JP2001072428A - Synthetic quartz glass and its evaluation - Google Patents

Synthetic quartz glass and its evaluation

Info

Publication number
JP2001072428A
JP2001072428A JP24928699A JP24928699A JP2001072428A JP 2001072428 A JP2001072428 A JP 2001072428A JP 24928699 A JP24928699 A JP 24928699A JP 24928699 A JP24928699 A JP 24928699A JP 2001072428 A JP2001072428 A JP 2001072428A
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
fluorescent emission
intensity
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24928699A
Other languages
Japanese (ja)
Other versions
JP2001072428A5 (en
JP4772172B2 (en
Inventor
Yorisuke Ikuta
順亮 生田
Shinya Kikukawa
信也 菊川
Akio Masui
暁夫 増井
Kensho Shimodaira
憲昭 下平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP24928699A priority Critical patent/JP4772172B2/en
Publication of JP2001072428A publication Critical patent/JP2001072428A/en
Publication of JP2001072428A5 publication Critical patent/JP2001072428A5/ja
Application granted granted Critical
Publication of JP4772172B2 publication Critical patent/JP4772172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To simply and quantitatively carry out an evaluation by irradiating synthetic quartz glass with ultraviolet rays in a specific wavelength region, determining the ratio of the fluorescent emission intensity to the produced scattered light intensity and evaluating the fluorescent emission intensity from the resultant ratio. SOLUTION: A synthetic quartz glass used for light in a wavelength region ranging from the ultraviolet region to the vacuum ulttaviolet region is irradiated with ultraviolet rays in a wavelength region of 150-400 nm to determine the ratio R of the fluorescent emission intensity to the scattered light intensity produced from the synthetic quartz glass by the ultraviolet irradiation. When the R is <=0.01, preferably <=0.001, the synthetic quartz glass is evaluated as suitable for an optical member. Furthermore, the OH group concentration in the synthetic quartz glass is <=500 ppm from the viewpoint of suppressing the red fluorescent emission and the total concentration of alkali metals, alkaline earth metals and transition metals is <=5 ppb from the viewpoint of suppressing the green fluorescent emission and yellow fluorescent emission. The oxygen excessive type defects are not contained at all from the viewpoint of suppressing the red fluorescent emission and the oxygen deficient type defects are substantially uncontained from the viewpoint of suppressing the blue fluorescent emission.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、合成石英ガラスと
その評価方法に関する。特に、150〜400nmまで
の波長域にある紫外光を光源とする装置の光学部材とし
て用いられる合成石英ガラスとその評価方法に関する。
[0001] The present invention relates to a synthetic quartz glass and a method for evaluating the same. In particular, the present invention relates to a synthetic quartz glass used as an optical member of a device using ultraviolet light in a wavelength range of 150 to 400 nm as a light source, and a method for evaluating the same.

【0002】[0002]

【従来の技術】合成石英ガラスは、近赤外域から真空紫
外域までの広範囲の波長域において透明な材料であるこ
と、熱膨張係数がきわめて小さく寸法安定性に優れてい
ること、金属不純物をほとんど含有しておらず高純度で
あることなどの特徴がある。そのため、従来のg線(波
長436nm)、i線(波長365nm)を光源として
用いた光学装置の光学部材には合成石英ガラスが主に用
いられてきた。
2. Description of the Related Art Synthetic quartz glass is a transparent material in a wide wavelength range from the near-infrared region to the vacuum ultraviolet region, has a very small thermal expansion coefficient, has excellent dimensional stability, and has almost no metallic impurities. It has features such as high purity without containing. Therefore, synthetic quartz glass has been mainly used as an optical member of an optical device using a conventional g-line (wavelength: 436 nm) and i-line (wavelength: 365 nm) as a light source.

【0003】近年、LSIの高集積化に伴い、ウェハ上
に集積回路パターンを描画する光リソグラフィ技術にお
いて、より線幅の短い微細な描画技術が要求されてお
り、その対応として露光光源の短波長化が進められてき
ている。たとえばリソグラフィ用ステッパの光源として
は、KrFエキシマレーザ(波長248nm)、ArF
エキシマレーザ(波長193nm)が用いられつつあ
り、さらに将来的にはF2レーザ(波長157nm)が
用いられようとしている。短波長の紫外線を露光光源と
する装置の光学部材として用いられる合成石英ガラスに
は、紫外線照射時の蛍光発光強度が小さいことが要求さ
れる。
In recent years, with the increasing integration of LSIs, a finer drawing technique with a smaller line width is required in an optical lithography technique for drawing an integrated circuit pattern on a wafer. Is being promoted. For example, KrF excimer laser (wavelength 248 nm), ArF
There excimer laser while (wavelength 193 nm) is used, even more in the future is about to be used F 2 laser (wavelength 157 nm) is. Synthetic quartz glass used as an optical member of an apparatus using short-wavelength ultraviolet light as an exposure light source is required to have low fluorescence emission intensity upon irradiation with ultraviolet light.

【0004】しかし、蛍光発光強度については、蛍光を
暗室内で目視で判定する評価方法(特開平1−1896
54)が提案されているが、この方法では定量性に欠け
る問題点があった。またX線を照射して260nmにピ
ークを持つ吸収帯の強度から650nmにピークを持つ
赤色蛍光強度を判定する評価方法(特開平7−4324
9)が提案されているが、この方法では650nmにピ
ークを持つ蛍光の強度しか評価できず、他の波長にピー
クを持つ蛍光の強度が評価できない問題点があった。
However, regarding the fluorescence emission intensity, an evaluation method for visually determining the fluorescence in a dark room (JP-A-1-18996).
54) has been proposed, but this method has a problem of lack of quantitativeness. An evaluation method for determining the red fluorescence intensity having a peak at 650 nm from the intensity of an absorption band having a peak at 260 nm by irradiating X-rays (JP-A-7-4324)
Although 9) has been proposed, this method has a problem that only the intensity of the fluorescence having a peak at 650 nm can be evaluated, and the intensity of the fluorescence having a peak at another wavelength cannot be evaluated.

【0005】[0005]

【発明が解決しようとする課題】本発明は、合成石英ガ
ラスに紫外線(特に150〜400nmの波長域にある
紫外線)を照射した時に生ずる蛍光発光が充分に抑えら
れているか否かを、該合成石英ガラスを実際に使用する
条件に近い条件で、簡便かつ定量的に判定できる合成石
英ガラスの評価方法の提供を目的とする。本発明は、ま
た、紫外線(特に150〜400nmの波長域にある紫
外線)照射時の蛍光発光が抑えられた合成石英ガラスの
提供を目的とする。
An object of the present invention is to determine whether or not the fluorescence emitted when a synthetic quartz glass is irradiated with ultraviolet rays (in particular, ultraviolet rays in a wavelength range of 150 to 400 nm) is sufficiently suppressed. It is an object of the present invention to provide a method for evaluating synthetic quartz glass that can be easily and quantitatively determined under conditions close to those in which quartz glass is actually used. Another object of the present invention is to provide a synthetic quartz glass in which fluorescence emission upon irradiation with ultraviolet rays (particularly, ultraviolet rays in a wavelength range of 150 to 400 nm) is suppressed.

【0006】[0006]

【課題を解決するための手段】本発明は、紫外域から真
空紫外域までの波長域の光に使用される合成石英ガラス
の評価方法であって、合成石英ガラスに150〜400
nmの波長域にある紫外線を照射し、紫外線照射により
合成石英ガラスから生じる散乱光強度に対する蛍光発光
強度の比を求め、その比から蛍光発光強度を評価する合
成石英ガラスの評価方法を提供する。本発明は、また、
前記評価方法において散乱光強度に対する蛍光発光強度
の比(以下、単に強度比Rという)が0.01以下であ
る合成石英ガラスを提供する。
SUMMARY OF THE INVENTION The present invention relates to a method for evaluating synthetic quartz glass used for light in a wavelength range from the ultraviolet region to the vacuum ultraviolet region.
The present invention provides an evaluation method for synthetic quartz glass in which ultraviolet light in a wavelength region of nm is irradiated, a ratio of a fluorescence emission intensity to a scattered light intensity generated from the synthetic quartz glass by the ultraviolet irradiation is determined, and the fluorescence emission intensity is evaluated from the ratio. The present invention also provides
The present invention provides a synthetic quartz glass having a ratio of fluorescence emission intensity to scattered light intensity (hereinafter, simply referred to as intensity ratio R) of 0.01 or less in the above evaluation method.

【0007】例えば、合成石英ガラスを半導体露光装置
のレンズ用材料として用いた場合、合成石英ガラスに蛍
光が発生すると、レジストが感光され、得られる微細パ
ターンの寸法精度(解像度)が低下する問題が生じる
が、強度比Rが0.01以下であれば、合成石英ガラス
から生じる蛍光発光強度は充分に小さく、当該問題は生
じない。特に、強度比Rが0.001以下であることが
好ましい。本発明の合成石英ガラスは、特に150〜4
00nmの波長域にある紫外線照射時の蛍光発光が抑え
られており、150〜400nmまでの波長域にある紫
外光を光源とする装置の光学部材として好適である。
For example, when synthetic quartz glass is used as a material for a lens of a semiconductor exposure apparatus, when fluorescence is generated in the synthetic quartz glass, the resist is exposed and the dimensional accuracy (resolution) of the obtained fine pattern is reduced. However, if the intensity ratio R is 0.01 or less, the fluorescence emission intensity generated from the synthetic quartz glass is sufficiently small, and the problem does not occur. In particular, the intensity ratio R is preferably 0.001 or less. The synthetic quartz glass of the present invention is preferably
Fluorescence emission upon irradiation with ultraviolet light in the wavelength range of 00 nm is suppressed, and it is suitable as an optical member of a device that uses ultraviolet light in the wavelength range of 150 to 400 nm as a light source.

【0008】150〜400nmまでの波長域にある紫
外光としては、エキシマレーザ(XeCl:308n
m、KrF:248nm、ArF:193nm)、F2
レーザ(157nm)、低圧水銀ランプ(185n
m)、エキシマランプ(XeXe:172nm)、重水
素ランプなどが挙げられ、用途に応じて選択できる。ま
た、本発明の合成石英ガラスが適用される光学部材とし
ては、レンズ、プリズム、窓材、フォトマスクなどが挙
げられる。
As the ultraviolet light in the wavelength range of 150 to 400 nm, an excimer laser (XeCl: 308n) is used.
m, KrF: 248 nm, ArF: 193 nm), F 2
Laser (157nm), low pressure mercury lamp (185n)
m), an excimer lamp (XeXe: 172 nm), a deuterium lamp and the like, which can be selected according to the application. Examples of the optical member to which the synthetic quartz glass of the present invention is applied include a lens, a prism, a window material, and a photomask.

【0009】本発明の合成石英ガラスのOH基濃度は、
赤色蛍光発光(650nmを中心とする蛍光発光)を抑
える観点から、500ppm以下であることが好まし
い。さらに、緑色蛍光発光および黄色蛍光発光(500
〜600nmを中心とする蛍光発光)を抑える観点か
ら、本発明の合成石英ガラスにおけるアルカリ金属(特
にNa)、アルカリ土類金属(特にMg、Ca)および
遷移金属(特にFe、Cr、V、Mn、Cu、Ni)の
合計濃度(不純物の合計濃度)は5ppb以下であるこ
とが好ましい。
The OH group concentration of the synthetic quartz glass of the present invention is:
From the viewpoint of suppressing red fluorescence emission (fluorescence emission centering on 650 nm), the content is preferably 500 ppm or less. Further, green fluorescent light and yellow fluorescent light (500
From the viewpoint of suppressing fluorescence emission centering on the wavelength of about 600 nm, alkali metals (particularly Na), alkaline earth metals (particularly Mg, Ca) and transition metals (particularly Fe, Cr, V, Mn) in the synthetic quartz glass of the present invention. , Cu, Ni) (total concentration of impurities) is preferably 5 ppb or less.

【0010】また、本発明の合成石英ガラスは、赤色蛍
光発光を抑える観点から、酸素過剰型欠陥を実質的に含
まないことが好ましく、青色蛍光発光(288nmおよ
び458nmを中心とする蛍光発光)を抑える観点か
ら、酸素欠乏型欠陥を実質的に含まないことが好まし
い。
From the viewpoint of suppressing red fluorescence emission, the synthetic quartz glass of the present invention preferably does not substantially contain oxygen-excess type defects, and emits blue fluorescence emission (fluorescence emission mainly at 288 nm and 458 nm). From the viewpoint of suppression, it is preferable that oxygen-deficient defects are not substantially contained.

【0011】酸素欠乏型欠陥とは、≡Si−Si≡結合
を意味し、該欠陥の濃度は163nmにおける吸収強度
より求められる(Phys.Rev.,B38,127
72(1988))。酸素過剰型欠陥とは、≡Si−O
−O−Si≡結合を意味し、該欠陥の濃度は、合成石英
ガラス(10mm厚)を、水素ガス100%、1気圧、
900℃、24時間の条件で熱処理し、増加したOH基
濃度、すなわち、≡Si−O−O−Si≡+H2→2≡
SiOHから求められる。
The oxygen-deficient defect means a {Si-Si} bond, and the concentration of the defect is determined from the absorption intensity at 163 nm (Phys. Rev., B38, 127).
72 (1988)). Oxygen-excess type defects are ≡Si—O
-O-Si} bond, and the concentration of the defect is obtained by synthesizing synthetic quartz glass (10 mm thick) with 100% hydrogen gas, 1 atm,
Heat treatment was performed at 900 ° C. for 24 hours to increase the OH group concentration, that is, {Si—O—O—Si} + H 22 }.
Determined from SiOH.

【0012】酸素欠乏型欠陥を実質的に含まないとは前
記方法による検出限界濃度以下、すなわち、5×1016
個/cm3未満、酸素過剰型欠陥を実質的に含まないと
は前記方法による検出限界濃度以下、すなわち、2×1
17個/cm3未満であることを意味する。
The term "substantially free from oxygen-deficient defects" means that the concentration is lower than the detection limit concentration by the above method, that is, 5 × 10 16.
Less than the number of defects / cm 3 and containing substantially no oxygen-excess type defects are below the detection limit concentration by the above method, that is, 2 × 1
0 17 pieces / cm 3 .

【0013】[0013]

【実施例】以下、例を挙げてより具体的に説明するが、
本発明はこれらに限定されない。
The present invention will be described more specifically with reference to the following examples.
The present invention is not limited to these.

【0014】公知の方法により四塩化ケイ素を酸水素火
炎中で加水分解させて合成石英ガラスを製造し、表1に
示すOH基濃度、酸素欠乏型欠陥濃度、酸素過剰型欠陥
濃度のものを準備した。
According to a known method, silicon tetrachloride is hydrolyzed in an oxyhydrogen flame to produce a synthetic quartz glass, and OH group concentration, oxygen deficiency type defect concentration and oxygen excess type defect concentration shown in Table 1 are prepared. did.

【0015】OH基濃度は、赤外分光光度計による測定
を行い、2.7μm波長での吸収ピークからOH基濃度
を求めた(Cer.Bull.,55(5),524
(1976))。不純物濃度はICP−Massにより
分析した。なお、例1〜9の不純物の合計濃度は全て検
出限界以下(3ppb以下)であり、例10〜11の不
純物濃度(ppb)は表2のとおりである。酸素欠乏型
欠陥の濃度は、163nmにおける吸収強度より求めた
(Phys.Rev.,B38,12772(198
8))。酸素過剰型欠陥の濃度は、合成石英ガラス(1
0mm厚み)を水素ガス100%、1気圧、900℃、
24時間の熱処理を行い、増加したOH基濃度から求め
た。
The OH group concentration was measured by an infrared spectrophotometer, and the OH group concentration was determined from the absorption peak at a wavelength of 2.7 μm (Cer. Bull., 55 (5), 524).
(1976)). The impurity concentration was analyzed by ICP-Mass. The total concentration of impurities in Examples 1 to 9 is all below the detection limit (3 ppb or less), and the impurity concentrations (ppb) in Examples 10 to 11 are as shown in Table 2. The concentration of oxygen-deficient defects was determined from the absorption intensity at 163 nm (Phys. Rev., B38, 12772 (198).
8)). The concentration of oxygen-excess type defects is determined by the synthetic quartz glass (1
0 mm thickness) with 100% hydrogen gas, 1 atm, 900 ° C,
Heat treatment was performed for 24 hours, and the value was determined from the increased OH group concentration.

【0016】得られた合成石英ガラスから30mm×4
0mm×10mmの評価用試料を切り出し、30mm×
40mmの2面および40mm×10mmの2面を鏡面
研磨した。この試料に対して、40mm×10mmの面
にマルチチャンネルフォトダイオードをセットし、30
mm×40mmの面に垂直な方向からKrFエキシマレ
ーザ(エネルギー密度100mJ/cm2/puls
e、周波数300Hz)を照射し、試料から生じる最も
強い蛍光発光の中心波長(蛍光発光中心波長)、該波長
における蛍光発光強度、散乱光強度をそれぞれ測定し、
散乱光強度に対する蛍光発光強度の比(強度比R)を求
めた。図1に評価方法を示す概略図を示す。また、結果
を表3に示す。
From the obtained synthetic quartz glass, 30 mm × 4
A sample for evaluation of 0 mm x 10 mm was cut out and 30 mm x
Two surfaces of 40 mm and two surfaces of 40 mm × 10 mm were mirror-polished. For this sample, a multi-channel photodiode was set on a 40 mm × 10 mm surface, and 30
KrF excimer laser (energy density 100 mJ / cm 2 / pulss)
e, frequency 300 Hz), and measure the center wavelength of the strongest fluorescence emission from the sample (fluorescence emission center wavelength), the fluorescence emission intensity at this wavelength, and the scattered light intensity.
The ratio of the fluorescence emission intensity to the scattered light intensity (intensity ratio R) was determined. FIG. 1 is a schematic diagram showing the evaluation method. Table 3 shows the results.

【0017】例7〜9の強度比Rは0.01を超えてお
り、蛍光強度が比較的大きく、レジストの感度特性に依
存するが、解像度に悪影響を与える場合がある一方で、
例1〜6および例10〜11の強度比は0.01以下で
あり、蛍光強度が充分に小さく、解像度にはほとんど影
響を与えない。特に、例1、2、3、10の強度比は
0.001以下でありきわめて良好な結果となってい
る。
In Examples 7 to 9, the intensity ratio R exceeds 0.01, the fluorescence intensity is relatively high, and depends on the sensitivity characteristics of the resist.
The intensity ratio of Examples 1 to 6 and Examples 10 to 11 is 0.01 or less, the fluorescence intensity is sufficiently small, and the resolution is hardly affected. In particular, the intensity ratio of Examples 1, 2, 3, and 10 was 0.001 or less, which is an extremely good result.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【発明の効果】本発明の評価方法によれば、紫外線(特
に150〜400nmの波長域にある紫外線)を照射し
た時に生ずる蛍光発光が充分に抑えられたているか否か
を、該合成石英ガラスを実際に使用する条件に近い条件
で、簡便かつ定量的に判定できる。また、本発明によれ
ば、150〜400nmの波長域にある紫外線を照射し
た時でも蛍光発光が抑えられた合成石英ガラスを容易に
得ることができる。
According to the evaluation method of the present invention, the synthetic quartz glass is used to determine whether or not the fluorescent light emission caused by irradiation with ultraviolet rays (particularly, ultraviolet rays having a wavelength in the range of 150 to 400 nm) is sufficiently suppressed. Can be easily and quantitatively determined under conditions close to those actually used. Further, according to the present invention, it is possible to easily obtain a synthetic quartz glass in which fluorescence is suppressed even when irradiated with ultraviolet rays in a wavelength range of 150 to 400 nm.

【図面の簡単な説明】[Brief description of the drawings]

【図1】蛍光発光強度の評価方法を示す概略図FIG. 1 is a schematic diagram showing a method for evaluating fluorescence emission intensity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下平 憲昭 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 Fターム(参考) 4G014 AH15 4G062 AA04 BB02 CC06 MM02  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Noriaki Shimohira 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture F-term in Asahi Glass Co., Ltd. 4G014 AH15 4G062 AA04 BB02 CC06 MM02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】紫外域から真空紫外域までの波長域の光に
使用される合成石英ガラスの評価方法であって、合成石
英ガラスに150〜400nmの波長域にある紫外線を
照射し、紫外線照射により合成石英ガラスから生じる散
乱光強度に対する蛍光発光強度の比を求め、その比から
蛍光発光強度を評価する合成石英ガラスの評価方法。
1. A method for evaluating a synthetic quartz glass used for light in a wavelength range from an ultraviolet region to a vacuum ultraviolet region, comprising irradiating the synthetic quartz glass with ultraviolet light having a wavelength range of 150 to 400 nm. A method for evaluating a synthetic quartz glass in which a ratio of a fluorescence emission intensity to a scattered light intensity generated from a synthetic quartz glass is obtained by using the ratio, and the fluorescence emission intensity is evaluated from the ratio.
【請求項2】請求項1に記載の評価方法において散乱光
強度に対する蛍光発光強度の比が0.01以下である合
成石英ガラス。
2. The synthetic quartz glass according to claim 1, wherein the ratio of the fluorescence emission intensity to the scattered light intensity is 0.01 or less.
【請求項3】合成石英ガラス中のOH基濃度が500p
pm以下であり、アルカリ金属、アルカリ土類金属およ
び遷移金属の合計濃度が5ppb以下であり、かつ酸素
欠乏型欠陥および酸素過剰型欠陥を実質的に含まない請
求項2に記載の合成石英ガラス。
3. The synthetic quartz glass has an OH group concentration of 500 p.
The synthetic quartz glass according to claim 2, which is not more than pm, the total concentration of alkali metal, alkaline earth metal and transition metal is not more than 5 ppb, and is substantially free of oxygen-deficient defects and oxygen-excess defects.
JP24928699A 1999-09-02 1999-09-02 Method for evaluating synthetic quartz glass Expired - Fee Related JP4772172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24928699A JP4772172B2 (en) 1999-09-02 1999-09-02 Method for evaluating synthetic quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24928699A JP4772172B2 (en) 1999-09-02 1999-09-02 Method for evaluating synthetic quartz glass

Publications (3)

Publication Number Publication Date
JP2001072428A true JP2001072428A (en) 2001-03-21
JP2001072428A5 JP2001072428A5 (en) 2005-05-12
JP4772172B2 JP4772172B2 (en) 2011-09-14

Family

ID=17190719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24928699A Expired - Fee Related JP4772172B2 (en) 1999-09-02 1999-09-02 Method for evaluating synthetic quartz glass

Country Status (1)

Country Link
JP (1) JP4772172B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003080526A1 (en) * 2002-03-27 2003-10-02 Japan Science And Technology Agency Synthetic quartz glass
JP2007106663A (en) * 2005-09-15 2007-04-26 Toshiba Ceramics Co Ltd Method for producing silica glass
JP2012197220A (en) * 2005-03-01 2012-10-18 Nikon Corp Method for inspecting synthetic quartz glass molded product, method for inspecting synthetic quartz glass member, and method for manufacturing the synthetic quartz glass member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003080526A1 (en) * 2002-03-27 2003-10-02 Japan Science And Technology Agency Synthetic quartz glass
JP2003286040A (en) * 2002-03-27 2003-10-07 Japan Science & Technology Corp Synthetic quartz glass
JP2012197220A (en) * 2005-03-01 2012-10-18 Nikon Corp Method for inspecting synthetic quartz glass molded product, method for inspecting synthetic quartz glass member, and method for manufacturing the synthetic quartz glass member
US8539793B2 (en) 2005-03-01 2013-09-24 Nikon Corporation Method of molding synthetic silica glass molded body
US8679994B2 (en) 2005-03-01 2014-03-25 Nikon Corporation Method of inspecting synthetic silicia glass molded body
JP2007106663A (en) * 2005-09-15 2007-04-26 Toshiba Ceramics Co Ltd Method for producing silica glass

Also Published As

Publication number Publication date
JP4772172B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
KR100298167B1 (en) Method for manufacturing silica glass for vacuum ultraviolet wavelength light ray, and the silica glass and optical member manufactured thereby
US7491475B2 (en) Photomask substrate made of synthetic quartz glass and photomask
US7368403B2 (en) Synthetic quartz glass for optical member, projection exposure apparatus and projection exposure method
JP4772172B2 (en) Method for evaluating synthetic quartz glass
JP3531870B2 (en) Synthetic quartz glass
JP4700787B2 (en) Synthetic quartz glass and manufacturing method thereof
JP4151109B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP4051805B2 (en) Exposure apparatus and photomask
JP3834114B2 (en) Test method of optical material for excimer laser
JP2001311801A (en) Synthetic quartz glass
JP4228493B2 (en) Synthetic quartz glass
JP2001302275A (en) Optical member made from synthetic quartz glass
JPH01189654A (en) Method for inspecting synthetic quartz glass
JP2652847B2 (en) Optical system member for laser beam and optical system member for lithographic apparatus
JPH0825773B2 (en) Manufacturing body of laser optical system
JP3245589B2 (en) Laser exposure equipment for lithography
JP3266691B2 (en) Inspection method for optical materials for excimer laser
JPH01167258A (en) Element assembly of laser optical system
JP2002220253A (en) Synthetic quartz glass and method of manufacturing it
JP3187735B2 (en) Laser exposure equipment for lithography
JPH08104532A (en) Heat treating method of quartz glass
JP2003321230A (en) Synthetic quartz glass for optical member
JPH07291644A (en) Quartz glass member and method for evaluating the same
JPH0743249A (en) Method for evaluating synthetic quartz glass

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080811

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081010

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees