CN102322671B - Central air-conditioning control method - Google Patents

Central air-conditioning control method Download PDF

Info

Publication number
CN102322671B
CN102322671B CN2011102139871A CN201110213987A CN102322671B CN 102322671 B CN102322671 B CN 102322671B CN 2011102139871 A CN2011102139871 A CN 2011102139871A CN 201110213987 A CN201110213987 A CN 201110213987A CN 102322671 B CN102322671 B CN 102322671B
Authority
CN
China
Prior art keywords
chilled water
temperature
load
central air
superheat
Prior art date
Application number
CN2011102139871A
Other languages
Chinese (zh)
Other versions
CN102322671A (en
Inventor
吴爱国
王洪生
李兆博
翟文鹏
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to CN2011102139871A priority Critical patent/CN102322671B/en
Publication of CN102322671A publication Critical patent/CN102322671A/en
Application granted granted Critical
Publication of CN102322671B publication Critical patent/CN102322671B/en

Links

Abstract

本发明属于中央空调技术领域,涉及一种中央空调控制方法,包括:(1)控制参数的采集和冷冻水侧负荷Q的计算;(2)压缩机回路控制方法;(3)蒸发器回路控制方法;(4)冷凝器回路控制方法。 The present invention belongs to the technical field of central air conditioning, to a central air-conditioning control method, comprising: (1) acquisition and chilled water control side of the load parameter calculating Q; (2) a compressor loop control method; (3) an evaporator control circuit method; (4) a condenser loop control method. 本发明提出的中央空调控制方法,能够快速准确地实现中央空调系统的节能控制。 Central air conditioning control method proposed in the present invention, it is possible to achieve energy saving control of central air-conditioning system quickly and accurately.

Description

一种中央空调控制方法 One kind of central air-conditioning control method

技术领域 FIELD

[0001] 本发明涉及一种中小型中央空调嵌入式控制器,尤其涉及可以实现联网控制建筑物内多台制冷、空调设备的嵌入式控制器。 [0001] The present invention relates to a central air-conditioning sized embedded controllers, and particularly to network control may be implemented within a building a plurality of refrigeration, air conditioning equipment embedded controller.

背景技术 Background technique

[0002] 随着我国经济社会的发展,中央空调已经比较普遍地应用于公共建筑。 [0002] With the development of economic and social development, central air conditioning has been more commonly used in public buildings.

[0003] 此外,现有中央空调系统专用控制器价格较高,使用和维护不便,不利于实际推广应用。 [0003] In addition, the higher the existing central air conditioning system dedicated controller price, use and maintenance inconvenience, is not conducive to practical application. 在我国还缺乏一种低成本、高可靠性、可以节能运行、可以联网、适合于单台或者多台的中央空调设备的专用控制器。 In the lack of a low-cost, high reliability and energy saving operation can be networked, suitable for a single controller or a dedicated central air conditioning device of the plurality.

[0004] 在对中央空调的控制算法方面,国内外学者对制冷系统的控制经历了从单输入单输出控制向多输入多输出控制的有机过渡.对于制冷系统的控制来说,虽然可以借鉴系统仿真模型,但仿真模型并不能完全真实反映系统的输入输出关系,而且对于控制来说过于复杂,难以满足控制系统实时性的要求.并且根据对象模型建立的控制算法,往往出现与实际系统有很大差别,模型不准确的问题非常突出,进而不能取得理想的控制效果。 [0004] in the control algorithm for central air conditioning, domestic and foreign scholars to control the refrigeration system has experienced multiple input multiple output control to a single input single output from the organic transition for control of the refrigeration system, although the system can learn from simulation model, the simulation model input-output relationship but does not entirely true reflection of the system, but also for control is too complex, difficult to meet the requirements of real-time control system and control algorithm according to the object model of the actual system there are often very big difference, the problem of inaccurate model is very prominent, and thus can not achieve the desired control effect.

发明内容 SUMMARY

[0005] 本发明的目的是,克服现有技术的上述不足,提供一种能够快速准确地调节中央空调系统的节能控制方法。 [0005] The object of the present invention is to overcome the above deficiencies of the prior art, to provide a control method capable of regulating energy-saving air conditioning system quickly and accurately. 本发明的技术方案如下: Aspect of the present invention is as follows:

[0006] 一种中央空调控制方法,包括以下几个步骤: [0006] A central air-conditioning control method, comprising the steps of:

[0007] (I)控制参数的采集和冷`冻水侧负荷Q的计算:采集冷冻水供水温度Tin、回水温度Tout和流量值M以及压缩机、冷冻水泵、冷却水泵功率,根据公式Q = C*M* (Tout-Tin),计算冷冻水侧负荷Q,式中,C为水的比热,通常取常数,M为质量流量; [0007] (I) to control the acquisition parameters `cold water and a cold side load Q calculated: collecting chilled water supply temperature Tin, Tout return water temperature and flow values ​​M and a compressor, chilled water pumps, cooling water pump power, according to the formula Q = C * M * (Tout-Tin), calculated chilled water side loading Q, where, C is the specific heat of water, is usually taken constant, M being the mass flow rate;

[0008] (2)压缩机回路控制方法:根据冷冻水供水温度设定值,调节压缩机变频器输出,使得供水温度维持在要求的冷冻水供水温度设定值附近; [0008] (2) The method of controlling the compressor circuit: The chilled water supply temperature setpoint, the output of the inverter compressor is adjusted such that the water temperature is maintained in the vicinity of the chilled water supply temperature setpoint requirement;

[0009] (3)蒸发器回路控制方法:根据所采集的蒸发器内制冷剂出口温度Tcho和蒸发压力P的数值,得到饱和蒸发温度Te,并由Tsh = TchO-Te计算过热度,控制设置在蒸发器回路上的电子膨胀阀开度,使得过热度维持最小过热度设定值附近; [0009] (3) an evaporator loop control method: The values ​​within the acquired temperature of the refrigerant outlet of the evaporator and the evaporation Tcho pressure P, to obtain a saturation evaporation temperature Te, Tsh = TchO-Te by calculating the degree of superheat, the control settings back to the evaporator expansion valve opening degree of the electronic road, so that the degree of superheat is maintained near the minimum superheat setpoint;

[0010] (4)冷凝器回路控制方法:对冷却水回水温度进行采样,根据采样值控制至冷却水泵变频器输出和冷却塔风机,使得冷却水回水温度维持在冷却水回水温度设定值附近。 [0010] (4) a condenser loop control method: the cooling water return temperature is sampled according to the sampling values ​​of the cooling water pump to control the inverter output and the cooling tower fan so that the cooling water return temperature is maintained at a temperature of the cooling water return is provided setting nearby.

[0011] 其中,冷冻水供水温度设定值按照下面方法计算得出: [0011] wherein, chilled water supply temperature setpoint is calculated according to the following method:

[0012] I)、若冷冻水侧负荷Q大于等于额定负荷时,对应的冷冻水供水温度设定值为6度; When the [0012] I), when Q is larger than the chilled water side load equal to the rated load, chilled water supply temperature of 6 degrees corresponding to the set value;

[0013] 2)、若冷冻水侧负荷Q小于等于额定负荷的30%时,对应的冷冻水供水温度设定值为9度; [0013] 2) If the chilled water side loading is less than 30% of Q is equal to the rated load, chilled water supply temperature set value corresponding to 9 degrees;

[0014] 3)、若冷冻水侧负荷Q在额定负荷的30%到100%范围变化时,冷冻水供水温度设定值在9度到6度范围内变化,采用如下公式确定:tehi,srt = K1Q^k2 Σ W+k3,式中Σ W为制冷系统压缩机、冷冻水泵、冷却水泵功耗之和,Q为计算的系统负荷,K1、K2、K3、y为根据实际中央空调系统预设的系数。 [0014] 3), if the side loading Q chilled water varied in the range of 30% to 100% of rated load, chilled water supply temperature setpoint changes in a range from 9 degrees to 6 degrees, is determined using the following formula: tehi, srt = K1Q ^ k2 Σ W + k3, where Σ W compressor refrigeration systems, chilled water pumps, cooling water pumps and power sum, Q is calculated by the system load, K1, K2, K3, y is a central air conditioning system in accordance with the actual pre- set of coefficients.

[0015] 其中的最小过热度设定值根据下列方法得到: [0015] wherein the minimum superheat set obtained according to the following method:

[0016] I)、冷冻水侧负荷Q大于等于额定负荷时,对应的最小过热度设定值为9度; [0016] I), Q is larger than the chilled water side load equal to the rated load, corresponding to the minimum degree of superheat set value of 9;

[0017] 2)、冷冻水侧负荷Q小于等于额定负荷的30%时,对应的最小过热度设定值为5度; When the [0017] 2), chilled water side load Q equal to less than 30% of the rated load, corresponding to the minimum value of 5 degrees superheat set;

[0018] 3)、当冷冻水侧负荷Q在额定负荷的30%到100%范围变化时,对应的最小过热度设定值在5度到9度范围变化,实际负荷与最小过热度设定值之间,通过预设的优化函数关系式Tsh, srt = uQv获取,系数u,V通过对中央空调系统的实验标定得到。 [0018] 3), when the side load Q chilled water varied in the range of 30% to 100% of rated load, corresponding to the minimum superheat setpoint range 5 degrees to 9 degrees change, the actual load and the minimum superheat setting between the values ​​of the optimization function through a preset relationship Tsh, srt = uQv acquired, the coefficient u, V demarcated by experiment to give the central air conditioning system.

[0019] 冷却水回水温度设定值按照下列方法确定:对室外温度twt进行采样,并且根据tset = at0Ut+bQ+c,(式中a、b、c三个系数通过对中央空调系统的实验标定得到),计算出冷却水回水温度设定值。 [0019] Cooling water return temperature setpoint determined as follows: the outdoor temperature twt sampled and according tset = at0Ut + bQ + c, (wherein a, b, c of the three coefficients of the central air conditioning system obtained calibration experiment), calculate the cooling water return temperature setpoint.

[0020] 本发明专利采用多回路PID控制算法,将压缩机制冷量与系统负荷联系起来,通过调节压缩机变频器来粗略调节制冷剂流量,从而粗略改变制冷量,使得冷冻水供水温度跟随此时计算出的冷冻水供水温度设定值。 [0020] The present patent uses multi-loop PID control algorithm, the cooling capacity of the compressor system linked to the load to be roughly adjusted by adjusting the flow rate of the refrigerant compressor inverter, thereby changing the refrigerant roughly the amount that the chilled water supply temperature following this when the calculated chilled water supply temperature setpoint. 通过调节电子膨胀阀的开度来微调制冷剂流量,从而精确的改变制冷量,达到减少压缩机能耗的目的,并通过通过调节冷凝水泵变频器和冷却塔风机转速与台数,达到控制的目的。 By adjusting the opening degree of the electronic expansion valve to fine tune the flow rate of the refrigerant, whereby cooling capacity accurately changes, the purpose of reducing energy consumption of the compressor, and by the condensate pump drive and by adjusting the fan speed and the number of cooling towers, control purposes.

附图说明 BRIEF DESCRIPTION

[0021] 图1为本发明的整体方框示意图。 [0021] FIG. 1 is a whole block diagram of the present invention.

[0022] 图2(a)为本发明的压缩机回路参数设定值确定示意图(b)为压缩机回路控制原理图。 The compressor circuit parameter setting [0022] FIG. 2 (a) determining a schematic view of the present invention, (b) is a schematic diagram of the compressor control circuit.

[0023] 图3(a)为本发明的蒸发器回路参数设定值确定示意图(b)为蒸发器回路控制原理图。 Evaporator loop parameter setting [0023] FIG. 3 (a) determining a schematic view of the present invention, (b) is a schematic diagram of a control circuit of the evaporator.

[0024] 图4(a)为本发明的冷凝器回路参数设定值确定示意图(b)为冷凝器回路控制原理图。 Condenser loop parameter setting [0024] FIG. 4 (a) determining a schematic view of the present invention, (b) a control circuit diagram of a condenser.

具体实施方式 Detailed ways

[0025] 下面结合实施例和附图对本发明做进一步介绍。 [0025] The following Examples and accompanying drawings further description of the present invention.

[0026] 在说明本发明实施例的控制方法之前,首先介绍采用了本发明控制方法的控制器。 [0026] Before describing the control method of the embodiment of the present invention, the controller first introduced using the method of the present invention.

[0027] 参见图1,该控制器是一种基于ARM的中央空调嵌入式控制器,包括嵌入式微处理器LM3S8970,基于SSI总线的八路A/D隔离电路,八路A/D转换电路,八路模拟量输入电压/电流信号选择电路,基于I2C总线的八路D/A隔离电路,八路D/A转换电路,八路模拟量输出电压/电流信号选择电路,十路光隔离开关量输入信号调理电路,多种工作状态按钮,十路光隔离开关量输出信号调理电路,继电器驱动电路,RS232接口驱动电路模块,CAN接口驱动电路模块,标准以太网接口驱动模块,ARM独立电源供电模块,模拟量输入独立电源供电模块,模拟量输出独立电源供电模块,上电复位电路模块,JTAG调试接口电路模块。 [0027] Referring to Figure 1, the controller is a central air-conditioning based on ARM embedded controller, including an embedded microprocessor LM3S8970, SSI Octal Bus A / D isolation circuit, eight A / D conversion circuit, based on eight analog input voltage / current signal selection circuit, based on I2C bus Octal D / a isolation circuit, eight D / a conversion circuit, eight analog output voltage / current signal selection circuit, ten opto-isolated digital input signal conditioning circuits, multiple button working states, ten opto-isolated digital output signal conditioning circuit, the relay drive circuit, RS232 interface drive circuit module, CAN interface drive circuit module, standard Ethernet driver module, the ARM independent power supply module, independent power analog input power supply module, analog output independent power supply modules, power-on reset circuit module, the JTAG debug interface circuit module.

[0028] 其中,模拟量输入信号经模拟量输入电压/电流信号选择电路转换为标准O〜5V电压信号,标准电压信号经A/D转换电路及A/D隔离电路并通过SSI总线传递给LM3S8970。 [0028] wherein the analog input signal via analog input voltage / current signal selection circuit is converted into a voltage signal O~5V standard, the standard voltage signal by A / D conversion circuit and A / D circuit and passed to the separator through the SSI bus LM3S8970 . LM3S8970中模拟量输出寄存器的值通过I2C总线传输给D/A隔离电路以及D/A转换电路,成为O〜5V电压信号,再经模拟量输出电压信号转换电路变为标准O〜IOV信号输出。 The analog output value LM3S8970 register I2C bus transfer to the D / A and the isolation circuit D / A conversion circuit, the voltage signal becomes O~5V, then the analog output voltage signal conversion circuitry becomes O~IOV standard signal output. 工作状态控制按钮连接开关量信号输入接口,状态信号经开关量信号调理电路传递给LM3S8970。 The operating state control button switch connected to the input interface signal, transmitted via the switch status signal to the signal conditioning circuit LM3S8970. LM3S8970中开关量输出寄存器的值经开关量输出调理电路以及继电器驱动电路传递到开关量信号输出接口。 LM3S8970 switching output value of the register via the switching output conditioning circuit and a relay drive circuit is transmitted to the switch signal output interfaces. 触摸屏的串口连接至本控制器的RS232接口驱动电路,基于MODBUS协议实现触摸屏向控制器请求数据和下发设定值以及控制器向触摸屏发送相应监测数据。 The touch screen is connected to the serial RS232 interface driving circuit of the controller, and delivers the requested data to the controller setpoint and the touch screen controller MODBUS protocol based on the transmission data corresponding to the touch screen monitor. 其他控制器的CAN接口连接至本控制器的CAN接口驱动电路模块,通过接受和发送CAN报文实现数据的双向传输。 CAN interface controller according to other controller CAN interface module driving circuit, two-way transmission of data by receiving and sending CAN messages. 本控制器通过标准以太网接口驱动模块以及路由器连接至互联网,在电脑浏览器中输入IP号即可通过互联网访问控制器,实现远程监控。 This controller is connected via a standard Ethernet interface module and drive the router to the Internet, enter the IP number to access the controller via the Internet in the computer browser, remote monitoring. 上电复位电路模块的复位按钮作为输入可以触发LM3S8970复位。 On reset circuit as a reset button input module can trigger LM3S8970 reset. JTAG调试接口模块可以实现控制器与电脑之间数据和调试信息的相互传送。 JTAG debug interface modules may be implemented and mutual transmission of data between the controller and the debug information the computer.

[0029] 本控制器提供了两种人机交互界面:一方面可以通过触摸屏进行参数的监测和设置,另一方面可以通过网络浏览器进行参数的监测和设置。 [0029] This controller provides two interactive interface: on the one hand and setting parameters can be monitored through the touch screen, on the other hand and setting parameters can be monitored by a web browser. 其监测的参数包括:蒸发器进出口压力、冷凝器进出口压力、蒸发器进出口温度、冷凝器进出口温度、冷冻水供回水温度、流量、冷却水回水温度、室外温度、压缩机功率、冷冻水功率、冷却水功率。 The parameters monitored comprises: an evaporator outlet pressure, outlet pressure condenser, the evaporator outlet temperature, the condenser outlet temperature, chilled water supply and return temperature, flow rate, cooling water return temperature, outdoor temperature, the compressor power, water power freezing, the cooling water power. 其设置的参数包括:压缩机频率设定值,冷却水泵频率设定值,电子膨胀阀开度设定值,过热度设定值,以及三个回路的调节参数 Parameter set comprises: frequency setting adjustment parameters of the compressor, cooling water pump frequency setting, an electronic expansion valve opening degree set value, the superheat set point, and three loops

[0030] 此外,本控制器作为一个开放的平台,用户可以按实际需求修改。 [0030] Further, the present controller as an open platform, users can modify the actual demand.

[0031] 参见图2,图3和图4,本发明的节能控制采用了多回路PID控制算法:第一、实时检测冷冻水回路的状态,计算出系统负荷,并实际测得制冷系统压缩机、冷冻水泵、冷却水泵功率,然后通过本控制器预置的算法,计算此时对应的蒸发压力或者冷冻水供水温度的设定值,然后对压缩机回路进行PID调节,通过调节压缩机变频器来粗略调节制冷剂流量,从而粗略改变制冷量,使得冷冻水供水温度跟随此时计算出的冷冻水供水温度设定值。 [0031] Referring to FIG. 2, FIG. 3 and FIG. 4, the power saving control according to the present invention uses a multi-loop PID control algorithm: First, the real-time status of the chilled water circuit is detected, the system load is calculated, and the actual measured compressor refrigeration system , chilled water pumps, cooling water pump power, then the controller through a preset algorithm according to the present, time is calculated corresponding to the evaporation pressure or the chilled water supply temperature setpoint, and then the compressor loop PID regulation, by adjusting the drive of the compressor a rough adjusting the refrigerant flow, cooling capacity so that coarse adjustment, so that the chilled water supply temperature calculated at this time follows the chilled water supply temperature setpoint. 第二、实时检测蒸发器回路的状态,计算出系统负荷,然后根据所得数据,通过本控制器预置的算法计算出此时对应的过热度的设定值,然后对蒸发器回路进行PID调节,通过调节电子膨胀阀的开度来微调制冷剂流量,从而精确的改变制冷量,达到减少压缩机能耗的目的。 Second, real-time detection of the evaporator circuit state, the system load is calculated, and according to the data obtained by the local controller algorithm to compute a preset set value corresponding to the degree of superheat at this time, then the evaporator loop PID regulation by adjusting the opening degree of the electronic expansion valve to fine tune the flow rate of the refrigerant, whereby cooling capacity accurately changes, the purpose of reducing the energy consumption of the compressor. 第三、实时检测室外温度Iut,冷凝器回路的状态,计算出系统负荷,然后根据所得数据,通过本控制器预置的算法计算出此时对应的冷却水回水温度的设定值,然后对冷凝器回路进行PID调节,通过调节冷凝水泵变频器和冷却塔风机转速与台数,达到控制的目的。 Third, the real-time detection Iut outdoor temperature, the condenser circuit state, the system load is calculated, and according to the data obtained by this controller a preset algorithm to calculate a set value of the return temperature of the cooling water corresponding to the case, and condenser loop PID regulation, by adjusting the fan speed and the water pump drive and the number of condensed cooling towers, control purposes.

[0032] 具体控制方案如下: [0032] The specific control programs are as follows:

[0033] 第一、点击控制器待机按钮 [0033] First, click the standby button controller

[0034] 步骤一:待机指示灯点亮, [0034] Step a: standby indicator lights,

[0035] 步骤二:控制器开始进行各个模块的检测,控制器初始化配置、输入输出接口以及通信等,如果一切正常,则熄灭待机指示灯,进入开机前等待状态。 [0035] Step II: The controller starts detecting the respective module, controller initializes configuration, input and output interfaces and communications, if everything is normal, the standby light goes out, before starting to enter the wait state. 如果控制器检测到异常状况,或者出现故障,则点亮报警指示灯。 If the controller detects an abnormal condition or failure, the alarm indicator lights.

[0036] 步骤三:检测关机按钮是否按下,如果按下,控制器切换到关机模式;如果没有按下则跳转到步骤一。 [0036] Step Three: detecting off button is depressed, if pressed, the controller switches to off mode; if not pressed then jumps to step a.

[0037] 第二,点击控制器开机按钮[0038] 步骤一:正常运行指示灯点亮,控制器进入开机模式 [0037] Second, click on the button to start the controller [0038] Step a: normal operation indicator light, the controller enters the power mode

[0039] 步骤二:计时器开始计时,同时设定压缩机变频器为额定频率、冷冻水泵变频器为额定频率、冷却水泵变频器为额定频率、冷却塔风机为额定值、膨胀阀开度为额定开度。 [0039] Step Two: timer is started while setting the rated drive frequency of the compressor, chilled water pumps rated drive frequency, a cooling water pump drive is rated frequency, cooling tower fans rated value, the opening degree of the expansion valve rated degrees.

[0040] 步骤三:检测手动按钮是否按下,如果按下,等待进入运行模式状态下,控制器切换到手动运行模式;如果没有按下,等待进入运行模式状态下,控制器切换到自动运行模式;继续向下运行。 [0040] Step Three: detecting whether the manual button is pressed, if pressed, waiting to enter the operating mode state, the controller switches to manual operation mode; if not pressed, the operation mode enters the wait state, the controller switches to automatic operation mode; continues to run down.

[0041] 步骤四:检测关机按钮是否按下,如果按下,控制器切换到关机模式;如果没有按下则继续向下运行。 [0041] Step Four: detecting off button is depressed, if pressed, the controller switches to off mode; if it is not depressed to continue operation.

[0042] 步骤五:检测计时器是否到达控制器预置时间,以及检测温度是否到达预置的温度阈值。 [0042] Step Five: control detection timer reaches the preset time, and the detected temperature reaches a preset temperature threshold.

[0043] 步骤六:如果到达预置时间或者预置温度阈值,那么向下继续执行;如果预置时间和置温度阈值都没有到达,则跳转到步骤五。 [0043] Step Six: If the temperature reaches the preset time or a preset threshold value, then proceed downward; If the preset time and a set temperature thresholds are not reached, then jumps to step five.

[0044] 步骤七:到达预置的预置开机时间时,或者当过热度到达预置温度阈值时,则开机模式结束,进入正常运行模式。 [0044] Step 7: When the preset start time reaches a preset, or when the degree of superheat reaches a preset temperature threshold, the power-end mode, enter the normal operation mode.

[0045] 第三、如果在开机状态下,手动和自动按钮都没有按下或者自动按钮按下,则控制器进入自动运行模式 [0045] Third, if the power on state, the manual and automatic or automatic buttons are not pressed button is pressed, the controller enters the automatic operation mode

[0046] 步骤一:点亮自动模式指示灯。 [0046] Step a: automatic mode indicator lighting.

[0047] 步骤二:判断是否到达冷冻水侧负荷、压缩机、冷冻水泵、冷却水泵功率采样时间。 [0047] Step two: determining whether the load side chilled water reaches the compressor, chilled water pumps, cooling water pump power sampling time. 若到达,则读取冷冻水供水温度Tin、回水温度Tout和流量,以及压缩机、冷冻水泵、冷却水泵功率,根据公式Q = C*M* (Tout-Tin),计算冷冻水侧负荷Q,式中,C为水的比热,通常取常数,M为质量流量; If reached, the read chilled water supply temperature Tin, Tout return water temperature and flow, and the compressor, chilled water pumps, cooling water pump power, according to the formula Q = C * M * (Tout-Tin), calculated chilled water side loads Q , wherein, C is the specific heat of water, is usually taken constant, M being the mass flow rate;

[0048] 步骤三:判断是否到达冷冻水供水温度设定值修改时间。 [0048] Step Three: determining whether chilled water supply temperature reaches the set point modification time. 若到达,则首先判断实际负荷Q与额定负荷的关系: If reached, the first relationship is determined and the actual load rated load Q:

[0049] I)、若冷冻水侧负荷Q大于等于额定负荷时,对应的冷冻水供水温度设定值6度。 When the [0049] I), when Q is larger than the chilled water side load equal to the rated load, corresponding to the chilled water supply temperature setpoint 6 degrees.

[0050] 2)、若冷冻水侧负荷Q小于等于额定负荷的30%时,对应的冷冻水供水温度设定值为9度。 [0050] 2) If the chilled water Q is smaller than the load side when the rated load is equal to 30%, the corresponding value of chilled water supply temperature was set to 9 degrees.

[0051] 3)、若冷冻水侧负荷Q在额定负荷的30%到100%范围变化时,冷冻水供水温度设定值在9度到6度范围内变化,冷冻水供水温度设定值采用如下算法确定。 [0051] 3), if the side loading Q chilled water varied in the range of 30% to 100% of rated load, chilled water supply temperature setpoint changes in a range of 6 degrees to 9 degrees, chilled water supply temperature setpoint using the following algorithm to determine. =K1Q^k2 Σ W+k3,式中Σ W为制冷系统压缩机、冷冻水泵、冷却水泵功耗之和,Q为计算的系统负荷,其余系数Kl、K2、K3、y根据不同系统形式进行修改设定;并且将计算出的冷冻水供水温度设定值给定到压缩机回路PID调节子程序中,否则继续向下运行。 = K1Q ^ k2 Σ W + k3, where Σ W compressor refrigeration systems, chilled water pumps, cooling water pumps and power sum, Q is calculated by the system load, the remaining coefficients Kl, K2, K3, y forms according to different systems modify settings; and the calculated chilled water supply temperature setpoint input to the compressor loop PID control routine, otherwise continue operation.

[0052] 步骤四:判断压缩机回路PID调节子程序调节周期是否到达,如果到达,对此时冷冻水供水温度进行采样,然后调用压缩机回路PID调节子程序,控制器输出至压缩机变频器。 [0052] Step Four: Analyzing compressor loop PID regulation subroutine adjustment period has arrived, if the arrival of chilled water supply temperature at this time is sampled, and then calls the compressor loop PID regulation subroutine, the output of the controller to drive the compressor . 最终使得供水温度维持在要求的冷冻水供水温度设定值附近。 Such that the final water temperature is maintained in the vicinity of chilled water supply temperature setpoint requirement. 否则继续向下运行。 Otherwise, continue to run down.

[0053] 步骤五:蒸发器回路的状态,判断是否到达最小过热度设定值修改时间,如果到达,则首先判断冷冻水侧负荷Q与额定负荷的关系: [0053] Step Five: Status evaporator circuit, it determines whether the degree of superheat reaches the minimum set point modification time, if the arrival is first determined relationship with the chilled water side load rated load Q:

[0054] I)、冷冻水侧负荷Q大于等于额定负荷时,对应的最小过热度设定值为9度。 [0054] I), Q is larger than the chilled water side load equal to the rated load, corresponding to the minimum value of the degree of superheat setting 9 degrees.

[0055] 2)、冷冻水侧负荷Q小于等于额定负荷的30%时,对应的最小过热度设定值为5度。 When the [0055] 2), chilled water side load Q 30% or less of the rated load, corresponding to the minimum value of 5 degrees superheat set. [0056] 3)、当冷冻水侧负荷Q在额定负荷的30%到100%范围变化时,对应的最小过热度设定值在5度到9度范围变化,实际负荷与最小过热度设定值之间,通过预设的优化函数关系式Tsh, set = uQv获取,系数U,V通过对中央空调系统的实验标定得到; [0056] 3), when the side load Q chilled water varied in the range of 30% to 100% of rated load, corresponding to the minimum superheat setpoint range 5 degrees to 9 degrees change, the actual load and the minimum superheat setting between the values ​​of the optimization function through a preset relationship Tsh, set = uQv acquisition, coefficient U, V demarcated by experiment to give the central air conditioning system;

[0057] 步骤六:判断蒸发器回路PID调节子程序调节周期是否到达,如果到达,对蒸发器内制冷剂出口温度和蒸发压力进行采样,读取蒸发器内制冷剂出口温度Tcho和蒸发压力P的数值,并根据蒸发压力与饱和蒸发温度之间的关系(与制冷剂本身的性质有关,可根据厂家的使用手册或者查阅工具书得到关系曲线)查表计算出相应的饱和蒸发温度Te,,并且根据算法:Tsh = Tcho-Te计算出此时的过热度,然后调用蒸发器回路PID调节子程序,控制器输出至电子膨胀阀。 [0057] Step Six: the evaporator is determined PID controller loop subroutine adjustment period has arrived, if the arrival of the evaporator outlet temperature and pressure of the refrigerant in the evaporator is sampled, the read outlet temperature of the evaporator and a refrigerant evaporation pressure P Tcho values, and the relation between the evaporation temperature and the saturated vapor pressure (and related properties of the refrigerant itself can be obtained curve according to the manufacturer's manual or book Now) look-up table to calculate the corresponding saturated evaporation temperature Te ,, and according to the algorithm: Tsh = Tcho-Te At this time, the calculated degree of superheat, and then call the subroutine evaporator loop PID controller, the controller outputs to the electronic expansion valve. 最终使得过热度维持在上步计算出的最小过热度设定值附近。 Such that the final degree of superheat is maintained near the minimum superheat set point calculated in step. 否则继续向下运行。 Otherwise, continue to run down. 步骤七:冷凝器回路的状态,判断是否到达冷却水回水温度设定值修改时间,如果到达,则对此时的室外温度进行采样,并且根据算法tsrt = aT0Ut+bQ+c,(式中 Step seven: condenser circuit state, it is determined whether the cooling water return temperature reaches the set point modification time, if the arrival, on the outdoor temperature at that time is sampled, and the algorithm according tsrt = aT0Ut + bQ + c, (wherein

a、b、c三个系数根据不同中央空调系统形式进行相应修改设定,可通过实验标定),计算出冷却水回水温度设定值,并且将计算出的冷却水回水温度设定值给定到冷凝器回路PID调节子程序中,否则继续向下运行。 a, b, c three modification coefficients corresponding set depending on the form of central air conditioning system, may be), to calculate the cooling water return temperature setpoint calibrated experimentally and the calculated cooling water return temperature setpoint given to the condenser loop PID control subroutine, or continue to run down.

[0058] 步骤八:判断冷凝器回路PID调节子程序调节周期是否到达,如果到达,对此时的冷却水回水温度进行采样,然后调用冷凝器回路PID调节子程序,控制器输出至冷却水泵变频器和冷却塔风机。 [0058] Step Eight: Analyzing condenser loop PID regulation subroutine adjustment period has arrived, if the arrival of the cooling-water return temperature is sampled, and then call the subroutine condenser loop PID controller, the controller outputs to the cooling water pump inverter and cooling tower fans. 最终使得冷却水回水温度维持在上一步计算出的冷却水回水温度设定值附近。 The final temperature of the cooling water return cooling water return temperature is maintained near the setpoint calculated in the previous step. 否则继续向下运行。 Otherwise, continue to run down.

[0059] 步骤九:检测手动按钮是否按下,如果按下,控制器切换到手动模式;如果没有按下则继续向下运行。 [0059] Step 9: detecting whether the manual button is pressed, and if pressed, the controller switches to manual mode; if it is not depressed to continue operation.

[0060] 步骤十:检测关机按钮是否按下,如果按下,控制器切换到关机模式;如果没有按下则继续向下运行。 [0060] Step 10: detecting off button is depressed, if pressed, the controller switches to off mode; if it is not depressed to continue operation.

[0061] 步骤十一:跳转到步骤二循环执行。 [0061] Step 11: two-cycle execution jumps to step.

[0062] 第四、如果在手动模式运行状态下,有自动按钮按下,则控制器输出切换前压缩机频率、冷却水泵频率、冷冻水泵频率、膨胀阀开度,以实现压缩机等机械的平滑过度,并切换到自动运行模式。 [0062] Fourth, if the state in manual mode, automatic button is pressed, the controller before switching the output frequency of the compressor, cooling water pump frequency, frequency chilled water pump, expansion valve, compressor and other machinery in order to achieve smooth transition, and to switch to the automatic operation mode.

[0063] 第五、在开机模式运行状态下,如果检测到手动按钮按下,则控制器进入手动运行模式 [0063] Fifth, in the boot mode state, if the detected manual button is pressed, the controller into manual operation mode

[0064] 步骤一:点亮手动模式指示灯 [0064] Step a: Manual mode indicator lighting

[0065] 步骤二:输出压缩机频率初值、冷却水泵频率初值、冷冻水泵频率初值、膨胀阀开度初值。 [0065] Step II: Initial output frequency of the compressor, cooling water pump frequency initial value, the initial value of the frequency chilled water pump, the expansion valve opening degree initial value.

[0066] 步骤三:查询是否有通过触摸屏传输进来的新设定值。 [0066] Step Three: check whether there is a new set value transmitted by the touch screen incoming.

[0067] 步骤四;如果有新的数据,输出新的压缩机频率设定值、冷冻水泵频率设定值、冷却水泵频率设定值、膨胀阀开度设定值。 [0067] Step four; if there are new data, the new setting value of the output frequency of the compressor, chilled water pump frequency setting value, the cooling water pump frequency setting value, the expansion valve opening degree set value. 如果没有新的数据,则继续向下运行。 If no new data, it continues to run down.

[0068] 步骤五:检测自动按钮是否按下,如果按下,控制器切换到自动模式;如果没有按下则继续向下运行。 [0068] Step Five: automatically detecting whether the pressed button, if pressed, the controller switches to the automatic mode; if it is not depressed to continue operation.

[0069] 步骤六:检测关机按钮是否按下,如果按下,控制器切换到关机模式;如果没有按下则继续向下运行。 [0069] Step Six: detecting off button is depressed, if pressed, the controller switches to off mode; if it is not depressed to continue operation.

[0070] 步骤七:跳转到步骤三循环执行。 [0070] Step 7: Go to Step Three loop. [0071] 第六、如果系统正在运行于自动模式,而此时检测到手动按钮被按下,则控制器输出切换前压缩机频率、冷冻水泵频率、冷却水泵频率、膨胀阀开度,并切换到手动模式 [0071] Sixth, if the system is running in automatic mode, at a time when the detected manual button is pressed, the controller before switching the output frequency of the compressor, chilled water pump frequency, the frequency of the coolant pump, expansion valve, and switch to manual mode

[0072] 第七、如果关机按钮按下,控制器进入关机模式 [0072] Seventh, if the off button is pressed, the controller enters a shutdown mode

[0073] 步骤一:点売关机指不灯, [0073] Step a: Point bai off means not light,

[0074] 步骤二:关机机计时器开始计时,同时设定压缩机频率为零,电子膨胀阀开度为零。 [0074] Step Two: machine shutdown timer is started, while the compressor frequency is set to zero, the electronic expansion valve opening degree is zero.

[0075] 步骤三:检测关机计时器是否到达预置的关机时间设定值,以及检测温度是否到达预置的关机温度阈值。 [0075] Step Three: detecting the shutdown timer reaches a preset off time set value, and the shutdown temperature threshold value is detected reaches a preset temperature.

[0076] 步骤四:如果到达关机时间或者关机温度阈值,那么向下继续执行;如果关机时间和关机温度都没有到达,则跳转到步骤三。 [0076] Step Four: If the arrival time or shut off temperature threshold, then continue down; off time and off if the temperatures are not reached, then jumps to step three.

[0077] 步骤五:到达预置的冷冻水关机时间设定值时,关闭冷冻水泵。 [0077] Step Five: chilled water reaches the preset OFF time set value, closed chilled water pumps. 待关机计时器到达冷却水泵关机时间设定值时,关闭冷却水泵、冷却塔风机;或者当压缩机冷冻水供水温度大于冷冻水关机温度阈值时,关闭冷冻水泵。 Be shutdown timer reaches the set value of the cooling water pump off time, closes the cooling water pump, cooling tower fan; or when the compressor chilled water supply temperature exceeds the shutdown temperature threshold chilled water, chilled water pumps off. 当压缩机冷却水出水温度小于冷却水关机温度阈值时,关闭冷却水泵、冷却塔风机。 When the compressor is less than the cooling water outlet temperature of the cooling water off temperature threshold, closes the cooling water pump, cooling tower fan.

[0078] 步骤六:关机机过程结束,控制器进入待机模式。 [0078] Step Six: machine shutdown process is ended, the controller enters the standby mode.

Claims (3)

1.一种中央空调控制方法,其特征在于,包括以下几个步骤: (O控制参数的采集和冷冻水侧负荷Q的计算:采集冷冻水供水温度Tin、回水温度Tout和流量值M以及压缩机、冷冻水泵、冷却水泵功率,根据公式Q=C*M* (Tout-Tin),计算冷冻水侧负荷Q,式中,C为水的比热,通常取常数,M为质量流量; (2)压缩机回路控制方法:根据冷冻水供水温度设定值,调节压缩机变频器输出,使得供水温度维持在要求的冷冻水供水温度设定值附近,其中,冷冻水供水温度设定值按照下面方法计算得出: 1)、若冷冻水侧负荷Q大于等于额定负荷时,对应的冷冻水供水温度设定值为6度; 2)、若冷冻水侧负荷Q小于等于额定负荷的30%时,对应的冷冻水供水温度设定值为9度; 3)、若冷冻水侧负荷Q在额定负荷的30%到100%范围变化时,冷冻水供水温度设定值在9度到6度范围内变化,采用如下公式 A central air-conditioning control method, characterized by comprising the following steps: (a load-side collection and chilled water control parameter Q, O Calculated: Tin collecting chilled water supply temperature, return water temperature and flow values ​​M and Tout compressor, chilled water pumps, cooling water pump power, according to the formula Q = C * M * (Tout-Tin), calculated chilled water side loading Q, where, C is the specific heat of water, is usually taken constant, M being the mass flow rate; (2) the method of controlling the compressor circuit: the chilled water supply temperature setpoint, the output of the inverter compressor is adjusted such that the water temperature is maintained near required chilled water supply temperature setpoint, wherein the chilled water supply temperature setpoint calculated according to the following methods: 1) If the chilled water side load equal to the rated load is greater than Q, the corresponding value of chilled water supply temperature is set to 6 degrees; 2), if the chilled water side load equal to the rated load Q is smaller than 30 %, the chilled water supply temperature corresponding to the set value of 9; 3), if the side loading Q chilled water at 30% to 100% of rated load variation range, chilled water supply temperature setpoint at 9 degrees to 6 the range of variation, using the following formula 定Ac^srt=K1Q1Wk2SW-1i3,式中ΣΙ为制冷系统压缩机、冷冻水泵、冷却水泵功耗之和,Q1为计算的系统负荷,K1, k2、k3、y为根据实际中央空调系统预设的系数; (3)蒸发器回路控制方法:根据所采集的蒸发器内制冷剂出口温度Tcho和蒸发压力P的数值,得到饱和蒸发温度Te,并由Tsh=Tcho-Te计算过热度,控制设置在蒸发器回路上的电子膨胀阀开度,使得过热度维持最小过热度设定值附近; (4)冷凝器回路控制方法:对冷却水回水温度进行采样,根据采样值控制冷却水泵变频器和冷却塔风机,使得冷却水回水温度维持在冷却水回水温度设定值附近。 Set Ac ^ srt = K1Q1Wk2SW-1i3, wherein ΣΙ compressor refrigeration systems, chilled water pumps, cooling water pumps and power consumption of, Ql load calculation system, K1, k2, k3, y is a central air conditioning system in accordance with the actual preset coefficient; (3) an evaporator loop control method: the values ​​within the acquired temperature of the refrigerant outlet of the evaporator and the evaporation Tcho pressure P, to obtain a saturation evaporation temperature Te, Tsh = Tcho-Te by calculating the degree of superheat, the control settings in the evaporator loop of an electronic expansion valve opening degree, so that the degree of superheat is maintained near the minimum superheat setpoint; (4) a condenser loop control method: the cooling water return temperature sampling, control of the cooling water pump drive according to the sampling values and cooling tower fan so that the cooling water return temperature is maintained in the vicinity of the cooling water return temperature setpoint.
2.根据权利要求1所述的中`央空调控制方法,其特征在于,最小过热度设定值根据下列方法得到: 1)、冷冻水侧负荷Q大于等于额定负荷时,对应的最小过热度设定值为9度; 2)、冷冻水侧负荷Q小于等于额定负荷的30%时,对应的最小过热度设定值为5度; 3)、当冷冻水侧负荷Q在额定负荷的30%到100%范围变化时,对应的最小过热度设定值在5度到9度范围变化,实际负荷与最小过热度设定值之间,通过预设的优化函数关系式Tsh,set = uQv获取,系数U,V通过对中央空调系统的实验标定得到。 `2. In the central air conditioning control method according to claim 1, characterized in that the minimum superheat set obtained according to the following methods: 1), chilled water side load Q not less than the rated load, corresponding to the minimum degree of superheating set value of 9; 2), chilled water side load Q equal to less than 30% of the rated load, corresponding to the minimum value of 5 degrees superheat set; 3), when the load side of the chilled water in the rated load of 30 Q the range of variation% to 100%, corresponding to a minimum superheat set between 5 and 9 degrees variation range, the minimum load and the actual superheat setpoint by a predetermined optimization function relationship Tsh, set = uQv obtaining coefficients U, V demarcated by experiment to give the central air conditioning system.
3.根据权利要求1所述的中央空调控制方法,其特征在于,冷却水回水温度设定值按照下列方法确定:对室外温度twt进行采样,并且根据tset = at0Ut+bQ+c计算出冷却水回水温度设定值,式中,a, b,c三个系数通过对中央空调系统的实验标定得到。 The central air-conditioning control method according to claim 1, characterized in that the cooling water return temperature setpoint determined as follows: the outdoor temperature twt sampled and calculated according to the cooling tset = at0Ut + bQ + c return water temperature setting value, wherein, a, b, c three coefficients obtained experimentally calibrated central air conditioning system.
CN2011102139871A 2011-07-29 2011-07-29 Central air-conditioning control method CN102322671B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011102139871A CN102322671B (en) 2011-07-29 2011-07-29 Central air-conditioning control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011102139871A CN102322671B (en) 2011-07-29 2011-07-29 Central air-conditioning control method

Publications (2)

Publication Number Publication Date
CN102322671A CN102322671A (en) 2012-01-18
CN102322671B true CN102322671B (en) 2013-11-20

Family

ID=45450468

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011102139871A CN102322671B (en) 2011-07-29 2011-07-29 Central air-conditioning control method

Country Status (1)

Country Link
CN (1) CN102322671B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620383B (en) * 2012-04-09 2015-03-11 青岛海尔空调电子有限公司 Control method and device of air-conditioning equipment and air conditioning system
CN104633840B (en) * 2013-11-15 2017-05-10 珠海格力电器股份有限公司 The control method of the air conditioning system and air-conditioning systems
US10260784B2 (en) 2013-12-23 2019-04-16 General Electric Company System and method for evaporator outlet temperature control
CN104534610B (en) * 2014-07-07 2017-07-07 陈好 One kind of energy-saving central air-conditioning intelligent control system operation method
CN104566809B (en) * 2014-12-22 2018-04-13 珠海格力电器股份有限公司 Air-conditioning and air-conditioning control method
CN104713197A (en) * 2015-02-15 2015-06-17 广东省城乡规划设计研究院 Central air conditioning system optimizing method and system based on mathematic model
CN104949274B (en) * 2015-06-23 2017-12-19 河海大学常州校区 A variation of air volume air conditioning chillers double-loop control method
CN105066343B (en) * 2015-07-31 2017-11-28 新智能源系统控制有限责任公司 Variable temperature control system applicable to a pump system of air conditioning
CN105318460B (en) * 2015-10-15 2018-01-23 珠海格力电器股份有限公司 Control system, control method and its application of chillers
CN106352630A (en) * 2016-08-31 2017-01-25 浪潮电子信息产业股份有限公司 Control device and method and air-conditioning system
CN106979641B (en) * 2017-04-20 2018-09-11 天津大学 The data driver based cooling systems are energy-saving system and method of improving mfac

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066011A (en) 1999-08-24 2001-03-16 Tokyo Gas Co Ltd Method for controlling flow rate of cooling water in water-cooled air conditioner having absorption refrigerator
CN1793746A (en) 2005-12-31 2006-06-28 东莞市广大制冷有限公司 Method for automatic regulating and controlling cooling water and frozen water flow of central air conditioning system
CN1865798A (en) 2005-05-16 2006-11-22 三洋电机株式会社 Air conditioner
CN101619883A (en) 2009-07-28 2010-01-06 上海市建筑科学研究院(集团)有限公司 Method for controlling water delivery temperature of freezing water of central air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345194A (en) * 1989-07-10 1991-02-26 Sanyo Electric Co Ltd Driving circuit of motor
JPH06272987A (en) * 1991-06-04 1994-09-27 Shin Nippon Kucho Kk Chilled water system controlling method for air conditioning facility
JP3418655B2 (en) * 1995-11-20 2003-06-23 大阪瓦斯株式会社 Absorption cycle operation equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066011A (en) 1999-08-24 2001-03-16 Tokyo Gas Co Ltd Method for controlling flow rate of cooling water in water-cooled air conditioner having absorption refrigerator
CN1865798A (en) 2005-05-16 2006-11-22 三洋电机株式会社 Air conditioner
CN1793746A (en) 2005-12-31 2006-06-28 东莞市广大制冷有限公司 Method for automatic regulating and controlling cooling water and frozen water flow of central air conditioning system
CN101619883A (en) 2009-07-28 2010-01-06 上海市建筑科学研究院(集团)有限公司 Method for controlling water delivery temperature of freezing water of central air conditioner

Also Published As

Publication number Publication date
CN102322671A (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP5518216B2 (en) Energy management control system and method based on cloud computing
CN102563814B (en) Cloud air conditioning system based on cloud computation technology
CN100487332C (en) Energy-saving intelligent control system for central air conditioner
CN100480593C (en) Air-conditioning energy-saving monitoring system of base station
CN102052739B (en) Central air conditioner intelligent control system based on wireless sensor network and method
CN1293346C (en) Energy-efficient central air conditioning system
CN102466304B (en) Air-conditioning system and control method of condensation fan thereof
CN101603751B (en) Variable frequency energy-saving control method for refrigeration system
CN100595494C (en) Central air conditioning system global optimization energy-saving control method and device based on model
CN101968250B (en) Energy-saving optimized control system and method for refrigerator room
CN100578106C (en) Quality and regulation control method and system for chill station of central air conditioner
CN102193525B (en) System and method for monitoring device based on cloud computing
CN201765486U (en) Facility monitoring system based on cloud computing
CN1455193A (en) Digital direct-current variable frequency air conditioner controller
CN101101239B (en) Apparatus and method for testing air conditioner
CN1255654C (en) Method for self-adaptive optimizing controlling cold water system of central air conditioner and its apparatus
CN102980272B (en) Air conditioner system energy saving optimization method based on load prediction
CN1117951C (en) Intelligent power saving system for central air conditioner
CN102213475B (en) Adaptive management method for power consumption of data center
CN101393451A (en) Construction energy-conserving control method and system
CN1680766A (en) Controlling system and method for refrigerator with time interval run
CN102147174A (en) Method for controlling electronic expansion valve of variable-frequency air conditioner
CN101922781A (en) Controlled environment temperature and humidity regulation based air conditioner energy saving control method and system
CN2703223Y (en) Central air conditioner energy-saving controlling device
CN101655272A (en) Energy-saving control management system of network central air conditioner and method thereof

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model