JP2001055560A - Polishing agent and method for polishing substrate by using the same - Google Patents

Polishing agent and method for polishing substrate by using the same

Info

Publication number
JP2001055560A
JP2001055560A JP23141399A JP23141399A JP2001055560A JP 2001055560 A JP2001055560 A JP 2001055560A JP 23141399 A JP23141399 A JP 23141399A JP 23141399 A JP23141399 A JP 23141399A JP 2001055560 A JP2001055560 A JP 2001055560A
Authority
JP
Japan
Prior art keywords
polishing
film
abrasive
substrate
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23141399A
Other languages
Japanese (ja)
Inventor
Yasushi Kurata
靖 倉田
Hiroto Otsuki
裕人 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP23141399A priority Critical patent/JP2001055560A/en
Publication of JP2001055560A publication Critical patent/JP2001055560A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polishing agent capable of efficiently conducting removal and flattening of excessively formed silicon oxide films and films for embedding a metal and the like at a high level and easily conducting process control in a recess CMP technique such as separation and formation of shallow trenches, metal-embedding wiring-formation and the like and a CMP technique of flattening interlaminar insulating films, and also provide a method for polishing a substrate by using the same. SOLUTION: This polishing agent contains abrasive grains and an anionic surface active agent with a concentration of the anionic surface active agent of 0.5-10 pts.wt. based on 100 pt.wt. slurry. It is preferred that the abrasive grains contain particles having grain boundaries. With the use of the polishing agent in an conventional polishing machine having a holder for holding a semiconductor substrate and a platen to which an abrasive pad is applied, polishing is conducted under a pressure of pressing the semiconductor substrate having a film to be polished being 100-1,000 gf/cm2 while continuously supplying the polishing agent to the abrasive pad.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子製造技
術に使用される研磨に関し、基板表面の研磨工程、特に
シャロー・トレンチ素子分離、キャパシタ、金属配線等
の溝への埋め込み層の形成工程、層間絶縁膜の平坦化工
程等において使用される研磨剤及びそれを用いた基板の
研磨方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to polishing for use in semiconductor device manufacturing technology, and more particularly to a polishing process for a substrate surface, in particular, a process for forming a buried layer in trenches of shallow trench device isolation, capacitors, metal wirings, and the like. The present invention relates to an abrasive used in a step of planarizing an interlayer insulating film and the like, and a method for polishing a substrate using the same.

【0002】[0002]

【従来の技術】現在のULSI半導体素子製造工程で
は、高密度・微細化のための加工技術が研究開発されて
いる。その一つであるCMP(ケミカルメカニカルポリ
ッシング)技術は、必須の技術となってきている。半導
体素子の製造工程におけるCMP技術には、素子分離形
成、メモリのキャパシタ形成、プラグ及び埋め込み金属
配線形成等において溝に埋め込んだ成膜層の余分な成膜
部分を除去するためのリセスCMP技術、及び層間絶縁
膜成膜後の平坦化CMP技術がある。集積回路内の素子
分離形成技術において、デザインルール0.5μm以上
の世代ではLOCOS(シリコン局所酸化)が用いられ
てきたが、加工寸法の更なる微細化に伴い、素子分離幅
のより小さいシャロー・トレンチ分離技術が採用されつ
つある。シャロー・トレンチ分離では、基板上に埋め込
んだ余分な酸化珪素膜を除くためにCMPが必須な技術
となる。金属配線形成技術においても、デザインルール
0.25μm以上の世代では、層間絶縁膜上のAl配線
やプラグにはW等が用いられていたが、加工寸法の微細
化に伴い要求される電気特性を満たすためにCuやCu
・Al合金が採用されつつある。CuやCu・Al合金
の配線技術ていしては、ダマシンやディアルダマシン等
の埋め込み配線技術が検討されており、基板上に埋め込
んだ余分な金属膜を除くためにCMPが必須な技術とな
る。メモリ素子のキャパシタ形成においても、トレンチ
構造や複雑なスタック型構造を実現するためには、酸化
窒化シリコンやタンタル酸化膜及びその他の強誘電体の
リセスCMP技術が必須な技術となる。
2. Description of the Related Art In the current manufacturing process of ULSI semiconductor devices, processing techniques for high density and miniaturization have been researched and developed. One of them, CMP (Chemical Mechanical Polishing) technology, has become an essential technology. The CMP technology in the manufacturing process of a semiconductor device includes a recess CMP technology for removing an extra film formation portion of a film formation layer buried in a groove in element isolation formation, memory capacitor formation, plug and buried metal wiring formation, and the like. And a planarization CMP technique after forming an interlayer insulating film. LOCOS (local oxidation of silicon) has been used in the generation of the design rule of 0.5 μm or more in the device isolation forming technology in the integrated circuit. However, with the further miniaturization of the processing size, the shallow trench having a smaller device isolation width has been used. Trench isolation technology is being adopted. In the shallow trench isolation, CMP is an indispensable technique for removing an extra silicon oxide film buried on a substrate. Also in the metal wiring formation technology, in the generation of the design rule of 0.25 μm or more, W or the like is used for the Al wiring and the plug on the interlayer insulating film. Cu or Cu to fill
-Al alloys are being adopted. As the wiring technology of Cu or Cu / Al alloy, embedded wiring technology such as damascene or dual damascene is under study, and CMP is an essential technology for removing an extra metal film embedded on a substrate. In forming a capacitor of a memory element, a recessed CMP technique of a silicon oxynitride, a tantalum oxide film, and other ferroelectrics is indispensable in order to realize a trench structure or a complicated stacked structure.

【0003】従来、半導体素子の製造工程において、プ
ラズマ−CVD、低圧−CVD、スパッタ、電解メッキ
等の方法で形成される酸化珪素等絶縁膜、キャパシタ強
誘電体膜、配線用金属や金属合金等の平坦化及び埋め込
み層を形成するための化学機械研磨剤としてフュームド
シリカ、アルミナ系の研磨剤を使用して1回の工程で研
磨する方法が一般的に検討されている。しかしながら、
このような研磨法では、パターンの平坦性が悪く、埋め
込み膜の厚みばらつきやディッシングにより特性がばら
つくという技術課題がある。
Conventionally, in a semiconductor device manufacturing process, an insulating film such as silicon oxide, a capacitor ferroelectric film, a metal or metal alloy for wiring, etc. formed by a method such as plasma-CVD, low-pressure-CVD, sputtering, and electrolytic plating. In general, a method of polishing in a single step using a fumed silica or alumina-based abrasive as a chemical mechanical abrasive for forming a flattened and buried layer has been studied. However,
In such a polishing method, there is a technical problem that the flatness of the pattern is poor, and the characteristics vary due to thickness variation of the buried film and dishing.

【0004】従来の平坦化及び埋め込み層を形成するた
めのCMP技術では、パターン密度差或いはサイズ差の
大小により凸部の研磨速度が大きく異なり、また凹部の
研磨も進行してしまうため、ウエハ面内全体での高いレ
ベルの平坦化を実現することができないという技術課題
がある。そこで、埋め込み層成膜後に凹部となる埋め込
み部分の研磨速度と埋め込み層成膜後に成膜層を除去す
る必要がある凸部の研磨速度の差を小さくして平坦性を
向上するために、あらかじめ凸部の被研磨膜を部分的に
エッチングにより除去するエッチバック工程を付加する
技術が広く採用されている。しかしながら、工程数が増
加するために製造コスト面で問題となっている。
In the conventional CMP technology for forming a flattening layer and a buried layer, the polishing rate of a convex portion greatly differs depending on the difference in pattern density or the size difference, and polishing of a concave portion also progresses. There is a technical problem that a high level of planarization cannot be realized in the whole. Therefore, in order to improve the flatness by reducing the difference between the polishing rate of the buried portion that becomes a concave portion after the burying layer is formed and the polishing speed of the convex portion that needs to remove the film layer after the burying layer is formed, to improve flatness. 2. Description of the Related Art A technique of adding an etch-back step of partially removing a film to be polished on a convex portion by etching has been widely adopted. However, since the number of processes increases, there is a problem in terms of manufacturing cost.

【0005】また、埋め込み層を形成するためのCMP
技術及び層間膜を平坦化するCMP技術では、研磨装置
による理想的な終点検出が困難であるために、研磨量の
制御を研磨時間で行うプロセス管理方法が一般的に行わ
れている。しかし、パターン段差形状の変化だけでな
く、研磨布の状態等でも、研磨速度が顕著に変化してし
まうため、プロセス管理が難しいという問題があった。
In addition, CMP for forming a buried layer
In the technology and the CMP technology for flattening an interlayer film, it is difficult to detect an ideal end point by a polishing apparatus. Therefore, a process management method of controlling a polishing amount by a polishing time is generally performed. However, there has been a problem that not only the change in the pattern step shape but also the state of the polishing cloth significantly changes the polishing rate, making process management difficult.

【0006】シャロー・トレンチ分離では、素子分離の
酸化珪素膜埋め込み部分以外にはマスク及びストッパー
として主に窒化珪素膜が形成され、安定な素子分離特性
を実現するためには、ウエハ内の窒化珪素の残膜厚ばら
つきをできるだけ小さくする必要がある。そのために
は、窒化珪素膜が露出した後は、研磨速度が低下するよ
うな特性が必要であり、酸化珪素膜と窒化珪素膜との研
磨速度比(酸化珪素膜の研磨速度/窒化珪素膜の研磨速
度)が大きいことが望ましい。しかし、従来のシリカ系
等の研磨剤を使用した1回の工程による研磨法では、研
磨速度比が2〜3程度しかなく、プロセスマージンが充
分に得られないという問題があった。金属の埋め込み配
線やキャパシタの形成においても、埋め込み溝を形成し
た成膜下地層が露出した時点で研磨を終了する必要があ
り、下地層露出後の研磨速度が低下するように、埋め込
み被研磨膜と下地膜との研磨速度比が大きい研磨剤が使
用される。しかし、一方で研磨速度比が大きい研磨剤を
使用した場合、埋め込み層のディッシングが大きくなる
という問題があった。
In the shallow trench isolation, a silicon nitride film is mainly formed as a mask and a stopper except for the silicon oxide film buried portion for element isolation. In order to realize stable element isolation characteristics, silicon nitride in the wafer is required. It is necessary to minimize the variation in the remaining film thickness. For this purpose, after the silicon nitride film is exposed, it is necessary that the polishing rate be reduced. The polishing rate ratio between the silicon oxide film and the silicon nitride film (the polishing rate of the silicon oxide film / the polishing rate of the silicon nitride film) is required. It is desirable that the polishing rate is large. However, the conventional polishing method using a single polishing step using a silica-based polishing agent has a problem that the polishing rate ratio is only about 2 to 3 and a sufficient process margin cannot be obtained. In the formation of a metal buried wiring or a capacitor, polishing must be completed when the film-forming base layer in which the buried groove is formed is exposed. An abrasive having a large polishing rate ratio between the substrate and the underlying film is used. However, on the other hand, when an abrasive having a large polishing rate ratio is used, there is a problem that dishing of the buried layer becomes large.

【0007】シリカ系研磨剤に比べ、酸化珪素膜の高い
研磨速度が得られる酸化セリウム等を含む研磨剤も使用
されている。しかし、研磨速度が高すぎるためにプロセ
ス管理が難しい、研磨速度の基板上被研磨膜のパターン
依存性が大きい等の問題があった。その他に、一般に比
較的低い粒子濃度で使用されるために基板上の被研磨膜
パターンが微細化するほど凸部が削れにくく、その周辺
部の研磨だけが進行してしまうという問題もあった。ま
た、酸化セリウムを含む研磨剤は、シリカ系研磨剤の約
2倍の酸化珪素膜と窒化珪素膜の研磨速度比が得られる
が、それでも実用上充分とはいえない。
[0007] An abrasive containing cerium oxide or the like, which can obtain a higher polishing rate of a silicon oxide film than a silica-based abrasive, is also used. However, there are problems such as difficulty in process management because the polishing rate is too high, and large dependence of the polishing rate on the pattern of the film to be polished on the substrate. In addition, there is also a problem that the projections are less likely to be removed as the film pattern to be polished on the substrate becomes finer because the particles are generally used at a relatively low particle concentration, and only the polishing of the peripheral portion proceeds. A polishing agent containing cerium oxide can provide a polishing rate ratio of a silicon oxide film and a silicon nitride film approximately twice that of a silica-based polishing agent, but it is still not practically sufficient.

【0008】[0008]

【発明が解決しようとする課題】本発明は、シャロー・
トレンチ分離形成、金属埋め込み配線形成等のリセスC
MP技術及び層間絶縁膜の平坦化CMP技術において、
酸化珪素膜、金属等の埋め込み膜の余分な成膜層の除去
及び平坦化を効率的、高レベルに、かつプロセス管理も
容易に行うことができる研磨剤及びそれを用いた基板の
研磨方法を提供するものである。
SUMMARY OF THE INVENTION The present invention relates to a shallow
Recess C for trench isolation formation, metal buried wiring formation, etc.
In the MP technology and the CMP technology for planarizing the interlayer insulating film,
A polishing agent capable of efficiently and efficiently removing and flattening an excess film forming layer of a buried film such as a silicon oxide film and a metal and easily performing process control, and a method of polishing a substrate using the same. To provide.

【0009】[0009]

【課題を解決するための手段】本発明の研磨剤は、砥粒
および陰イオン性界面活性剤を含む研磨剤であり、陰イ
オン性界面活性剤の濃度がスラリー100重量部に対し
て0.5重量部〜10重量部の範囲である研磨剤であ
る。この研磨剤を用いて研磨すると、層間絶縁膜の平坦
化及びシャロー・トレンチ素子分離形成等の埋め込み膜
の平坦化を効率的、高レベルに行うことが可能である。
上記の研磨剤で、砥粒が結晶粒界を有する粒子を含む場
合には、より高い効果が得られる。通常の研磨剤を用い
た研磨では、研磨速度は研磨圧力に比例した特性を示す
のが一般的である。本発明の研磨剤を使用した場合、研
磨速度に変曲点のある研磨圧力依存性が得られる。研磨
速度に変曲点のある研磨圧力依存性とは、界面活性剤を
加えない場合の研磨圧力にほぼ比例した研磨速度変化に
比べ、パターンのない基板の研磨速度が変曲点となる圧
力まで充分小さく、変曲点となる圧力より大きい研磨圧
力では変曲点以下の研磨圧力の研磨速度よりも充分大き
い研磨速度が得られる特性を意味する。また、界面活性
剤の濃度により、変曲点が現れる研磨圧力が変化する特
性を示す。本発明の研磨剤に含まれる陰イオン性界面活
性剤としては、有機高分子の陰イオン性界面活性剤が好
ましく使用される。陰イオン性界面活性剤としては、共
重合成分としてアクリル酸アンモニウム塩を含むものが
好ましく使用される。本発明の研磨剤を用いて、少なく
とも酸化珪素膜が形成された半導体チップ等の所定の基
板を研磨することができる。
The abrasive of the present invention is an abrasive containing abrasive grains and an anionic surfactant, wherein the concentration of the anionic surfactant is 0.1 to 100 parts by weight of the slurry. The abrasive is in the range of 5 parts by weight to 10 parts by weight. When the polishing is performed using this polishing agent, the flattening of the interlayer insulating film and the flattening of the buried film such as the formation of the shallow trench element isolation can be performed efficiently and at a high level.
In the above abrasive, when the abrasive grains include particles having crystal grain boundaries, higher effects can be obtained. In polishing using a normal abrasive, the polishing rate generally shows a characteristic proportional to the polishing pressure. When the abrasive of the present invention is used, the polishing rate has a polishing pressure dependence with an inflection point. The polishing pressure dependence at which the polishing rate has an inflection point means that the polishing rate of a substrate without a pattern becomes a point at which the polishing rate becomes an inflection point, compared to the polishing rate change almost proportional to the polishing pressure when no surfactant is added. When the polishing pressure is sufficiently small and is higher than the pressure at which the inflection point is obtained, a polishing rate sufficiently higher than the polishing rate at a polishing pressure equal to or lower than the inflection point is obtained. In addition, it shows a characteristic that the polishing pressure at which an inflection point appears changes depending on the concentration of the surfactant. As the anionic surfactant contained in the abrasive of the present invention, an organic polymer anionic surfactant is preferably used. As the anionic surfactant, those containing an ammonium acrylate salt as a copolymerization component are preferably used. A predetermined substrate such as a semiconductor chip on which at least a silicon oxide film is formed can be polished using the polishing slurry of the present invention.

【0010】[0010]

【発明の実施の形態】砥粒および陰イオン性界面活性剤
を含む研磨剤であり、陰イオン性界面活性剤の濃度がス
ラリー100重量部に対して0.5重量部〜10重量部
の範囲の研磨剤により、研磨速度に変曲点のある研磨圧
力依存性が得られるため、パターンの形成された基板の
凹部の実効研磨圧力をP1、凸部の実効研磨圧力をP2
すると、パターンのない基板の研磨速度に変曲点が現れ
る圧力P'がP2>P'>P>P1となるように設定研磨荷
重P及び添加剤の濃度を調整することにより、被研磨膜
のパターン形状に応じて変曲点の圧力よりも高い研磨圧
力がかかる凸部を選択的に研磨する特性を実現すること
ができる。また、平坦化された後の研磨速度は、変曲点
が現れる圧力よりも小さい設定研磨圧力の研磨速度にな
るために、平坦化後の研磨がほとんど進行しなくなるの
で研磨時間によるプロセス管理が容易になる。この添加
剤による研磨速度の研磨圧力依存性については、文献
(IEDM96(International Electronic Device Meeting)
Proceedings(1996) p.349−352等)で報告されてい
る。その結果、高効率、高レベルに、パターン密度、サ
イズ依存性の少ない平坦化を実現することができる。
DETAILED DESCRIPTION OF THE INVENTION An abrasive containing abrasive grains and an anionic surfactant, wherein the concentration of the anionic surfactant is in the range of 0.5 to 10 parts by weight per 100 parts by weight of the slurry. By the polishing agent, the polishing rate has a polishing pressure dependency with an inflection point, so that the effective polishing pressure of the concave portion of the substrate on which the pattern is formed is P 1 , and the effective polishing pressure of the convex portion is P 2 , By adjusting the set polishing load P and the concentration of the additive such that the pressure P ′ at which the inflection point appears in the polishing rate of the substrate without the pattern becomes P 2 > P ′>P> P 1 , It is possible to realize a characteristic of selectively polishing a convex portion to which a polishing pressure higher than a pressure at an inflection point is applied according to a pattern shape. In addition, since the polishing rate after the flattening becomes a polishing rate of a set polishing pressure smaller than the pressure at which the inflection point appears, the polishing after the flattening hardly progresses, so that the process management by the polishing time is easy. become. The dependence of the polishing rate by this additive on the polishing pressure is described in the literature (IEDM96 (International Electronic Device Meeting)).
Proceedings (1996) p.349-352). As a result, high-efficiency, high-level planarization with little pattern density and small size dependence can be realized.

【0011】上記の研磨剤で、砥粒が結晶粒界を有する
粒子を含む研磨剤により、より高い効果を実現する
A higher effect is realized by the above-mentioned abrasive, wherein the abrasive contains abrasive grains having grains having grain boundaries.

【0012】本発明において、陰イオン性界面活性剤と
は、金属イオン類を含まないものとして、アクリル酸重
合体及びそのアンモニウム塩、メタクリル酸重合体及び
そのアンモニウム塩、ポリビニルアルコール等の水溶性
有機高分子類、ラウリル硫酸アンモニウム、ポリオキシ
エチレンラウリルエーテル硫酸アンモニウム等の水溶性
陰イオン性界面活性剤などが挙げられる。特に共重合成
分としてアンモニウム塩を含む高分子分散剤等の水溶性
陰イオン性界面活性剤から選ばれた少なくとも1種類以
上の界面活性剤を使用する。また、その他に水溶性非イ
オン性界面活性剤、水溶性陰イオン性界面活性剤、水溶
性陽イオン性界面活性剤等を併用してもよい。これらの
界面活性剤添加量は、スラリー100重量部に対して、
0.5重量部〜10重量部の範囲が好ましい。また、界
面活性剤の分子量は、100〜50000が好ましく、
2000〜20000がより好ましい。添加剤の添加方
法としては、研磨直前に砥粒分散液に混合するのが好ま
しい。研磨装置のスラリー供給配管内で充分混合するよ
うな構造を施した場合には、砥粒分散液及び添加剤水溶
液の供給速度を個別に調整し、配管内で所定濃度になる
ように混合することも可能である。添加剤混合後に長時
間保存した場合、研磨剤の粒度分布が変化する場合があ
るが、研磨速度及び研磨傷等の研磨特性には顕著な影響
が見られないため、界面活性剤の添加方法は制限するも
のではない。
In the present invention, the term "anionic surfactant" refers to a water-soluble organic solvent such as an acrylic acid polymer and its ammonium salt, a methacrylic acid polymer and its ammonium salt, and polyvinyl alcohol, which do not contain metal ions. Examples include polymers, water-soluble anionic surfactants such as ammonium lauryl sulfate and polyoxyethylene lauryl ether ammonium sulfate. In particular, at least one surfactant selected from water-soluble anionic surfactants such as a polymer dispersant containing an ammonium salt as a copolymer component is used. In addition, a water-soluble nonionic surfactant, a water-soluble anionic surfactant, a water-soluble cationic surfactant, or the like may be used in combination. These surfactant addition amounts are based on 100 parts by weight of the slurry.
A range of 0.5 to 10 parts by weight is preferred. Further, the molecular weight of the surfactant is preferably 100 to 50,000,
2000 to 20000 is more preferable. As a method of adding the additive, it is preferable that the additive is mixed with the abrasive dispersion just before polishing. When a structure that mixes well in the slurry supply pipe of the polishing device is provided, adjust the supply rates of the abrasive dispersion and the aqueous solution of the additive individually and mix them to a predetermined concentration in the pipe. Is also possible. When stored for a long time after mixing the additives, the particle size distribution of the abrasive may change, but since the polishing rate and polishing characteristics such as scratches are not significantly affected, the method of adding the surfactant is There is no restriction.

【0013】本発明の研磨剤に含まれる砥粒は、酸化セ
リウム、酸化シリコン、酸化アルミニウム等の無機酸化
物粒子であり、酸化セリウム粒子が好ましく使用され
る。ここで、砥粒の濃度に制限は無いが、懸濁液の取り
扱い易さから0.5〜15重量%の範囲が好ましい。ま
た、砥粒の一次粒子径は、5〜600nmであることが
好ましく、30〜500nmであることがより好まし
い。また、半導体チップ研磨に使用することから、アル
カリ金属およびハロゲン類の含有率は1ppm以下に抑
えることが好ましい。本発明で、一次粒子径は走査型電
子顕微鏡(例えば、株式会社 日立製作所製S−900
型)による観察で測定する。本発明の研磨剤は高純度の
もので、Na、K、Si、Mg、Ca、Zr、Ti、N
i、Cr、Feはそれぞれ1ppm以下、Alは10p
pm以下であると好ましい。研磨剤中の粒子の平均粒径
は、100〜2000nmであることが好ましく、15
0〜1500nmであることがより好ましい。粒子の平
均粒径が100nm未満であると研磨速度が低くなりす
ぎ、2000nmを越えると被研磨膜に傷が発生しやす
くなる傾向にある。本発明で、研磨剤中粒子の粒径の測
定は、レーザ回折式粒度分布計(例えば株式会社 MA
LVERN製 MASTER SIZER)で測定す
る。
The abrasive grains contained in the abrasive of the present invention are inorganic oxide particles such as cerium oxide, silicon oxide and aluminum oxide, and cerium oxide particles are preferably used. Here, the concentration of the abrasive grains is not limited, but is preferably in the range of 0.5 to 15% by weight from the viewpoint of easy handling of the suspension. Further, the primary particle diameter of the abrasive grains is preferably from 5 to 600 nm, more preferably from 30 to 500 nm. Further, since it is used for polishing a semiconductor chip, the content of alkali metals and halogens is preferably suppressed to 1 ppm or less. In the present invention, the primary particle size is determined by a scanning electron microscope (for example, S-900 manufactured by Hitachi, Ltd.).
(Type). The abrasive of the present invention is of high purity, and contains Na, K, Si, Mg, Ca, Zr, Ti, N
i, Cr and Fe are each 1 ppm or less, and Al is 10 p
pm or less. The average particle size of the particles in the abrasive is preferably from 100 to 2000 nm,
More preferably, it is 0 to 1500 nm. If the average particle size of the particles is less than 100 nm, the polishing rate becomes too low, and if it exceeds 2000 nm, the film to be polished tends to be easily damaged. In the present invention, the particle size of the particles in the abrasive is measured by a laser diffraction type particle size distribution meter (for example, MA Co., Ltd.).
It is measured with a master sizer manufactured by LVERN.

【0014】本発明の研磨剤及びそれを用いた基板の研
磨方法が適用される無機絶縁膜の作製方法として、定圧
CVD法、プラズマCVD法等が挙げられる。定圧CV
D法による酸化珪素絶縁膜形成は、Si源としてモノシ
ラン:SiH4、酸素源として酸素:O2を用いる。この
SiH4−O2系酸化反応を400℃程度以下の低温で行
わせることにより得られる。高温リフローによる表面平
坦化を図るためにリン:Pをドープするときには、Si
4−O2−PH3系反応ガスを用いることが好ましい。
プラズマCVD法は、通常の熱平衡下では高温を必要と
する化学反応が低温でできる利点を有する。プラズマ発
生法には、容量結合型と誘導結合型の2つが挙げられ
る。反応ガスとしては、Si源としてSiH4、酸素源
としてN2Oを用いたSiH4−N2O系ガスとテトラエ
トキシシラン(TEOS)をSi源に用いたTEOS−
2系ガス(TEOS−プラズマCVD法)が挙げられ
る。基板温度は250〜400℃、反応圧力は67〜4
00Paの範囲が好ましい。このように、本発明で使用
する酸化珪素絶縁膜にはリン、ホウ素等の元素がド−プ
されていても良い。同様に、低圧CVD法による窒化珪
素膜形成は、Si源としてジクロルシラン:SiH2
2、窒素源としてアンモニア:NH3を用いる。このS
iH2Cl2−NH3系酸化反応を900℃の高温で行わ
せることにより得られる。プラズマCVD法は、Si源
としてSiH4、窒素源としてNH3を用いたSiH4
NH3系ガスが挙げられる。基板温度は300〜400
℃が好ましい。
As a method for forming an inorganic insulating film to which the polishing agent of the present invention and a method for polishing a substrate using the same are applied, there are a constant pressure CVD method, a plasma CVD method and the like. Constant pressure CV
In forming a silicon oxide insulating film by the D method, monosilane: SiH 4 is used as a Si source, and oxygen: O 2 is used as an oxygen source. This is obtained by performing the SiH 4 —O 2 -based oxidation reaction at a low temperature of about 400 ° C. or less. When doping phosphorus: P for planarizing the surface by high temperature reflow,
It is preferable to use H 4 -O 2 -PH 3 system reaction gas.
The plasma CVD method has an advantage that a chemical reaction requiring a high temperature can be performed at a low temperature under normal thermal equilibrium. The plasma generation method includes two types, a capacitive coupling type and an inductive coupling type. As a reaction gas, a SiH 4 -N 2 O-based gas using SiH 4 as a Si source and N 2 O as an oxygen source and TEOS- using tetraethoxysilane (TEOS) as a Si source are used.
O 2 -based gas (TEOS-plasma CVD method) may be used. Substrate temperature is 250-400 ° C, reaction pressure is 67-4
A range of 00 Pa is preferred. As described above, the silicon oxide insulating film used in the present invention may be doped with elements such as phosphorus and boron. Similarly, the formation of a silicon nitride film by low-pressure CVD is performed by using dichlorosilane: SiH 2 C as a Si source.
l 2 , ammonia: NH 3 is used as a nitrogen source. This S
The iH 2 Cl 2 -NH 3 based oxidation reaction can be obtained by performed at a high temperature of 900 ° C.. The plasma CVD method uses SiH 4 − using SiH 4 as a Si source and NH 3 as a nitrogen source.
An NH 3 -based gas may be used. Substrate temperature is 300-400
C is preferred.

【0015】所定の基板として、半導体基板すなわち回
路素子と配線パターンが形成された段階の半導体基板、
回路素子が形成された段階の半導体基板等の半導体基板
上に少なくとも酸化珪素膜が形成された基板が使用でき
る。このような半導体基板上に形成された酸化珪素膜層
を上記研磨剤及びそれを用いた基板の研磨方法で研磨す
ることによって、酸化珪素膜層表面の凹凸を解消し、半
導体基板全面に渡って平滑な面とする。層間絶縁膜の平
坦化工程に適用する場合には、これで終了となるが、シ
ャロー・トレンチ分離の場合には、平坦化された酸化珪
素膜を下地層の窒化珪素層まで更に研磨することによっ
て、素子分離部に埋め込んだ酸化珪素膜のみを残す。こ
の際、ストッパーとなる窒化珪素との研磨速度比が大き
ければ、窒化膜露出後の研磨速度が小さくなり、研磨の
プロセスマージンが大きくなる。また、シャロー・トレ
ンチ分離に使用するためには、研磨時に傷発生が少ない
ことも必要である。ここで、研磨する装置としては、半
導体基板を保持するホルダーと研磨布(パッド)を貼り
付けた(回転数が変更可能なモータ等を取り付けてあ
る)定盤を有する一般的な研磨装置が使用できる。研磨
布としては、一般的な不織布、発泡ポリウレタン、多孔
質フッ素樹脂などが使用でき、特に制限はない。また、
研磨布には研磨剤が溜まるような溝加工を施すことが好
ましい。研磨条件には制限はないが、定盤の回転速度は
半導体が飛び出さないように100rpm以下の低回転
が好ましい。被研磨膜を有する半導体基板の研磨布への
押しつけ圧力が100〜1000gf/cm2であるこ
とが好ましく、研磨速度のウエハ面内均一性及びパター
ンの平坦性を満足するためには、200〜500gf/
cm2であることがより好ましい。研磨している間、研
磨布には研磨剤をポンプ等で連続的に供給する。この供
給量に制限はないが、研磨布の表面が常に研磨剤で覆わ
れていることが好ましい。
The predetermined substrate is a semiconductor substrate, that is, a semiconductor substrate in which circuit elements and wiring patterns are formed,
A substrate in which at least a silicon oxide film is formed over a semiconductor substrate such as a semiconductor substrate at a stage where circuit elements are formed can be used. The silicon oxide film layer formed on such a semiconductor substrate is polished by the above-mentioned polishing agent and a substrate polishing method using the same, whereby irregularities on the surface of the silicon oxide film layer are eliminated, and the entire surface of the semiconductor substrate is removed. Make it a smooth surface. This is completed when applied to the step of flattening the interlayer insulating film.In the case of the shallow trench isolation, the flattened silicon oxide film is further polished to the underlying silicon nitride layer. Then, only the silicon oxide film embedded in the element isolation portion is left. At this time, if the polishing rate ratio with respect to silicon nitride serving as a stopper is large, the polishing rate after exposure of the nitride film is reduced, and the polishing process margin is increased. In addition, in order to use it for shallow trench isolation, it is necessary that scratch generation during polishing is small. Here, as a polishing apparatus, a general polishing apparatus having a holder for holding a semiconductor substrate and a platen on which a polishing cloth (pad) is attached (a motor or the like capable of changing the number of rotations is attached) is used. it can. As the polishing cloth, general nonwoven fabric, foamed polyurethane, porous fluororesin and the like can be used, and there is no particular limitation. Also,
Preferably, the polishing cloth is subjected to groove processing for storing the abrasive. The polishing conditions are not limited, but the rotation speed of the platen is preferably low at 100 rpm or less so that the semiconductor does not jump out. The pressing pressure of the semiconductor substrate having the film to be polished against the polishing cloth is preferably 100 to 1000 gf / cm 2 , and in order to satisfy the uniformity of the polishing rate within the wafer surface and the flatness of the pattern, 200 to 500 gf / cm 2. /
cm 2 is more preferable. During polishing, an abrasive is continuously supplied to the polishing cloth by a pump or the like. Although the supply amount is not limited, it is preferable that the surface of the polishing cloth is always covered with the abrasive.

【0016】研磨終了後の半導体基板は、流水中で良く
洗浄後、スピンドライヤ等を用いて半導体基板上に付着
した水滴を払い落としてから乾燥させることが好まし
い。このようにして、Si基板上にシャロー・トレンチ
分離を形成した後に絶縁層を形成し、或いは酸化珪素絶
縁膜層を平坦化した後、その上にアルミニウム配線を形
成し、その上に形成した酸化珪素膜を上記の方法により
平坦化する。平坦化された酸化珪素膜層の上に、上層の
アルミニウム配線を形成し、その配線間および配線上に
酸化珪素膜を形成後、本発明の研磨剤及びそれを用いた
基板の研磨方法により研磨することによって、絶縁膜表
面の凹凸を解消し、半導体基板全面に渡って平滑な面と
する。この工程を所定数繰り返すことにより、所望の層
数の半導体を製造する。または、Si基板上にシャロー
・トレンチ分離を形成したあと、層間絶縁膜層及びその
表面に埋め込み配線の溝を形成し、スパッタ法でTiN
やTaN等のバリアメタル層及び配線金属用シード層を
形成し、電解メッキ法等によりCu又はCu・Al合金
を成膜する。この成膜層に、本発明の研磨剤及びそれを
用いた基板の研磨方法を適用することにより、配線溝部
にのみ金属を埋め込むことができる。この工程を所定数
繰り返すことにより、所望の層数の半導体を製造する。
After the polishing, the semiconductor substrate is preferably washed well in running water, and then dried using a spin drier or the like to remove water droplets adhering to the semiconductor substrate. In this manner, after forming a shallow trench isolation on a Si substrate, an insulating layer is formed, or after a silicon oxide insulating film layer is planarized, an aluminum wiring is formed thereon, and an oxide layer formed thereon is formed. The silicon film is planarized by the above method. An upper aluminum wiring is formed on the flattened silicon oxide film layer, and a silicon oxide film is formed between the wirings and on the wiring, and then polished by the polishing agent of the present invention and the substrate polishing method using the same. By doing so, unevenness on the surface of the insulating film is eliminated, and a smooth surface is formed over the entire surface of the semiconductor substrate. By repeating this process a predetermined number of times, a semiconductor having a desired number of layers is manufactured. Alternatively, after forming a shallow trench isolation on a Si substrate, a trench for buried wiring is formed on the interlayer insulating film layer and the surface thereof, and TiN is formed by sputtering.
A barrier metal layer such as Al and TaN and a seed layer for wiring metal are formed, and Cu or a Cu.Al alloy is formed by electrolytic plating or the like. By applying the abrasive of the present invention and the method of polishing a substrate using the same to this film formation layer, metal can be embedded only in the wiring groove. By repeating this process a predetermined number of times, a semiconductor having a desired number of layers is manufactured.

【0017】その他に、メモリ素子のキャパシタの形成
工程において、トレンチ型セル構造では、ポリシリコン
や酸化窒化シリコン等の埋め込み構造を形成する際に、
スタック型セル構造でも、複雑な構造を形成するために
埋め込み工程が採用される可能性があり、酸化珪素シリ
コンやタンタル酸化膜の他にSTOやBST等の強誘電
体材料にも本発明の研磨剤及びそれを用いた研磨方法が
適用される。
In addition, in the step of forming a capacitor of a memory element, in a trench type cell structure, when forming a buried structure such as polysilicon or silicon oxynitride,
Even in a stacked cell structure, an embedding process may be employed to form a complicated structure, and the polishing of the present invention is performed on ferroelectric materials such as STO and BST in addition to silicon oxide silicon and tantalum oxide films. An agent and a polishing method using the same are applied.

【0018】本発明の研磨剤及びそれを用いた基板の研
磨方法は、半導体基板に形成された酸化珪素膜や窒化珪
素膜、Cu、Cu・Al合金等の金属膜、及び強誘電体
膜だけでなく、所定の配線を有する配線板に形成された
酸化珪素膜、ガラス、窒化珪素等の無機絶縁膜、金属
膜、フォトマスク・レンズ・プリズムなどの光学ガラ
ス、ITO等の無機導電膜、ガラス及び結晶質材料で構
成される光集積回路・光スイッチング素子・光導波路、
光ファイバ−の端面、シンチレ−タ等の光学用単結晶、
固体レ−ザ単結晶、青色レ−ザ用LEDサファイア基
板、SiC、GaP、GaAs等の半導体単結晶、磁気
ディスク用ガラス基板、磁気ヘッド等の研磨剤、研磨方
法としても使用される。
The polishing agent of the present invention and the method of polishing a substrate using the same include a silicon oxide film and a silicon nitride film formed on a semiconductor substrate, a metal film such as Cu, Cu.Al alloy, and a ferroelectric film. Rather, a silicon oxide film formed on a wiring board having predetermined wiring, glass, an inorganic insulating film such as silicon nitride, a metal film, an optical glass such as a photomask, a lens, a prism, and the like, an inorganic conductive film such as ITO, and glass Optical integrated circuit, optical switching element, optical waveguide,
Optical fiber end face, optical single crystal such as scintillator,
It is also used as a polishing agent and polishing method for solid laser single crystals, blue laser LED sapphire substrates, semiconductor single crystals such as SiC, GaP, and GaAs, magnetic disk glass substrates, magnetic heads, and the like.

【0019】[0019]

【実施例】(実施例1) (酸化セリウム粒子の作製)炭酸セリウム水和物2Kg
を白金製容器に入れ、800℃で2時間空気中で焼成す
ることにより黄白色の粉末を約1Kg得た。この粉末を
X線回折法で相同定を行ったところ酸化セリウムである
ことを確認した。焼成粉末粒子径は30〜100μmで
あった。焼成粉末粒子表面を走査型電子顕微鏡で観察し
たところ、酸化セリウムの粒界が観察された。粒界に囲
まれた酸化セリウム一次粒子径を測定したところ、体積
分布の中央値が190nm、最大値が500nmであっ
た。酸化セリウム粉末1Kgをジェットミルを用いて乾
式粉砕を行った。粉砕粒子について走査型電子顕微鏡で
観察したところ、一次粒子径と同等サイズの小さな粒子
の他に、1〜3μmの大きな粉砕残り粒子と0.5〜1
μmの粉砕残り粒子が混在していた。
EXAMPLES (Example 1) (Preparation of cerium oxide particles) 2 kg of cerium carbonate hydrate
Was put in a platinum container, and calcined at 800 ° C. for 2 hours in the air to obtain about 1 kg of yellowish white powder. When this powder was subjected to phase identification by an X-ray diffraction method, it was confirmed that the powder was cerium oxide. The particle diameter of the calcined powder was 30 to 100 μm. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter of cerium oxide surrounded by the grain boundaries was measured, the median of the volume distribution was 190 nm and the maximum was 500 nm. 1 kg of cerium oxide powder was dry-ground using a jet mill. Observation of the pulverized particles with a scanning electron microscope revealed that, in addition to the small particles having the same size as the primary particle diameter, large pulverized residual particles of 1 to 3 μm and 0.5 to 1
Residual particles of μm were mixed.

【0020】(酸化セリウムスラリーの作製)上記作製
の酸化セリウム粒子1Kgとポリアクリル酸アンモニウ
ム塩水溶液(40重量%)23gと脱イオン水8977
gを混合し、攪拌しながら超音波分散を10分間施し
た。得られたスラリーを1ミクロンフィルターでろ過を
し、さらに脱イオン水を加えることにより5重量%スラ
リーを得た。スラリーpHは8.3であった。上記の酸
化セリウムスラリー(固形分:5重量%)600gと界
面活性剤としてpH6.5で分子量5000のポリアク
リル酸(100%)アンモニウム塩水溶液(40重量
%)180gと脱イオン水2220gを混合して、界面
活性剤をスラリー100重量部に対して2.4重量部添
加した酸化セリウム研磨剤(酸化セリウム固形分:1重
量%)を作製した。その研磨剤pHは6.9であり、ウ
ベローデ粘度計及び比重計の測定値から算出した粘度は
1.41mPa・sであった。また、研磨剤中の粒子を
レーザ回折式粒度分布計で測定するために、適当な濃度
に希釈して測定した結果、粒子径の中央値が300nm
であった。
(Preparation of Cerium Oxide Slurry) 1 kg of the cerium oxide particles prepared above, 23 g of an aqueous solution of ammonium polyacrylate (40% by weight), and deionized water 8977
g was mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The obtained slurry was filtered through a 1-micron filter, and further 5% by weight of slurry was obtained by adding deionized water. The slurry pH was 8.3. A mixture of 600 g of the above cerium oxide slurry (solid content: 5% by weight), 180 g of an aqueous solution of polyacrylic acid (100%) ammonium salt having a pH of 6.5 and a molecular weight of 5,000 as a surfactant (40% by weight), and 2220 g of deionized water was mixed. Thus, a cerium oxide abrasive (cerium oxide solid content: 1% by weight) was prepared by adding 2.4 parts by weight of a surfactant to 100 parts by weight of the slurry. The pH of the polishing slurry was 6.9, and the viscosity calculated from the values measured by an Ubbelohde viscometer and a specific gravity meter was 1.41 mPa · s. In addition, in order to measure the particles in the abrasive with a laser diffraction type particle size distribution analyzer, the particles were diluted to an appropriate concentration and measured. As a result, the median particle diameter was 300 nm.
Met.

【0021】(ブランケットウエハの研磨1)直径20
0mmSi基板上に1000nmの酸化珪素膜を成膜し
たブランケットウエハを作製した。保持する基板取り付
け用の吸着パッドを貼り付けたホルダーに上記パターン
ウエハをセットし、多孔質ウレタン樹脂製の研磨パッド
を貼り付けた直径600mmの定盤上に絶縁膜面を下に
してホルダーを載せ、さらに加工圧力を100gf/c
2に設定して、定盤上に上記の酸化セリウム研磨剤
(固形分:1重量%)を200cc/minの速度で滴
下しながら、定盤及びウエハを50rpmで1分間回転
させ、酸化珪素膜を研磨した。同様に加工圧力を200
〜800gf/cm2の範囲で100gf/cm2おきに
設定して別のウエハを研磨した。研磨後のウエハを洗浄
して乾燥し、干渉膜厚計によって膜厚を測定し、研磨前
後の膜厚変化を算出した。その結果、圧力100gf/
cm2の研磨速度は24nm/min、圧力200gf
/cm2の研磨速度は41nm/min、圧力300g
f/cm2の研磨速度は65nm/min、圧力400
gf/cm2の研磨速度は85nm/min、圧力50
0gf/cm2の研磨速度は105nm/min、圧力
600gf/cm2の研磨速度は123nm/min、
圧力700gf/cm2の研磨速度は146nm/mi
n、圧800gf/cm2の研磨速度は302nm/m
inであり、加工圧力700gf/cm2で研磨速度の
変曲点が得られた。
(Blanket Wafer Polishing 1) Diameter 20
A blanket wafer having a 1000-nm silicon oxide film formed on a 0-mm Si substrate was manufactured. The pattern wafer is set on a holder to which a suction pad for attaching a substrate to be held is attached, and the holder is placed with the insulating film face down on a platen having a diameter of 600 mm to which a polishing pad made of porous urethane resin is attached. , And the processing pressure is 100 gf / c
is set to m 2, the above-mentioned cerium oxide abrasive surface plate: dropwise (solid content 1 wt%) at a rate of 200 cc / min, the platen and the wafer was rotated for 1 minute at 50 rpm, silicon oxide The film was polished. Similarly, set the processing pressure to 200
Polishing the other wafer is set to 100 gf / cm 2 every range of ~800gf / cm 2. The polished wafer was washed and dried, and the film thickness was measured with an interference film thickness meter to calculate the change in film thickness before and after polishing. As a result, the pressure was 100 gf /
The polishing rate of cm 2 is 24 nm / min, and the pressure is 200 gf.
/ Cm 2 polishing rate is 41 nm / min, pressure 300 g
The polishing rate of f / cm 2 is 65 nm / min, and the pressure is 400
The polishing rate of gf / cm 2 is 85 nm / min, and the pressure is 50.
Polishing rate of 0 gf / cm 2 is 105 nm / min, the polishing rate of the pressure 600 gf / cm 2 is 123 nm / min,
The polishing rate at a pressure of 700 gf / cm 2 is 146 nm / mi.
n, the polishing rate at a pressure of 800 gf / cm 2 is 302 nm / m
and the inflection point of the polishing rate was obtained at a processing pressure of 700 gf / cm 2 .

【0022】(ブランケットウエハの研磨2)直径20
0mmSi基板上に1000nmの酸化珪素膜を成膜し
たブランケットウエハ及び100nmの窒化珪素膜を成
膜したブランケットウエハをそれぞれ作製した。保持す
る基板取り付け用の吸着パッドを貼り付けたホルダーに
上記パターンウエハをセットし、多孔質ウレタン樹脂製
の研磨パッドを貼り付けた直径600mmの定盤上に絶
縁膜面を下にしてホルダーを載せ、さらに加工圧力を3
00gf/cm2に設定して、定盤上に上記の酸化セリ
ウム研磨剤(固形分:1重量%)を200cc/min
の速度で滴下しながら、定盤及びウエハを50rpmで
1分間回転させ、酸化珪素膜を研磨した。同様に加工圧
力を300gf/cm2に設定して窒化珪素膜を研磨し
た。研磨後のウエハを洗浄して乾燥し、干渉膜厚計によ
って膜厚を測定し、研磨前後の膜厚変化を算出した。そ
の結果、酸化珪素膜の研磨速度が65nm/min、窒
化珪素膜の研磨速度が6nm/minであり、研磨速度
比(酸化珪素膜研磨速度/窒化珪素膜研磨速度)は11
であった。
(Blanket wafer polishing 2) Diameter 20
A blanket wafer having a 1000 nm silicon oxide film formed on a 0 mm Si substrate and a blanket wafer having a 100 nm silicon nitride film formed thereon were produced. The pattern wafer is set on a holder to which a suction pad for attaching a substrate to be held is attached, and the holder is placed with the insulating film face down on a platen having a diameter of 600 mm to which a polishing pad made of porous urethane resin is attached. , And the processing pressure is 3
Set to 00gf / cm 2, platen to the cerium oxide abrasive (solid content: 1 wt%) of 200 cc / min
The platen and the wafer were rotated at 50 rpm for 1 minute while dripping at a speed of 1 to polish the silicon oxide film. Similarly, the processing pressure was set to 300 gf / cm 2 , and the silicon nitride film was polished. The polished wafer was washed and dried, and the film thickness was measured with an interference film thickness meter to calculate the change in film thickness before and after polishing. As a result, the polishing rate of the silicon oxide film was 65 nm / min, the polishing rate of the silicon nitride film was 6 nm / min, and the polishing rate ratio (silicon oxide film polishing rate / silicon nitride film polishing rate) was 11
Met.

【0023】(パターンウエハの研磨)直径200mm
Si基板上に100nmの窒化珪素膜を成膜後、フォト
レジストを塗布し100×100μm2の窒化珪素膜の
ドットを158μmピッチでマスク材として残し、エッ
チングによりSi基板に400nmのトレンチを形成し
た。続いて、薄い熱酸化膜を形成後、低圧CVD法によ
り酸化珪素膜を550nm成膜し、窒化珪素膜厚を含め
ると500nmのトレンチに酸化珪素膜を埋め込んだパ
ターンウエハを作製した。保持する基板取り付け用の吸
着パッドを貼り付けたホルダーに上記パターンウエハを
セットし、多孔質ウレタン樹脂製の研磨パッドを貼り付
けた直径600mmの定盤上に絶縁膜面を下にしてホル
ダーを載せ、さらに加工圧力を300gf/cm2に設
定した。定盤上に上記の酸化セリウム研磨剤(固形分:
1重量%)を200cc/minの速度で滴下しなが
ら、定盤及びウエハを50rpmで3分間回転させ、酸
化珪素膜を研磨した。同様の条件で、研磨時間を4分及
び5分にして研磨を行った。ウエハを洗浄、乾燥した後
に、干渉膜厚計により窒化珪素膜上及びトレンチ部の酸
化珪素膜の膜厚を測定し、触針式段差計により境界部の
段差を測定した。3分間研磨後のウエハの測定結果は、
窒化珪素膜上の酸化珪素膜の膜厚が28nmであり、ト
レンチ部の酸化珪素膜の膜厚は520nmであり、残段
差が少なくとも<10nm以下になり平坦化が終了して
いることがわかった。4分間研磨後のウエハの測定結果
は、窒化珪素膜上の酸化珪素膜はなくなっており、窒化
珪素膜の膜厚が96nm、トレンチ部の酸化珪素膜の膜
厚は485nmであり、5分間研磨後のウエハの測定結
果は、窒化珪素膜の膜厚が90nm、トレンチ部の酸化
珪素膜の膜厚は469nmであり、3分以降研磨がほと
んど進行せずに、目標とする窒化珪素膜まで研磨するこ
とができた。
(Polished pattern wafer) Diameter 200 mm
After forming a 100 nm silicon nitride film on the Si substrate, a photoresist was applied, and dots of the 100 × 100 μm 2 silicon nitride film were left as a mask material at a pitch of 158 μm, and a 400 nm trench was formed in the Si substrate by etching. Subsequently, after forming a thin thermal oxide film, a silicon oxide film was formed to a thickness of 550 nm by a low-pressure CVD method, and a pattern wafer having a silicon oxide film embedded in a trench of 500 nm including a silicon nitride film was manufactured. The pattern wafer is set on a holder to which a suction pad for attaching a substrate to be held is attached, and the holder is placed with the insulating film face down on a platen having a diameter of 600 mm to which a polishing pad made of porous urethane resin is attached. Further, the processing pressure was set to 300 gf / cm 2 . The above cerium oxide abrasive (solid content:
(1% by weight) was dropped at a speed of 200 cc / min, and the platen and the wafer were rotated at 50 rpm for 3 minutes to polish the silicon oxide film. Polishing was performed under the same conditions with a polishing time of 4 minutes and 5 minutes. After the wafer was washed and dried, the thickness of the silicon oxide film on the silicon nitride film and the trench portion was measured by an interference film thickness meter, and the step at the boundary was measured by a stylus type step meter. The measurement result of the wafer after polishing for 3 minutes is
The thickness of the silicon oxide film on the silicon nitride film was 28 nm, the thickness of the silicon oxide film in the trench portion was 520 nm, and the remaining steps were at least <10 nm or less, indicating that the planarization was completed. . The measurement result of the wafer after polishing for 4 minutes shows that the silicon oxide film on the silicon nitride film has disappeared, the thickness of the silicon nitride film is 96 nm, and the thickness of the silicon oxide film in the trench portion is 485 nm. The measurement results of the subsequent wafer show that the thickness of the silicon nitride film is 90 nm, and the thickness of the silicon oxide film in the trench portion is 469 nm. We were able to.

【0024】(実施例2) (酸化セリウム粒子の作製)炭酸セリウム水和物2Kg
を白金製容器に入れ、800℃で2時間空気中で焼成す
ることにより黄白色の粉末を約1Kg得た。この粉末を
X線回折法で相同定を行ったところ酸化セリウムである
ことを確認した。焼成粉末粒子径は30〜100μmで
あった。焼成粉末粒子表面を走査型電子顕微鏡で観察し
たところ、酸化セリウムの粒界が観察された。粒界に囲
まれた酸化セリウム一次粒子径を測定したところ、体積
分布の中央値が190nm、最大値が500nmであっ
た。酸化セリウム粉末1Kgを湿式ビーズミルを用いて
湿式粉砕を行った。粉砕粒子について走査型電子顕微鏡
で観察したところ、一次粒子径と同等サイズの小さな粒
子に粉砕されていた。
Example 2 (Preparation of Cerium Oxide Particles) Cerium carbonate hydrate 2 kg
Was put in a platinum container, and calcined at 800 ° C. for 2 hours in the air to obtain about 1 kg of yellowish white powder. When this powder was subjected to phase identification by an X-ray diffraction method, it was confirmed that the powder was cerium oxide. The particle diameter of the calcined powder was 30 to 100 μm. When the surface of the fired powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the primary particle diameter of cerium oxide surrounded by the grain boundaries was measured, the median of the volume distribution was 190 nm and the maximum was 500 nm. 1 kg of cerium oxide powder was wet-pulverized using a wet bead mill. Observation of the pulverized particles with a scanning electron microscope revealed that the pulverized particles were pulverized into small particles having the same size as the primary particle diameter.

【0025】(酸化セリウムスラリーの作製)上記作製
の酸化セリウム粒子1Kgとポリアクリル酸アンモニウ
ム塩水溶液(40重量%)23gと脱イオン水8977
gを混合し、攪拌しながら超音波分散を10分間施し
た。得られたスラリーを1ミクロンフィルターでろ過を
し、さらに脱イオン水を加えることにより5重量%スラ
リーを得た。スラリーpHは8.3であった。上記の酸
化セリウムスラリー(固形分:5重量%)600gと界
面活性剤としてpH6.5で分子量5000のポリアク
リル酸(100%)アンモニウム塩水溶液(40重量
%)75gと脱イオン水2325gを混合して、界面活
性剤をスラリー100重量部に対して1.0重量部添加
した酸化セリウム研磨剤(酸化セリウム固形分:1重量
%)を作製した。その研磨剤pHは7.3であり、ウベ
ローデ粘度計及び比重計の測定値から算出した粘度は
1.19mPa・sであった。また、研磨剤中の粒子を
レーザ回折式粒度分布計で測定するために、適当な濃度
に希釈して測定した結果、粒子径の中央値が200nm
であった。
(Preparation of Cerium Oxide Slurry) 1 kg of the cerium oxide particles prepared above, 23 g of an aqueous solution of ammonium polyacrylate (40% by weight), and deionized water 8977
g was mixed and subjected to ultrasonic dispersion for 10 minutes while stirring. The obtained slurry was filtered through a 1-micron filter, and further 5% by weight of slurry was obtained by adding deionized water. The slurry pH was 8.3. 600 g of the above cerium oxide slurry (solid content: 5% by weight), 75 g of a polyacrylic acid (100%) ammonium salt aqueous solution (40% by weight) having a pH of 6.5 and a molecular weight of 5,000 as a surfactant, and 2,325 g of deionized water were mixed. Thus, a cerium oxide abrasive (cerium oxide solid content: 1% by weight) was prepared by adding 1.0 part by weight of a surfactant to 100 parts by weight of the slurry. The pH of the polishing slurry was 7.3, and the viscosity calculated from the values measured by an Ubbelohde viscometer and a specific gravity meter was 1.19 mPa · s. In addition, in order to measure the particles in the abrasive with a laser diffraction type particle size distribution analyzer, the particles were diluted to an appropriate concentration and measured. As a result, the median particle diameter was 200 nm.
Met.

【0026】(ブランケットウエハの研磨1)直径20
0mmSi基板上に1000nmの酸化珪素膜を成膜し
たブランケットウエハを作製した。保持する基板取り付
け用の吸着パッドを貼り付けたホルダーに上記パターン
ウエハをセットし、多孔質ウレタン樹脂製の研磨パッド
を貼り付けた直径600mmの定盤上に絶縁膜面を下に
してホルダーを載せ、さらに加工圧力を100gf/c
2に設定して、定盤上に上記の酸化セリウム研磨剤
(固形分:1重量%)を200cc/minの速度で滴
下しながら、定盤及びウエハを50rpmで1分間回転
させ、酸化珪素膜を研磨した。同様に加工圧力を200
〜800gf/cm2の範囲で100gf/cm2おきに
設定して別のウエハを研磨した。研磨後のウエハを洗浄
して乾燥し、干渉膜厚計によって膜厚を測定し、研磨前
後の膜厚変化を算出した。その結果、圧力100gf/
cm2の研磨速度は20nm/min、圧力200gf
/cm2の研磨速度は38nm/min、圧力300g
f/cm2の研磨速度は50nm/min、圧力400
gf/cm2の研磨速度は78nm/min、圧力50
0gf/cm2の研磨速度は120nm/min、圧力
600gf/cm2の研磨速度は135nm/min、
圧力700gf/cm2の研磨速度は161nm/mi
n、圧力800gf/cm2の研磨速度は285nm/
minであり、加工圧力700gf/cm2で研磨速度
の変曲点が得られた。
(Blanket Wafer Polishing 1) Diameter 20
A blanket wafer having a 1000-nm silicon oxide film formed on a 0-mm Si substrate was manufactured. The pattern wafer is set on a holder to which a suction pad for attaching a substrate to be held is attached, and the holder is placed with the insulating film face down on a platen having a diameter of 600 mm to which a polishing pad made of porous urethane resin is attached. , And the processing pressure is 100 gf / c
is set to m 2, the above-mentioned cerium oxide abrasive surface plate: dropwise (solid content 1 wt%) at a rate of 200 cc / min, the platen and the wafer was rotated for 1 minute at 50 rpm, silicon oxide The film was polished. Similarly, set the processing pressure to 200
Polishing the other wafer is set to 100 gf / cm 2 every range of ~800gf / cm 2. The polished wafer was washed and dried, and the film thickness was measured with an interference film thickness meter to calculate the change in film thickness before and after polishing. As a result, the pressure was 100 gf /
The polishing rate in cm 2 is 20 nm / min, and the pressure is 200 gf.
/ Cm 2 polishing rate is 38 nm / min, pressure 300 g
The polishing rate of f / cm 2 is 50 nm / min and the pressure is 400
The polishing rate of gf / cm 2 is 78 nm / min, and the pressure is 50.
Polishing rate of 0 gf / cm 2 is 120 nm / min, the polishing rate of the pressure 600 gf / cm 2 is 135 nm / min,
The polishing rate at a pressure of 700 gf / cm 2 is 161 nm / mi.
n, the polishing rate at a pressure of 800 gf / cm 2 is 285 nm /
min, and an inflection point of the polishing rate was obtained at a processing pressure of 700 gf / cm 2 .

【0027】(ブランケットウエハの研磨2)直径20
0mmSi基板上に1000nmの酸化珪素膜を成膜し
たブランケットウエハ及び100nmの窒化珪素膜を成
膜したブランケットウエハをそれぞれ作製した。保持す
る基板取り付け用の吸着パッドを貼り付けたホルダーに
上記パターンウエハをセットし、多孔質ウレタン樹脂製
の研磨パッドを貼り付けた直径600mmの定盤上に絶
縁膜面を下にしてホルダーを載せ、さらに加工圧力を3
00gf/cm2に設定して、定盤上に上記の酸化セリ
ウム研磨剤(固形分:1重量%)を200cc/min
の速度で滴下しながら、定盤及びウエハを50rpmで
1分間回転させ、酸化珪素膜を研磨した。同様に加工圧
力を300gf/cm2に設定して窒化珪素膜を研磨し
た。研磨後のウエハを洗浄して乾燥し、干渉膜厚計によ
って膜厚を測定し、研磨前後の膜厚変化を算出した。そ
の結果、酸化珪素膜の研磨速度が51nm/min、窒
化珪素膜の研磨速度が6nm/minであり、研磨速度
比(酸化珪素膜研磨速度/窒化珪素膜研磨速度)は9で
あった。
(Blanket Wafer Polishing 2) Diameter 20
A blanket wafer having a 1000 nm silicon oxide film formed on a 0 mm Si substrate and a blanket wafer having a 100 nm silicon nitride film formed thereon were produced. The pattern wafer is set on a holder to which a suction pad for attaching a substrate to be held is attached, and the holder is placed with the insulating film face down on a platen having a diameter of 600 mm to which a polishing pad made of porous urethane resin is attached. , And the processing pressure is 3
Set to 00gf / cm 2, platen to the cerium oxide abrasive (solid content: 1 wt%) of 200 cc / min
The platen and the wafer were rotated at 50 rpm for 1 minute while dripping at a speed of 1 to polish the silicon oxide film. Similarly, the processing pressure was set to 300 gf / cm 2 , and the silicon nitride film was polished. The polished wafer was washed and dried, and the film thickness was measured with an interference film thickness meter to calculate the change in film thickness before and after polishing. As a result, the polishing rate of the silicon oxide film was 51 nm / min, the polishing rate of the silicon nitride film was 6 nm / min, and the polishing rate ratio (silicon oxide film polishing rate / silicon nitride film polishing rate) was 9.

【0028】(パターンウエハの研磨)直径200mm
Si基板上に100nmの窒化珪素膜を成膜後、フォト
レジストを塗布し100×100μm2の窒化珪素膜の
ドットを158μmピッチでマスク材として残し、エッ
チングによりSi基板に400nmのトレンチを形成し
た。続いて、薄い熱酸化膜を形成後、低圧CVD法によ
り酸化珪素膜を550nm成膜し、窒化珪素膜厚を含め
ると500nmのトレンチに酸化珪素膜を埋め込んだパ
ターンウエハを作製する。保持する基板取り付け用の吸
着パッドを貼り付けたホルダーに上記パターンウエハを
セットし、多孔質ウレタン樹脂製の研磨パッドを貼り付
けた直径600mmの定盤上に絶縁膜面を下にしてホル
ダーを載せ、さらに加工圧力を300gf/cm2に設
定した。定盤上に上記の酸化セリウム研磨剤(固形分:
1重量%)を200cc/minの速度で滴下しなが
ら、定盤及びウエハを50rpmで3分間回転させ、酸
化珪素膜を研磨した。同様に、研磨時間4分及び5分で
も研磨を行った。ウエハを洗浄、乾燥した後に、干渉膜
厚計により窒化珪素膜上及びトレンチ部の酸化珪素膜の
膜厚を測定し、触針式段差計により境界部の段差を測定
した。3分間研磨後のウエハの測定結果は、窒化珪素膜
上の酸化珪素膜の膜厚が112nmであり、トレンチ部
の酸化珪素膜の膜厚は535nmであり、残段差は80
nm程度であった。4分間研磨後のウエハの測定結果
は、窒化珪素膜上の酸化珪素膜の膜厚が24nmであ
り、トレンチ部の酸化珪素膜の膜厚は497nmであ
り、段差は30nm以下になり平坦化が終了しているこ
とがわかった。5分間研磨後のウエハの測定結果は、窒
化珪素膜上の酸化膜はなくなっており、窒化珪素膜の膜
厚が98nm、トレンチ部の酸化珪素膜の膜厚は470
nmであり、4分研磨以降研磨がほとんど進行せずに、
目標とする窒化珪素膜まで研磨することができた。
(Polishing of Pattern Wafer) Diameter 200 mm
After forming a 100 nm silicon nitride film on the Si substrate, a photoresist was applied, and dots of the 100 × 100 μm 2 silicon nitride film were left as a mask material at a pitch of 158 μm, and a 400 nm trench was formed in the Si substrate by etching. Subsequently, after forming a thin thermal oxide film, a silicon oxide film is formed to a thickness of 550 nm by a low-pressure CVD method, and a pattern wafer is formed by embedding the silicon oxide film in a trench of 500 nm including the silicon nitride film thickness. The pattern wafer is set on a holder to which a suction pad for attaching a substrate to be held is attached, and the holder is placed with the insulating film face down on a platen having a diameter of 600 mm to which a polishing pad made of porous urethane resin is attached. Further, the processing pressure was set to 300 gf / cm 2 . The above cerium oxide abrasive (solid content:
(1% by weight) was dropped at a speed of 200 cc / min, and the platen and the wafer were rotated at 50 rpm for 3 minutes to polish the silicon oxide film. Similarly, polishing was performed at polishing times of 4 minutes and 5 minutes. After the wafer was washed and dried, the thickness of the silicon oxide film on the silicon nitride film and the trench portion was measured by an interference film thickness meter, and the step at the boundary was measured by a stylus type step meter. The measurement result of the wafer after polishing for 3 minutes shows that the thickness of the silicon oxide film on the silicon nitride film is 112 nm, the thickness of the silicon oxide film in the trench portion is 535 nm, and the remaining step is 80 nm.
nm. The measurement result of the wafer after polishing for 4 minutes shows that the thickness of the silicon oxide film on the silicon nitride film is 24 nm, the thickness of the silicon oxide film in the trench portion is 497 nm, and the step is 30 nm or less, and the flatness is reduced. It turned out to be finished. The measurement result of the wafer after polishing for 5 minutes shows that the oxide film on the silicon nitride film has disappeared, the thickness of the silicon nitride film is 98 nm, and the thickness of the silicon oxide film in the trench portion is 470.
and polishing hardly progresses after 4 minutes polishing,
The target silicon nitride film could be polished.

【0029】(比較例1) (ブランケットウエハの研磨)直径200mmSi基板
上に1000nmの酸化珪素膜を成膜したブランケット
ウエハ及び100nmの窒化珪素膜を成膜したブランケ
ットウエハをそれぞれ作製した。保持する基板取り付け
用の吸着パッドを貼り付けたホルダーに上記パターンウ
エハをセットし、多孔質ウレタン樹脂製の研磨パッドを
貼り付けた直径600mmの定盤上に絶縁膜面を下にし
てホルダーを載せ、さらに加工圧力を300gf/cm
2に設定して、定盤上に市販シリカスラリーを用いて
(固形分:12.5重量%)を200cc/minの速
度で滴下しながら、定盤及びウエハを50rpmで1分
間回転させ、酸化珪素膜を研磨した。同様に加工圧力を
300gf/cm2に設定して窒化珪素膜を研磨した。
研磨後のウエハを洗浄して乾燥し、干渉膜厚計によって
膜厚を測定し、研磨前後の膜厚変化を算出した。その結
果、酸化珪素膜の研磨速度が175nm/min、窒化
珪素膜の研磨速度が70nm/minであり、研磨速度
比(酸化珪素膜研磨速度/窒化珪素膜研磨速度)は2.
5であった。
Comparative Example 1 (Blanket Wafer Polishing) A blanket wafer having a silicon oxide film having a thickness of 1000 nm formed on a Si substrate having a diameter of 200 mm and a blanket wafer having a silicon nitride film having a thickness of 100 nm formed thereon were manufactured. The pattern wafer is set on a holder to which a suction pad for attaching a substrate to be held is attached, and the holder is placed with the insulating film face down on a platen having a diameter of 600 mm to which a polishing pad made of porous urethane resin is attached. , And the processing pressure is 300 gf / cm
The surface plate and the wafer were rotated at 50 rpm for 1 minute while dropping (solid content: 12.5% by weight) at a rate of 200 cc / min using a commercially available silica slurry on the platen, and then oxidized. The silicon film was polished. Similarly, the processing pressure was set to 300 gf / cm 2 , and the silicon nitride film was polished.
The polished wafer was washed and dried, and the film thickness was measured with an interference film thickness meter to calculate the change in film thickness before and after polishing. As a result, the polishing rate of the silicon oxide film was 175 nm / min, the polishing rate of the silicon nitride film was 70 nm / min, and the polishing rate ratio (silicon oxide film polishing rate / silicon nitride film polishing rate) was 2.
It was 5.

【0030】(パターンウエハの研磨)直径200mm
Si基板上に100nmの窒化珪素膜を成膜後、フォト
レジストを塗布し100×100μm2の窒化珪素膜の
ドットを158μmピッチでマスク材として残し、エッ
チングによりSi基板に400nmのトレンチを形成し
た。続いて、薄い熱酸化膜を形成後、低圧CVD法によ
り酸化珪素膜を550nm成膜し、窒化珪素膜厚を含め
ると500nmのトレンチに酸化珪素膜を埋め込んだパ
ターンウエハを作製する。保持する基板取り付け用の吸
着パッドを貼り付けたホルダーに上記パターンウエハを
セットし、多孔質ウレタン樹脂製の研磨パッドを貼り付
けた直径600mmの定盤上に絶縁膜面を下にしてホル
ダーを載せ、さらに加工圧力を300gf/cm2に設
定した。定盤上に市販のシリカスラリー(固形分:1
2.5重量%)を200cc/minの速度で滴下しな
がら、定盤及びウエハを50rpmで2分間回転させ、
酸化珪素膜を研磨した。同様に、研磨時間3分及び4分
でも研磨を行った。ウエハを洗浄、乾燥した後に、干渉
膜厚計により窒化珪素膜上及びトレンチ部の酸化珪素膜
の膜厚を測定し、触針式段差計により境界部の段差を測
定した。2分間研磨後のウエハの測定結果は、窒化珪素
膜上の酸化珪素膜の膜厚が12nmであり、トレンチ部
の酸化珪素膜の膜厚は324nmであり、残段差は19
0nm程度であった。3分間研磨後のウエハの測定結果
は、窒化珪素膜上の酸化珪素膜はなくなっており、窒化
珪素膜の膜厚が32nm、トレンチ部の酸化珪素膜の膜
厚は220nmであり、残段差は210nm程度であっ
た。4分間研磨後のウエハの測定結果は、窒化珪素膜が
なくなってしましSi基板が露出してしまった。研磨時
間3分で窒化珪素膜の目標位置まで研磨することができ
たが、残段差も>150nmと大きく、窒化珪素膜が露
出してからの研磨速度もあまり低下しないために、1回
の研磨では、研磨時間の設定が難しい。
(Polishing of Pattern Wafer) Diameter 200 mm
After forming a 100 nm silicon nitride film on the Si substrate, a photoresist was applied, and dots of the 100 × 100 μm 2 silicon nitride film were left as a mask material at a pitch of 158 μm, and a 400 nm trench was formed in the Si substrate by etching. Subsequently, after forming a thin thermal oxide film, a silicon oxide film is formed to a thickness of 550 nm by a low-pressure CVD method, and a pattern wafer is formed by embedding the silicon oxide film in a trench of 500 nm including the silicon nitride film thickness. The pattern wafer is set on a holder to which a suction pad for attaching a substrate to be held is attached, and the holder is placed with the insulating film face down on a platen having a diameter of 600 mm to which a polishing pad made of porous urethane resin is attached. Further, the processing pressure was set to 300 gf / cm 2 . Commercially available silica slurry (solid content: 1
(2.5% by weight) at a rate of 200 cc / min while rotating the platen and the wafer at 50 rpm for 2 minutes.
The silicon oxide film was polished. Similarly, polishing was performed at polishing times of 3 minutes and 4 minutes. After the wafer was washed and dried, the thickness of the silicon oxide film on the silicon nitride film and the trench portion was measured by an interference film thickness meter, and the step at the boundary was measured by a stylus type step meter. The measurement result of the wafer after polishing for 2 minutes shows that the thickness of the silicon oxide film on the silicon nitride film is 12 nm, the thickness of the silicon oxide film in the trench portion is 324 nm, and the remaining step is 19 nm.
It was about 0 nm. The measurement result of the wafer after polishing for 3 minutes shows that the silicon oxide film on the silicon nitride film has disappeared, the thickness of the silicon nitride film is 32 nm, the thickness of the silicon oxide film in the trench portion is 220 nm, and the remaining step is It was about 210 nm. The measurement result of the wafer after polishing for 4 minutes showed that the silicon nitride film disappeared and the Si substrate was exposed. Polishing could be performed to the target position of the silicon nitride film in a polishing time of 3 minutes. However, since the residual step was large at> 150 nm and the polishing rate after the silicon nitride film was exposed did not decrease so much, one polishing was performed. Then, it is difficult to set the polishing time.

【0031】[0031]

【発明の効果】本発明の研磨法により、シャロー・トレ
ンチ分離形成、金属埋め込み配線形成等のリセスCMP
技術及び層間絶縁膜の平坦化CMP技術において、酸化
珪素膜、金属等の埋め込み膜の余分な成膜層の除去及び
平坦化を効率的、高レベルに、かつプロセス管理も容易
に行うことができる。
According to the polishing method of the present invention, recess CMP for forming a shallow trench isolation, forming a metal buried wiring, etc.
Technology and planarization of interlayer insulating film In the CMP technology, the removal and flattening of an extra film-forming layer of a buried film such as a silicon oxide film and a metal can be efficiently performed at a high level and the process management can be easily performed. .

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 砥粒および陰イオン性界面活性剤を含む
研磨剤であり、陰イオン性界面活性剤の濃度がスラリー
100重量部に対して0.5重量部〜10重量部の範囲
である研磨剤。
1. An abrasive containing abrasive grains and an anionic surfactant, wherein the concentration of the anionic surfactant is in the range of 0.5 to 10 parts by weight based on 100 parts by weight of the slurry. Abrasive.
【請求項2】 研磨剤の砥粒が、結晶粒界を有する粒子
を含むことを特徴とする研磨剤。
2. An abrasive, wherein the abrasive grains of the abrasive include particles having crystal grain boundaries.
【請求項3】 請求項1または請求項2に記載の研磨剤
で、少なくとも酸化珪素膜が形成された半導体チップを
研磨する基板の研磨方法。
3. A method for polishing a substrate, comprising: polishing a semiconductor chip on which at least a silicon oxide film is formed with the polishing slurry according to claim 1.
JP23141399A 1999-08-18 1999-08-18 Polishing agent and method for polishing substrate by using the same Withdrawn JP2001055560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23141399A JP2001055560A (en) 1999-08-18 1999-08-18 Polishing agent and method for polishing substrate by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23141399A JP2001055560A (en) 1999-08-18 1999-08-18 Polishing agent and method for polishing substrate by using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009083217A Division JP5104796B2 (en) 2009-03-30 2009-03-30 Abrasive and substrate polishing method using the same

Publications (1)

Publication Number Publication Date
JP2001055560A true JP2001055560A (en) 2001-02-27

Family

ID=16923216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23141399A Withdrawn JP2001055560A (en) 1999-08-18 1999-08-18 Polishing agent and method for polishing substrate by using the same

Country Status (1)

Country Link
JP (1) JP2001055560A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450984B1 (en) * 2000-11-24 2004-10-02 도꾜 지끼 인사쯔 가부시키가이샤 Chemical mechanical polishing slurry
JP2005159351A (en) * 2003-11-21 2005-06-16 Praxair St Technol Inc High selectivity colloidal silica slurry
JP2009147396A (en) * 2009-03-30 2009-07-02 Hitachi Chem Co Ltd Abrasive, and method of polishing substrate using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822970A (en) * 1994-07-08 1996-01-23 Toshiba Corp Polishing method
WO1997029510A1 (en) * 1996-02-07 1997-08-14 Hitachi Chemical Company, Ltd. Cerium oxide abrasive, semiconductor chip, semiconductor device, process for the production of them, and method for the polishing of substrates
JPH10106988A (en) * 1996-09-30 1998-04-24 Hitachi Chem Co Ltd Cerium oxide abrasive agent and polishing method of substrate
JPH1112561A (en) * 1997-04-28 1999-01-19 Seimi Chem Co Ltd Abrasive for semiconductor and production of the same
JPH11181403A (en) * 1997-12-18 1999-07-06 Hitachi Chem Co Ltd Cerium oxide abrasive and grinding of substrate
WO1999043761A1 (en) * 1998-02-24 1999-09-02 Showa Denko K.K. Abrasive composition for polishing semiconductor device and process for producing semiconductor device with the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822970A (en) * 1994-07-08 1996-01-23 Toshiba Corp Polishing method
WO1997029510A1 (en) * 1996-02-07 1997-08-14 Hitachi Chemical Company, Ltd. Cerium oxide abrasive, semiconductor chip, semiconductor device, process for the production of them, and method for the polishing of substrates
JPH10106988A (en) * 1996-09-30 1998-04-24 Hitachi Chem Co Ltd Cerium oxide abrasive agent and polishing method of substrate
JPH1112561A (en) * 1997-04-28 1999-01-19 Seimi Chem Co Ltd Abrasive for semiconductor and production of the same
JPH11181403A (en) * 1997-12-18 1999-07-06 Hitachi Chem Co Ltd Cerium oxide abrasive and grinding of substrate
WO1999043761A1 (en) * 1998-02-24 1999-09-02 Showa Denko K.K. Abrasive composition for polishing semiconductor device and process for producing semiconductor device with the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450984B1 (en) * 2000-11-24 2004-10-02 도꾜 지끼 인사쯔 가부시키가이샤 Chemical mechanical polishing slurry
JP2005159351A (en) * 2003-11-21 2005-06-16 Praxair St Technol Inc High selectivity colloidal silica slurry
JP2009147396A (en) * 2009-03-30 2009-07-02 Hitachi Chem Co Ltd Abrasive, and method of polishing substrate using the same

Similar Documents

Publication Publication Date Title
KR101277029B1 (en) Cmp polishing liquid, method for polishing substrate, and electronic component
EP3470487B1 (en) Mixed abrasive polishing compositions
EP1691401B1 (en) Method for polishing a substrate using CMP abrasive
JP2004512681A (en) Chemical mechanical polishing slurry and polishing method
WO2002096999A1 (en) Cerium oxide slurry, and method of manufacturing substrate
JP6298588B2 (en) Cleaning liquid and substrate polishing method
JP3725357B2 (en) Element isolation formation method
JP2001055560A (en) Polishing agent and method for polishing substrate by using the same
JP2006191134A (en) Abrasive powder and polishing method of substrate
JP3496585B2 (en) Substrate polishing method
JP2001057352A (en) Method of polishing substrate
JP2009266882A (en) Abrasive powder, polishing method of base using same, and manufacturing method of electronic component
JP2000160137A (en) Polishing agent and polishing process using the same
JP5104796B2 (en) Abrasive and substrate polishing method using the same
JP2000160136A (en) Polishing agent and polishing process using the same
JP2017117898A (en) Polishing liquid for CMP and polishing method using the same
JP3496551B2 (en) Substrate polishing method
JP3496586B2 (en) Abrasive and substrate polishing method
WO2004100243A1 (en) Slurry composition for chemical-mechanical polishing capable of compensating nanotopography effect and method for planarizing surface of semiconductor device using same
JP4491857B2 (en) CMP polishing agent and substrate polishing method
JP2003037092A (en) Method for polishing substrate
JP2004134751A6 (en) Polishing agent and substrate polishing method
JP2004134751A (en) Abrasive and polishing method for substrate
JP2003045829A (en) Abrasive and method of polishing substrate
JP2001308043A (en) Cmp-polishing agent and polishing method for substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090525