにより、実質的に
1回の熱処理工程で効率よく耐酸化性SiC−Si複合
材が製造できることを見出した。
The inventor of the present invention has made intensive studies to solve these problems, and as a result, after impregnating and filling a SiC molded body with a melted Si melt, a SiC-Si composite material was manufactured. It has been found that an oxidation-resistant SiC-Si composite material can be efficiently manufactured in substantially one heat treatment step by performing a nitridation reaction using a cooling process to convert Si in the surface layer into Si 3 N 4. Was.

【0010】本発明は上記の知見に基づいて開発された
もので、その目的は電子部品やセラミックス製品などを
熱処理する焼成炉の部材をはじめ、高温用の各種部材と
して好適に用いられ、特に酸素濃度が低いアクティブ酸
化領域で優れた耐久性を発揮する耐酸化性SiC−Si
複合材を、高能率、低コストで、効率よく製造する方法
を提供することにある。
The present invention has been developed on the basis of the above findings, and its purpose is to be suitably used as various members for high temperatures, including members of a firing furnace for heat-treating electronic parts and ceramic products, and especially oxygen. Oxidation resistant SiC-Si that exhibits excellent durability in active oxidation regions with low concentrations
An object of the present invention is to provide a method for efficiently producing a composite material at a high efficiency and at a low cost.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による耐酸化性SiC−Si複合材の製造方
法は、SiC成形体の表面に窒化促進剤を添加被着した
のち、金属Siと接触させた状態で窒素ガス雰囲気中金
属Siの融点以上の温度で熱処理して、SiCを焼結す
るとともにその気孔中にSi融液を含浸、充填し、次い
で冷却する過程において、1000〜1400℃の温度
域に所定時間保持して含浸充填したSi融液を固化する
とともに表層部のSiを窒化することを構成上の特徴と
する。
According to the present invention, there is provided a method for producing an oxidation-resistant SiC--Si composite material, comprising the steps of: adding a nitriding accelerator to a surface of a SiC compact; In the process of sintering the SiC while impregnating and filling the pores with the Si melt and then cooling it in a nitrogen gas atmosphere at a temperature equal to or higher than the melting point of the metal Si in a state of being in contact with the Si, The structure is characterized in that the Si melt impregnated and filled is kept at a temperature range of 1400 ° C. for a predetermined time to solidify and nitridate Si in the surface layer.

【0012】[0012]

【発明の実施の形態】SiC成形体は、SiC粉末にメ
チルセルロースやグリセリンなどの有機バインダー及び
水を加えて混練し、混練物を所望形状に加圧成形や鋳込
成形などにより成形したのち、加熱乾燥して作製され
る。
BEST MODE FOR CARRYING OUT THE INVENTION A SiC compact is kneaded by adding an organic binder such as methylcellulose or glycerin and water to SiC powder, molding the kneaded product into a desired shape by pressure molding or casting, and then heating. It is made by drying.

【0013】このSiC成形体は、その表面に窒化促進
剤が添加被着される。窒化促進剤はSiの窒化反応を促
進し、3Si+2N2 →Si3 4 の反応を生起するた
めの反応温度の低下に機能するもので、Ca化合物やF
e化合物などが用いられる。Ca化合物としては、例え
ば塩化カルシウムや酢酸カルシウムなどの水溶性の塩類
を用いることが好ましいが、水溶解度の小さい硫酸カル
シウム、炭酸カルシウムなどのCa塩も水中に分散させ
て水懸濁液として用いることができる。同様にFe化合
物としては塩化物、硫酸塩などが用いられるが、酸化鉄
粉末を用いることもできる。
The SiC compact has a nitriding accelerator added and adhered to the surface thereof. The nitriding accelerator promotes the nitridation reaction of Si and functions to lower the reaction temperature for causing the reaction of 3Si + 2N 2 → Si 3 N 4.
e compound and the like are used. As the Ca compound, for example, water-soluble salts such as calcium chloride and calcium acetate are preferably used, but Ca salts such as calcium sulfate and calcium carbonate having low water solubility are also dispersed in water and used as an aqueous suspension. Can be. Similarly, chlorides, sulfates, and the like are used as the Fe compound, but iron oxide powder can also be used.

【0014】SiC成形体の表面に窒化促進剤を添加被
着する方法は、Ca化合物やFe化合物などの水溶液あ
るいは水懸濁液中にSiC成形体を浸漬したり、塗布し
たのち、加熱乾燥して被着することができる。あるい
は、これらの化合物の粉末を直接SiC成形体表面にま
ぶしたり、すり込む等の方法で被着することもできる。
なお、SiC成形体は嵩比重が2.2〜2.8程度のも
のが好ましい。嵩比重が2.2を下回ると気孔率が大き
くなるために含浸するSi量も多くなり、SiC−Si
複合材の耐クリープ性や耐摩耗性が低下する。一方、嵩
比重が2.8を越えるとSi融液の含浸後に残存する気
孔が多くなるために、SiC−Si複合材の強度特性や
耐酸化性の低下を招くこととなる。
A method of adding a nitriding accelerator to the surface of the SiC molded body is to immerse or apply the SiC molded body in an aqueous solution or a suspension of a Ca compound or an Fe compound, and then apply heat and dry. Can be applied. Alternatively, the powders of these compounds can be directly applied to the surface of the SiC molded body by a method such as dusting or rubbing.
The SiC molded body preferably has a bulk specific gravity of about 2.2 to 2.8. If the bulk specific gravity is less than 2.2, the porosity increases, so that the amount of Si impregnated also increases, and SiC-Si
The creep resistance and wear resistance of the composite material decrease. On the other hand, if the bulk specific gravity exceeds 2.8, the number of pores remaining after the impregnation with the Si melt increases, which results in a decrease in the strength characteristics and oxidation resistance of the SiC-Si composite material.

【0015】このようにして表面に窒化促進剤が添加被
着されたSiC成形体は、金属Siを接触させた状態、
例えばSiC成形体を金属Si粉末で被包した状態で窒
素ガス雰囲気中で金属Siの融点(1410℃)以上の
温度に加熱して熱処理し、SiC成形体を焼結するとと
もにSiC焼結体の気孔中にはSi融液が含浸、充填さ
れる。このようにしてSi融液が含浸、充填されたSi
C焼結体は、金属Siの融点以下の温度に冷却してSi
融液を固化することにより、SiC−Si複合材が作製
される。
[0015] The SiC molded body having the surface to which the nitriding accelerator has been added and deposited as described above is in a state where metal Si is in contact therewith.
For example, in a state in which the SiC molded body is covered with the metal Si powder, the SiC molded body is heated to a temperature equal to or higher than the melting point of metal Si (1410 ° C.) in a nitrogen gas atmosphere and heat-treated to sinter the SiC molded body. The pores are impregnated and filled with a Si melt. The Si melt impregnated and filled in this way
The C sintered body is cooled to a temperature below the melting point of metallic Si
By solidifying the melt, a SiC-Si composite material is produced.

【0016】本発明は、この冷却過程において、冷却温
度が1000〜1400℃の温度域における所定の温度
に一定時間保持することにより、SiC−Si複合材の
表層部に露出して存在するSiを窒化してSi3 4
転化させる点に特徴を有するものである。この場合、S
iC成形体表面に添加被着した窒化促進剤の作用によ
り、金属Siの融点を下回る温度において、円滑に窒化
反応を進行させることが可能となる。
According to the present invention, in the cooling step, by maintaining the cooling temperature at a predetermined temperature in a temperature range of 1000 to 1400 ° C. for a certain period of time, the Si present in the surface layer of the SiC—Si composite material is exposed. It is characterized in that it is converted into Si 3 N 4 by nitriding. In this case, S
By the action of the nitriding accelerator added to the surface of the iC compact, the nitriding reaction can smoothly proceed at a temperature lower than the melting point of metallic Si.

【0017】窒化反応を行う温度を1000〜1400
℃に設定する理由は、処理温度が1400℃を越える場
合には含浸充填したSi融液の固化が充分でないため
に、転化したSi3 4 の上面が再びSi融液で覆われ
るためであり、また1000℃を下回るとSiの窒化反
応が充分に進行しないためである。
The temperature at which the nitriding reaction is carried out is from 1000 to 1400
The reason for setting the temperature to ° C. is that if the processing temperature exceeds 1400 ° C., the solidified impregnated and filled Si melt is not sufficiently solidified, and the upper surface of the converted Si 3 N 4 is again covered with the Si melt. If the temperature is lower than 1000 ° C., the nitriding reaction of Si does not proceed sufficiently.

【0018】この場合、SiC−Si複合材の表層部に
形成されるSi3 4 の厚さは、酸素濃度が低いアクテ
ィブ酸化領域において、優れた耐酸化性能を付与するた
めに1μm 以上の厚さに形成することが好ましい。Si
3 4 の厚さは、窒素ガス雰囲気下で冷却する際に、窒
化反応を行うために保持する温度、及び、保持する時間
などを制御することにより、所定の厚さに調整すること
ができる。
In this case, the thickness of the Si 3 N 4 formed on the surface layer of the SiC—Si composite material is 1 μm or more in order to provide excellent oxidation resistance in the active oxidation region where the oxygen concentration is low. It is preferable to form it. Si
The thickness of 3 N 4, at the time of cooling under a nitrogen gas atmosphere, temperature holding for the nitriding reaction, and by controlling the time for holding can be adjusted to a predetermined thickness .

【0019】このようにして、本発明はSiC成形体に
加熱溶融した金属Si融液を含浸、充填してSiC−S
i複合材を製造する際に、その冷却過程を利用して窒素
ガス雰囲気下に熱処理することにより窒化反応を行っ
て、SiC−Si複合材の表層部に露出したSiをSi
3 4 に転化するものであるから、実質的に1回の熱処
理工程で効率よく耐酸化性SiC−Si複合材を製造す
ることができる。
As described above, the present invention impregnates and fills a SiC molded body with a melted metal Si melt heated and melted to form SiC-S
In manufacturing the i-composite, a nitriding reaction is performed by performing a heat treatment in a nitrogen gas atmosphere by utilizing the cooling process, and the Si exposed on the surface layer portion of the SiC-Si composite is converted to Si.
Since it is converted into 3 N 4 , an oxidation-resistant SiC—Si composite material can be efficiently manufactured in substantially one heat treatment step.

【0020】したがって、本発明によれば、電子部品や
セラミックス製品などを熱処理する焼成炉の部材をはじ
め、高温用の各種部材として好適に用いられ、特に酸素
濃度が低いアクティブ酸化領域で優れた耐久性を発揮す
る耐酸化性SiC−Si複合材を、高能率、低コスト
で、効率的に製造することが可能となる。
Therefore, according to the present invention, it is preferably used as various members for high temperatures, including members for a baking furnace for heat-treating electronic parts and ceramic products, and has excellent durability especially in an active oxidation region having a low oxygen concentration. It is possible to efficiently produce an oxidation-resistant SiC-Si composite material exhibiting high efficiency at high efficiency and at low cost.

【0021】[0021]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.

【0022】実施例1〜3、比較例1〜2 平均粒子径50μm のSiC粉末にメチルセルロース及
び水を加えて混練し、混練物を型に入れて加圧成形した
のち、120℃の温度で加熱乾燥して嵩比重が2.5の
SiC成形体を作製した。このSiC成形体を、窒化促
進剤として塩化カルシウムを用い、濃度5wt%の塩化カ
ルシウム水溶液中に浸漬したのち、120℃の温度で加
熱乾燥して、SiC成形体の全面に塩化カルシウムを添
加被着した。
Examples 1-3, Comparative Examples 1-2 Methyl cellulose and water were added to SiC powder having an average particle diameter of 50 μm and kneaded. The kneaded product was put into a mold, pressed and molded at a temperature of 120 ° C. After drying, a SiC molded body having a bulk specific gravity of 2.5 was produced. This SiC molded body was immersed in a 5 wt% aqueous solution of calcium chloride using calcium chloride as a nitriding accelerator, and then heated and dried at a temperature of 120 ° C., and calcium chloride was added to the entire surface of the SiC molded body. did.

【0023】このSiC成形体の上に金属Siを敷きつ
め、窒素ガス雰囲気中で2000℃の温度に加熱して金
属Siを溶融させ、SiC成形体を焼結するとともに焼
結の際に生じる気孔中に金属Siの融液を含浸、充填し
た。次いで、窒素ガス雰囲気中で冷却しながら、含浸、
充填したSi融液を固化するとともに、この冷却過程に
おいて、保持する温度及び時間を変えて窒化反応を起生
させ、表層部のSiを窒化してSi3 4 に転化した。
このようにして1回の熱処理により、表層部にSi3
4 が形成された、SiCが80wt%、Siが20wt%の
組成からなる縦横300mm、高さ100mmのさや形状の
SiC−Si複合材を製造した。
Metallic Si is laid on the SiC compact and heated to a temperature of 2000 ° C. in a nitrogen gas atmosphere to melt the metal Si, thereby sintering the SiC compact and forming pores generated during sintering. Was impregnated and filled with a melt of metallic Si. Then, while cooling in a nitrogen gas atmosphere, impregnation,
The filled Si melt was solidified, and in this cooling process, a nitriding reaction was caused by changing the holding temperature and time, and the surface layer Si was nitrided and converted to Si 3 N 4 .
By this way, the single heat treatment, the surface layer portion Si 3 N
4 is formed, SiC is 80 wt%, Si is produced aspect 300 mm, the SiC-Si composite sheath shape of height 100mm consisting 20 wt% of the composition.

【0024】実施例4 窒化促進剤として塩化カルシウムに代えて酸化鉄粉末を
用い、酸化鉄粉末を直接SiC成形体にすり込んだほか
は、実施例1と同一の方法によりSiC−Si複合材を
製造した。
Example 4 A SiC-Si composite material was produced in the same manner as in Example 1, except that iron oxide powder was used instead of calcium chloride as a nitriding accelerator and the iron oxide powder was directly rubbed into a SiC compact. did.

【0025】比較例3 冷却過程において、特定の温度に一定時間保持すること
なく、速やかに常温まで冷却したほかは、実施例1〜3
と同一の方法によりSiC−Si複合材を製造した。
COMPARATIVE EXAMPLE 3 In the cooling process, Examples 1 to 3 were repeated except that the temperature was kept at a specific temperature for a certain period of time and immediately cooled to room temperature.
A SiC-Si composite material was manufactured by the same method as in the above.

【0026】参考例 特願平11−66304号の方法と同じ方法によりSi
C−Si複合材を製造した。すなわち、平均粒子径50
μm のSiC粉末にメチルセルロース及び水を加えて混
練し、混練物を型に入れて加圧成形したのち120℃の
温度で加熱乾燥して、嵩比重が2.5のSiC成形体を
作製した。このSiC成形体の上に金属Siを敷きつ
め、アルゴンガス中で2000℃の温度に加熱して金属
Siを溶融させ、SiC成形体を焼結するとともに焼結
の際に生じる気孔中に金属Siの融液を含浸、充填し
た。次いで、冷却してSi融液を固化し、SiCが80
wt%、Siが20wt%の組成からなる縦横300mm、高
さ100mmのさや形状のSiC−Si複合材を作製し
た。このSiC−Si複合材を、塩化カルシウム水溶液
(濃度5wt%)に浸漬したのち取り出して120℃で加
熱乾燥し、次いで窒素ガス雰囲気中で1350℃の温度
で3時間熱処理した。このようにして表層面のSiをS
3 4 に転化したSiC−Si複合材を製造した。
Reference Example Si was obtained by the same method as that of Japanese Patent Application No. 11-66304.
A C-Si composite was produced. That is, the average particle diameter is 50
Methyl cellulose and water were added to the μm SiC powder and kneaded, and the kneaded product was put into a mold, pressed and heated and dried at a temperature of 120 ° C. to produce a SiC molded body having a bulk specific gravity of 2.5. Metal Si is spread over the SiC compact, heated to a temperature of 2000 ° C. in argon gas to melt the metal Si, and the SiC compact is sintered and the pores generated during sintering are filled with metal Si. The melt was impregnated and filled. Then, the mixture is cooled to solidify the Si melt.
A pod-shaped SiC-Si composite material having a composition of wt% and Si of 20 wt% and a length and width of 300 mm and a height of 100 mm was prepared. The SiC-Si composite material was immersed in an aqueous calcium chloride solution (concentration: 5 wt%), taken out, heated and dried at 120 ° C., and then heat-treated at 1350 ° C. for 3 hours in a nitrogen gas atmosphere. Thus, the surface Si is changed to S
The i 3 N SiC-Si composites was converted to 4 were prepared.

【0027】このようにして製造したSiC−Si複合
材について、下記の方法により耐酸化性能を評価した。
得られた結果を、製造条件と対比して表1に示した。
SiC−Si複合材を加熱炉に入れ、2 vol%の酸素を
含む窒素ガス雰囲気中1300℃の温度に1時間加熱し
た後の表面状態を目視観察した。SiC−Si複合材
を加熱炉に入れ、1 vol%の酸素を含む窒素ガス雰囲気
中1250℃の温度に加熱して1時間保持した後、放冷
して常温に冷却するという操作を繰り返し行って表面状
況を目視観察し、異常が発生するまでの繰り返し回数を
測定した。
The oxidation resistance of the SiC-Si composite thus manufactured was evaluated by the following method.
The results obtained are shown in Table 1 in comparison with the production conditions.
The SiC—Si composite material was placed in a heating furnace, and heated to 1300 ° C. for 1 hour in a nitrogen gas atmosphere containing 2 vol% of oxygen, and the surface state was visually observed. The operation of placing the SiC-Si composite material in a heating furnace, heating it to a temperature of 1250 ° C. in a nitrogen gas atmosphere containing 1 vol% of oxygen, holding it for 1 hour, and then allowing it to cool to room temperature is repeated. The surface condition was visually observed, and the number of repetitions until an abnormality occurred was measured.

【0028】[0028]

【表1】 (表注) *1 ; 塩化カルシウム水溶液(濃度5wt%)に浸漬処理
の有無 *2 ; 酸化鉄粉末の処理の有無 *3 ; ○…良好、×…生成物が多いことを示す。 *4 ; A… 500回以上、B… 50 回程度、C… 2〜3 回
程度を示す。 *5 ; SiC−Si複合材を作製後、塩化カルシウム水
溶液(濃度5wt%)に浸漬処理し、次いで窒素ガス雰囲
気中で加熱して窒化反応させた時の熱処理条件。
[Table 1] (Table note) * 1; Presence or absence of immersion treatment in calcium chloride aqueous solution (concentration 5 wt%) * 2; Presence or absence of treatment of iron oxide powder * 3; * 4: A: 500 times or more, B: about 50 times, C: about 2-3 times. * 5: Heat treatment conditions when a SiC-Si composite material is prepared, immersed in an aqueous solution of calcium chloride (concentration: 5 wt%), and then heated in a nitrogen gas atmosphere to cause a nitriding reaction.

【0029】表1の結果から、本発明で特定した製造条
件にしたがって製造した実施例1〜4のSiC−Si複
合材は、いずれかの製造条件を欠く比較例1〜3のSi
C−Si複合材に比べて、酸素濃度の低いアクティブ酸
化領域における耐酸化性能が優れていることが認められ
る。すなわち、冷却過程において窒化反応させる保持温
度が高い比較例1は含浸充填したSi融液の固化が充分
でないので、窒化反応により転化したSi3 4 の上面
が再びSi融液で覆われることになり耐酸化性が低くな
る。一方、保持温度が低い比較例2ではSiの窒化反応
が充分に進行しないために耐酸化性が低下し、また、窒
化反応が殆ど生起しない比較例3でも当然に耐酸化性が
低いことが判る。
From the results shown in Table 1, the SiC-Si composite materials of Examples 1 to 4 manufactured according to the manufacturing conditions specified in the present invention are the same as those of Comparative Examples 1 to 3 lacking any of the manufacturing conditions.
It is recognized that the oxidation resistance in the active oxidation region where the oxygen concentration is low is superior to that of the C-Si composite material. That is, in the comparative example 1 in which the holding temperature at which the nitridation reaction is performed during the cooling process is high, the solidification of the impregnated and filled Si melt is insufficient, so that the upper surface of the Si 3 N 4 converted by the nitridation reaction is again covered with the Si melt. And the oxidation resistance is lowered. On the other hand, in Comparative Example 2 where the holding temperature is low, the oxidation resistance is lowered because the nitridation reaction of Si does not proceed sufficiently, and in Comparative Example 3 where the nitridation reaction hardly occurs, the oxidation resistance is naturally low. .

【0030】そして、SiC成形体にSiを溶融含浸し
てSiC−Si複合材を作製する際の熱処理と、SiC
−Si複合材の表層部のSiを窒化してSi3 4 に転
化する際の熱処理と、2回の熱処理を行った参考例のS
iC−Si複合材に比較しても耐酸化性が劣るものでな
く、製造工程の簡略化および熱エネルギーの消費量の低
減化が図られていることが判る。なお、形成したSi3
4 の厚さが薄い実施例3ではやや耐酸化性が低下傾向
にあることが認められる。
Then, a heat treatment for producing a SiC—Si composite material by melting and impregnating Si into the SiC compact,
Heat treatment for nitriding and converting Si in the surface layer portion of the Si-Si composite material to Si 3 N 4 , and S of the reference example in which the heat treatment was performed twice.
It can be seen that the oxidation resistance is not inferior to that of the iC-Si composite material, and that the manufacturing process is simplified and the heat energy consumption is reduced. The formed Si 3
In Example 3, where the thickness of N 4 is small, it is recognized that the oxidation resistance tends to be slightly lowered.

【0031】[0031]

【発明の効果】以上のとおり、本発明の耐酸化性SiC
−Si複合材の製造方法によれば、SiC成形体に加熱
溶融したSi融液を含浸、充填してSiC−Si複合材
を作製したのち、その冷却過程を利用して窒化反応を行
い、表層部のSiをSi3 4に転化することにより、
実質的に1回の熱処理工程で効率よく耐酸化性SiC−
Si複合材を製造することができる。また、熱処理はS
iの融点以下の温度で行うので、熱処理時にSiの流出
や吹き出しによるSiC−Si複合材表層部の空隙発生
が防止され、耐酸化性に優れ、特に酸素濃度の低いアク
ティブ酸化領域において優れた耐久性を備えたSiC−
Si複合材を高能率、低コストで、効率よく製造するこ
とが可能となる。したがって、電子部品やセラミックス
製品などを熱処理する焼成炉の部材をはじめ、高温用の
各種部材として好適に用いられる耐酸化性SiC−Si
複合材の製造方法として極めて有用である。
As described above, the oxidation-resistant SiC of the present invention is used.
According to the method for producing a Si composite material, a SiC molded body is impregnated and filled with a Si melt that has been heated and melted to produce a SiC—Si composite material, and then a nitriding reaction is performed by utilizing the cooling process to form a surface layer. By converting part of Si to Si 3 N 4 ,
Efficiently oxidation-resistant SiC—substantially in one heat treatment step
A Si composite can be manufactured. The heat treatment is S
Since the heat treatment is performed at a temperature equal to or lower than the melting point of i, the generation of voids in the surface layer portion of the SiC-Si composite material due to the outflow or blowing of Si during heat treatment is prevented, the oxidation resistance is excellent, and the durability is excellent particularly in the active oxidation region where the oxygen concentration is low. SiC-
It is possible to efficiently produce a Si composite material at high efficiency and at low cost. Therefore, oxidation-resistant SiC-Si, which is preferably used as various members for high temperatures, including members of a baking furnace for heat-treating electronic components and ceramic products, etc.
It is extremely useful as a method for producing a composite material.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 SiC成形体の表面に窒化促進剤を添加
被着したのち、金属Siと接触させた状態で窒素ガス雰
囲気中金属Siの融点以上の温度で熱処理して、SiC
を焼結するとともにその気孔中にSi融液を含浸、充填
し、次いで冷却する過程において、1000〜1400
℃の温度域に所定時間保持して含浸、充填したSi融液
を固化するとともに表層部のSiを窒化することを特徴
とする耐酸化性SiC−Si複合材の製造方法。
1. A method comprising: adding a nitriding accelerator to the surface of a SiC molded body; applying a heat treatment at a temperature equal to or higher than the melting point of the metal Si in a nitrogen gas atmosphere in a state of contact with the metal Si;
While sintering, impregnating and filling the pores with a Si melt, and then cooling,
A method for producing an oxidation-resistant SiC-Si composite material, comprising holding a Si melt impregnated and filled while maintaining a temperature range of ° C for a predetermined time and nitriding Si in a surface layer portion.
【請求項2】 窒化促進剤がCa化合物もしくはFe化
合物である、請求項1記載の耐酸化性SiC−Si複合
材の製造方法。
2. The method for producing an oxidation-resistant SiC—Si composite according to claim 1, wherein the nitriding accelerator is a Ca compound or an Fe compound.
【請求項3】 表層部のSiを窒化して形成したSi3
4 の厚さが1μm以上である、請求項1又は2記載の
耐酸化性SiC−Si複合材の製造方法。
3. Si 3 formed by nitriding Si on the surface layer
3. The method for producing an oxidation-resistant SiC-Si composite according to claim 1, wherein the thickness of N 4 is 1 μm or more.
JP24698599A 1999-09-01 1999-09-01 Production of anti-oxidant silicon carbide-silicon composite material Withdrawn JP2001072481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24698599A JP2001072481A (en) 1999-09-01 1999-09-01 Production of anti-oxidant silicon carbide-silicon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24698599A JP2001072481A (en) 1999-09-01 1999-09-01 Production of anti-oxidant silicon carbide-silicon composite material

Publications (1)

Publication Number Publication Date
JP2001072481A true JP2001072481A (en) 2001-03-21

Family

ID=17156665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24698599A Withdrawn JP2001072481A (en) 1999-09-01 1999-09-01 Production of anti-oxidant silicon carbide-silicon composite material

Country Status (1)

Country Link
JP (1) JP2001072481A (en)

Similar Documents

Publication Publication Date Title
JP4889843B2 (en) Porous material infiltration method
FI90055B (en) FOERFARANDE FOER FRAMSTAELLNING AV FORMADE KERAMISKA SAMMANSATTA STRUKTURER
JPH01215935A (en) Production of metal matrix composite material using barrier wall
JP2005533929A (en) Improved ceramics / metal materials and methods for their production
JP2551949B2 (en) Method for producing ceramic composite
HU204239B (en) Process for producing self-carrying ceramic products of composed structure first of all for large series
WO2017022012A1 (en) Aluminum-silicon-carbide composite and method of manufacturing same
JP5340864B2 (en) SiC / Al composite material and method for producing the same
KR0121458B1 (en) Inverse shape replication method for forming metal matrix composite bodies
JP2001072481A (en) Production of anti-oxidant silicon carbide-silicon composite material
JP3830733B2 (en) Particle-dispersed silicon material and manufacturing method thereof
JP2000264762A (en) Production of oxidation-resistant silicon carbide-silicon composite material
JPH10253259A (en) Material of roller for roller hearth furnace and manufacture thereof
Ramasesha et al. Reactive infiltration of aluminum into molybdenum disilicide preform
JP4166350B2 (en) Oxidation-resistant boron carbide-silicon carbide composite carbon material, sintering crucible using the same, vacuum evaporation crucible, and high-temperature firing jig
JP6452969B2 (en) Aluminum-silicon carbide composite and method for producing the same
JPH10310474A (en) Silicon carbide-silicon composite ceramic material
JPH0571541B2 (en)
KR100610821B1 (en) Surface treatment method of Carbon Melting pot for Liquid Metal Ingot and Slip composite
JPH01115888A (en) Production of jig for producing semiconductor
KR101627461B1 (en) a manufacturing method of aluminum composite reinforced by aluminum nitride and an aluminum composite manufactured by the same method
JPS60251175A (en) Manufacture of formed body made from silicon carbide and carbon
JP4167318B2 (en) Method for producing metal-ceramic composite material
JP4658523B2 (en) Oxidation-resistant composite material
JP2000154080A (en) Silicon carbide composite body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107