JP2001057350A - Abrasive material and method of polishing substrate - Google Patents

Abrasive material and method of polishing substrate

Info

Publication number
JP2001057350A
JP2001057350A JP23141499A JP23141499A JP2001057350A JP 2001057350 A JP2001057350 A JP 2001057350A JP 23141499 A JP23141499 A JP 23141499A JP 23141499 A JP23141499 A JP 23141499A JP 2001057350 A JP2001057350 A JP 2001057350A
Authority
JP
Japan
Prior art keywords
polishing
pressure
film
substrate
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23141499A
Other languages
Japanese (ja)
Other versions
JP3496586B2 (en
Inventor
Yasushi Kurata
靖 倉田
Hiroto Otsuki
裕人 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP23141499A priority Critical patent/JP3496586B2/en
Publication of JP2001057350A publication Critical patent/JP2001057350A/en
Application granted granted Critical
Publication of JP3496586B2 publication Critical patent/JP3496586B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable a silicon oxide film and a metal buried film to be effectively flattened at a high level, excessive film layers to be effectively removed from the films, and processes to be easily controlled in a recess CMP(chemical mechanical polishing) technique where a shallow trench isolation is made or a metal buried wiring is formed and a flattening CMP technique where an interlayer insulating film is made flat. SOLUTION: In the case a substrate is polished with abrasive material which contains abrasive grains and additives that give an inflection point of polishing pressure dependence to a polishing speed, provided that a set polishing pressure, an effective polishing pressure at the recess of the substrate where a pattern is formed, an effective polishing pressure at the projection of the substrate, and a pressure at which an inflection point appears in a polishing speed on a part of the substrate where no pattern is formed are represented by P, P1, P2, and P' respectively, abrasive material which is controlled in additive content so as to enable P, P1, P2, and P' to meet a formula, P2>P'>P)P1, is used. Or, a polishing load is so set as to enable P, P1, P2, and P' to meet a formula, P2>P'>P>P1, by which polishing characteristics through which projections where a higher polishing pressure than a pressure where an inflection point appears corresponding to the pattern shape of a polished film is applied are selectively polished can be realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子製造技
術に使用される研磨法に関し、基板表面の研磨工程、特
にシャロー・トレンチ素子分離、キャパシタ、金属配線
等の溝への埋め込み層の形成工程、層間絶縁膜の平坦化
工程等において使用される基板の研磨剤及び基板の研磨
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing method used in a semiconductor device manufacturing technique, and more particularly to a polishing step of a substrate surface, in particular, a step of forming a buried layer in a groove of a shallow trench element isolation, a capacitor or a metal wiring. The present invention relates to a substrate polishing agent and a substrate polishing method used in a step of planarizing an interlayer insulating film and the like.

【0002】[0002]

【従来の技術】現在のULSI半導体素子製造工程で
は、高密度・微細化のための加工技術が研究開発されて
いる。その一つであるCMP(ケミカルメカニカルポリ
ッシング)技術は、必須の技術となってきている。半導
体素子の製造工程におけるCMP技術には、素子分離形
成、メモリのキャパシタ形成、プラグ及び埋め込み金属
配線形成等において溝に埋め込んだ成膜層の余分な成膜
部分を除去するためのリセスCMP技術、及び層間絶縁
膜成膜後の平坦化CMP技術がある。集積回路内の素子
分離形成技術において、デザインルール0.5μm以上
の世代ではLOCOS(シリコン局所酸化)が用いられ
てきたが、加工寸法の更なる微細化に伴い、素子分離幅
のより小さいシャロー・トレンチ分離技術が採用されつ
つある。シャロー・トレンチ分離では、基板上に埋め込
んだ余分な酸化珪素膜を除くためにCMPが必須な技術
となる。金属配線形成技術においても、デザインルール
0.25μm以上の世代では、層間絶縁膜上のAl配線
やプラグにはW等が用いられていたが、加工寸法の微細
化に伴い要求される電気特性を満たすためにCuやCu
・Al合金が採用されつつある。CuやCu・Al合金
の配線技術ていしては、ダマシンやディアルダマシン等
の埋め込み配線技術が検討されており、基板上に埋め込
んだ余分な金属膜を除くためにCMPが必須な技術とな
る。メモリ素子のキャパシタ形成においても、トレンチ
構造や複雑なスタック型構造を実現するためには、酸化
窒化シリコンやタンタル酸化膜及びその他の強誘電体の
リセスCMP技術が必須な技術となる。
2. Description of the Related Art In the current manufacturing process of ULSI semiconductor devices, processing techniques for high density and miniaturization have been researched and developed. One of them, CMP (Chemical Mechanical Polishing) technology, has become an essential technology. The CMP technology in the manufacturing process of a semiconductor device includes a recess CMP technology for removing an extra film formation portion of a film formation layer buried in a groove in element isolation formation, memory capacitor formation, plug and buried metal wiring formation, and the like. And a planarization CMP technique after forming an interlayer insulating film. LOCOS (local oxidation of silicon) has been used in the generation of the design rule of 0.5 μm or more in the device isolation forming technology in the integrated circuit. However, with the further miniaturization of the processing size, the shallow trench having a smaller device isolation width has been used. Trench isolation technology is being adopted. In the shallow trench isolation, CMP is an indispensable technique for removing an extra silicon oxide film buried on a substrate. Also in the metal wiring formation technology, in the generation of the design rule of 0.25 μm or more, W or the like is used for the Al wiring and the plug on the interlayer insulating film. Cu or Cu to fill
-Al alloys are being adopted. As the wiring technology of Cu or Cu / Al alloy, embedded wiring technology such as damascene or dual damascene is under study, and CMP is an essential technology for removing an extra metal film embedded on a substrate. In forming a capacitor of a memory element, a recessed CMP technique of a silicon oxynitride, a tantalum oxide film, and other ferroelectrics is indispensable in order to realize a trench structure or a complicated stacked structure.

【0003】従来、半導体素子の製造工程において、プ
ラズマ−CVD、低圧−CVD、スパッタ、電解メッキ
等の方法で形成される酸化珪素等絶縁膜、キャパシタ強
誘電体膜、配線用金属や金属合金等の平坦化及び埋め込
み層を形成するための化学機械研磨剤としてフュームド
シリカ、アルミナ系の研磨剤を使用して1回の工程で研
磨する方法が一般的に検討されている。しかしながら、
このような研磨法では、パターンの平坦性が悪く、埋め
込み膜の厚みばらつきやディッシングにより特性がばら
つくという技術課題がある。
Conventionally, in a semiconductor device manufacturing process, an insulating film such as silicon oxide, a capacitor ferroelectric film, a metal or metal alloy for wiring, etc. formed by a method such as plasma-CVD, low-pressure-CVD, sputtering, and electrolytic plating. In general, a method of polishing in a single step using a fumed silica or alumina-based abrasive as a chemical mechanical abrasive for forming a flattened and buried layer has been studied. However,
In such a polishing method, there is a technical problem that the flatness of the pattern is poor, and the characteristics vary due to thickness variation of the buried film and dishing.

【0004】従来の平坦化及び埋め込み層を形成するた
めのCMP技術では、パターン密度差或いはサイズ差の
大小により凸部の研磨速度が大きく異なり、また凹部の
研磨も進行してしまうため、ウエハ面内全体での高いレ
ベルの平坦化を実現することができないという技術課題
がある。そこで、埋め込み層成膜後に凹部となる埋め込
み部分の研磨速度と埋め込み層成膜後に成膜層を除去す
る必要がある凸部の研磨速度の差を小さくして平坦性を
向上するために、あらかじめ凸部の被研磨膜を部分的に
エッチングにより除去するエッチバック工程を付加する
技術が広く採用されている。しかしながら、工程数が増
加するために製造コスト面で問題となっている。
In the conventional CMP technology for forming a flattening layer and a buried layer, the polishing rate of a convex portion greatly differs depending on the difference in pattern density or the size difference, and polishing of a concave portion also progresses. There is a technical problem that a high level of planarization cannot be realized in the whole. Therefore, in order to improve the flatness by reducing the difference between the polishing rate of the buried portion that becomes a concave portion after the burying layer is formed and the polishing speed of the convex portion that needs to remove the film layer after the burying layer is formed, to improve flatness. 2. Description of the Related Art A technique of adding an etch-back step of partially removing a film to be polished on a convex portion by etching has been widely adopted. However, since the number of processes increases, there is a problem in terms of manufacturing cost.

【0005】また、埋め込み層を形成するためのCMP
技術及び層間膜を平坦化するCMP技術では、研磨装置
による理想的な終点検出が困難であるために、研磨量の
制御を研磨時間で行うプロセス管理方法が一般的に行わ
れている。しかし、パターン段差形状の変化だけでな
く、研磨布の状態等でも、研磨速度が顕著に変化してし
まうため、プロセス管理が難しいという問題があった。
In addition, CMP for forming a buried layer
In the technology and the CMP technology for flattening an interlayer film, it is difficult to detect an ideal end point by a polishing apparatus. Therefore, a process management method of controlling a polishing amount by a polishing time is generally performed. However, there has been a problem that not only the change in the pattern step shape but also the state of the polishing cloth significantly changes the polishing rate, making process management difficult.

【0006】シャロー・トレンチ分離では、素子分離の
酸化珪素膜埋め込み部分以外にはマスク及びストッパー
として主に窒化珪素膜が形成され、安定な素子分離特性
を実現するためには、ウエハ内の窒化珪素の残膜厚ばら
つきをできるだけ小さくする必要がある。そのために
は、窒化珪素膜が露出した後は、研磨速度が低下するよ
うな特性が必要であり、酸化珪素膜と窒化珪素膜との研
磨速度比(酸化珪素膜の研磨速度/窒化珪素膜の研磨速
度)が大きいことが望ましい。しかし、従来のシリカ系
等の研磨剤を使用した1回の工程による研磨法では、研
磨速度比が2〜3程度しかなく、プロセスマージンが充
分に得られないという問題があった。金属の埋め込み配
線やキャパシタの形成においても、埋め込み溝を形成し
た成膜下地層が露出した時点で研磨を終了する必要があ
り、下地層露出後の研磨速度が低下するように、埋め込
み被研磨膜と下地膜との研磨速度比が大きい研磨剤が使
用される。しかし、一方で研磨速度比が大きい研磨剤を
使用した場合、埋め込み層のディッシングが大きくなる
という問題があった。
In the shallow trench isolation, a silicon nitride film is mainly formed as a mask and a stopper except for the silicon oxide film buried portion for element isolation. In order to realize stable element isolation characteristics, silicon nitride in the wafer is required. It is necessary to minimize the variation in the remaining film thickness. For this purpose, after the silicon nitride film is exposed, it is necessary that the polishing rate be reduced. The polishing rate ratio between the silicon oxide film and the silicon nitride film (the polishing rate of the silicon oxide film / the polishing rate of the silicon nitride film) is required. It is desirable that the polishing rate is large. However, the conventional polishing method using a single polishing step using a silica-based polishing agent has a problem that the polishing rate ratio is only about 2 to 3 and a sufficient process margin cannot be obtained. In the formation of a metal buried wiring or a capacitor, polishing must be completed when the film-forming base layer in which the buried groove is formed is exposed. An abrasive having a large polishing rate ratio between the substrate and the underlying film is used. However, on the other hand, when an abrasive having a large polishing rate ratio is used, there is a problem that dishing of the buried layer becomes large.

【0007】シリカ系研磨剤に比べ、酸化珪素膜の高い
研磨速度が得られる酸化セリウム等を含む研磨剤も使用
されている。しかし、研磨速度が高すぎるためにプロセ
ス管理が難しい、研磨速度の基板上被研磨膜のパターン
依存性が大きい等の問題があった。その他に、一般に比
較的低い粒子濃度で使用されるために基板上の被研磨膜
パターンが微細化するほど凸部が削れにくく、その周辺
部の研磨だけが進行してしまうという問題もあった。ま
た、酸化セリウムを含む研磨剤は、シリカ系研磨剤の約
2倍の酸化珪素膜と窒化珪素膜の研磨速度比が得られる
が、それでも実用上充分とはいえない。
[0007] An abrasive containing cerium oxide or the like, which can obtain a higher polishing rate of a silicon oxide film than a silica-based abrasive, is also used. However, there are problems such as difficulty in process management because the polishing rate is too high, and large dependence of the polishing rate on the pattern of the film to be polished on the substrate. In addition, there is also a problem that the projections are less likely to be removed as the film pattern to be polished on the substrate becomes finer because the particles are generally used at a relatively low particle concentration, and only the polishing of the peripheral portion proceeds. A polishing agent containing cerium oxide can provide a polishing rate ratio of a silicon oxide film and a silicon nitride film approximately twice that of a silica-based polishing agent, but it is still not practically sufficient.

【0008】[0008]

【発明が解決しようとする課題】本発明は、シャロー・
トレンチ分離形成、金属埋め込み配線形成等のリセスC
MP技術及び層間絶縁膜の平坦化CMP技術において、
酸化珪素膜、金属等の埋め込み膜の余分な成膜層の除去
及び平坦化を効率的、高レベルに、かつプロセス管理も
容易に行うことができる研磨剤及び研磨方法を提供する
ものである。
SUMMARY OF THE INVENTION The present invention relates to a shallow
Recess C for trench isolation formation, metal buried wiring formation, etc.
In the MP technology and the CMP technology for planarizing the interlayer insulating film,
It is an object of the present invention to provide a polishing agent and a polishing method capable of efficiently and at a high level removing and flattening an unnecessary film forming layer of a buried film such as a silicon oxide film or a metal and easily performing process control.

【0009】[0009]

【課題を解決するための手段】本発明の研磨剤は、基板
を砥粒、研磨速度に研磨圧力依存性の変曲点を与える添
加剤を含む研磨剤であって、設定研磨圧力がPの場合、
パターンの形成された基板の凹部の実効研磨圧力を
1、凸部の実効研磨圧力をP2とすると、パターンのな
い基板の研磨速度に変曲点が現れる圧力P'がP2>P'
>P>P1となるように添加剤の濃度を調整した研磨剤
である。その結果、層間絶縁膜の平坦化及びシャロー・
トレンチ素子分離形成等の埋め込み膜の平坦化を効率
的、高レベルに行うことが可能である。上記の研磨剤
で、パターンのない基板の研磨速度に変曲点が現れる圧
力がP'になる添加量濃度の場合に、パターンの形成さ
れた基板の凹部の実効研磨圧力をP1、凸部の実効研磨
圧力をP2とすると、設定研磨荷重PをP2>P'>P>
1となるように調整することによっても、同様の効果
を実現することができる。通常の研磨条件において、研
磨速度は研磨圧力に比例した特性を示すのが一般的であ
る。本発明において、研磨速度に研磨圧力依存性の変曲
点を与える添加剤とは、添加剤を加えない場合に比べ、
添加剤によりパターンのない基板の研磨速度がある研磨
圧力まで充分小さく、変曲点となる圧力より大きい研磨
圧力では変曲点以下の研磨圧力の研磨速度よりも充分大
きい研磨速度特性が得られる添加剤を意味し、添加量に
より変曲点が現れる研磨圧力が変わる特性を示すものを
いう。研磨速度に研磨圧力依存性の変曲点を与える添加
剤は、有機高分子の陰イオン性界面活性剤、ノニオン性
界面活性剤等が好ましく使用される。特に陰イオン性界
面活性剤としては、共重合成分としてアクリル酸アンモ
ニウム塩を含むものが好ましく使用される。研磨定盤の
研磨布上に研磨剤を供給しながら、被研磨膜を有する基
板を研磨布に押圧した状態で研磨定盤と基板を相対的に
動かすことによって被研磨膜を研磨する研磨方法におい
て、被研磨膜を有する基板の研磨布への押しつけ圧力が
100〜1000gf/cm2であることが好ましく、
200〜500gf/cm2であることがより好まし
い。本発明の研磨方法で、例えば少なくとも酸化珪素膜
が形成された半導体チップ等の所定の基板を研磨するこ
とができる。
The polishing agent of the present invention is a polishing agent containing an abrasive for polishing the substrate and providing an inflection point which depends on the polishing pressure on the polishing rate. If
Assuming that the effective polishing pressure of the concave portion of the substrate on which the pattern is formed is P 1 and the effective polishing pressure of the convex portion is P 2 , the pressure P ′ at which the inflection point appears in the polishing rate of the substrate without the pattern is P 2 > P ′.
>P> is a polishing agent adjusted to a concentration of P 1 become as additives. As a result, the interlayer insulating film is flattened and shallow
It is possible to efficiently and at a high level flattening of a buried film such as formation of a trench element isolation. With the above-mentioned abrasive, when the pressure at which the inflection point appears in the polishing rate of a substrate without a pattern is at an added concentration of P ′, the effective polishing pressure of the concave portion of the substrate on which the pattern is formed is P 1 and the convex portion is the convex portion. Assuming that the effective polishing pressure is P 2 , the set polishing load P is P 2 > P ′>P>
Also by adjusting such that P 1, it is possible to achieve the same effect. Under normal polishing conditions, the polishing rate generally shows a characteristic proportional to the polishing pressure. In the present invention, the additive that gives a polishing pressure-dependent inflection point on the polishing rate, compared with the case where no additive is added,
The polishing rate of a substrate without a pattern is sufficiently small by the additive to a certain polishing pressure, and at a polishing pressure higher than the pressure at which the inflection point is obtained, a polishing rate characteristic sufficiently higher than the polishing speed at a polishing pressure at or below the inflection point is obtained. It means an agent that shows a characteristic that the polishing pressure at which an inflection point appears varies depending on the added amount. As an additive that gives a polishing pressure-dependent inflection point to the polishing rate, an organic polymer anionic surfactant, a nonionic surfactant, or the like is preferably used. In particular, as the anionic surfactant, those containing ammonium acrylate as a copolymer component are preferably used. In a polishing method for polishing a film to be polished by moving a polishing platen and a substrate relatively while a substrate having a film to be polished is pressed against the polishing cloth while supplying an abrasive onto the polishing cloth of the polishing platen. The pressing pressure of the substrate having the film to be polished against the polishing cloth is preferably 100 to 1000 gf / cm 2 ,
More preferably, it is 200 to 500 gf / cm 2 . With the polishing method of the present invention, for example, a predetermined substrate such as a semiconductor chip on which at least a silicon oxide film is formed can be polished.

【0010】[0010]

【発明の実施の形態】基板を砥粒、研磨速度に研磨圧力
依存性の変曲点を与える添加剤を含む研磨剤であって、
設定研磨圧力がPの場合、パターンの形成された基板の
凹部の実効研磨圧力をP1、凸部の実効研磨圧力をP2
すると、パターンのない基板の研磨速度に変曲点が現れ
る圧力P'がP2>P'>P>P1となるように添加剤の濃
度を調整した研磨剤により、被研磨膜のパターン形状に
応じて変曲点が現れる圧力よりも高い研磨圧力がかかる
凸部を選択的に研磨する特性を実現することができる。
また、平坦化された後の研磨速度は、変曲点が現れる圧
力よりも小さい設定研磨圧力の研磨速度になるために、
平坦化後の研磨がほとんど進行しなくなるので研磨時間
によるプロセス管理が容易になる。この添加剤による研
磨速度の研磨圧力依存性については、文献(IEDM96(Int
ernational Electronic Device Meeting)Proceedings)
(1996) p.349−352等)で報告されている。その結果、
高効率、高レベルに、パターン密度、サイズ依存性の少
ない平坦化を実現することができる。
DETAILED DESCRIPTION OF THE INVENTION A polishing agent comprising an abrasive which provides a substrate with abrasive grains and an inflection point dependent on the polishing pressure on the polishing rate,
When the set polishing pressure is P, the effective polishing pressure of the concave portion of the substrate on which the pattern is formed is P 1 , and the effective polishing pressure of the convex portion is P 2. A polishing pressure higher than a pressure at which an inflection point appears according to the pattern shape of the film to be polished is applied by the polishing agent in which the concentration of the additive is adjusted so that P ′ becomes P 2 > P ′>P> P 1 . The characteristic of selectively polishing the convex portion can be realized.
In addition, the polishing rate after flattening, because the polishing rate of the set polishing pressure is smaller than the pressure at which the inflection point appears,
Since the polishing after the flattening hardly progresses, the process control by the polishing time becomes easy. The dependence of the polishing rate by this additive on the polishing pressure is described in the literature (IEDM96 (Int.
ernational Electronic Device Meeting) Proceedings)
(1996) p.349-352). as a result,
High-efficiency, high-level planarization with little pattern density and small size dependency can be realized.

【0011】上記の研磨剤で、パターンのない基板の研
磨速度に変曲点が現れる圧力がP'になる添加量濃度の
場合に、パターンの形成された基板の凹部の実効研磨圧
力をP1、凸部の実効研磨圧力をP2とすると、設定研磨
荷重PをP2>P'>P>P1となるように調整すること
によっても、同様の効果を実現することができる。
In the above polishing agent, when the pressure at which the inflection point appears in the polishing rate of a substrate without a pattern is at an additive concentration at which the pressure becomes P ′, the effective polishing pressure of the concave portion of the substrate on which the pattern is formed is P 1. , the effective grinding pressure of the convex portion when the P 2, also by adjusting the set polishing load P such that P 2> P '>P> P 1, it is possible to achieve the same effect.

【0012】研磨定盤の研磨布上に研磨剤を供給しなが
ら、被研磨膜を有する基板を研磨布に押圧した状態で研
磨定盤と基板を相対的に動かすことによって被研磨膜を
研磨する研磨方法において、被研磨膜を有する基板の研
磨布への押しつけ圧力は、主に添加剤量によって決まる
研磨速度の圧力依存特性に応じて、パターン凹部に対し
凸部が選択的に研磨される範囲に設定される必要があ
る。研磨布への押しつけ圧力は、100〜1000gf
/cm2であることが好ましく、200〜500gf/
cm2であることがより好ましい。研磨速度のウエハ面
内均一性及びパターンの平坦性を満足するためには、2
00〜500gf/cm2であることがより好ましい。
研磨布への押しつけ圧力は、1000gf/cm2より
大きいと研磨キズが発生しやすくなり、100gf/c
2未満では充分な研磨速度が得られない。
The polishing target film is polished by relatively moving the polishing platen and the substrate while pressing the substrate having the film to be polished against the polishing cloth while supplying the abrasive onto the polishing cloth of the polishing platen. In the polishing method, the pressure of pressing the substrate having the film to be polished against the polishing cloth is within a range in which the convex portions are selectively polished with respect to the concave portions of the pattern according to the pressure-dependent characteristic of the polishing rate mainly determined by the amount of the additive. Must be set to The pressing pressure on the polishing cloth is 100 to 1000 gf
/ Cm 2 , preferably 200 to 500 gf /
cm 2 is more preferable. In order to satisfy the in-plane uniformity of the polishing rate and the flatness of the pattern, 2
More preferably, it is 00 to 500 gf / cm 2 .
If the pressing pressure on the polishing cloth is more than 1000 gf / cm 2 , polishing flaws are likely to occur, and 100 gf / c
If it is less than m 2 , a sufficient polishing rate cannot be obtained.

【0013】本発明の研磨剤や研磨方法に使用される砥
粒は、酸化セリウム、酸化シリコン、酸化アルミニウム
等の無機酸化物粒子であり、酸化セリウム粒子が好まし
く使用される。ここで、砥粒の濃度に制限は無いが、懸
濁液の取り扱い易さから0.5〜15重量%の範囲が好
ましい。
The abrasive used in the polishing agent and the polishing method of the present invention are inorganic oxide particles such as cerium oxide, silicon oxide and aluminum oxide, and cerium oxide particles are preferably used. Here, the concentration of the abrasive grains is not limited, but is preferably in the range of 0.5 to 15% by weight from the viewpoint of easy handling of the suspension.

【0014】本発明において、研磨速度に研磨圧力依存
性の変曲点を与える添加剤は、金属イオン類を含まない
ものとして、アクリル酸重合体及びそのアンモニウム
塩、メタクリル酸重合体及びそのアンモニウム塩、ポリ
ビニルアルコール等の水溶性有機高分子類、ラウリル硫
酸アンモニウム、ポリオキシエチレンラウリルエーテル
硫酸アンモニウム等の水溶性陰イオン性界面活性剤、ポ
リオキシエチレンラウリルエーテル、ポリエチレングリ
コールモノステアレート等の水溶性非イオン性界面活性
剤、モノエタノールアミン、ジエタノールアミン等の水
溶性アミン類などが挙げられる。その中でも、陰イオン
性界面活性剤等が好ましく使用され、特に共重合成分と
してアンモニウム塩を含む高分子分散剤等の水溶性陰イ
オン性界面活性剤から選ばれた少なくとも1種類以上の
界面活性剤を使用する。また、その他に水溶性非イオン
性界面活性剤、水溶性陰イオン性界面活性剤、水溶性陽
イオン性界面活性剤等を併用してもよい。これらの界面
活性剤添加量は、スラリー100重量部に対して、0.
1重量部〜10重量部の範囲が好ましい。また、界面活
性剤の分子量は、100〜50000が好ましく、20
00〜20000がより好ましい。添加剤の添加方法と
しては、研磨直前に砥粒分散液に混合するのが好まし
い。研磨装置のスラリー供給配管内で充分混合するよう
な構造を施した場合には、砥粒分散液及び添加剤水溶液
の供給速度を個別に調整し、配管内で所定濃度になるよ
うに混合することも可能である。添加剤混合後に長時間
保存した場合、研磨剤の粒度分布が変化する場合がある
が、研磨速度及び研磨傷等の研磨特性には顕著な影響が
見られないため、界面活性剤の添加方法は制限するもの
ではない。
In the present invention, the additive which gives an inflection point depending on the polishing pressure on the polishing rate does not contain metal ions, and is considered to be an acrylic acid polymer and its ammonium salt, a methacrylic acid polymer and its ammonium salt. , Water-soluble organic polymers such as polyvinyl alcohol, water-soluble anionic surfactants such as ammonium lauryl sulfate and ammonium polyoxyethylene lauryl ether, and water-soluble nonionic surfactants such as polyoxyethylene lauryl ether and polyethylene glycol monostearate Examples include surfactants, water-soluble amines such as monoethanolamine and diethanolamine. Among them, anionic surfactants and the like are preferably used, and in particular, at least one or more surfactants selected from water-soluble anionic surfactants such as a polymer dispersant containing an ammonium salt as a copolymerization component. Use In addition, a water-soluble nonionic surfactant, a water-soluble anionic surfactant, a water-soluble cationic surfactant, or the like may be used in combination. These surfactants are added in an amount of 0.1 to 100 parts by weight of the slurry.
The range of 1 to 10 parts by weight is preferred. Further, the molecular weight of the surfactant is preferably from 100 to 50,000,
00 to 20000 is more preferable. As a method of adding the additive, it is preferable that the additive is mixed with the abrasive dispersion just before polishing. When a structure that mixes well in the slurry supply pipe of the polishing device is provided, adjust the supply rates of the abrasive dispersion and the aqueous solution of the additive individually and mix them to a predetermined concentration in the pipe. Is also possible. When stored for a long time after mixing the additives, the particle size distribution of the abrasive may change, but since the polishing rate and polishing characteristics such as scratches are not significantly affected, the method of adding the surfactant is There is no restriction.

【0015】本発明の研磨剤や研磨方法が適用される無
機絶縁膜の作製方法として、定圧CVD法、プラズマC
VD法等が挙げられる。定圧CVD法による酸化珪素絶
縁膜形成は、Si源としてモノシラン:SiH4、酸素
源として酸素:O2を用いる。このSiH4−O2系酸化
反応を400℃程度以下の低温で行わせることにより得
られる。高温リフローによる表面平坦化を図るためにリ
ン:Pをドープするときには、SiH4−O2−PH3
反応ガスを用いることが好ましい。プラズマCVD法
は、通常の熱平衡下では高温を必要とする化学反応が低
温でできる利点を有する。プラズマ発生法には、容量結
合型と誘導結合型の2つが挙げられる。反応ガスとして
は、Si源としてSiH4、酸素源としてN2Oを用いた
SiH4−N2O系ガスとテトラエトキシシラン(TEO
S)をSi源に用いたTEOS−O2系ガス(TEOS
−プラズマCVD法)が挙げられる。基板温度は250
〜400℃、反応圧力は67〜400Paの範囲が好ま
しい。このように、本発明で使用する基板の酸化珪素絶
縁膜にはリン、ホウ素等の元素がド−プされていても良
い。同様に、低圧CVD法による窒化珪素膜形成は、S
i源としてジクロルシラン:SiH2Cl2、窒素源とし
てアンモニア:NH3を用いる。このSiH2Cl2−N
3系酸化反応を900℃の高温で行わせることにより
得られる。プラズマCVD法は、Si源としてSi
4、窒素源としてNH3を用いたSiH4−NH3系ガス
が挙げられる。基板温度は300〜400℃が好まし
い。
As a method for producing an inorganic insulating film to which the polishing agent or polishing method of the present invention is applied, a constant pressure CVD method, a plasma C
VD method and the like. In forming a silicon oxide insulating film by a constant-pressure CVD method, monosilane: SiH 4 is used as a Si source, and oxygen: O 2 is used as an oxygen source. This is obtained by performing the SiH 4 —O 2 -based oxidation reaction at a low temperature of about 400 ° C. or less. Phosphorus in order to surface planarization by a high temperature reflow: when doped with P, it is preferable to use a SiH 4 -O 2 -PH 3 system reaction gas. The plasma CVD method has an advantage that a chemical reaction requiring a high temperature can be performed at a low temperature under normal thermal equilibrium. The plasma generation method includes two types, a capacitive coupling type and an inductive coupling type. As a reaction gas, a SiH 4 —N 2 O-based gas using SiH 4 as a Si source and N 2 O as an oxygen source, and tetraethoxysilane (TEO)
S) as a Si source using a TEOS-O 2 based gas (TEOS
-Plasma CVD method). Substrate temperature is 250
The reaction pressure is preferably in the range of 67 to 400 Pa. Thus, the silicon oxide insulating film of the substrate used in the present invention may be doped with elements such as phosphorus and boron. Similarly, silicon nitride film formation by low pressure CVD
Dichlorosilane: SiH 2 Cl 2 is used as an i source, and ammonia: NH 3 is used as a nitrogen source. This SiH 2 Cl 2 -N
It is obtained by performing an H 3 -based oxidation reaction at a high temperature of 900 ° C. The plasma CVD method uses Si as a Si source.
H 4, include SiH 4 -NH 3 based gas using the NH 3 as a nitrogen source. The substrate temperature is preferably from 300 to 400C.

【0016】所定の基板として、半導体基板すなわち回
路素子と配線パターンが形成された段階の半導体基板、
回路素子が形成された段階の半導体基板等の半導体基板
上に少なくとも酸化珪素膜が形成された基板が使用でき
る。このような半導体基板上に形成された酸化珪素膜層
を上記研磨剤及び研磨方法で研磨することによって、酸
化珪素膜層表面の凹凸を解消し、半導体基板全面に渡っ
て平滑な面とする。層間絶縁膜の平坦化工程に適用する
場合には、これで終了となるが、シャロー・トレンチ分
離の場合には、平坦化された酸化珪素膜を下地層の窒化
珪素層まで更に研磨することによって、素子分離部に埋
め込んだ酸化珪素膜のみを残す。この際、ストッパーと
なる窒化珪素との研磨速度比が大きければ、窒化膜露出
後の研磨速度が小さくなり、研磨のプロセスマージンが
大きくなる。また、シャロー・トレンチ分離に使用する
ためには、研磨時に傷発生が少ないことも必要である。
ここで、研磨する装置としては、半導体基板を保持する
ホルダーと研磨布(パッド)を貼り付けた(回転数が変
更可能なモータ等を取り付けてある)定盤を有する一般
的な研磨装置が使用できる。研磨布としては、一般的な
不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使
用でき、特に制限がない。また、研磨布には研磨剤が溜
まるような溝加工を施すことが好ましい。研磨条件には
制限はないが、定盤の回転速度は半導体が飛び出さない
ように100rpm以下の低回転が好ましい。被研磨膜
を有する半導体基板の研磨布への押しつけ圧力が100
〜1000gf/cm2であることが好ましく、研磨速
度のウエハ面内均一性及びパターンの平坦性を満足する
ためには、200〜500gf/cm2であることがよ
り好ましい。研磨している間、研磨布には研磨剤をポン
プ等で連続的に供給する。この供給量に制限はないが、
研磨布の表面が常に研磨剤で覆われていることが好まし
い。
As a predetermined substrate, a semiconductor substrate, that is, a semiconductor substrate in which circuit elements and wiring patterns are formed,
A substrate in which at least a silicon oxide film is formed over a semiconductor substrate such as a semiconductor substrate at a stage where circuit elements are formed can be used. By polishing the silicon oxide film layer formed on such a semiconductor substrate with the above-mentioned polishing agent and the polishing method, unevenness on the surface of the silicon oxide film layer is eliminated, and a smooth surface is formed over the entire semiconductor substrate. This is completed when applied to the step of flattening the interlayer insulating film.In the case of the shallow trench isolation, the flattened silicon oxide film is further polished to the underlying silicon nitride layer. Then, only the silicon oxide film embedded in the element isolation portion is left. At this time, if the polishing rate ratio with respect to silicon nitride serving as a stopper is large, the polishing rate after exposure of the nitride film is reduced, and the polishing process margin is increased. In addition, in order to use it for shallow trench isolation, it is necessary that scratch generation during polishing is small.
Here, as a polishing apparatus, a general polishing apparatus having a holder for holding a semiconductor substrate and a platen on which a polishing cloth (pad) is attached (a motor or the like capable of changing the number of rotations is attached) is used. it can. As the polishing cloth, general nonwoven fabric, foamed polyurethane, porous fluororesin and the like can be used, and there is no particular limitation. Further, it is preferable that the polishing cloth is subjected to groove processing for storing the abrasive. The polishing conditions are not limited, but the rotation speed of the platen is preferably low at 100 rpm or less so that the semiconductor does not jump out. The pressing pressure of the semiconductor substrate having the film to be polished against the polishing cloth is 100
To 1000 gf / cm 2 , and more preferably 200 to 500 gf / cm 2 in order to satisfy the in-plane uniformity of the polishing rate and the flatness of the pattern. During polishing, an abrasive is continuously supplied to the polishing cloth by a pump or the like. There is no limit on this supply,
It is preferable that the surface of the polishing cloth is always covered with the abrasive.

【0017】研磨終了後の半導体基板は、流水中で良く
洗浄後、スピンドライヤ等を用いて半導体基板上に付着
した水滴を払い落としてから乾燥させることが好まし
い。このようにして、Si基板上にシャロー・トレンチ
分離を形成した後に絶縁層を形成し、或いは酸化珪素絶
縁膜層を平坦化した後、その上にアルミニウム配線を形
成し、その上に形成した酸化珪素膜を上記の方法により
平坦化する。平坦化された酸化珪素膜層の上に、上層の
アルミニウム配線を形成し、その配線間および配線上に
酸化珪素膜を形成後、本発明の研磨剤及び研磨方法によ
り研磨することによって、絶縁膜表面の凹凸を解消し、
半導体基板全面に渡って平滑な面とする。この工程を所
定数繰り返すことにより、所望の層数の半導体を製造す
る。または、Si基板上にシャロー・トレンチ分離を形
成したあと、層間絶縁膜層及びその表面に埋め込み配線
の溝を形成し、スパッタ法でTiNやTaN等のバリア
メタル層及び配線金属用シード層を形成し、電解メッキ
法等によりCu又はCu・Al合金を成膜する。この成
膜層に、本発明の研磨剤及び研磨法を適用することによ
り、配線溝部にのみ金属を埋め込むことができる。この
工程を所定数繰り返すことにより、所望の層数の半導体
を製造する。
It is preferable that the semiconductor substrate after polishing is thoroughly washed in running water, and then water drops adhering to the semiconductor substrate are wiped off using a spin drier or the like, and then dried. In this manner, after forming a shallow trench isolation on a Si substrate, an insulating layer is formed, or after a silicon oxide insulating film layer is planarized, an aluminum wiring is formed thereon, and an oxide layer formed thereon is formed. The silicon film is planarized by the above method. An upper layer aluminum wiring is formed on the flattened silicon oxide film layer, a silicon oxide film is formed between the wirings and on the wiring, and then polished by the polishing agent and the polishing method of the present invention, whereby the insulating film is formed. Eliminate surface irregularities,
The surface is smooth over the entire surface of the semiconductor substrate. By repeating this process a predetermined number of times, a semiconductor having a desired number of layers is manufactured. Alternatively, after forming a shallow trench isolation on a Si substrate, a trench for an embedded wiring is formed on the interlayer insulating film layer and the surface thereof, and a barrier metal layer such as TiN or TaN and a seed layer for the wiring metal are formed by a sputtering method. Then, a film of Cu or Cu.Al alloy is formed by an electrolytic plating method or the like. By applying the polishing agent and the polishing method of the present invention to this film formation layer, metal can be embedded only in the wiring groove. By repeating this process a predetermined number of times, a semiconductor having a desired number of layers is manufactured.

【0018】その他に、メモリ素子のキャパシタの形成
工程において、トレンチ型セル構造では、ポリシリコン
や酸化窒化シリコン等の埋め込み構造を形成する際に、
スタック型セル構造でも、複雑な構造を形成するために
埋め込み工程が採用される可能性があり、酸化珪素シリ
コンやタンタル酸化膜の他にSTOやBST等の強誘電
体材料にも本発明の研磨剤及び研磨方法が適用される。
In addition, in the process of forming the capacitor of the memory element, in the trench type cell structure, when forming a buried structure such as polysilicon or silicon oxynitride,
Even in a stacked cell structure, an embedding process may be employed to form a complicated structure, and the polishing of the present invention is performed on ferroelectric materials such as STO and BST in addition to silicon oxide silicon and tantalum oxide films. Agents and polishing methods are applied.

【0019】本発明の研磨剤や研磨方法は、半導体基板
に形成された酸化珪素膜や窒化珪素膜、Cu、Cu・A
l合金等の金属膜、及び強誘電体膜だけでなく、所定の
配線を有する配線板に形成された酸化珪素膜、ガラス、
窒化珪素等の無機絶縁膜、金属膜、フォトマスク・レン
ズ・プリズムなどの光学ガラス、ITO等の無機導電
膜、ガラス及び結晶質材料で構成される光集積回路・光
スイッチング素子・光導波路、光ファイバ−の端面、シ
ンチレ−タ等の光学用単結晶、固体レ−ザ単結晶、青色
レ−ザ用LEDサファイア基板、SiC、GaP、Ga
As等の半導体単結晶、磁気ディスク用ガラス基板、磁
気ヘッド等の研磨方法としても使用される。
The polishing agent and the polishing method of the present invention can be applied to a silicon oxide film or a silicon nitride film formed on a semiconductor substrate, Cu, Cu.A
1) a metal film such as an alloy, a ferroelectric film, a silicon oxide film formed on a wiring board having a predetermined wiring, glass,
Inorganic insulating films such as silicon nitride, metal films, optical glasses such as photomasks, lenses, prisms, etc .; inorganic conductive films such as ITO; optical integrated circuits, optical switching elements, optical waveguides and optical waveguides composed of glass and crystalline materials. Fiber end face, optical single crystal such as scintillator, solid laser single crystal, blue laser LED sapphire substrate, SiC, GaP, Ga
It is also used as a polishing method for semiconductor single crystals such as As, glass substrates for magnetic disks, magnetic heads and the like.

【0020】[0020]

【実施例】(実施例1) (スラリーの作製)炭酸セリウム水和物を800℃で2
時間空気中で焼成し、ジェットミルを用いて乾式粉砕し
て酸化セリウム粒子を作製した。酸化セリウム粒子1K
gと分散剤としてポリアクリル酸アンモニウム塩水溶液
(40重量%)23gと脱イオン水8977gを混合
し、攪拌しながら超音波分散を10分間施した。得られ
たスラリーを1ミクロンフィルターでろ過をし、さらに
脱イオン水を加えることにより5重量%スラリーを得
た。スラリーpHは8.3であった。上記の酸化セリウ
ムスラリー(固形分:5重量%)600gと添加剤とし
てpH6.5で分子量5000のポリアクリル酸(10
0%)アンモニウム塩水溶液(40重量%)180gと
脱イオン水2220gを混合して、界面活性剤を添加し
た酸化セリウム研磨剤(酸化セリウム固形分:1重量
%)を作製した。
EXAMPLES (Example 1) (Preparation of slurry) Cerium carbonate hydrate was added at 800 ° C. for 2 hours.
The mixture was fired in the air for an hour, and was dry-ground using a jet mill to produce cerium oxide particles. Cerium oxide particles 1K
g, 23 g of an aqueous solution of ammonium polyacrylate (40% by weight) as a dispersant, and 8977 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The obtained slurry was filtered through a 1-micron filter, and further 5% by weight of slurry was obtained by adding deionized water. The slurry pH was 8.3. 600 g of the above cerium oxide slurry (solid content: 5% by weight) and polyacrylic acid (10
(0%) 180 g of an ammonium salt aqueous solution (40% by weight) and 2220 g of deionized water were mixed to prepare a cerium oxide abrasive (cerium oxide solid content: 1% by weight) to which a surfactant was added.

【0021】(ブランケットウエハの研磨1)直径20
0mmSi基板上に1000nmの酸化珪素膜を成膜し
たブランケットウエハを作製した。保持する基板取り付
け用の吸着パッドを貼り付けたホルダーに上記パターン
ウエハをセットし、多孔質ウレタン樹脂製の研磨パッド
を貼り付けた直径600mmの定盤上に絶縁膜面を下に
してホルダーを載せ、さらに加工圧力を100gf/c
2に設定して、定盤上に上記の酸化セリウム研磨剤
(固形分:1重量%)を200cc/minの速度で滴
下しながら、定盤及びウエハを50rpmで1分間回転
させ、酸化珪素膜を研磨した。同様に加工圧力を200
〜800gf/cm2の範囲で100gf/cm2おきに
設定して別のウエハを研磨した。研磨後のウエハを洗浄
して乾燥し、干渉膜厚計によって膜厚を測定し、研磨前
後の膜厚変化を算出した。その結果、圧力100gf/
cm2の研磨速度は24nm/min、圧力200gf
/cm2の研磨速度は41nm/min、圧力300g
f/cm2の研磨速度は65nm/min、圧力400
gf/cm2の研磨速度は85nm/min、圧力50
0gf/cm2の研磨速度は105nm/min、圧力
600gf/cm2の研磨速度は123nm/min、
圧力700gf/cm2の研磨速度は146nm/mi
n、圧力800gf/cm2の研磨速度は302nm/
minであり、加工圧力700gf/cm2で研磨速度
の変曲点が得られた。
(Blanket Wafer Polishing 1) Diameter 20
A blanket wafer having a 1000-nm silicon oxide film formed on a 0-mm Si substrate was manufactured. The pattern wafer is set on a holder to which a suction pad for attaching a substrate to be held is attached, and the holder is placed with the insulating film face down on a platen having a diameter of 600 mm to which a polishing pad made of porous urethane resin is attached. , And the processing pressure is 100 gf / c
is set to m 2, the above-mentioned cerium oxide abrasive surface plate: dropwise (solid content 1 wt%) at a rate of 200 cc / min, the platen and the wafer was rotated for 1 minute at 50 rpm, silicon oxide The film was polished. Similarly, set the processing pressure to 200
Polishing the other wafer is set to 100 gf / cm 2 every range of ~800gf / cm 2. The polished wafer was washed and dried, and the film thickness was measured with an interference film thickness meter to calculate the change in film thickness before and after polishing. As a result, the pressure was 100 gf /
The polishing rate of cm 2 is 24 nm / min, and the pressure is 200 gf.
/ Cm 2 polishing rate is 41 nm / min, pressure 300 g
The polishing rate of f / cm 2 is 65 nm / min, and the pressure is 400
The polishing rate of gf / cm 2 is 85 nm / min, and the pressure is 50.
Polishing rate of 0 gf / cm 2 is 105 nm / min, the polishing rate of the pressure 600 gf / cm 2 is 123 nm / min,
The polishing rate at a pressure of 700 gf / cm 2 is 146 nm / mi.
n, the polishing rate at a pressure of 800 gf / cm 2 is 302 nm /
min, and an inflection point of the polishing rate was obtained at a processing pressure of 700 gf / cm 2 .

【0022】(ブランケットウエハの研磨2)直径20
0mmSi基板上に1000nmの酸化珪素膜を成膜し
たブランケットウエハ及び100nmの窒化珪素膜を成
膜したブランケットウエハをそれぞれ作製した。保持す
る基板取り付け用の吸着パッドを貼り付けたホルダーに
上記パターンウエハをセットし、多孔質ウレタン樹脂製
の研磨パッドを貼り付けた直径600mmの定盤上に絶
縁膜面を下にしてホルダーを載せ、さらに加工圧力を3
00gf/cm2に設定して、定盤上に上記の酸化セリ
ウム研磨剤(固形分:1重量%)を200cc/min
の速度で滴下しながら、定盤及びウエハを50rpmで
1分間回転させ、酸化珪素膜を研磨した。同様に加工圧
力を300gf/cm2に設定して窒化珪素膜を研磨し
た。研磨後のウエハを洗浄して乾燥し、干渉膜厚計によ
って膜厚を測定し、研磨前後の膜厚変化を算出した。そ
の結果、酸化珪素膜の研磨速度が65nm/min、窒
化珪素膜の研磨速度が6nm/minであり、研磨速度
比(酸化珪素膜研磨速度/窒化珪素膜研磨速度)は11
であった。
(Blanket wafer polishing 2) Diameter 20
A blanket wafer having a 1000 nm silicon oxide film formed on a 0 mm Si substrate and a blanket wafer having a 100 nm silicon nitride film formed thereon were produced. The pattern wafer is set on a holder to which a suction pad for attaching a substrate to be held is attached, and the holder is placed with the insulating film face down on a platen having a diameter of 600 mm to which a polishing pad made of porous urethane resin is attached. , And the processing pressure is 3
Set to 00gf / cm 2, platen to the cerium oxide abrasive (solid content: 1 wt%) of 200 cc / min
The platen and the wafer were rotated at 50 rpm for 1 minute while dripping at a speed of 1 to polish the silicon oxide film. Similarly, the processing pressure was set to 300 gf / cm 2 , and the silicon nitride film was polished. The polished wafer was washed and dried, and the film thickness was measured with an interference film thickness meter to calculate the change in film thickness before and after polishing. As a result, the polishing rate of the silicon oxide film was 65 nm / min, the polishing rate of the silicon nitride film was 6 nm / min, and the polishing rate ratio (silicon oxide film polishing rate / silicon nitride film polishing rate) was 11
Met.

【0023】(パターンウエハの研磨)直径200mm
Si基板上に100nmの窒化珪素膜を成膜後、フォト
レジストを塗布し100×100μm2の窒化珪素膜の
ドットを158μmピッチでマスク材として残し、エッ
チングによりSi基板に400nmのトレンチを形成し
た。続いて、薄い熱酸化膜を形成後、低圧CVD法によ
り酸化珪素膜を680nm成膜し、窒化珪素膜厚を含め
ると500nmのトレンチに酸化珪素膜を埋め込んだパ
ターンウエハを作製した。保持する基板取り付け用の吸
着パッドを貼り付けたホルダーに上記パターンウエハを
セットし、多孔質ウレタン樹脂製の研磨パッドを貼り付
けた直径600mmの定盤上に絶縁膜面を下にしてホル
ダーを載せ、さらに加工圧力を300gf/cm2に設
定した。このウエハのパターン凸部の面積比率は約35
%であったので、研磨開始時のパターン凸部の実効研磨
圧力P2は最大860gf/cm2程度であり変曲点圧力
700gf/cm2よりも大きく、パターン凹部の実効
研磨圧力P1は設定圧力300gf/cm2よりも小さい
ことになる。定盤上に上記の酸化セリウム研磨剤(固形
分:1重量%)を200cc/minの速度で滴下しな
がら、定盤及びウエハを50rpmで3分間回転させ、
酸化珪素膜を研磨した。同様の条件で、研磨時間を4分
及び5分にして研磨を行った。ウエハを洗浄、乾燥した
後に、干渉膜厚計により窒化珪素膜上及びトレンチ部の
酸化珪素膜の膜厚を測定し、触針式段差計により境界部
の段差を測定した。3分間研磨後のウエハの測定結果
は、窒化珪素膜上の酸化珪素膜の膜厚が158nmであ
り、トレンチ部の酸化珪素膜の膜厚は650nmであ
り、残段差が少なくとも<10nm以下になり平坦化が
終了していることがわかった。4分間研磨後のウエハの
測定結果は、窒化珪素膜上の酸化珪素膜の膜厚が102
nm、トレンチ部の酸化珪素膜の膜厚は597nmであ
り、5分間研磨後のウエハの測定結果は、窒化珪素膜上
の酸化珪素膜の膜厚が48nm、トレンチ部の酸化珪素
膜の膜厚は545nmであり、3分以降研磨がほとんど
進行していないことがわかった。実際のシャロートレン
チ分離の形成では、凸部を窒化珪素膜まで研磨すること
が必要であるが、酸化珪素層間膜の平坦化CMPに適用
した場合には、これは非常に良い特性であることがわか
る。
(Polished pattern wafer) Diameter 200 mm
After forming a 100 nm silicon nitride film on the Si substrate, a photoresist was applied, and dots of the 100 × 100 μm 2 silicon nitride film were left as a mask material at a pitch of 158 μm, and a 400 nm trench was formed in the Si substrate by etching. Subsequently, after forming a thin thermal oxide film, a silicon oxide film having a thickness of 680 nm was formed by a low-pressure CVD method, and a pattern wafer in which the silicon oxide film was embedded in a trench having a thickness of 500 nm including the silicon nitride film was manufactured. The pattern wafer is set on a holder to which a suction pad for attaching a substrate to be held is attached, and the holder is placed with the insulating film face down on a platen having a diameter of 600 mm to which a polishing pad made of porous urethane resin is attached. Further, the processing pressure was set to 300 gf / cm 2 . The area ratio of the pattern projections of this wafer is about 35
%, The effective polishing pressure P 2 of the pattern convex portion at the start of polishing is about 860 gf / cm 2 at maximum, which is larger than the inflection point pressure 700 gf / cm 2 , and the effective polishing pressure P 1 of the pattern concave portion is set. It will be smaller than the pressure of 300 gf / cm 2 . While dropping the cerium oxide abrasive (solid content: 1% by weight) at a rate of 200 cc / min on the surface plate, the surface plate and the wafer were rotated at 50 rpm for 3 minutes,
The silicon oxide film was polished. Polishing was performed under the same conditions with a polishing time of 4 minutes and 5 minutes. After the wafer was washed and dried, the thickness of the silicon oxide film on the silicon nitride film and the trench portion was measured by an interference film thickness meter, and the step at the boundary was measured by a stylus type step meter. The measurement results of the wafer after polishing for 3 minutes show that the thickness of the silicon oxide film on the silicon nitride film is 158 nm, the thickness of the silicon oxide film in the trench portion is 650 nm, and the remaining step is at least <10 nm. It was found that the planarization was completed. The measurement result of the wafer after polishing for 4 minutes shows that the thickness of the silicon oxide film on the silicon nitride film is 102
nm, the thickness of the silicon oxide film in the trench portion is 597 nm, and the measurement result of the wafer after polishing for 5 minutes shows that the thickness of the silicon oxide film on the silicon nitride film is 48 nm, and the thickness of the silicon oxide film in the trench portion. Was 545 nm, and it was found that polishing hardly progressed after 3 minutes. In the actual formation of the shallow trench isolation, it is necessary to polish the protrusions to the silicon nitride film. However, when applied to the planarization CMP of the silicon oxide interlayer film, this is a very good characteristic. Understand.

【0024】(実施例2) (スラリーの作製)炭酸セリウム水和物を800℃で2
時間空気中で焼成し、ジェットミルを用いて乾式粉砕し
て酸化セリウム粒子を作製した。酸化セリウム粒子1K
gと分散剤としてポリアクリル酸アンモニウム塩水溶液
(40重量%)23gと脱イオン水8977gを混合
し、攪拌しながら超音波分散を10分間施した。得られ
たスラリーを1ミクロンフィルターでろ過をし、さらに
脱イオン水を加えることにより5重量%スラリーを得
た。スラリーpHは8.3であった。上記の酸化セリウ
ムスラリー(固形分:5重量%)600gと添加剤とし
てpH6.5で分子量5000のポリアクリル酸(10
0%)アンモニウム塩水溶液(40重量%)135gと
脱イオン水2265gを混合して、界面活性剤を添加し
た酸化セリウム研磨剤(酸化セリウム固形分:1重量
%)を作製した。
(Example 2) (Preparation of slurry) Cerium carbonate hydrate was added at 800 ° C for 2 hours.
The mixture was fired in the air for an hour, and was dry-ground using a jet mill to produce cerium oxide particles. Cerium oxide particles 1K
g, 23 g of an aqueous solution of ammonium polyacrylate (40% by weight) as a dispersant, and 8977 g of deionized water were mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The obtained slurry was filtered through a 1-micron filter, and further 5% by weight of slurry was obtained by adding deionized water. The slurry pH was 8.3. 600 g of the above cerium oxide slurry (solid content: 5% by weight) and polyacrylic acid (10
(0%) 135 g of an aqueous ammonium salt solution (40% by weight) and 2265 g of deionized water were mixed to prepare a cerium oxide abrasive (cerium oxide solid content: 1% by weight) to which a surfactant was added.

【0025】(ブランケットウエハの研磨1)直径20
0mmSi基板上に1000nmの酸化珪素膜を成膜し
たブランケットウエハを作製した。保持する基板取り付
け用の吸着パッドを貼り付けたホルダーに上記パターン
ウエハをセットし、多孔質ウレタン樹脂製の研磨パッド
を貼り付けた直径600mmの定盤上に絶縁膜面を下に
してホルダーを載せ、さらに加工圧力を100gf/c
2に設定して、定盤上に上記の酸化セリウム研磨剤
(固形分:1重量%)を200cc/minの速度で滴
下しながら、定盤及びウエハを50rpmで1分間回転
させ、酸化珪素膜を研磨した。同様に加工圧力を200
〜800gf/cm2の範囲で100gf/cm2おきに
設定して別のウエハを研磨した。研磨後のウエハを洗浄
して乾燥し、干渉膜厚計によって膜厚を測定し、研磨前
後の膜厚変化を算出した。その結果、圧力100gf/
cm2の研磨速度は35nm/min、圧力200gf
/cm2の研磨速度は76nm/min、圧力300g
f/cm2の研磨速度は105nm/min、圧力40
0gf/cm2の研磨速度は128nm/min、圧力
500gf/cm2の研磨速度は155nm/min、
圧力600gf/cm2の研磨速度は286nm/mi
n、圧力700gf/cm2の研磨速度は401nm/
min、圧力800gf/cm2の研磨速度は520n
m/minであり、加工圧力500gf/cm2で研磨
速度の変曲点が得られた。
(Blanket Wafer Polishing 1) Diameter 20
A blanket wafer having a 1000-nm silicon oxide film formed on a 0-mm Si substrate was manufactured. The pattern wafer is set on a holder to which a suction pad for attaching a substrate to be held is attached, and the holder is placed with the insulating film face down on a platen having a diameter of 600 mm to which a polishing pad made of porous urethane resin is attached. , And the processing pressure is 100 gf / c
is set to m 2, the above-mentioned cerium oxide abrasive surface plate: dropwise (solid content 1 wt%) at a rate of 200 cc / min, the platen and the wafer was rotated for 1 minute at 50 rpm, silicon oxide The film was polished. Similarly, set the processing pressure to 200
Polishing the other wafer is set to 100 gf / cm 2 every range of ~800gf / cm 2. The polished wafer was washed and dried, and the film thickness was measured with an interference film thickness meter to calculate the change in film thickness before and after polishing. As a result, the pressure was 100 gf /
The polishing rate of cm 2 is 35 nm / min, and the pressure is 200 gf.
/ Cm 2 polishing rate is 76 nm / min, pressure 300 g
The polishing rate of f / cm 2 is 105 nm / min, and the pressure is 40.
The polishing rate of 0 gf / cm 2 is 128 nm / min, the polishing rate of 500 gf / cm 2 is 155 nm / min,
The polishing rate at a pressure of 600 gf / cm 2 is 286 nm / mi.
n, the polishing rate at a pressure of 700 gf / cm 2 is 401 nm /
min, the polishing rate at a pressure of 800 gf / cm 2 is 520 n.
m / min, and an inflection point of the polishing rate was obtained at a processing pressure of 500 gf / cm 2 .

【0026】(ブランケットウエハの研磨2)直径20
0mmSi基板上に1000nmの酸化珪素膜を成膜し
たブランケットウエハ及び100nmの窒化珪素膜を成
膜したブランケットウエハをそれぞれ作製した。保持す
る基板取り付け用の吸着パッドを貼り付けたホルダーに
上記パターンウエハをセットし、多孔質ウレタン樹脂製
の研磨パッドを貼り付けた直径600mmの定盤上に絶
縁膜面を下にしてホルダーを載せ、さらに加工圧力を3
00gf/cm2に設定して、定盤上に上記の酸化セリ
ウム研磨剤(固形分:1重量%)を200cc/min
の速度で滴下しながら、定盤及びウエハを50rpmで
1分間回転させ、酸化珪素膜を研磨した。同様に加工圧
力を300gf/cm2に設定して窒化珪素膜を研磨し
た。研磨後のウエハを洗浄して乾燥し、干渉膜厚計によ
って膜厚を測定し、研磨前後の膜厚変化を算出した。そ
の結果、酸化珪素膜の研磨速度が106nm/min、
窒化珪素膜の研磨速度が7nm/minであり、研磨速
度比(酸化珪素膜研磨速度/窒化珪素膜研磨速度)は1
5であった。
(Blanket Wafer Polishing 2) Diameter 20
A blanket wafer having a 1000 nm silicon oxide film formed on a 0 mm Si substrate and a blanket wafer having a 100 nm silicon nitride film formed thereon were produced. The pattern wafer is set on a holder to which a suction pad for attaching a substrate to be held is attached, and the holder is placed with the insulating film face down on a platen having a diameter of 600 mm to which a polishing pad made of porous urethane resin is attached. , And the processing pressure is 3
Set to 00gf / cm 2, platen to the cerium oxide abrasive (solid content: 1 wt%) of 200 cc / min
The platen and the wafer were rotated at 50 rpm for 1 minute while dripping at a speed of 1 to polish the silicon oxide film. Similarly, the processing pressure was set to 300 gf / cm 2 , and the silicon nitride film was polished. The polished wafer was washed and dried, and the film thickness was measured with an interference film thickness meter to calculate the change in film thickness before and after polishing. As a result, the polishing rate of the silicon oxide film was 106 nm / min,
The polishing rate of the silicon nitride film is 7 nm / min, and the polishing rate ratio (silicon oxide film polishing rate / silicon nitride film polishing rate) is 1
It was 5.

【0027】(パターンウエハの研磨)直径200mm
Si基板上に100nmの窒化珪素膜を成膜後、フォト
レジストを塗布し100×100μm2の窒化珪素膜の
ドットを158μmピッチでマスク材として残し、エッ
チングによりSi基板に400nmのトレンチを形成し
た。続いて、薄い熱酸化膜を形成後、低圧CVD法によ
り酸化珪素膜を680nm成膜し、窒化珪素膜厚を含め
ると500nmのトレンチに酸化珪素膜を埋め込んだパ
ターンウエハを作製する。保持する基板取り付け用の吸
着パッドを貼り付けたホルダーに上記パターンウエハを
セットし、多孔質ウレタン樹脂製の研磨パッドを貼り付
けた直径600mmの定盤上に絶縁膜面を下にしてホル
ダーを載せ、さらに加工圧力を300gf/cm2に設
定した。このウエハのパターン凸部の面積比率は約35
%であったので、研磨開始時のパターン凸部の実効研磨
圧力P2は最大860gf/cm2程度であり変曲点圧力
500gf/cm2よりも大きく、パターン凹部の実効
研磨圧力P1は設定圧力300gf/cm2よりも小さい
ことになる。定盤上に上記の酸化セリウム研磨剤(固形
分:1重量%)を200cc/minの速度で滴下しな
がら、定盤及びウエハを50rpmで3分間回転させ、
酸化珪素膜を研磨した。同様に、研磨時間4分及び5分
でも研磨を行った。ウエハを洗浄、乾燥した後に、干渉
膜厚計により窒化珪素膜上及びトレンチ部の酸化珪素膜
の膜厚を測定し、触針式段差計により境界部の段差を測
定した。3分間研磨後のウエハの測定結果は、窒化珪素
膜上の酸化珪素膜はなくなっており、窒化珪素膜の膜厚
が87nmであり、トレンチ部の酸化珪素膜の膜厚は4
80nmであった。段差が少なくとも<10nm以下に
なり平坦化が終了していることがわかった。4分間研磨
後のウエハの測定結果は、窒化珪素膜の膜厚が80n
m、トレンチ部の酸化珪素膜の膜厚は465nmであ
り、5分間研磨後のウエハの測定結果は、窒化珪素膜の
膜厚が73nm、トレンチ部の酸化珪素膜の膜厚は44
8nmであった。3分以降は、研磨がほとんど進行して
おらず、残段差も少なくとも<30nmと非常に良好な
結果であることがわかる。このように、添加剤量の調整
により、シャロートレンチ構造形成のためのCMPに適
用することが可能である。
(Polishing of Pattern Wafer) Diameter 200 mm
After forming a 100 nm silicon nitride film on the Si substrate, a photoresist was applied, and dots of the 100 × 100 μm 2 silicon nitride film were left as a mask material at a pitch of 158 μm, and a 400 nm trench was formed in the Si substrate by etching. Subsequently, after forming a thin thermal oxide film, a 680 nm-thick silicon oxide film is formed by a low-pressure CVD method, and a pattern wafer having a 500 nm-thick silicon oxide film embedded in a trench including a silicon nitride film is manufactured. The pattern wafer is set on a holder to which a suction pad for attaching a substrate to be held is attached, and the holder is placed with the insulating film face down on a platen having a diameter of 600 mm to which a polishing pad made of porous urethane resin is attached. Further, the processing pressure was set to 300 gf / cm 2 . The area ratio of the pattern projections of this wafer is about 35
Since a was the% effective polishing pressure P 2 of the pattern convex portions at the start of polishing is greater than the maximum 860gf / cm 2 about a and inflection point pressure 500 gf / cm 2, the effective grinding pressure P 1 of the pattern recess configuration It will be smaller than the pressure of 300 gf / cm 2 . While dropping the cerium oxide abrasive (solid content: 1% by weight) at a rate of 200 cc / min on the surface plate, the surface plate and the wafer were rotated at 50 rpm for 3 minutes,
The silicon oxide film was polished. Similarly, polishing was performed at polishing times of 4 minutes and 5 minutes. After the wafer was washed and dried, the thickness of the silicon oxide film on the silicon nitride film and the trench portion was measured by an interference film thickness meter, and the step at the boundary was measured by a stylus type step meter. The measurement result of the wafer after polishing for 3 minutes shows that the silicon oxide film on the silicon nitride film has disappeared, the thickness of the silicon nitride film is 87 nm, and the thickness of the silicon oxide film in the trench portion is 4 nm.
It was 80 nm. It was found that the level difference was at least <10 nm and the planarization was completed. The measurement result of the wafer after polishing for 4 minutes shows that the thickness of the silicon nitride film is 80 n.
m, the thickness of the silicon oxide film in the trench portion is 465 nm, and the measurement result of the wafer after polishing for 5 minutes shows that the thickness of the silicon nitride film is 73 nm and the thickness of the silicon oxide film in the trench portion is 44
It was 8 nm. After 3 minutes, the polishing hardly progressed, and the residual step was at least <30 nm, which is a very good result. As described above, by adjusting the amount of the additive, the present invention can be applied to CMP for forming a shallow trench structure.

【0028】(比較例1) (ブランケットウエハの研磨)直径200mmSi基板
上に1000nmの酸化珪素膜を成膜したブランケット
ウエハ及び100nmの窒化珪素膜を成膜したブランケ
ットウエハをそれぞれ作製した。保持する基板取り付け
用の吸着パッドを貼り付けたホルダーに上記パターンウ
エハをセットし、多孔質ウレタン樹脂製の研磨パッドを
貼り付けた直径600mmの定盤上に絶縁膜面を下にし
てホルダーを載せ、さらに加工圧力を300gf/cm
2に設定して、定盤上に市販シリカスラリーを用いて
(固形分:12.5重量%)を200cc/minの速
度で滴下しながら、定盤及びウエハを50rpmで1分
間回転させ、酸化珪素膜を研磨した。同様に加工圧力を
300gf/cm2に設定して窒化珪素膜を研磨した。
研磨後のウエハを洗浄して乾燥し、干渉膜厚計によって
膜厚を測定し、研磨前後の膜厚変化を算出した。その結
果、酸化珪素膜の研磨速度が175nm/min、窒化
珪素膜の研磨速度が70nm/minであり、研磨速度
比(酸化珪素膜研磨速度/窒化珪素膜研磨速度)は2.
5であった。
Comparative Example 1 (Blanket Wafer Polishing) Blanket wafers each having a silicon oxide film of 1000 nm formed on a Si substrate having a diameter of 200 mm and a blanket wafer having a silicon nitride film formed of 100 nm were prepared. The pattern wafer is set on a holder to which a suction pad for attaching a substrate to be held is attached, and the holder is placed with the insulating film face down on a platen having a diameter of 600 mm to which a polishing pad made of porous urethane resin is attached. , And the processing pressure is 300 gf / cm
The surface plate and the wafer were rotated at 50 rpm for 1 minute while dropping (solid content: 12.5% by weight) at a rate of 200 cc / min using a commercially available silica slurry on the platen, and then oxidized. The silicon film was polished. Similarly, the processing pressure was set to 300 gf / cm 2 , and the silicon nitride film was polished.
The polished wafer was washed and dried, and the film thickness was measured with an interference film thickness meter to calculate the change in film thickness before and after polishing. As a result, the polishing rate of the silicon oxide film was 175 nm / min, the polishing rate of the silicon nitride film was 70 nm / min, and the polishing rate ratio (silicon oxide film polishing rate / silicon nitride film polishing rate) was 2.
It was 5.

【0029】(パターンウエハの研磨)直径200mm
Si基板上に100nmの窒化珪素膜を成膜後、フォト
レジストを塗布し100×100μm2の窒化珪素膜の
ドットを158μmピッチでマスク材として残し、エッ
チングによりSi基板に400nmのトレンチを形成し
た。続いて、薄い熱酸化膜を形成後、低圧CVD法によ
り酸化珪素膜を680nm成膜し、窒化珪素膜厚を含め
ると500nmのトレンチに酸化珪素膜を埋め込んだパ
ターンウエハを作製した。保持する基板取り付け用の吸
着パッドを貼り付けたホルダーに上記パターンウエハを
セットし、多孔質ウレタン樹脂製の研磨パッドを貼り付
けた直径600mmの定盤上に絶縁膜面を下にしてホル
ダーを載せ、さらに加工圧力を300gf/cm2に設
定した。定盤上に市販のシリカスラリー(固形分:1
2.5重量%)を200cc/minの速度で滴下しな
がら、定盤及びウエハを50rpmで2分間回転させ、
酸化珪素膜を研磨した。同様に、研磨時間3分及び4分
でも研磨を行った。ウエハを洗浄、乾燥した後に、干渉
膜厚計により窒化珪素膜上及びトレンチ部の酸化珪素膜
の膜厚を測定し、触針式段差計により境界部の段差を測
定した。2分間研磨後のウエハの測定結果は、窒化珪素
膜上の酸化珪素膜の膜厚が112nmであり、トレンチ
部の酸化珪素膜の膜厚は524nmであり、残段差は9
0nm程度であった。3分間研磨後のウエハの測定結果
は、窒化珪素膜上の酸化珪素膜はなくなっており、窒化
珪素膜の膜厚が62nm、トレンチ部の酸化珪素膜の膜
厚は329nmであり、残段差は130nm程度であっ
た。4分間研磨後のウエハの測定結果は、窒化珪素膜が
なくなってしましSi基板が露出してしまった。研磨時
間3分で窒化珪素膜の目標位置まで研磨することができ
たが、残段差も>100nmと大きく、窒化珪素膜が露
出してからの研磨速度もあまり低下しないために、1回
の研磨では、研磨時間の設定が難しい。
(Polishing of Pattern Wafer) Diameter 200 mm
After forming a 100 nm silicon nitride film on the Si substrate, a photoresist was applied, and dots of the 100 × 100 μm 2 silicon nitride film were left as a mask material at a pitch of 158 μm, and a 400 nm trench was formed in the Si substrate by etching. Subsequently, after forming a thin thermal oxide film, a silicon oxide film having a thickness of 680 nm was formed by a low-pressure CVD method, and a pattern wafer in which the silicon oxide film was embedded in a trench having a thickness of 500 nm including the silicon nitride film was manufactured. The pattern wafer is set on a holder to which a suction pad for attaching a substrate to be held is attached, and the holder is placed with the insulating film face down on a platen having a diameter of 600 mm to which a polishing pad made of porous urethane resin is attached. Further, the processing pressure was set to 300 gf / cm 2 . Commercially available silica slurry (solid content: 1
(2.5% by weight) at a rate of 200 cc / min while rotating the platen and the wafer at 50 rpm for 2 minutes.
The silicon oxide film was polished. Similarly, polishing was performed at polishing times of 3 minutes and 4 minutes. After the wafer was washed and dried, the thickness of the silicon oxide film on the silicon nitride film and the trench portion was measured by an interference film thickness meter, and the step at the boundary was measured by a stylus type step meter. Measurement results of the wafer after polishing for 2 minutes show that the thickness of the silicon oxide film on the silicon nitride film is 112 nm, the thickness of the silicon oxide film in the trench portion is 524 nm, and the remaining step is 9 nm.
It was about 0 nm. The measurement result of the wafer after polishing for 3 minutes shows that the silicon oxide film on the silicon nitride film is gone, the thickness of the silicon nitride film is 62 nm, the thickness of the silicon oxide film in the trench portion is 329 nm, and the remaining step is It was about 130 nm. The measurement result of the wafer after polishing for 4 minutes showed that the silicon nitride film disappeared and the Si substrate was exposed. Polishing was performed to the target position of the silicon nitride film in a polishing time of 3 minutes, but the residual step was large,> 100 nm, and the polishing rate after the silicon nitride film was exposed did not decrease so much. Then, it is difficult to set the polishing time.

【0030】[0030]

【発明の効果】本発明の研磨剤及び研磨方法により、シ
ャロー・トレンチ分離形成、金属埋め込み配線形成等の
リセスCMP技術及び層間絶縁膜の平坦化CMP技術に
おいて、酸化珪素膜、金属等の埋め込み膜の余分な成膜
層の除去及び平坦化を効率的、高レベルに、かつプロセ
ス管理も容易に行うことができる。
According to the polishing agent and the polishing method of the present invention, a buried film such as a silicon oxide film or a metal is used in a recess CMP technique such as formation of a shallow trench isolation and formation of a buried metal wiring and a CMP technique for flattening an interlayer insulating film. The removal and flattening of the unnecessary film formation layer can be efficiently performed at a high level, and the process management can be easily performed.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板を砥粒、研磨速度に研磨圧力依存性
の変曲点を与える添加剤を含む研磨剤であって、設定研
磨圧力がPの場合、パターンの形成された基板の凹部の
実効研磨圧力をP1、凸部の実効研磨圧力をP2とする
と、パターンのない基板の研磨速度に変曲点が現れる圧
力P'がP2>P'>P>P1となるように添加剤の濃度を
調整した研磨剤。
1. A polishing agent containing an abrasive which gives an inflection point dependent on the polishing pressure to the polishing rate, wherein the polishing pressure is set to P, and wherein the polishing pressure is P. Assuming that the effective polishing pressure is P 1 and the effective polishing pressure of the convex portion is P 2 , the pressure P ′ at which an inflection point appears in the polishing rate of a substrate without a pattern is P 2 > P ′>P> P 1. Polishing agent with adjusted additive concentration.
【請求項2】 上記の研磨剤で、パターンのない基板の
研磨速度に変曲点が現れる圧力がP'になる添加量濃度
の場合に、パターンの形成された基板の凹部の実効研磨
圧力をP1、凸部の実効研磨圧力をP2とすると、設定研
磨荷重PをP2>P'>P>P1となるように調整するこ
とを特徴とする基板の研磨方法。
2. An effective polishing pressure for a concave portion of a substrate on which a pattern is formed, when the polishing agent has an additive amount concentration at which a pressure at which an inflection point appears in the polishing rate of a substrate without a pattern becomes P ′. P 1, when the effective grinding pressure of the protrusions and P 2, a polishing method of a substrate, which comprises adjusting the set polishing load P such that P 2> P '>P> P 1.
【請求項3】 請求項2に記載の基板の研磨方法で、少
なくとも酸化珪素膜が形成された半導体チップを研磨す
る基板の研磨方法。
3. The method for polishing a substrate according to claim 2, wherein the semiconductor chip on which at least the silicon oxide film is formed is polished.
【請求項4】 研磨定盤の研磨布上に研磨剤を供給しな
がら、被研磨膜を有する基板を研磨布に押圧した状態で
研磨定盤と基板を相対的に動かすことによって被研磨膜
を研磨する工程において、被研磨膜を有する基板の研磨
布への押しつけ圧力が100〜1000gf/cm2
ある請求項2または請求項3に記載の基板の研磨方法。
4. A polishing method, wherein a substrate having a film to be polished is pressed against the polishing cloth while the polishing agent is supplied onto the polishing cloth of the polishing platen, and the polishing platen and the substrate are moved relatively to thereby polish the film to be polished. 4. The method for polishing a substrate according to claim 2 , wherein in the polishing step, the pressure of pressing the substrate having the film to be polished against the polishing cloth is 100 to 1000 gf / cm 2 .
JP23141499A 1999-08-18 1999-08-18 Abrasive and substrate polishing method Expired - Lifetime JP3496586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23141499A JP3496586B2 (en) 1999-08-18 1999-08-18 Abrasive and substrate polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23141499A JP3496586B2 (en) 1999-08-18 1999-08-18 Abrasive and substrate polishing method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2002162320A Division JP2003045829A (en) 2002-06-04 2002-06-04 Abrasive and method of polishing substrate
JP2003280938A Division JP2004134751A (en) 2003-07-28 2003-07-28 Abrasive and polishing method for substrate

Publications (2)

Publication Number Publication Date
JP2001057350A true JP2001057350A (en) 2001-02-27
JP3496586B2 JP3496586B2 (en) 2004-02-16

Family

ID=16923230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23141499A Expired - Lifetime JP3496586B2 (en) 1999-08-18 1999-08-18 Abrasive and substrate polishing method

Country Status (1)

Country Link
JP (1) JP3496586B2 (en)

Also Published As

Publication number Publication date
JP3496586B2 (en) 2004-02-16

Similar Documents

Publication Publication Date Title
KR100698396B1 (en) Abrasive and meth0d 0f p0lishing
JP2004031905A (en) Chemical/mechanical polishing slurry and chemical/mechanical polishing method using the same
KR20120135921A (en) Cmp polishing liquid, method for polishing substrate, and electronic component
JP3725357B2 (en) Element isolation formation method
JP3496585B2 (en) Substrate polishing method
JP2001057352A (en) Method of polishing substrate
JP2006191134A (en) Abrasive powder and polishing method of substrate
JPH10106987A (en) Cerium oxide abrasive agent and polishing method of substrate
JP3496586B2 (en) Abrasive and substrate polishing method
US7833908B2 (en) Slurry composition for chemical-mechanical polishing capable of compensating nanotopography effect and method for planarizing surface of semiconductor device using the same
JP3496551B2 (en) Substrate polishing method
JP2001055560A (en) Polishing agent and method for polishing substrate by using the same
JP2000160137A (en) Polishing agent and polishing process using the same
JP2009266882A (en) Abrasive powder, polishing method of base using same, and manufacturing method of electronic component
JP2000160136A (en) Polishing agent and polishing process using the same
JP2003037092A (en) Method for polishing substrate
JP2003045829A (en) Abrasive and method of polishing substrate
JP2004134751A (en) Abrasive and polishing method for substrate
JP2008200771A (en) Method for polishing substrate, semiconductor apparatus, and its manufacturing method
JP2004134751A6 (en) Polishing agent and substrate polishing method
JP4407592B2 (en) Abrasive
JP2001308043A (en) Cmp-polishing agent and polishing method for substrate
JPH10102038A (en) Cerium oxide abrasive and grinding of substrate
JP4491857B2 (en) CMP polishing agent and substrate polishing method
JP2004006966A (en) Method of polishing substrate

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031110

R151 Written notification of patent or utility model registration

Ref document number: 3496586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term