JP2001066011A - Method for controlling flow rate of cooling water in water-cooled air conditioner having absorption refrigerator - Google Patents

Method for controlling flow rate of cooling water in water-cooled air conditioner having absorption refrigerator

Info

Publication number
JP2001066011A
JP2001066011A JP23714899A JP23714899A JP2001066011A JP 2001066011 A JP2001066011 A JP 2001066011A JP 23714899 A JP23714899 A JP 23714899A JP 23714899 A JP23714899 A JP 23714899A JP 2001066011 A JP2001066011 A JP 2001066011A
Authority
JP
Japan
Prior art keywords
cooling water
flow rate
temperature
cooling
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23714899A
Other languages
Japanese (ja)
Inventor
Hirotsugu Ishino
裕嗣 石野
Makoto Nakamura
誠 中村
Osamu Shibata
理 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP23714899A priority Critical patent/JP2001066011A/en
Publication of JP2001066011A publication Critical patent/JP2001066011A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PROBLEM TO BE SOLVED: To obtain a method for controlling the flow rate of cooling water in a water-cooled air conditioner in which the problems of a high temperature regenerator, e.g. pressure increase over atmospheric pressure or corrosion, are avoided by increasing the flow rate of cooling water quickly in response to abrupt variation of load. SOLUTION: When operation is started (S100), a specified flow rate of cooling water is set (S101) and the outlet temperature T is measured at a specified interval (S102). A measured outlet temperature T is then compared with a set temperature T0 and a temperature difference T-T0 (S103), (S105) and if T=T0 (S103), operation is sustained without varying the flow rate and the steps are repeated (S104). Flow rate is decreased if T<T0 (S106) and increased if T>T0 (S107). Flow rate is controlled by controlling the r.p.m. of a cooling water pump in response to a command from a control section. A decision is made whether an operation stop command is present or not (S108) and the operation control is repeated if it does not present (S109) otherwise operation is stopped (S110).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は吸収式冷凍機を用い
た水冷式空調装置の冷却水流量制御方法に係り、特に冷
却水回路のエネルギー消費量削減に有効、かつ、出口温
度の速やかな制御を可能とする運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a flow rate of cooling water in a water-cooled air conditioner using an absorption refrigerator, and more particularly to a method for effectively reducing the energy consumption of a cooling water circuit and quickly controlling the outlet temperature. The present invention relates to a driving method that enables the operation.

【0002】[0002]

【従来の技術】図7において、従来の吸収式冷凍機を用
いた水冷式空調装置50では、吸収式冷凍機51は冷房
運転時に室内から汲み上げた熱および冷房サイクルの廃
熱を、冷却水回路52を介して冷却塔54から外気に放
熱する。冷却水回路52中には冷却水ポンプ53が設け
られており、系統中の冷却水を強制循環している。冷却
塔54としては、水の蒸発潜熱を利用する開放式冷却塔
が一般的である。
2. Description of the Related Art In FIG. 7, in a conventional water-cooled air conditioner 50 using an absorption chiller, an absorption chiller 51 uses heat pumped from the room during cooling operation and waste heat of a cooling cycle to a cooling water circuit. The heat is radiated from the cooling tower 54 to the outside air via 52. A cooling water pump 53 is provided in the cooling water circuit 52, and forcibly circulates cooling water in the system. As the cooling tower 54, an open type cooling tower utilizing the latent heat of evaporation of water is generally used.

【0003】従来、冷却水回路52の定格流量は、冷凍
機の定格(最大)能力に合わせて設定され、これに対応
して冷却水ポンプ53が選定されている。また、冷却水
ポンプ53の運転は、室内側の負荷や冷却水温度に関わ
らず常に定格流量で行われることが一般的である。この
ため、冷房負荷の小さな場合には冷却水ポンプ53で無
駄なエネルギーが消費されていた。
Conventionally, the rated flow rate of the cooling water circuit 52 is set in accordance with the rated (maximum) capacity of the refrigerator, and the cooling water pump 53 is selected correspondingly. In general, the operation of the cooling water pump 53 is always performed at the rated flow rate regardless of the load on the indoor side and the cooling water temperature. Therefore, when the cooling load is small, useless energy is consumed by the cooling water pump 53.

【0004】このような問題を解決する方法として、特
開昭60−16272では冷却水の冷凍機出口、入口の
温度差、凝縮器の温度又は凝縮器の圧力を制御情報とし
て用い、また、特開平8−159596では高温再生器
の溶液温度もしくは冷却水の流入温度を制御情報として
用いて冷却水の流量制御を行ない、省エネルギー化を図
ることが提案されている。
As a method for solving such a problem, Japanese Patent Application Laid-Open No. 60-16272 discloses a method in which a temperature difference between a cooling water outlet and an inlet of a refrigerator, a condenser temperature or a condenser pressure is used as control information. In Japanese Unexamined Utility Model Publication No. 8-159596, it is proposed to control the flow rate of the cooling water by using the solution temperature of the high-temperature regenerator or the inflow temperature of the cooling water as control information to save energy.

【0005】しかし、吸収式冷凍機においては、各熱交
換器類(再生器、凝縮器、蒸発器等)および吸収溶液の
熱容量が大きいため、冷却水流量を変化させてもその結
果が吸収サイクルに現れるまでには相当の時間が必要で
ある。また、冷却水自身の熱容量も大きいため、例えば
冷房負荷変動に伴って吸収サイクルを介しての放熱量変
化があっても、これが冷却水温度変化として現れる迄に
は相当の時間遅れが生じる。
However, in an absorption refrigerator, since the heat capacity of each heat exchanger (regenerator, condenser, evaporator, etc.) and absorption solution is large, even if the flow rate of cooling water is changed, the result is an absorption cycle. It takes a considerable amount of time before it appears. Further, since the heat capacity of the cooling water itself is large, even if there is a change in the amount of heat released through the absorption cycle due to, for example, a change in the cooling load, a considerable time delay occurs before the change appears as a change in the cooling water temperature.

【0006】この場合、冷却水流量を減少すべきケース
は冷房負荷が減少した場合であり、流量変化が遅くても
特に悪影響はない。しかし、冷却水流量を増加すべきケ
ースでは、冷房能力増大が要求されていることが予想さ
れる。従って、速やかに冷却水流量を増加させないと、
冷却水温度の上昇により凝縮器温度が上昇し、結果とし
て高温再生器の溶液温度の上昇を招いてしまう。その結
果、高温再生器の大気圧超えや腐食等のおそれがある。
In this case, the case where the cooling water flow rate should be reduced is when the cooling load is reduced, and there is no adverse effect even if the flow rate change is slow. However, in the case where the flow rate of the cooling water is to be increased, it is expected that the cooling capacity is required to be increased. Therefore, unless the cooling water flow rate is increased immediately,
A rise in the cooling water temperature causes a rise in the condenser temperature, resulting in a rise in the solution temperature of the high-temperature regenerator. As a result, there is a possibility that the high-temperature regenerator may exceed the atmospheric pressure or may be corroded.

【0007】また、近年、冷房負荷の大きなビル等では
複数台の吸収式冷凍機を備え、冷房負荷に応じて運転台
数を制御する方式が広く普及している。この場合、冷房
負荷の減少に伴い運転台数が減少し、その結果、1台の
冷凍機がまかなう負荷が急激に増加することがある。こ
のようなケースにおいても、速やかに冷却水流量を増加
させないと、前述のような問題が生じるおそれがある。
[0007] In recent years, in a building or the like having a large cooling load, a system in which a plurality of absorption chillers are provided and the number of operating units is controlled in accordance with the cooling load has become widespread. In this case, the number of operating units decreases with a decrease in the cooling load, and as a result, the load covered by one refrigerator may suddenly increase. Even in such a case, if the flow rate of the cooling water is not promptly increased, the above-described problem may occur.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記課題を
解決するための手段であって、その目的とするところ
は、急激な負荷変動等に対して速やかに冷却水流量を増
加させ、高温再生器の大気圧超えや腐食等の問題を回避
しうる水冷式空調装置の冷却水流量制御方法を提供する
ものである。
SUMMARY OF THE INVENTION The present invention is to solve the above-mentioned problems, and an object of the present invention is to rapidly increase the flow rate of cooling water in response to a sudden change in load, etc. An object of the present invention is to provide a cooling water flow control method for a water-cooled air conditioner, which can avoid problems such as exceeding atmospheric pressure and corrosion of a regenerator.

【0009】[0009]

【課題を解決するための手段】請求項1の発明は、吸収
式冷凍機を用いた水冷式空調装置の冷却水流量制御方法
であって、冷凍機出口における冷却水温度(以下、出口
温度という)の計測値(T)と所定の設定温度(T0
との温度差(T−T0)に基づき冷却水流量を増減させ
て設定温度に維持するものであり、流量増加させる場合
の流量変化率を流量減少させる場合の流量変化率より大
きな値に設定したことを特徴とするものである。
A first aspect of the present invention is a method for controlling the flow rate of cooling water in a water-cooled air conditioner using an absorption refrigerator, wherein the cooling water temperature at the outlet of the refrigerator (hereinafter referred to as the outlet temperature). ) And a predetermined set temperature (T 0 )
The cooling water flow rate is increased or decreased based on the temperature difference (T-T 0 ) to maintain the set temperature, and the flow rate change rate when increasing the flow rate is set to a value larger than the flow rate changing rate when decreasing the flow rate. It is characterized by having done.

【0010】かかる制御を行うことにより、冷房負荷の
上昇等により出口温度が上昇傾向にあるときは速やかな
流量増加が可能になり、速やかに出口温度を下げること
が可能となる。これにより、高温再生器の大気圧超えや
腐食等の問題を有効に回避できる。
By performing such control, when the outlet temperature is increasing due to an increase in cooling load or the like, the flow rate can be rapidly increased, and the outlet temperature can be rapidly reduced. Thereby, problems such as exceeding the atmospheric pressure and corrosion of the high-temperature regenerator can be effectively avoided.

【0011】この場合、変化率は温度差の絶対値(|T
−T0|)に比例させることが望ましい(請求項2)。
In this case, the rate of change is the absolute value of the temperature difference (| T
−T 0 |) is desirable (claim 2).

【0012】このようにすると、現在温度(T)と設定
温度(T0)の差に応じた速やかな流量変化が可能とな
る。
This makes it possible to quickly change the flow rate according to the difference between the current temperature (T) and the set temperature (T 0 ).

【0013】請求項3に係る発明は、上記において吸収
式冷凍機が高温再生器を備えているものであって、か
つ、高温再生器が所定の温度を超えたときは冷却水流量
を最大に設定する冷却水制御方法である。
According to a third aspect of the present invention, the absorption refrigerator includes a high-temperature regenerator, and when the high-temperature regenerator exceeds a predetermined temperature, the cooling water flow rate is maximized. This is the cooling water control method to be set.

【0014】かかる制御により、高温再生器の大気圧超
えや高温による腐食を、より確実に回避することができ
る。
With this control, corrosion of the high-temperature regenerator over atmospheric pressure or high temperature can be more reliably avoided.

【0015】請求項4に係る発明は、上記において、吸
収式冷凍機はそれぞれ冷却水回路を有する複数の吸収式
冷凍機から成り、冷房負荷に応じて吸収式冷凍機の運転
台数を増減させるものであり、かつ、運転台数を減少さ
せるときは所定の時間、冷却水流量を最大に設定するこ
とを特徴とする冷却水制御方法である。
According to a fourth aspect of the present invention, in the above method, the absorption chiller comprises a plurality of absorption chillers each having a cooling water circuit, and the number of operating the absorption chillers is increased or decreased according to the cooling load. The cooling water control method is characterized in that the cooling water flow rate is set to a maximum for a predetermined time when the number of operating vehicles is reduced.

【0016】冷房負荷に応じて運転台数を制御する方式
において、1台の冷凍機がまかなう負荷が急激に増加し
た場合においても、速やかに冷却水流量を増加させるこ
とが可能となる。
In a system in which the number of operating units is controlled according to the cooling load, even if the load covered by one refrigerator increases rapidly, the flow rate of the cooling water can be quickly increased.

【0017】[0017]

【実施の形態】以下、本発明の実施の形態について図面
を参照して説明する。なお、同一の構成には同一の符号
を付し、重複説明を省略する。
Embodiments of the present invention will be described below with reference to the drawings. Note that the same components are denoted by the same reference numerals, and redundant description will be omitted.

【0018】図1は、本発明に係る水冷式空調装置の第
一の実施形態を示す図である。同図において水冷式空調
装置1は、吸収式冷凍機2、冷却塔3、冷却水往管5・
冷却水戻管6及び冷却水ポンプ4より構成される冷却水
回路7、制御部9、インバータ制御装置16を主要な構
成要素としている。
FIG. 1 is a diagram showing a first embodiment of a water-cooled air conditioner according to the present invention. In the figure, a water-cooled air conditioner 1 includes an absorption refrigerator 2, a cooling tower 3, a cooling water outgoing pipe 5.
A cooling water circuit 7 including a cooling water return pipe 6 and a cooling water pump 4, a control unit 9, and an inverter control device 16 are main components.

【0019】吸収式冷凍機2は、公知の二重効用吸収式
冷凍機であり、高温再生器、低温再生器、凝縮器、蒸発
器、吸収器、高温熱交換器、低温熱交換器等を構成要素
としているが、高温再生器10を除いては図示を省略す
る。また、冷凍機本体の作動の説明についても省略す
る。
The absorption refrigerator 2 is a known double-effect absorption refrigerator, and includes a high-temperature regenerator, a low-temperature regenerator, a condenser, an evaporator, an absorber, a high-temperature heat exchanger, a low-temperature heat exchanger, and the like. Although it is a component, illustration is omitted except for the high-temperature regenerator 10. Further, description of the operation of the refrigerator main body will be omitted.

【0020】高温再生器10は加熱源としてバーナ13
を備えており、その燃料として都市ガス供給ライン15
により都市ガスが供給されている。
The high-temperature regenerator 10 has a burner 13 as a heating source.
And the city gas supply line 15 as its fuel
Supplies city gas.

【0021】冷却水戻管6の経路中には冷却水ポンプ4
が設けられている。また、冷却水往管5の冷凍機2出口
近傍には温度センサ12が設けられており、出口温度
(T)を計測している。
In the cooling water return pipe 6, a cooling water pump 4
Is provided. Further, a temperature sensor 12 is provided near the outlet of the refrigerator 2 in the cooling water outgoing pipe 5, and measures the outlet temperature (T).

【0022】制御部9は、CPU、ROM、RAM等か
ら構成されるコンピュータシステムでり、出口温度Tの
データを取り込み、これらの情報を基に冷却水ポンプ4
の回転数制御を行うよう構成されている。すなわち、冷
却水ポンプ4の回転数は制御部9からの指令に基づきイ
ンバータ制御装置16により回転数制御され、所定の冷
却水流量に設定されるよう構成されている。
The control unit 9 is a computer system including a CPU, a ROM, a RAM, and the like. The controller 9 takes in data of the outlet temperature T, and based on the information, outputs the cooling water pump 4.
Is configured to perform the rotation speed control. That is, the rotation speed of the cooling water pump 4 is controlled by the inverter control device 16 based on a command from the control unit 9 and is set to a predetermined cooling water flow rate.

【0023】なお、図1では、制御部9は冷凍機の外部
に設けられているが、冷凍機に内蔵されていてもよい。
Although the control unit 9 is provided outside the refrigerator in FIG. 1, it may be built in the refrigerator.

【0024】制御部9においては、設定温度(T0)と
出口温度計測値(T)に応じて冷却水流量の流量変化率
が計算される。
The controller 9 calculates the rate of change of the flow rate of the cooling water according to the set temperature (T 0 ) and the measured outlet temperature (T).

【0025】この場合、T<T0のときは、単位時間あ
たり流量変化率(dG/dt)は温度差の絶対値(|T
−T0|)に比例し、次式で示される。
In this case, when T <T 0 , the flow rate change rate per unit time (dG / dt) is the absolute value of the temperature difference (| T
−T 0 |) and is expressed by the following equation.

【0026】 dG/dt=(T−T0)・R ………(1) ここにRは定数であり、その値は吸収式冷凍機や冷却水
の熱容量に応じて定めることができる。(1)式におい
て、T−T0<0であるからdG/dt<0、すなわち
流量減少となる。T>T0のときは次式で示される。
DG / dt = (T−T 0 ) · R (1) Here, R is a constant, and its value can be determined according to the absorption refrigerator or the heat capacity of the cooling water. In the equation (1), since T−T 0 <0, dG / dt <0, that is, the flow rate decreases. When T> T 0 , it is expressed by the following equation.

【0027】 dG/dt=n・(T−T0)R ………(2) ここにnは1より大きな定数であり、水冷式空調装置の
特性に応じて定めることができる。(2)式において、
T−T0>0であるからdG/dt>0、すなわち流量
増加を示している。
DG / dt = n · (T−T 0 ) R (2) where n is a constant greater than 1, and can be determined according to the characteristics of the water-cooled air conditioner. In equation (2),
Since T−T 0 > 0, dG / dt> 0, that is, an increase in the flow rate.

【0028】流量変化率を(1)、(2)式のように設
定することにより、T>T0のときはT<T0のときと比
べて同一温度差(絶対値)に対してn倍の流量変化率を
与える。すなわち、流量増加は流量減少に比べてn倍の
速度でなされることになる。
By setting the flow rate change rate as shown in the equations (1) and (2), when T> T 0 , the same temperature difference (absolute value) is n n compared to when T <T 0. Gives twice the rate of flow change. That is, the flow rate increase is performed at a speed n times faster than the flow rate decrease.

【0029】図2は本実施形態における冷却水の流量制
御方法を示すフローチャートである。図1及び図2によ
り本発明に係る冷却水流量の制御方法について説明す
る。
FIG. 2 is a flowchart showing a method for controlling the flow rate of the cooling water according to this embodiment. 1 and 2, a method for controlling the flow rate of cooling water according to the present invention will be described.

【0030】運転が開始されると(S100)、冷却水
流量は所定の流量に初期設定される(S101)。設定
流量としては、例えば定格(最大)能力に設定してもよ
い。
When the operation is started (S100), the flow rate of the cooling water is initialized to a predetermined flow rate (S101). The set flow rate may be set to, for example, a rated (maximum) capacity.

【0031】所定の時間間隔で出口温度(T)が計測さ
れる(S102)。次いで出口温度計測値(T)と設定
温度(T0)との温度差(T−T0)が比較される(S1
03、S105)。
The outlet temperature (T) is measured at predetermined time intervals (S102). Then the temperature difference between the outlet temperature measurement value (T) and the set temperature (T 0) (T-T 0) is compared (S1
03, S105).

【0032】T=T0であれば(S103)、流量を変
化させることなく運転が継続され、上記ステップが繰り
返される(S104)。
If T = T 0 (S103), the operation is continued without changing the flow rate, and the above steps are repeated (S104).

【0033】T<T0の時は、式(1)に示す変化率に
基づき流量を減少させる(S106)。また、T>T0
のときは、式(2)に示す変化率により流量を増加させ
る(S107)。前述の通り、この場合の流量変化速
(絶対値)はT<T0のときと比べてk倍となる。
When T <T 0 , the flow rate is reduced based on the rate of change shown in equation (1) (S106). Also, T> T 0
In the case of (1), the flow rate is increased by the change rate shown in the equation (2) (S107). As described above, the flow rate change rate (absolute value) in this case is k times larger than when T <T 0 .

【0034】なお、流量増減は制御部9の指令により、
冷却水ポンプ4の回転数を制御することにより行われ
る。
The flow rate can be increased or decreased by a command from the control unit 9.
This is performed by controlling the rotation speed of the cooling water pump 4.

【0035】運転停止指令の有無が判断され(S10
8)、停止指令がない限り上記の運転制御が繰り返され
る(S109)。運転停止指令があれば、運転を停止す
る(S110)。
It is determined whether an operation stop command has been issued (S10).
8) As long as there is no stop command, the above operation control is repeated (S109). If there is an operation stop command, the operation is stopped (S110).

【0036】図3は、本発明の第2の実施形態を示す図
である。本実施形態が第一の実施形態と異なる点は、高
温再生器の溶液温度(TH)をも取り込み、冷却水流量
制御を行っていることである。すなわち、図3において
水冷式空調装置30では、温度センサ17が高温再生器
の溶液温度を計測し、その情報は制御部9に取り込まれ
る。
FIG. 3 is a diagram showing a second embodiment of the present invention. This embodiment differs from the first embodiment in that the temperature of the solution (TH) of the high-temperature regenerator is also taken in and the flow rate of the cooling water is controlled. That is, in the water-cooled air conditioner 30 in FIG. 3, the temperature sensor 17 measures the solution temperature of the high-temperature regenerator, and the information is taken into the control unit 9.

【0037】図4は本実施形態における冷却水の流量制
御方法を示すフローチャートである。なお、図4は、図
3のステップ中、S102とS103の間に追加される
べきステップを抽出して示したものであり、前後のステ
ップは図3と同一であるので図示を省略した。
FIG. 4 is a flowchart showing a method for controlling the flow rate of the cooling water according to this embodiment. FIG. 4 shows only the steps to be added between S102 and S103 in the steps of FIG. 3, and the steps before and after are the same as those in FIG.

【0038】出口温度(T)の計測(S102)に次い
で、所定の時間間隔で高温再生器11の溶液温度(T
H)が計測される(S201)。
Following the measurement of the outlet temperature (T) (S102), the solution temperature (T
H) is measured (S201).

【0039】溶液温度(TH)と所定の上限温度(TH
L)が比較され(S202)、上限温度以上(TH≧T
L)の場合は、冷却水流量が最大に設定される(S2
03)。上限温度未満(TH<THL)の場合は、図2
のS102以下のステップに従い制御が行われる(S2
04)。
The solution temperature (TH) and a predetermined upper limit temperature (TH
L ) is compared (S202), and is equal to or higher than the upper limit temperature (TH ≧ T).
HL ), the cooling water flow rate is set to the maximum (S2).
03). When the temperature is lower than the upper limit temperature (TH <TH L ), FIG.
The control is performed according to the steps from S102 onward (S2).
04).

【0040】THLの値として、例えば高温再生器の腐
食のおそれのある180℃を用いてもよい。
As the value of TH L , for example, 180 ° C. which may cause corrosion of the high-temperature regenerator may be used.

【0041】また、本実施形態では、異常高温を回避す
るために高温再生器溶液温度を管理情報としたが、これ
に限らず他の熱交換器類、たとえば凝縮器温度を用いる
ことも可能である。
In the present embodiment, the high-temperature regenerator solution temperature is used as the management information in order to avoid an abnormally high temperature. However, the present invention is not limited to this, and other heat exchangers, for example, a condenser temperature can be used. is there.

【0042】図5は、本発明の第3の実施形態を示す図
である。本実施形態が上記実施形態と異なる点は、本実
施形態では複数の吸収式冷凍機及び冷却水回路により構
成されている点である。すなわち、水冷式空調装置20
は、2台の吸収式冷凍機2a・2b、並びに冷却塔3a
・3b、冷却水往管5a・5b、冷却水戻管6a・6b
及び冷却水ポンプ4a・4bからなる2系統の冷却水回
路により構成されている。
FIG. 5 is a diagram showing a third embodiment of the present invention. The present embodiment is different from the above embodiment in that the present embodiment is configured by a plurality of absorption refrigerators and cooling water circuits. That is, the water-cooled air conditioner 20
Are two absorption refrigerators 2a and 2b, and a cooling tower 3a
.3b, cooling water outgoing pipes 5a and 5b, cooling water returning pipes 6a and 6b
And two cooling water circuits including cooling water pumps 4a and 4b.

【0043】また、冷水回路側は、室内機21、冷水ポ
ンプ25及び冷水往管22、冷水戻管23により構成さ
れている。往管側は、冷凍機2a側支管22aと冷凍機
2b側支管22bが合流点22cで合流して冷水往管2
2を構成して室内機21に導かれる。戻管側は、冷水戻
管23が分岐点23cで分岐して、冷凍機2a側支管2
3aと冷凍機2b側支管23bとなる。
The chilled water circuit side includes an indoor unit 21, a chilled water pump 25, a chilled water forward pipe 22, and a chilled water return pipe 23. On the outgoing pipe side, the refrigerator 2a-side branch pipe 22a and the refrigerator 2b-side branch pipe 22b join at a junction 22c, and the cold water forward pipe 2
2 and is led to the indoor unit 21. On the return pipe side, the cold water return pipe 23 branches at the branch point 23c, and the branch pipe 2 on the refrigerator 2a side.
3a and the branch pipe 23b on the refrigerator 2b side.

【0044】冷水往管22及び冷水戻管23の経路中に
は温度センサ27、28が設けられており、それぞれ冷
水往温度T2及び冷水戻温度T3を計測している。ま
た、冷水経路中には流量計(図示せず)が設けられてお
り、冷水流量を計測している。これらの計測値は台数制
御盤26に取り込まれるよう構成されている。台数制御
盤26では、冷水往戻温度差(T3−T2)及び冷水流
量の積から冷房負荷を演算し、この情報に基づき冷凍機
運転台数制御を行うよう構成されている。
Temperature sensors 27 and 28 are provided in the path of the cold water outgoing pipe 22 and the cold water returning pipe 23, and measure the cold water outgoing temperature T2 and the cold water returning temperature T3, respectively. A flow meter (not shown) is provided in the chilled water path to measure the chilled water flow rate. These measured values are configured to be taken into the number control panel 26. The number control panel 26 is configured to calculate the cooling load from the product of the chilled water return temperature difference (T3-T2) and the chilled water flow rate, and to control the number of refrigerators operated based on this information.

【0045】次に、本実施形態における冷却水流量制御
方法について説明する。図6は、冷房負荷に伴う吸収式
冷凍機2a、2bの運転台数制御を示す概念図である。
同図において横軸は冷房負荷、縦軸は冷凍機出力をそれ
ぞれ最大値を200として示したものである。図中A部
は冷凍機2aが分担し、B部は冷凍機2bが分担してい
る。これより、冷房負荷が100未満の場合は冷凍機2
aの1台運転で冷房が行われ、冷房負荷が100を超え
ると2台運転となることが分かる。従って、冷房負荷が
L2からL1に減少した場合、冷凍機2aの出力はP1
からP2に急激に増加することになる。
Next, a method for controlling the flow rate of cooling water in the present embodiment will be described. FIG. 6 is a conceptual diagram showing the operation number control of the absorption chillers 2a and 2b according to the cooling load.
In the figure, the horizontal axis shows the cooling load, and the vertical axis shows the refrigerator output with the maximum value being 200. In the figure, part A is assigned to the refrigerator 2a, and part B is assigned to the refrigerator 2b. Thus, when the cooling load is less than 100, the refrigerator 2
It can be seen that the cooling is performed by the single-unit operation of a and the two-unit operation is performed when the cooling load exceeds 100. Therefore, when the cooling load decreases from L2 to L1, the output of the refrigerator 2a becomes P1
From P2 to P2.

【0046】この場合、再び図5において、台数制御盤
10からの冷凍機2bの運転停止情報を受けて、冷凍機
2aの制御部(図示せず)は冷却水流量を最大にするよ
うに冷却水ポンプ4aの回転数制御を行う。これにより
冷凍機2aの高温再生器(図示せず)の異常高温による
大気圧超えを回避することができる。
In this case, in FIG. 5 again, upon receiving the operation stop information of the refrigerator 2b from the number control panel 10, the control unit (not shown) of the refrigerator 2a performs cooling so as to maximize the cooling water flow rate. The rotation speed of the water pump 4a is controlled. Thereby, it is possible to avoid exceeding the atmospheric pressure due to an abnormally high temperature of the high temperature regenerator (not shown) of the refrigerator 2a.

【0047】所定の時間、冷却水流量を最大で運転した
後、図2のフローに従い、再び通常の冷却水流量制御が
行われることになる。
After the cooling water flow is operated at the maximum for a predetermined time, normal cooling water flow control is performed again according to the flow of FIG.

【0048】本実施形態では吸収式冷凍機の台数を2台
としたが、これに限らず、3台以上の冷凍機を用いても
同様の制御が可能であることは勿論である。
In the present embodiment, the number of absorption chillers is two. However, the number of chillers is not limited to this, and it goes without saying that the same control can be performed by using three or more chillers.

【0049】なお、上記各実施形態では冷凍機の燃料と
して都市ガスを用いたが、他の燃料、例えば灯油、電気
等を用いることができ、また、種々の排熱等を用いるこ
ともできる。
In the above embodiments, city gas is used as the fuel for the refrigerator. However, other fuels, for example, kerosene and electricity, can be used, and various kinds of exhaust heat can be used.

【0050】また、冷却媒体として水を用いた例を示し
たが、これに限らず他の冷却媒体を用いることも可能で
ある。
Although an example has been described in which water is used as the cooling medium, the present invention is not limited to this, and another cooling medium can be used.

【0051】[0051]

【発明の効果】本発明によれば、吸収式冷凍機の冷却水
流量制御において、流量を増加させる場合に流量を減少
させる場合より流量変化率を大きな値に設定したため、
高温再生器の大気圧超えや腐食等の問題を有効に回避で
きるようになった。
According to the present invention, in the cooling water flow rate control of the absorption refrigerator, the flow rate change rate is set to a larger value when increasing the flow rate than when decreasing the flow rate.
Problems such as exceeding atmospheric pressure and corrosion of the high-temperature regenerator can be effectively avoided.

【0052】請求項2に係る発明にあっては、高温再生
器の温度管理をさらに詳細に行うことが可能となった。
According to the second aspect of the present invention, the temperature of the high-temperature regenerator can be controlled in more detail.

【0053】請求項3に係る発明にあっては、高温再生
器の大気圧超えや高温による腐食を、より確実に回避す
ることが可能となった。
According to the third aspect of the present invention, it is possible to more reliably prevent the high-temperature regenerator from corroding due to exceeding the atmospheric pressure or high temperature.

【0054】請求項4に係る発明にあっては、冷房負荷
に応じて運転台数を制御する方式において、1台の冷凍
機がまかなう負荷が急激に増加した場合においても、速
やかに冷却水流量を増加させることが可能となった。
According to the fourth aspect of the present invention, in the method of controlling the number of operating units according to the cooling load, even if the load covered by one refrigerator increases rapidly, the cooling water flow rate is quickly increased. It became possible to increase.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第一の実施形態に係る吸収式冷凍機を示す図で
ある。
FIG. 1 is a diagram showing an absorption refrigerator according to a first embodiment.

【図2】第一の実施形態に係る冷却水流量制御フローを
示す図である。
FIG. 2 is a diagram showing a flow chart for controlling the flow rate of cooling water according to the first embodiment.

【図3】第二の実施形態に係る吸収式冷凍機を示す図で
ある。
FIG. 3 is a diagram showing an absorption refrigerator according to a second embodiment.

【図4】第二の実施形態に係る冷却水流量制御フローを
示す図である。
FIG. 4 is a diagram illustrating a flow of controlling a flow rate of cooling water according to a second embodiment.

【図5】第三の実施形態に係る吸収式冷凍機を示す図で
ある。
FIG. 5 is a diagram showing an absorption refrigerator according to a third embodiment.

【図6】第三の実施形態に係る台数制御を示す図であ
る。
FIG. 6 is a diagram showing number control according to a third embodiment.

【図7】従来の吸収式冷凍機を示す図である。FIG. 7 is a view showing a conventional absorption refrigerator.

【符号の説明】[Explanation of symbols]

1…水冷式空調装置、2・2a・2b…吸収式冷凍機、
3…冷却塔、4・4a・4b…冷却水ポンプ、5・5a
・5b…冷却水往管、6・6a・6b…冷却水戻管、9
…制御部、10…高温再生器、11…温度センサ、15
…都市ガス供給ライン、13…バーナ、16…インバー
タ制御装置、21…室内機、22…冷水往管、23…冷
水戻管、25…冷水ポンプ、27・28…温度センサ
1. Water-cooled air conditioner, 2.2a. 2b ... Absorption refrigerator,
3. Cooling tower, 4.4a, 4b ... Cooling water pump, 5.5a
5b: Cooling water outgoing pipe, 6.6a, 6b: Cooling water return pipe, 9
... Control unit, 10 ... High temperature regenerator, 11 ... Temperature sensor, 15
... City gas supply line, 13 ... Burner, 16 ... Inverter control device, 21 ... Indoor unit, 22 ... Chilled water outgoing pipe, 23 ... Chilled water return pipe, 25 ... Chilled water pump, 27/28 ... Temperature sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 理 東京都港区海岸1−5−20東京瓦斯株式会 社内 Fターム(参考) 3L093 AA01 BB11 BB18 BB22 BB26 BB29 CC00 CC07 DD09 EE14 EE17 EE25 EE30 GG02 HH00 HH14 JJ00 JJ06 KK05  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Osamu Shibata 1-5-20 Minato-ku, Tokyo Tokyo Gas Co., Ltd. In-house F-term (reference) 3L093 AA01 BB11 BB18 BB22 BB26 BB29 CC00 CC07 DD09 EE14 EE17 EE25 EE30 GG02 HH00 HH14 JJ00 JJ06 KK05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】吸収式冷凍機を用いた水冷式空調装置の冷
却水流量制御方法であって、冷凍機出口における冷却水
温度(以下、出口温度という)の計測値(T)と所定の
設定温度(T0)との温度差(T−T0)に基づき冷却水
流量を増減させて設定温度に維持するものであり、か
つ、流量増加させる場合の流量変化率を流量減少させる
場合の流量変化率より大きな値に設定したことを特徴と
する冷却水流量制御方法。
1. A method for controlling a flow rate of a cooling water in a water-cooled air conditioner using an absorption refrigerator, comprising: a measurement value (T) of a cooling water temperature (hereinafter referred to as an outlet temperature) at a refrigerator outlet; The cooling water flow rate is increased or decreased based on the temperature difference (T−T 0 ) from the temperature (T 0 ) to maintain the set temperature, and the flow rate when the flow rate change rate when increasing the flow rate is decreased. A method for controlling a flow rate of cooling water, wherein the cooling water flow rate is set to a value larger than a change rate.
【請求項2】前記流量変化率は前記温度差の絶対値(|
T−T0|)に比例したものである請求項1に記載の冷
却水制御方法。
2. The method according to claim 1, wherein the rate of change of the flow rate is an absolute value (|
The cooling water control method according to claim 1, wherein the cooling water control method is proportional to (T−T 0 |).
【請求項3】前記吸収式冷凍機は高温再生器を備えてお
り、かつ、該高温再生器が所定の温度を超えたときは、
冷却水流量を最大に設定する請求項1または2のいずれ
か記載の冷却水制御方法。
3. The absorption refrigerator has a high temperature regenerator, and when the high temperature regenerator exceeds a predetermined temperature,
3. The cooling water control method according to claim 1, wherein the cooling water flow rate is set to a maximum.
【請求項4】請求項1乃至3のいずれかにおいて、前記
吸収式冷凍機はそれぞれ冷却水回路を有する複数の吸収
式冷凍機から成り、冷房負荷に応じて該吸収式冷凍機の
運転台数を増減させるものであり、かつ、運転台数を減
少させるときは所定の時間、冷却水流量を最大に設定す
ることを特徴とする冷却水制御方法。
4. The absorption chiller according to claim 1, wherein the absorption chiller includes a plurality of absorption chillers each having a cooling water circuit, and the number of operating the absorption chillers depends on a cooling load. A cooling water control method, wherein the cooling water flow rate is increased or decreased, and the cooling water flow rate is set to a maximum for a predetermined time when the number of operating vehicles is reduced.
JP23714899A 1999-08-24 1999-08-24 Method for controlling flow rate of cooling water in water-cooled air conditioner having absorption refrigerator Pending JP2001066011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23714899A JP2001066011A (en) 1999-08-24 1999-08-24 Method for controlling flow rate of cooling water in water-cooled air conditioner having absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23714899A JP2001066011A (en) 1999-08-24 1999-08-24 Method for controlling flow rate of cooling water in water-cooled air conditioner having absorption refrigerator

Publications (1)

Publication Number Publication Date
JP2001066011A true JP2001066011A (en) 2001-03-16

Family

ID=17011125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23714899A Pending JP2001066011A (en) 1999-08-24 1999-08-24 Method for controlling flow rate of cooling water in water-cooled air conditioner having absorption refrigerator

Country Status (1)

Country Link
JP (1) JP2001066011A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6789035B1 (en) * 2002-05-30 2004-09-07 Mitsuboshi Belting, Ltd. Method of analyzing vibration in a transmission belt and an apparatus and program useable to perform the method
JP2011185478A (en) * 2010-03-05 2011-09-22 Hitachi Plant Technologies Ltd Cooling system
CN102322671A (en) * 2011-07-29 2012-01-18 天津大学 Central air-conditioning control method
CN105402929A (en) * 2014-09-10 2016-03-16 矢崎能源系统公司 absorbed type refrigeration system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6789035B1 (en) * 2002-05-30 2004-09-07 Mitsuboshi Belting, Ltd. Method of analyzing vibration in a transmission belt and an apparatus and program useable to perform the method
JP2011185478A (en) * 2010-03-05 2011-09-22 Hitachi Plant Technologies Ltd Cooling system
CN102322671A (en) * 2011-07-29 2012-01-18 天津大学 Central air-conditioning control method
CN102322671B (en) * 2011-07-29 2013-11-20 天津大学 Central air-conditioning control method
CN105402929A (en) * 2014-09-10 2016-03-16 矢崎能源系统公司 absorbed type refrigeration system
JP2016057005A (en) * 2014-09-10 2016-04-21 矢崎エナジーシステム株式会社 Adsorption type refrigeration system
CN105402929B (en) * 2014-09-10 2018-05-29 矢崎能源系统公司 Absorption refrigeration system

Similar Documents

Publication Publication Date Title
JP4435533B2 (en) Heat source system and control device
JP2002098358A (en) Primary pump type heat source flow variable system
JP2003294290A (en) Unit number control device of heat source and unit number control method
JP2002089935A (en) Primary/secondary pump type heat source variable flow rate system
JP2008292043A (en) Air conditioning system
JP2002162087A (en) Variable flow control system for exhaust heat recovery and heat source
JP2000337729A (en) Operation method for water-cooled air conditioner
JP3306612B2 (en) How to control the number of operating heat source units
JP2001066011A (en) Method for controlling flow rate of cooling water in water-cooled air conditioner having absorption refrigerator
JPH10300163A (en) Method for operating air conditioner and air conditioner
JP4321318B2 (en) Triple effect absorption refrigerator
JP4513545B2 (en) Refrigeration unit control system and cooling supply system
JP4838776B2 (en) Heat source control device and heat source control method
JP3320631B2 (en) Cooling and heating equipment
JP3184034B2 (en) Control method of absorption chiller / heater
JP3309282B2 (en) Design method of air conditioning system with heat storage tank
JP2001050605A (en) Method for operating water-cooled air conditioner
JPH07218003A (en) Control system for refrigerator
JP2000356430A (en) Water cooled air conditioner and its operation method
JP3172315B2 (en) Number of operation units for absorption chillers
JP3588144B2 (en) Operating number control of absorption chillers installed in parallel
JP2775089B2 (en) Method of preventing coolant from freezing in cooling device
JP2000274862A (en) Temperature controller for absorption refrigerator
JPH03271675A (en) Cold water manufacturing device
JP3280085B2 (en) Operation control method in absorption refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060626