JP2001072032A - Pressure-proof polyester bottle - Google Patents

Pressure-proof polyester bottle

Info

Publication number
JP2001072032A
JP2001072032A JP25019699A JP25019699A JP2001072032A JP 2001072032 A JP2001072032 A JP 2001072032A JP 25019699 A JP25019699 A JP 25019699A JP 25019699 A JP25019699 A JP 25019699A JP 2001072032 A JP2001072032 A JP 2001072032A
Authority
JP
Japan
Prior art keywords
radius
valley
pressure
bottle
polyester bottle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25019699A
Other languages
Japanese (ja)
Other versions
JP3719882B2 (en
Inventor
Atsushi Kikuchi
淳 菊地
Toshiaki Washisaki
俊朗 鷲崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP25019699A priority Critical patent/JP3719882B2/en
Publication of JP2001072032A publication Critical patent/JP2001072032A/en
Application granted granted Critical
Publication of JP3719882B2 publication Critical patent/JP3719882B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0223Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
    • B65D1/0261Bottom construction
    • B65D1/0284Bottom construction having a discontinuous contact surface, e.g. discrete feet

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pressure-proof polyester bottle having a self-standing type structure in which foot segments and valley segments are alternatively installed therein and some contents producing self-generative pressure are filled, and bottom cracking and latent bottom cracking are prevented from being produced even in a long-period storage under a high temperature and high humidity condition. SOLUTION: There is provided a pressure-proof polyester bottle in which foot segments and valley segments are alternatively arranged at its bottom segment 4, the valleys have a curved surface with a substantial uniform radius of curvature in a height direction, density of the valley within a radius corresponding to 40% of a radius of barrel from the center of the bottom segment is lower than 1.34 g/cm3 and the valleys have no substantial single-axial orientation in a circumferential direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐圧性ポリエステルボ
トルに関するもので、より詳細には、ボトル底部が足部
と谷部とが交互に配置された自立構造を有すると共に、
特異な形状と配向特性とを有し、耐環境応力亀裂(ES
C)性、耐衝撃性、耐圧強度及び外観特性などに優れて
いるポリエステルボトルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure-resistant polyester bottle, and more particularly, to a self-standing structure in which a bottom portion of a bottle has a foot portion and a valley portion arranged alternately.
It has a unique shape and orientation characteristics and is resistant to environmental stress cracking (ES
C) It relates to a polyester bottle excellent in properties, impact resistance, pressure resistance, appearance characteristics and the like.

【0002】[0002]

【従来の技術】延伸ブロー成形プラスチック容器、特に
ポリエステル容器は今日では一般化しており、その優れ
た透明性と適度なガスバリヤー性とにより、液体洗剤、
シャンプー、化粧品、醤油、ソース等の液体商品の外
に、ビール、コーラ、サイダー等の炭酸飲料や、果汁、
ミネラルウオータ等の他の飲料容器やデザート類カッ
プ、ミソ用容器、カップ製品等に広く使用されている。
2. Description of the Related Art Stretch-blow molded plastic containers, particularly polyester containers, are nowadays commonplace. Due to their excellent transparency and moderate gas barrier properties, liquid detergents,
In addition to liquid products such as shampoo, cosmetics, soy sauce and sauce, carbonated beverages such as beer, cola and cider, fruit juice,
It is widely used in other beverage containers such as mineral water, dessert cups, miso containers, cup products and the like.

【0003】ポリエステルボトルの底部構造としては、
丸底の底部に別体のベースカップを嵌着したツーピース
構造のものと、底部に足部と谷部とを交互に配置したワ
ンピース構造のものとが知られているが、資源の再利用
の点や生産性の点で後者のワンピース型のものが主流を
占めるに至っている。
[0003] As the bottom structure of the polyester bottle,
A two-piece structure with a separate base cup fitted to the bottom of the round bottom and a one-piece structure with feet and valleys alternately arranged at the bottom are known. In terms of point and productivity, the latter one-piece type has become the mainstream.

【0004】しかしながら、後者のワンピース構造の底
部を有するボトルでは、耐圧性と自立性とを両立させる
のが必ずしも容易でないという問題を有するのに加え
て、このタイプのボトル底部には、環境応力亀裂(ES
C)を発生しやすいという問題があり、環境応力亀裂
(ESC)防止のための手段も種々検討されている。
However, the latter bottle having a one-piece bottom has a problem that it is not always easy to achieve both pressure resistance and self-sustainability, and in addition to this, the bottom of this type of bottle has environmental stress cracks. (ES
C) easily occurs, and various means for preventing environmental stress cracking (ESC) have been studied.

【0005】特開平5−246416号公報には、二軸
延伸吹き込み成形された合成樹脂製の自立壜において、
底部の中心より所定距離離れた点を底部形状の変化点と
し、この変化点より半径方向外向きに斜め下方に延在す
る傾斜部を経て接地部に至る、前記底部にほぼ等中心角
度ごとに設けられた3個以上の脚部を有し、前記中心よ
り前記変化点を越えた長さの所定半径をもつ内側のほぼ
円形の領域が、未延伸または低延伸の厚肉部で形成さ
れ、少なくとも前記接地部を含む外側領域が延伸された
薄肉部で構成され、前記厚肉部と薄肉部とを結ぶ肉厚移
行部が前記傾斜部の途中に形成されていることを特徴と
する合成樹脂製自立壜が記載されており、この自立壜に
おいては、耐内圧性を確保しながら、ストレスクラッキ
ングの発生を防止しうることも記載されている。
[0005] Japanese Patent Application Laid-Open No. 5-246416 discloses a self-standing bottle made of synthetic resin formed by biaxial stretching blow molding.
A point that is a predetermined distance away from the center of the bottom is defined as a change point of the bottom shape, and reaches the ground portion through an inclined portion that extends obliquely downward in the radial direction outward from the change point. An inner substantially circular region having three or more provided leg portions and having a predetermined radius having a length exceeding the change point from the center is formed by an unstretched or low-stretched thick portion, Synthetic resin characterized in that at least the outer region including the ground portion is formed of a thin portion that is extended, and a thickness transition portion that connects the thick portion and the thin portion is formed in the middle of the inclined portion. A self-contained bottle is described, and it is also described that in this self-contained bottle, occurrence of stress cracking can be prevented while ensuring internal pressure resistance.

【0006】特開平11−43127号公報には、二軸
延伸ブロー成形により製造されるプラスチックボトルに
おいて、その底部が半球状曲面の底面から下方に膨出さ
れた多数の脚部を周方向に略等間隔で配置されてなり、
(A)ポリエチレンテレフタレートと、(B)ポリエチ
レンナフタレートを、(A)と(B)の合計に対するエ
チレンナフタレート成分比率5〜15モル%で含み、エ
ステル交換率が5〜30%であり、且つ固有粘度が0.
70(dl/g)以上であるポリエステル樹脂組成物か
ら成ることを特徴とする自立型ボトルが記載されてお
り、この自立型ボトルでは結晶化処理を施すことなし
に、加熱殺菌処理による変形を少なくできることも記載
されている。
Japanese Patent Application Laid-Open No. 11-43127 discloses that in a plastic bottle manufactured by biaxial stretch blow molding, a plurality of legs whose bottoms swell downward from the bottom surface of a hemispherical curved surface are formed substantially in the circumferential direction. Are arranged at equal intervals,
(A) polyethylene terephthalate and (B) polyethylene naphthalate in an ethylene naphthalate component ratio of 5 to 15 mol% with respect to the total of (A) and (B), an ester exchange rate of 5 to 30%, and Intrinsic viscosity is 0.
A self-supporting bottle characterized by being made of a polyester resin composition of 70 (dl / g) or more is described. In this self-standing bottle, deformation due to heat sterilization treatment is reduced without performing crystallization treatment. It also describes what can be done.

【0007】[0007]

【発明が解決しようとする課題】環境応力亀裂(ES
C)は、単にストレスクラッキングとも呼ばれており、
一般に高分子材料を、応力を受けている状態、或いは加
工時の歪みが残留している状態で、ある種の薬品類に接
触するなど、ある種の雰囲気下に置かれたとき、亀裂を
発生する現象を意味している。
SUMMARY OF THE INVENTION Environmental stress cracking (ES)
C) is also called simply stress cracking,
In general, cracks occur when a polymer material is placed under a certain atmosphere, such as when it comes into contact with certain chemicals while being subjected to stress or strain during processing remains. It means a phenomenon that occurs.

【0008】ポリエステルボトル、特に自立型底部構造
のポリエステルボトルにおいては、炭酸飲料などの自生
圧を有する内容物を充填し、保存した場合、底部にスト
レスクラッキングを発生することがよく認められる。
[0008] In a polyester bottle, particularly a polyester bottle having a self-standing bottom structure, when contents filled with autogenous pressure, such as carbonated beverages, are filled and stored, it is often recognized that stress cracking occurs at the bottom.

【0009】PETボトルにおけるストレスクラッキン
グ発生の因子としては、極めて多くの因子が知られてお
り、一つの因子ではストレスクラッキングが発生しなく
ても、同時にいくつかの因子が共存すると欠陥につなが
ることが知られている。これらの因子としては、例えば
ポリエステルの固有粘度、リプロの割合やペレットの寸
法、射出成形やブロー成形の条件、延伸の程度、材料の
分布、表面の結晶化度、底部での厚みの急激な変化、表
面の仕上げ、介在物、ボトル製造後の経過時間、高い気
温、多湿、充填製品のパレットの換気状態、容器のシェ
ルライフ以上の充填製品の保存、溶剤、不適正なライン
用潤滑剤、充填ラインの過剰な泡、高ガスボリューム等
が知られている。
[0009] As a factor for the occurrence of stress cracking in a PET bottle, an extremely large number of factors are known. Even if stress cracking does not occur with one factor, it is possible that defects coexist with several factors at the same time. Are known. These factors include, for example, the intrinsic viscosity of the polyester, the proportion of repro and the dimensions of the pellets, the conditions of injection and blow molding, the degree of stretching, the distribution of the material, the degree of crystallinity of the surface, and the sharp changes in the thickness at the bottom. , Surface finish, inclusions, elapsed time since bottle production, high temperature, high humidity, ventilation of pallets for filled products, storage of filled products beyond the shell life of containers, solvents, incorrect line lubricants, filling Excessive foam in the line, high gas volumes, etc. are known.

【0010】本発明者らは、底部に足部と谷部とを交互
に備えている耐圧性ポリエステルボトルにおいて、自生
圧力を有する内容物を充填、保存した場合に生じる底割
れの原因を鋭意検討した。この結果、発生する底割れは
何れも底部の周方向に沿ったものであり、また底割れ発
生位置近傍においては、円周方向に一軸配向が生じてお
り、しかもこの一軸配向部分に径方向の応力が集中して
割れの発生を生じるとの結論に到達した。
[0010] The present inventors have intensively studied the causes of bottom cracks that occur when contents having autogenous pressure are filled and stored in a pressure-resistant polyester bottle having feet and valleys alternately at the bottom. did. As a result, the bottom cracks that occur are all along the circumferential direction of the bottom, and near the bottom crack occurrence position, uniaxial orientation occurs in the circumferential direction. It was concluded that stress was concentrated and cracking occurred.

【0011】かくして、本発明の目的は、底部に足部と
谷部とを交互に備えた自立型構造を有し且つ自生圧力を
有する内容物を充填するための耐圧性ポリエステルボト
ルにおいて、高温及び多湿条件下での長期保存でも、底
割れ乃至潜在的底割れの発生が防止されたポリエステル
ボトルを提供するにある。
Thus, an object of the present invention is to provide a pressure-resistant polyester bottle for filling contents having a self-standing structure having a foot portion and a valley portion alternately at the bottom portion and having a self-generated pressure. An object of the present invention is to provide a polyester bottle in which occurrence of bottom cracks or potential bottom cracks is prevented even under long-term storage under humid conditions.

【0012】[0012]

【課題を解決するための手段】本発明によれば、耐圧性
ポリエステルボトルにおいて、底部に足部と谷部とを交
互に有し、谷部が高さ方向に実質上単一の曲率半径の曲
面で、底部中心より胴部半径の40%相当半径以内にお
ける谷部の密度が1.34g/cm未満であり、且つ
前記谷部が周方向への一軸配向を実質上有しないことを
特徴とする耐圧性ポリエステルボトルが提供される。本
発明の耐圧性ポリエステルボトルにおいては、 1.谷部の高さ方向に90%以上の部分が単一の曲率半
径の曲面であること、 2.底部中心より胴部半径の40%相当半径以内におけ
る谷部の結晶化度が、X線回折法で2θ=0°乃至10
0°の範囲で測定して3%以下であること、 3.谷部の表面積(S)が底部の表面積(S)に対
し16乃至25%であること、 が好ましい。
According to the present invention, in a pressure-resistant polyester bottle, a foot portion and a valley portion are alternately provided on a bottom portion, and the valley portion has a substantially single radius of curvature in the height direction. On a curved surface, the density of the valleys within a radius equivalent to 40% of the body radius from the center of the bottom is less than 1.34 g / cm 3 , and the valleys have substantially no uniaxial orientation in the circumferential direction. Is provided. In the pressure-resistant polyester bottle of the present invention: 1. 90% or more of the valleys in the height direction are curved surfaces having a single radius of curvature; The crystallinity of the valley within a radius equivalent to 40% of the body radius from the center of the bottom is 2θ = 0 ° to 10 by X-ray diffraction.
2. 3% or less as measured in a range of 0 °; It is preferable that the surface area (S 1 ) of the valley is 16 to 25% with respect to the surface area (S 0 ) of the bottom.

【0013】[0013]

【発明の実施形態】本発明のポリエステルボトルの一例
を示す図1において、このボトルは、熱可塑性ポリエス
テルの二軸延伸ブロー成形で形成された口頚部1、口頚
部に接続される肩部2、胴部3及び底部4から成ってい
る。底部4は自立構造を有しており、交互に配置された
足部5と谷部6とからなっている。
FIG. 1 shows an example of the polyester bottle of the present invention. The bottle has a neck portion 1 formed by biaxial stretch blow molding of a thermoplastic polyester, a shoulder portion 2 connected to the neck portion, It consists of a body 3 and a bottom 4. The bottom 4 has a self-supporting structure and is composed of feet 5 and valleys 6 arranged alternately.

【0014】本発明のポリエステルボトルでは、 I.谷部6が高さ方向に実質上単一の曲率半径の曲面で
構成されていること、 II.底部中心より胴部半径の40%相当半径以内におけ
る谷部は、その密度が1.34g/cm未満であるこ
と、及び III.前記谷部が周方向への一軸配向を実質上有しない
こと、 が顕著な特徴であり、これにより、高温及び多湿条件下
での長期保存でも、底割れの発生を有効に防止すること
ができる。
In the polyester bottle of the present invention, I.I. The valley 6 is constituted by a curved surface having a substantially single radius of curvature in the height direction; II. A valley within a radius equivalent to 40% of the body radius from the bottom center has a density of less than 1.34 g / cm 3 , and III. The valley portion has substantially no uniaxial orientation in the circumferential direction, which is a remarkable feature. Thereby, even during long-term storage under high-temperature and high-humidity conditions, generation of bottom cracks can be effectively prevented. .

【0015】本発明のポリエステルボトルでは、谷部を
高さ方向に実質上単一の曲率半径の曲面で構成した(前
記要件I)。これにより、底部の特定部分に対する応力
集中が防止され、保存中での底割れを有効に防止するこ
とができる。後述する例を参照されたい。即ち、谷部を
3個の曲率半径部分から構成したポリエステルボトルで
は、アルカリ浸漬試験(促進底割れ試験)において、浸
漬開始18分後から底割れが発生し、しかも底割れ発生
率は23%に達する(後述する比較例1参照)のに対し
て、谷部を実質上単一の曲率半径部分から構成したボト
ルでは、同様のアルカリ浸漬試験において、浸漬開始後
から底割れ発生時間が23分に延長され、しかも底割れ
発生率は5.6%に抑制される(後述する実施例1参
照)ことが明らかである。
In the polyester bottle of the present invention, the valley portion is constituted by a curved surface having a substantially single radius of curvature in the height direction (the requirement I). Thereby, stress concentration on a specific portion of the bottom portion is prevented, and bottom cracks during storage can be effectively prevented. See the example below. That is, in a polyester bottle in which a valley portion is composed of three curvature radii, in an alkali immersion test (accelerated bottom cracking test), bottom cracking occurs 18 minutes after the start of immersion, and the bottom cracking occurrence rate is 23%. On the other hand, in a bottle having a valley portion composed of a substantially single radius of curvature, the bottom crack generation time was 23 minutes after the start of immersion in a similar alkali immersion test. It is clear that the length is extended and the incidence of bottom cracks is suppressed to 5.6% (see Example 1 described later).

【0016】本発明において、谷部が高さ方向に実質上
単一の曲率半径の曲面で構成されているとは、谷部全体
が単一の曲率半径の曲面で構成されている場合は勿論の
こと、谷部の大部分が単一の曲率半径の曲面で構成さ
れ、ごく限られた小さい部分がこれと異なる曲率半径の
曲面で構成されていてもよいことを意味している。一般
に、谷部の高さ方向に90%以上の部分が単一の曲率半
径の曲面であることが好ましく、この構成では谷部の特
定部位での応力集中や、これによる底割れ乃至潜在的底
割れの発生を有効に防止することができる。
In the present invention, the fact that the valley portion is constituted by a curved surface having a substantially single radius of curvature in the height direction means, of course, that the entire valley portion is constituted by a curved surface having a single radius of curvature. This means that most of the valleys may be constituted by a curved surface having a single radius of curvature, and a very limited small portion may be constituted by a curved surface having a different radius of curvature. In general, it is preferable that 90% or more of the valley in the height direction is a curved surface having a single radius of curvature. In this configuration, stress concentration at a specific portion of the valley, a bottom crack or a potential bottom due to the stress concentration. The generation of cracks can be effectively prevented.

【0017】本発明では、底部中心より胴部半径の40
%相当半径以内における谷部を、その密度が1.34g
/cm未満であり(要件II)、しかも周方向への一軸
配向を実質上有しない(要件III)もので構成した。こ
れにより、底割れの原因となる脆性部分の発生を防止す
ることができる。例えば、後述する例に示すとおり、底
部中心より胴部半径の40%相当半径以内における谷部
の密度が1.34g/cm以上であるもの(後述する
比較例2)や、周方向への一軸配向が実質上生じている
もの(後述する比較例2)では、前記と同様の促進底割
れ試験において、浸漬開始2分後から底割れが発生し、
しかも底割れ発生率は48.0%に達するのに対して、
谷部の密度を1.34g/cm未満とし、しかも周方
向への一軸配向を実質上有しない用に構成したボトルで
は、同様のアルカリ浸漬試験において、浸漬開始後から
底割れ発生時間が20分に延長され、しかも底割れ発生
率も8%以下に抑制できるのである。
In the present invention, the radius of the torso is 40 from the center of the bottom.
% Of the valley within a radius of 1.34 g
/ Cm 3 (Requirement II) and substantially no uniaxial orientation in the circumferential direction (Requirement III). Thereby, it is possible to prevent the generation of a brittle portion that causes a bottom crack. For example, as shown in an example to be described later, a valley having a density of 1.34 g / cm 3 or more within a radius corresponding to 40% of the body radius from the bottom center (Comparative Example 2 to be described later), In the case where uniaxial orientation substantially occurs (Comparative Example 2 described later), in the same accelerated bottom cracking test as described above, bottom cracks occur 2 minutes after the start of immersion,
In addition, the rate of occurrence of bottom cracks reaches 48.0%,
In a bottle configured to have a valley density of less than 1.34 g / cm 3 and to have substantially no uniaxial orientation in the circumferential direction, in a similar alkaline immersion test, the bottom crack generation time was 20 minutes after the start of immersion. And the rate of occurrence of bottom cracks can be suppressed to 8% or less.

【0018】本発明において、底部中心より胴部半径の
40%相当半径以内における谷部の密度や一軸配向の有
無を問題としているのは、足部と谷部とが交互に配置さ
れた自立型構造の耐圧性ポリエステルボトルにおいて、
内容物充填後に底割れが発生する部位は、底部中心より
胴部半径の40%相当半径以内における谷部であり、こ
の部位における密度が前記範囲内にありしかも一軸配向
が実質上存在しない場合には、底割れが有効に回避され
るからである。
In the present invention, the problem of the density of valleys and the presence or absence of uniaxial orientation within a radius equivalent to 40% of the radius of the trunk from the center of the bottom is caused by the self-standing type in which the feet and valleys are alternately arranged. In the structure of pressure-resistant polyester bottle,
The portion where the bottom crack occurs after filling the content is a valley within a radius equivalent to 40% of the body radius from the center of the bottom, and when the density at this portion is within the above range and there is substantially no uniaxial orientation. This is because bottom cracks are effectively avoided.

【0019】ポリエステルの密度は、n−ヘプタン−四
塩化炭素系密度勾配管(池田理化株式会社)を作成し、
20℃の条件下でサンプルの密度を求めることができ
る。この密度は、ポリエステルの配向結晶化及び熱結晶
化に伴い増大する。ポリエチレンテレフタレートの場
合、非晶密度(ρam)が1.335g/cm、結晶密
度(ρc )が1.455g/cmであることが知ら
れており、試料の密度(ρ)と結晶化度(Xc )との関
係は、下記式(1) 結晶化度Xc=(ρc /ρ)×[(ρ−ρam)/(ρc −ρam)]×100 ‥‥(1) で与えられる。
The density of the polyester was determined by preparing an n-heptane-carbon tetrachloride density gradient tube (Ikeda Rika Co., Ltd.)
The density of the sample can be determined under the condition of 20 ° C. This density increases with oriented and thermal crystallization of the polyester. In the case of polyethylene terephthalate, it is known that the amorphous density (ρam) is 1.335 g / cm 3 and the crystal density (ρc) is 1.455 g / cm 3 , and the density (ρ) and crystallinity of the sample are known. The relationship with (Xc) is given by the following equation (1): Crystallinity Xc = (ρc / ρ) × [(ρ−ρam) / (ρc−ρam)] × 100 ‥‥ (1)

【0020】一方、谷部における周方向への一軸配向
は、周方向への配向中間相(oriemtedmesophase )とし
て、X線回折学的に検出することができる。
On the other hand, the uniaxial orientation in the valley in the circumferential direction can be detected by X-ray diffraction as an oriented mesophase in the circumferential direction.

【0021】ポリエチレンテレフタレート(PET)に
代表される熱可塑性ポリエステルには、非晶相及び結晶
相に加えて配向中間相(oriented mesophase) が存在
することが知られている(繊維学会誌 第40巻第6号
(1984)p49〜56)。すなわち、PETの結晶
相では、分子中のベンゼン環の配置にも規則性が認めら
れるのであるが、この配向中間層では、ベンゼン環の配
置には規則性はないが、非晶相とは異なり、繊維軸方向
での配向において、一定の周期性のある構造が認められ
るというものである。この周期性のある構造は、配向繊
維の場合、X線回折において、非晶質のX線散漫散乱の
ピークに重畳して一軸配向に特有のピークが現れ、しか
もこの非晶質のピークと一軸配向によるピークとは分離
して検出されるものである。
It is known that a thermoplastic polyester represented by polyethylene terephthalate (PET) has an oriented mesophase in addition to an amorphous phase and a crystalline phase (Journal of the Textile Society, Vol. 40). No. 6 (1984) pp. 49-56). That is, in the crystal phase of PET, regularity is also observed in the arrangement of benzene rings in the molecule. In this oriented intermediate layer, the arrangement of benzene rings is not regular, but unlike the amorphous phase. In addition, a structure having a certain periodicity is recognized in the orientation in the fiber axis direction. In the case of the oriented fiber, this periodic structure has a characteristic characteristic of uniaxial orientation that is superimposed on an amorphous X-ray diffuse scattering peak in X-ray diffraction. The peak due to the orientation is detected separately.

【0022】本発明のポリエステルボトルでも、透過型
X線回折装置を用い、谷部の試料に垂直にX線を入射さ
せると共に、円周方向に対して直角方向にBragg角
(2θ)を0〜100゜の範囲で変化させて、回折強度
を測定し、下記式(2)から配向結晶化度(Doc)を
求めることができる。 Doc=[(I−I)/I]×100 ‥(2) 式中、Iは谷部試料の2θ=0〜100゜の回折ピー
ク面積であり、Iは谷部試料を溶融、急冷により完全
に非晶質化したものの2θ=0〜100゜の回折ピーク
面積である。
Also in the polyester bottle of the present invention, a transmission X-ray diffractometer is used to make X-rays perpendicularly incident on the sample in the valley and to reduce the Bragg angle (2θ) in the direction perpendicular to the circumferential direction from 0 to 0. The diffraction intensity is measured by changing the angle in the range of 100 °, and the orientation crystallinity (Doc) can be obtained from the following equation (2). Doc = [(I 1 −I 0 ) / I 1 ] × 100 {2} where I 1 is the diffraction peak area of the valley sample at 2θ = 0 to 100 °, and I 0 is the valley sample. Diffraction peak area of 2θ = 0 to 100 ° although completely amorphized by melting and quenching.

【0023】本発明において、上記式(2)から求めら
れる配向結晶化度(Doc)が3%以下であれば、底割
れの原因となる一軸配向は実質上ないということができ
る。
In the present invention, if the degree of orientational crystallinity (Doc) obtained from the above formula (2) is 3% or less, it can be said that there is substantially no uniaxial orientation causing bottom cracks.

【0024】本発明の自立型耐圧性ポリエステルボトル
において、谷部の密度が1.34g/cm未満であ
り、しかも周方向への一軸配向が実質上ない場合に、底
割れが防止されるという事実は、従来の知見からは真に
予想外のものということができる。何となれば、既に指
摘したとおり、耐圧性ポリエステルボトルにおける底割
れは、典型的な環境応力亀裂(ESC)であり、この環
境応力亀裂の防止には、分子配向の付与が有効であると
信じられていたのであるが、本発明の自立型ポリエステ
ルボトルでは、谷部の結晶化を低いレベルに抑制すると
共に、周方向への一軸配向をも抑制することにより、底
割れの発生を抑制し、耐圧性を向上させると共に、内容
物の保存性をも向上させることに成功したものである。
In the self-supporting pressure-resistant polyester bottle of the present invention, when the density of the valleys is less than 1.34 g / cm 3 and the uniaxial orientation in the circumferential direction is substantially absent, bottom cracks are prevented. The fact can be said to be truly unexpected from conventional knowledge. Because, as already pointed out, the bottom crack in the pressure-resistant polyester bottle is a typical environmental stress crack (ESC), and it is believed that provision of molecular orientation is effective in preventing this environmental stress crack. However, in the self-supporting polyester bottle of the present invention, the crystallization of the valley is suppressed to a low level, and the uniaxial orientation in the circumferential direction is also suppressed, thereby suppressing the occurrence of bottom cracks and the pressure resistance. It has succeeded in improving the preservability of the contents as well as the storability.

【0025】[ポリエステル]本発明において、延伸ブ
ロー成形及び熱結晶化可能なポリエステル材料であれ
ば、任意のものを使用し得るが、特にエチレンテレフタ
レート系熱可塑性ポリエステルが有利に使用されるが、
勿論、ポリブチレンテレフタレート、ポリエチレンナフ
タレートなどの他のポリエステル、或いはポリカーボネ
ートやアリレート樹脂等とのブレンド物を用いることも
できる。
[Polyester] In the present invention, any polyester material which can be stretch blow-molded and thermally crystallized can be used. In particular, an ethylene terephthalate thermoplastic polyester is advantageously used.
Of course, other polyesters such as polybutylene terephthalate and polyethylene naphthalate, or a blend with polycarbonate, arylate resin and the like can also be used.

【0026】本発明に用いるエチレンテレフタレート系
熱可塑性ポリエステルは、エステル反復単位の大部分、
一般に70モル%以上、特に80モル%以上をエチレン
テレフタレート単位を占めるものであり、ガラス転移点
(Tg)が50乃至90℃、特に55乃至80℃で、融
点(Tm)が200乃至275℃、特に220乃至27
0℃にある熱可塑性ポリエステルが好適である。
The ethylene terephthalate-based thermoplastic polyester used in the present invention contains most of ester repeating units,
In general, the ethylene terephthalate unit accounts for 70 mol% or more, particularly 80 mol% or more, and has a glass transition point (Tg) of 50 to 90 ° C., particularly 55 to 80 ° C., and a melting point (Tm) of 200 to 275 ° C. Especially 220 to 27
Thermoplastic polyesters at 0 ° C. are preferred.

【0027】ホモポリエチレンテレフタレートが耐熱圧
性の点で好適であるが、エチレンテレフタレート単位以
外のエステル単位の少量を含む共重合ポリエステルも使
用し得る。
Homopolyethylene terephthalate is preferred in terms of heat and pressure resistance, but copolymerized polyesters containing a small amount of ester units other than ethylene terephthalate units may also be used.

【0028】テレフタル酸以外の二塩基酸としては、イ
ソフタル酸、フタル酸、ナフタレンジカルボン酸等の芳
香族ジカルボン酸;シクロヘキサンジカルボン酸等の脂
環族ジカルボン酸;コハク酸、アジピン酸、セバチン
酸、ドデカンジオン酸等の脂肪族ジカルボン酸;の1種
又は2種以上の組合せが挙げられ、エチレングリコール
以外のジオール成分としては、プロピレングリコール、
1,4−ブタンジオール、ジエチレングリコール、1,
6−ヘキシレングリコール、シクロヘキサンジメタノー
ル、ビスフェノールAのエチレンオキサイド付加物等の
1種又は2種以上が挙げられる。
Examples of dibasic acids other than terephthalic acid include aromatic dicarboxylic acids such as isophthalic acid, phthalic acid and naphthalenedicarboxylic acid; alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; succinic acid, adipic acid, sebacic acid and dodecane One or a combination of two or more aliphatic dicarboxylic acids such as diacids, and diol components other than ethylene glycol include propylene glycol,
1,4-butanediol, diethylene glycol, 1,
One or more of 6-hexylene glycol, cyclohexane dimethanol, an ethylene oxide adduct of bisphenol A and the like can be mentioned.

【0029】また、エチレンテレフタレート系熱可塑性
ポリエステルにガラス転移点の比較的高い例えばポリエ
チレンナフタレート、ポリカーボネート或いはポリアリ
レート等を5%〜25%程度をブレンドした複合材を用
いることができ、それにより比較的高温時の材料強度を
高めることができる。さらに、ポリエチレンテレフタレ
ートと上記のガラス転移点の比較的高い材料とを積層化
して用いることもできる。
A composite material obtained by blending about 5% to 25% of ethylene terephthalate-based thermoplastic polyester with, for example, polyethylene naphthalate, polycarbonate or polyarylate having a relatively high glass transition point can be used. Material strength at high temperatures can be increased. Further, polyethylene terephthalate and the above-mentioned material having a relatively high glass transition point can be laminated and used.

【0030】用いるエチレンテレフタレート系熱可塑性
ポリエステルは、少なくともフィルムを形成するに足る
分子量を有するべきであり、用途に応じて、射出グレー
ド或いは押出グレードのものが使用される。その固有粘
度(I.V.)は一般的に0.6乃至1.4dL/g、
特に0.63乃至1.3dL/gの範囲にあるものが望
ましい。
The ethylene terephthalate-based thermoplastic polyester used should have at least a molecular weight sufficient to form a film, and an injection grade or an extrusion grade is used depending on the application. Its intrinsic viscosity (IV) is generally 0.6 to 1.4 dL / g,
In particular, those in the range of 0.63 to 1.3 dL / g are desirable.

【0031】[ボトル及びその製造]本発明の耐圧性ポ
リエステルボトルは、底部に谷部と足部とを交互に備え
ており、しかも谷部は前述した特徴を有している。谷部
は高さ方向に実質上単一の曲率半径(R)の曲面となっ
ているが、この曲率半径(R)は、ボトル胴部半径(R
d)によっても相違するが、一般にRdの0.9〜1.
2倍、特に0.95〜1.05倍の範囲にあることが好
ましい。
[Bottle and Production Thereof] The pressure-resistant polyester bottle of the present invention has valleys and feet alternately at the bottom, and the valleys have the characteristics described above. The trough has a curved surface with a substantially single radius of curvature (R) in the height direction, and the radius of curvature (R) is equal to the radius of the bottle body (R).
d), but generally Rd of 0.9-1.
It is preferably in the range of 2 times, particularly 0.95 to 1.05 times.

【0032】この谷部の曲率半径(R)が上記範囲より
も大きいと、ボトルの耐圧強度が不満足となり、また谷
部と底中心部や胴部とを、曲率半径の異なる部分をかな
りの高さにわたって設けない限り、円滑に接続すること
が困難となる傾向がある。一方、谷部の曲率半径(R)
が上記範囲よりも小さいと、ボトルの自立性が低下した
り、また、足部の成形性が低下する傾向があり、更に谷
部と底中心部や胴部とを、曲率半径の異なる谷部をかな
りの高さにわたって設けない限り、円滑に接続すること
が困難となる傾向がある。
If the radius of curvature (R) of the valley is larger than the above range, the pressure resistance of the bottle becomes unsatisfactory, and the valley and the center of the bottom or the body are separated from each other by a considerably high radius. Unless provided over the entire surface, it tends to be difficult to make a smooth connection. On the other hand, the radius of curvature of the valley (R)
Is smaller than the above range, the independence of the bottle is reduced, or the moldability of the foot tends to be reduced, and furthermore, the valley and the bottom center and the trunk are formed with valleys having different radii of curvature. Unless provided over a considerable height, smooth connection tends to be difficult.

【0033】また、本発明のポリエステルボトルにおい
ては、谷部の表面積(S)が底部の表面積(S)に
対し16乃至25%、特に18乃至23%であること
が、自立性と耐圧性とのバランスの点で好ましい。即
ち、谷部の表面積比率が上記範囲を下回ると、耐圧強度
が低下したり、充填保存時の底割れなどが発生しやすく
なる傾向があり、一方谷部の表面積比率が上記範囲を上
回ると、自立性が低下したり、足部の成形性が低下する
傾向がある。
In the polyester bottle of the present invention, the surface area (S 1 ) of the valley is 16 to 25%, particularly 18 to 23%, relative to the surface area (S 0 ) of the bottom. It is preferable in terms of balance with the properties. That is, when the surface area ratio of the valleys falls below the above range, the pressure resistance decreases, or there is a tendency that bottom cracks and the like during filling storage tend to occur, while when the surface area ratio of the valleys exceeds the above range, Independence tends to decrease, and the formability of the foot tends to decrease.

【0034】一方、足部は最下方に接地部を有している
が、この接地部の水平方向の曲率半径(Rg)は、ボト
ル胴部半径(Rd)によっても相違するが、一般にRd
の0.69〜0.74倍、特に0.71〜0.735倍
の範囲にあることが好ましい。接地部の半径(Rg)が
上記範囲を下回ると、自立安定性が損なわれる傾向が大
きくなり、一方この半径(Rg)が上記範囲を上回る
と、足部が過延伸状態となって白化やクラックが発生し
て、耐圧強度が低下する傾向がある。
On the other hand, the foot portion has a ground contact portion at the lowest position. The horizontal radius of curvature (Rg) of the contact portion differs depending on the bottle body radius (Rd).
0.69 to 0.74 times, particularly preferably 0.71 to 0.735 times. When the radius (Rg) of the ground contact portion falls below the above range, the tendency for the self-sustained stability to be impaired increases. On the other hand, when the radius (Rg) exceeds the above range, the foot becomes overstretched and becomes whitened or cracked. And the pressure resistance tends to decrease.

【0035】足部の内、接地部よりも内側の下方部分
は、上に凸な曲面となっていることが耐圧性や自立性の
点で好ましく、この曲面の曲率半径(Rl)は、ボトル
胴部半径(Rd)の1.3〜1.8倍、特に1.4〜
1.65倍の範囲にあることが好ましい。
It is preferable that the lower portion of the inside of the foot portion, which is inside the ground contact portion, has an upwardly convex curved surface in terms of pressure resistance and self-sustainability, and the radius of curvature (Rl) of this curved surface is 1.3 to 1.8 times the body radius (Rd), especially 1.4 to
It is preferably in the range of 1.65 times.

【0036】足部及び谷部よりも内側には、ほぼフラッ
トで足部及び谷部に滑らかに接続される底中心部を設け
ることができ、この底中心部の半径(Rc)は、ボトル
胴部半径(Rd)の0.14〜0.16倍、特に0.1
45〜0.155倍の範囲にあることが好ましい。
A bottom center portion which is substantially flat and is smoothly connected to the foot portion and the valley portion can be provided on the inner side of the foot portion and the valley portion. 0.14 to 0.16 times the part radius (Rd), especially 0.1
It is preferably in the range of 45 to 0.155 times.

【0037】また、接地部から底中心部への高さは、一
般に4乃至5mm、特に4.3乃至4.7mmの高さを
有することが、内容物充填状態での自立安定性の点で好
ましい。また、底部に設ける足部の本数は、自立安定性
の点から、一般に4乃至6本、特に5乃至6本が適当で
ある。
The height from the grounding portion to the center of the bottom generally has a height of 4 to 5 mm, particularly 4.3 to 4.7 mm. preferable. The number of feet provided on the bottom is generally 4 to 6, particularly 5 to 6, from the viewpoint of self-sustainability.

【0038】本発明の耐圧性ボトルの胴部は、高度に二
軸配向されていることが望ましい。一般に、胴部の密度
は、1.355乃至1.39g/cm、特に1.36
乃至1.39g/cmの範囲にあることが耐圧強度の
点で好ましい。
The body of the pressure-resistant bottle of the present invention is preferably highly biaxially oriented. In general, the density of the body is between 1.355 and 1.39 g / cm 3 , in particular 1.36.
It is preferably in the range of from 1.39 g / cm 3 to 1.39 g / cm 3 in terms of pressure resistance.

【0039】本発明の耐圧性ボトルの口頸部は、キャッ
プを締結するためのネジ、ボトルを支持するためのサポ
ートリング、キャップのタンパーエビデントバンドを係
止するためのあご部乃至ラチェット等のそれ自体公知の
機構を備えている。
The mouth-and-neck portion of the pressure-resistant bottle of the present invention includes a screw for fastening the cap, a support ring for supporting the bottle, and a jaw or ratchet for locking the tamper-evidence band of the cap. A mechanism known per se is provided.

【0040】本発明の耐圧性ボトルは、前述した口頸部
を除いて、一般に0.2乃至3.5mm、特に0.25
乃至3.4mmの厚みを有している。底部中心より胴部
半径の40%相当半径以内における谷部では、周方向へ
の一軸配向が抑制されているため、比較的肉厚であり、
その厚みは一般に1.1乃至3.2mmである。
The pressure-resistant bottle of the present invention generally has a thickness of 0.2 to 3.5 mm, especially 0.25 mm, except for the aforementioned mouth and neck.
To 3.4 mm in thickness. At the valley within a radius equivalent to 40% of the body radius from the bottom center, the uniaxial orientation in the circumferential direction is suppressed, so that the valley is relatively thick,
Its thickness is generally 1.1 to 3.2 mm.

【0041】本発明の耐圧性ボトルは、実質上非晶質状
態のポリエステルの有底プリフォームを製造し、この有
底プリフォームを延伸温度に加熱した後、特定の型内で
延伸ブロー成形することにより製造される。用いる型
(キャビテイ型)は谷部と足部に対応する内面を有して
いることは当然であるが、谷部形成用の型内面が高さ方
向に実質上単一の曲率半径の曲面で構成されている必要
がある。また、底部中心より胴部半径の40%相当半径
以内における谷部では、周方向への一軸配向が抑制され
る条件下で延伸ブロー成形を行う必要がある。
In the pressure-resistant bottle of the present invention, a bottomed preform of a polyester in a substantially amorphous state is produced, and the bottomed preform is heated to a stretching temperature and then stretch blow-molded in a specific mold. It is manufactured by The mold used (cavity type) naturally has an inner surface corresponding to the valley and the foot, but the inner surface of the mold for forming the valley is a curved surface having a substantially single radius of curvature in the height direction. Must be configured. Further, in a valley portion within a radius equivalent to 40% of the body portion radius from the center of the bottom portion, it is necessary to perform stretch blow molding under conditions in which uniaxial orientation in the circumferential direction is suppressed.

【0042】ポリエステルのプリフォームへの成形に
は、射出成形を用いることができる。即ち、ポリエステ
ルを冷却された射出型中に溶融射出して、過冷却された
非晶質のポリエステルプリフォームに成形する。
For molding the polyester into a preform, injection molding can be used. That is, the polyester is melt-injected into a cooled injection mold to form a supercooled amorphous polyester preform.

【0043】射出機としては、射出プランジャーまたは
スクリューを備えたそれ自体公知のものが使用され、ノ
ズル、スプルー、ゲートを通して前記ポリエステルを射
出型中に射出する。これにより、ポリエステルは射出型
キャビティ内に流入し、固化されて延伸ブロー成形用の
プリフォームとなる。
As the injection machine, a known injection machine equipped with an injection plunger or a screw is used, and the polyester is injected into an injection mold through a nozzle, a sprue, and a gate. As a result, the polyester flows into the injection mold cavity and is solidified to form a preform for stretch blow molding.

【0044】射出型としては、容器形状に対応するキャ
ビティを有するものが使用されるが、ワンゲート型或い
はマルチゲート型の射出型を用いるのがよい。射出温度
は270乃至310℃、圧力は28乃至110kg/c
程度が好ましい。
As the injection mold, one having a cavity corresponding to the shape of the container is used, but it is preferable to use a one-gate or multi-gate injection mold. Injection temperature is 270 ~ 310 ℃, pressure is 28 ~ 110kg / c
about m 2 is preferred.

【0045】プリフォームの延伸温度は、一般に85乃
至135℃、特に90乃至130℃の温度が適当であ
り、その加熱は、赤外線加熱、熱風加熱炉、誘電加熱等
のそれ自体公知の手段により行うことができる。
The stretching temperature of the preform is generally from 85 to 135 ° C., preferably from 90 to 130 ° C., and the heating is performed by means known per se such as infrared heating, hot air heating furnace, and dielectric heating. be able to.

【0046】尚、プリフォームからの延伸ブロー成形に
は、成形されるプリフォーム成形品に与えられた熱、即
ち余熱を利用して、プリフォーム成形に続いて延伸ブロ
ー成形を行う方法も使用できるが、一般には、一旦過冷
却状態のプリフォーム成形品を製造し、このプリフォー
ムを前述した延伸温度に加熱して延伸ブロー成形を行う
方法が好ましい。
For stretch blow molding from a preform, a method of performing stretch blow molding following preform molding by utilizing heat given to a preform molded article to be molded, ie, residual heat, can also be used. However, in general, it is preferable to produce a preform molded article in a supercooled state, and then heat the preform to the above-mentioned stretching temperature to carry out stretch blow molding.

【0047】延伸温度に予備加熱されたプリフォーム
を、それ自体公知の延伸ブロー成形機中に供給し、前述
した金型内にセットして、延伸棒の押し込みにより軸方
向に引張延伸すると共に、流体の吹き込みにより周方向
へブロー延伸成形する。
The preform preheated to the stretching temperature is fed into a stretch blow molding machine known per se, set in the mold described above, and stretched in the axial direction by pushing in a stretching rod. Blow stretch molding is performed in the circumferential direction by blowing fluid.

【0048】最終ボトルにおける延伸倍率は、面積倍率
で5乃至18倍が適当であり、この内でも、軸方向延伸
倍率を2乃至4倍とし、周方向延伸倍率を2.5乃至4
倍とするのがよい。
The stretching ratio in the final bottle is suitably 5 to 18 times in area ratio, and among these, the axial stretching ratio is 2 to 4 times, and the circumferential stretching ratio is 2.5 to 4 times.
It is better to double.

【0049】[0049]

【実施例】本発明を次の例により具体的に説明するが、
本発明はこれら例により何等限定されるものではない。
EXAMPLES The present invention will be specifically described by the following examples.
The present invention is not limited by these examples.

【0050】測定は以下の要領で行った。 1)配向結晶化度 透過型X線回折装置により、2θ=0〜100°の範囲
における配向結晶ピークの割合を求め配向結晶化度とし
た。 2)アルカリ浸漬試験 各例のボトル10本づつを温度40℃、湿度90%で1
2時間加湿した後、炭酸水を充填し30℃の温水でボト
ル内の充填液を20〜22℃に調温し、20〜22℃の
0.2%NaOH水溶液に60分間浸漬して、底割れ発
生率及び底割れの起こる最短時間を調べた。
The measurement was performed as follows. 1) Oriented crystallinity The ratio of the oriented crystal peak in the range of 2θ = 0 to 100 ° was determined by a transmission X-ray diffractometer and defined as the oriented crystallinity. 2) Alkaline immersion test Ten bottles of each example were subjected to 1 at a temperature of 40 ° C and a humidity of 90%.
After humidification for 2 hours, fill with carbonated water, adjust the filling liquid in the bottle with warm water of 30 ° C to 20 to 22 ° C, immerse in a 0.2% NaOH aqueous solution of 20 to 22 ° C for 60 minutes, The crack occurrence rate and the shortest time at which bottom cracks occurred were examined.

【0051】3)アルカリ落下試験 各例のボトル20本づつを温度40℃、湿度90%で1
時間加湿した後、炭酸水を充填し30℃の温水でボトル
内の充填液を20〜22℃に調温し、20〜22℃の
0.1%NaOH水溶液に5分間浸漬する。ついで0.
8m、1.2mの高さから3回づつ落下させた。
3) Alkali drop test Each of 20 bottles of each example was subjected to a temperature of 40 ° C. and a humidity of 90% for 1 bottle.
After humidification for a period of time, the solution is filled with carbonated water, the temperature of the filling solution in the bottle is adjusted to 20 to 22 ° C. with warm water at 30 ° C., and the bottle is immersed in a 0.1% aqueous NaOH solution at 20 to 22 ° C. for 5 minutes. Then 0.
It was dropped three times from a height of 8 m or 1.2 m.

【0052】[実施例1]PETの二軸延伸ブローによ
り5本の足とそれらを隔てる谷部を有する容器を作成し
た。谷部は実質的に単一の曲率半径(R=46.34)
からなり、かつ胴部半径の35%相当半径の底谷部が0
%の配向結晶化度及び1.336g/cm の密度を有
し、S/S=0.192である容器である。実施例
1の容器の諸寸法を図2に示す。図2において、数字の
単位はmmであり、φは直径、Rは曲率半径を示してい
る。
Example 1 By biaxial stretching blow of PET
Make a container with five legs and a valley separating them
Was. The valley is substantially a single radius of curvature (R = 46.34)
And a bottom valley having a radius equivalent to 35% of the body radius is zero.
% Oriented crystallinity and 1.336 g / cm 3With a density of
Then S1/ S0= 0.192. Example
The dimensions of the container No. 1 are shown in FIG. In FIG.
The unit is mm, φ is the diameter, and R is the radius of curvature.
You.

【0053】[実施例2]実施例1において配向結晶化
度が2.65%、密度が1.338g/cm、S
=0.172であること以外は実施例1と同様の容
器である。
Example 2 In Example 1, the orientation crystallinity was 2.65%, the density was 1.338 g / cm 3 , and S 1 /
A container similar to that of Example 1 except that S 0 = 0.172.

【0054】[実施例3]実施例1において配向結晶化
度が2.50%であること、密度が1.338g/cm
であること、S/S=0.226であること以外
は実施例1と同様の容器である。
Example 3 In Example 1, the orientation crystallinity was 2.50%, and the density was 1.338 g / cm.
It is 3, except that the S 1 / S 0 = 0.226 is the same container as in Example 1.

【0055】[実施例4]谷部は実質的に単一の曲率半
径(R=45.7)からなり、かつ胴部半径の40%相
当半径の底谷部が0%の配向結晶化度を有し、1.33
6g/cmの密度を有し、S/S=0.196で
ある容器である。
Example 4 The trough has a substantially single radius of curvature (R = 45.7), and the bottom trough having a radius equivalent to 40% of the body radius has 0% oriented crystallinity. 1.33
A container having a density of 6 g / cm 3 and S 1 / S 0 = 0.196.

【0056】[実施例5]実施例1において配向結晶化
度が2.71%であること、密度が1.339g/cm
であること、S/S=0.244であること以外
は実施例1と同様の容器である。
Example 5 In Example 1, the orientation crystallinity was 2.71%, and the density was 1.339 g / cm.
It is 3, except that the S 1 / S 0 = 0.244 is the same container as in Example 1.

【0057】[比較例1]実施例1においてほぼ当配分
の3つの曲率半径(R=82.5、40、25)を有
し、S/S=0.276であること以外は実施例と
同様の容器である。
COMPARATIVE EXAMPLE 1 The procedure of Example 1 was repeated except that the three radiuses of curvature (R = 82.5, 40, 25) were almost equal, and that S 1 / S 0 = 0.276. A container similar to the example.

【0058】[比較例2]ほぼ当配分の3つの曲率半径
(R=70.3、40、55)をもち、底谷部が4.1
5%の配向結晶化度、1.350g/cmの密度を有
し、S/S=0.147である容器である。
Comparative Example 2 Three radii of curvature (R = 70.3, 40, 55) having approximately the same distribution, and a bottom valley of 4.1.
A container having 5% oriented crystallinity, a density of 1.350 g / cm 3 , and S 1 / S 0 = 0.147.

【0059】表1にこれら炭酸飲料PETボトルのアル
カリ浸漬試験結果を、表2にはアルカリ落下試験結果を
示した。
Table 1 shows the results of the alkali immersion test on these carbonated beverage PET bottles, and Table 2 shows the results of the alkali drop test.

【0060】[0060]

【表1】 アルカリ浸漬試験結果 底割れ発生率(%) 底割れの起こる最短時間(min.) 実施例1 5.6 23 実施例2 8.0 23 実施例3 0 − 実施例4 7.8 20 実施例5 0 − 比較例1 23.3 18 比較例2 48.0 2 単一半径、低結晶化度を満足するボトルでは、底割れ発
生率が10%程度に抑えられ、かつ最短時間も20分以
上であり、明らかに優れた耐ストレスクラッキング特性
をもっている。また、3つの曲率半径を持ち、かつ配向
結晶化度が最も高い比較例2では、耐ストレスクラッキ
ング特性がもっとも低い。
Table 1 Result of alkali immersion test Rate of occurrence of bottom cracks (%) Minimum time for bottom cracks to occur (min.) Example 1 5.6 23 Example 2 8.0 23 Example 30-Example 4 7.8 20 Example 50 0-Comparative Example 1 23.3 18 Comparative Example 2 48.0 2 In a bottle satisfying a single radius and a low degree of crystallization, the rate of occurrence of bottom cracks is suppressed to about 10%, and the shortest time is obtained. It is more than 20 minutes and has clearly excellent stress cracking resistance. Comparative Example 2 having three radii of curvature and having the highest degree of oriented crystallinity has the lowest stress cracking resistance.

【0061】[0061]

【表2】 アルカリ落下試験結果 破損高さと落下回数 0.8m 1.2m 1 2 3 1 2 3 比較例1 1 2 1 比較例2 1 実施例2 単一の曲率半径、低結晶化度の実施例2のみが、破損を
起こしていない。
Table 2 Results of alkali drop test Breakage height and number of drops 0.8 m 1.2 m 1 2 3 1 2 3 Comparative Example 1 1 2 1 Comparative Example 2 1 Example 2 Implementation of a single radius of curvature and low crystallinity Only Example 2 has not failed.

【0062】[0062]

【発明の効果】本発明によれば、底部に足部と谷部とを
交互に有する耐圧性ポリエステルボトルにおいて、谷部
を高さ方向に実質上単一の曲率半径の曲面で形成し、底
部中心より胴部半径の40%相当半径以内における谷部
の密度を1.34g/cm未満とし、且つ前記谷部を
周方向への一軸配向を実質上有しない用にしたことによ
り、安定した自立型構造が維持されると共に、自生圧力
を有する内容物を充填し、高温及び多湿条件下で長期保
存したときにも、底割れ乃至潜在的底割れの発生が有効
に防止されるという利点がある。
According to the present invention, in a pressure-resistant polyester bottle having a foot portion and a valley portion alternately on the bottom portion, the valley portion is formed with a curved surface having a substantially single radius of curvature in the height direction. The density of the valleys within a radius equivalent to 40% of the body radius from the center is less than 1.34 g / cm 3 , and the valleys have substantially no uniaxial orientation in the circumferential direction, so that they are stable. In addition to the fact that the self-standing structure is maintained, the generation of bottom cracks or potential bottom cracks can be effectively prevented even when the contents having autogenous pressure are filled and stored for a long time under high temperature and high humidity conditions. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の耐圧性ポリエステルボトルの側面図で
ある。
FIG. 1 is a side view of a pressure-resistant polyester bottle of the present invention.

【図2】実施例1のボトルの諸寸法を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing various dimensions of the bottle of Example 1.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 耐圧性ポリエステルボトルにおいて、底
部に足部と谷部とを交互に有し、谷部が高さ方向に実質
上単一の曲率半径の曲面で、底部中心より胴部半径の4
0%相当半径以内における谷部の密度が1.34g/c
未満であり、且つ前記谷部が周方向への一軸配向を
実質上有しないことを特徴とする耐圧性ポリエステルボ
トル。
In a pressure-resistant polyester bottle, a foot portion and a valley portion are alternately provided at a bottom portion, and the valley portion is a curved surface having a substantially single radius of curvature in a height direction, and a radius of a body portion radius from a center of the bottom portion. 4
The density of valleys within a radius equivalent to 0% is 1.34 g / c.
less than m 3, and pressure resistance polyester bottle, characterized in that the valleys are not substantially have a uniaxial orientation in the circumferential direction.
【請求項2】 谷部の高さ方向に90%以上の部分が単
一の曲率半径の曲面であることを特徴とする請求項1に
記載の耐圧性ポリエステルボトル。
2. The pressure-resistant polyester bottle according to claim 1, wherein 90% or more of the valleys in the height direction are curved surfaces having a single radius of curvature.
【請求項3】 底部中心より胴部半径の40%相当半径
以内における谷部の結晶化度が、X線回折法で2θ=0
°乃至100°の範囲で測定して3%以下であることを
特徴とする請求項1または2に記載の耐圧性ポリエステ
ルボトル。
3. The crystallinity of a valley within a radius corresponding to 40% of the body radius from the center of the bottom is 2θ = 0 by X-ray diffraction.
3. The pressure-resistant polyester bottle according to claim 1, wherein the content is 3% or less when measured in a range of from 100 ° to 100 °. 4.
【請求項4】 谷部の表面積(S)が底部の表面積
(S)に対し16乃至25%であることを特徴とする
請求項1乃至3の何れかに記載の耐圧性ポリエステルボ
トル。
4. The pressure-resistant polyester bottle according to claim 1, wherein the surface area (S 1 ) of the valley is 16 to 25% of the surface area (S 0 ) of the bottom.
JP25019699A 1999-09-03 1999-09-03 Pressure-resistant polyester bottle Expired - Lifetime JP3719882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25019699A JP3719882B2 (en) 1999-09-03 1999-09-03 Pressure-resistant polyester bottle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25019699A JP3719882B2 (en) 1999-09-03 1999-09-03 Pressure-resistant polyester bottle

Publications (2)

Publication Number Publication Date
JP2001072032A true JP2001072032A (en) 2001-03-21
JP3719882B2 JP3719882B2 (en) 2005-11-24

Family

ID=17204258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25019699A Expired - Lifetime JP3719882B2 (en) 1999-09-03 1999-09-03 Pressure-resistant polyester bottle

Country Status (1)

Country Link
JP (1) JP3719882B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017524615A (en) * 2014-08-01 2017-08-31 ザ コカ・コーラ カンパニーThe Coca‐Cola Company Lightweight base for carbonated beverage packaging
JP2018203305A (en) * 2017-05-31 2018-12-27 株式会社吉野工業所 Blow bottle
JP2021506682A (en) * 2017-12-15 2021-02-22 ソシエテ・デ・プロデュイ・ネスレ・エス・アー Bottles, methods of manufacture thereof, and use of FDCA and diol monomers in such bottles.
JP2021506681A (en) * 2017-12-15 2021-02-22 ソシエテ・デ・プロデュイ・ネスレ・エス・アー Bottles, methods of manufacture thereof, and use of FDCA and diol monomers in such bottles.
WO2024052169A1 (en) * 2022-09-08 2024-03-14 Société des Produits Nestlé S.A. Bottle for carbonated beverages having an improved petaloid base

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017524615A (en) * 2014-08-01 2017-08-31 ザ コカ・コーラ カンパニーThe Coca‐Cola Company Lightweight base for carbonated beverage packaging
US10399727B2 (en) 2014-08-01 2019-09-03 The Coca-Cola Company Lightweight base for carbonated beverage packaging
US11077979B2 (en) 2014-08-01 2021-08-03 The Coca-Cola Company Small carbonated beverage packaging with enhanced shelf life properties
US11801964B2 (en) 2014-08-01 2023-10-31 The Coca-Cola Company Small carbonated beverage packaging with enhanced shelf life properties
JP7389088B2 (en) 2014-08-01 2023-11-29 ザ コカ・コーラ カンパニー carbonated soft drink container
JP2018203305A (en) * 2017-05-31 2018-12-27 株式会社吉野工業所 Blow bottle
JP2021506682A (en) * 2017-12-15 2021-02-22 ソシエテ・デ・プロデュイ・ネスレ・エス・アー Bottles, methods of manufacture thereof, and use of FDCA and diol monomers in such bottles.
JP2021506681A (en) * 2017-12-15 2021-02-22 ソシエテ・デ・プロデュイ・ネスレ・エス・アー Bottles, methods of manufacture thereof, and use of FDCA and diol monomers in such bottles.
WO2024052169A1 (en) * 2022-09-08 2024-03-14 Société des Produits Nestlé S.A. Bottle for carbonated beverages having an improved petaloid base

Also Published As

Publication number Publication date
JP3719882B2 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
US5628957A (en) Method of forming multilayer container with polyethylene naphthalalte (pen)
US5759656A (en) Method of forming multilayer preform and container with low crystallizing interior layer
US5989661A (en) Pressurized refill container resistant to sprue cracking
KR101308299B1 (en) Polyester bottle with resistance to heat and pressure and process for producing the same
US11746185B2 (en) Pet composition, pet preform, refillable pet bottle and methods for making the same
US6720047B2 (en) Heat resistant blow molded containers
JP3128764B2 (en) Bottle made of saturated polyester for carbonated drinks
JP5239480B2 (en) Polyethylene terephthalate bottle
JP3719882B2 (en) Pressure-resistant polyester bottle
JPS58197050A (en) Multilayer vessel
JPH04168148A (en) Polyester resin composition and its use
JP3748739B2 (en) Pressure-resistant polyester bottle and package using the same
JP2005001164A (en) Method for manufacturing bottle made of polyester resin
JP4186431B2 (en) Stretch blow molded container
JPH02269637A (en) Heat resistant plastic bottle
JP2755284B2 (en) One-piece pressure-resistant or heat-resistant polyester bottle and method for producing the same
JPH11106616A (en) Polyester composition, bottle and its production
JP2625205B2 (en) Saturated polyester bottle and method for producing the same
JPH0347176B2 (en)
JPH0387233A (en) Hollow molding
JPH06219433A (en) Mouthpiece for bottle, bottle of saturated polyester including the mouthpiece, and their manufacturing method
JPH0820064A (en) Production of heat-resistant and pressure-resistance self-supporting container
JP2018083630A (en) Polyester stretch blow molding vessel and its manufacturing method
JP2009066758A (en) Heat-and-pressure-resistant polyester bottle and its manufacturing method
JPH02269636A (en) Heat resistant plastic bottle

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050906

R150 Certificate of patent or registration of utility model

Ref document number: 3719882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term